

Advanced G-MPS-PMMA bone cements: influence of graphene silanisation on fatigue performance, thermal properties and biocompatibility

E. Paz Jiménez; Y. Ballesteros Iglesias; J. Abenojar Buendia; N. Dunne; J.C. Real Romero

Abstract-

The incorporation of well-dispersed graphene (G) powder to polymethyl methacrylate (PMMA) bone cement has been demonstrated as a promising solution to improving its mechanical performance. However, two crucial aspects limit the effectiveness of G as a reinforcing agent: (1) the poor dispersion and (2) the lack of strong interfacial bonds between G and the matrix of the bone cement. This work reports a successful functionalisation route to promote the homogenous dispersion of G via silanisation using 3-methacryloxypropyltrimethoxy silane (MPS). Furthermore, the effects of the silanisation on the mechanical, thermal and biocompatibility properties of bone cements are presented. In comparison with unsilanised G, the incorporation of silanised G (G_MPS1 and G_MPS2) increased the bending strength by 17%, bending modulus by 15% and deflection at failure by 17%. The most impressive results were obtained for the mechanical properties under fatigue loading, where the incorporation of G_MPS doubled the Fatigue Performance Index (I) value of unsilanised G-bone cement-meaning a 900% increase over the I value of the cement without G. Additionally, to ensure that the silanisation did not have a negative influence on other fundamental properties of bone cement, it was demonstrated that the thermal properties and biocompatibility were not negatively impacted—allowing its potential clinical progression.

Index Terms- graphene; silane; bone cement; fatigue; biocompatibility; silanisation; thermal properties; mechanical properties

Due to copyright restriction we cannot distribute this content on the web. However, clicking on the next link, authors will be able to distribute to you the full version of the paper:

[Request full paper to the authors](#)

If your institution has an electronic subscription to Nanomaterials, you can download the paper from the journal website:

[Access to the Journal website](#)

Citation:

Paz, E.; Ballesteros, Y.; Abenojar, J.; Dunne, N.; del Real-Romero, J.C. "Advanced

G-MPS-PMMA bone cements: influence of graphene silanisation on fatigue performance, thermal properties and biocompatibility", Nanomaterials, vol.11, no.1, pp.139-1-139-17, .