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Impact of Electric Vehicle Routing with Stochastic Demand
on Grid Operation
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Abstract—Given the rise of electric vehicle (EV) adoption, supported by
government policies and dropping technology prices, new challenges arise
in the modeling and operation of electric transportation. In this paper,
we present a model for solving the EV routing problem while accounting
for real-life stochastic demand behavior. We present a mathematical
formulation that minimizes travel time and energy costs of a EV fleet.
The EV is represented by a battery energy consumption model. To
adapt our formulation to real-life scenarios, customer pick-ups and
drop-offs were modeled as stochastic parameters. A chance-constrained
optimization model is proposed for addressing pick-ups and drop-offs
uncertainties. Computational validation of the model is provided based
on representative transportation scenarios. Results obtained showed a
quick convergence of our model with verifiable solutions. Finally, the
impact of electric vehicles charging is validated in Downtown Manhattan,
New York by assessing the effect on the distribution grid.

Index Terms—Electric vehicle, Chance-constrained optimization, Vehi-
cle routing problem

NOMENCLATURE

Indexes and Sets
i, j, s ∈ J Customer locations.
i, j, s ∈ J0 Transportation nodes, i.e., customers locations and

depot; |J0| = |J |+ 1.
k ∈ K Charging stations. K = J0 ∩N .
n,m ∈ N Nodes in the electric distribution network.
(n,m) ∈ L Power distribution lines.
v ∈ V Electric vehicles.

Parameters
εj Risk tolerance for demand satisfaction at node j, [-].
Cv Vehicle power consumption rate, [kWh/min].
CE Cost of electricity, [$/kW].
CT Unitary cost of time travelled, [$/min].
Di Amount of dropped off customers at i, [passengers].
Ev/Ev Minimum/maximum battery charge level, [kWh].
ETi Earliest time of arrival at j, [min].
Lv Vehicle capacity, [passengers].
LTi Latest time of arrival at j, [min].
M (·) Large constant, [–].
Pi Amount of picked up customers at i, [passengers].
Pn/Pn Minimum/maximum nodal active demand, [kW].
P de
n /Q

de
n Local active/reactive demand at node n, [kW/kVar].

Q
n
/Qn Minimum/maximum nodal reactive demand, [kVar].

Rv Vehicle charging rate, [kWh/min].
Sn/Sn Minimum/maximum nodal apparent demand, [kVA].
Tij Travel time between nodes, [min].
T k/T k Minimum/maximum charging time, [min].
T

rech
v Maximum allowed time before recharge, [min].

V /V Minimum/maximum nodal voltage, [V].

Variables
πj Variable used to prohibit sub-tours, [–].
τkv Charging time spent by vehicle v, [min].

This work was partially funded by the Skolkovo Institute of Science and
Technology as a part of the Skoltech NGP Program (Skoltech-MIT joint
project).

ejv Energy level of vehicle v at node j, [kWh].
l0v Vehicle load after leaving the depot, [passengers].
ljv Vehicle load after visiting location j, [passengers].
pnm/qnm Active/reactive power flow along line (n,m),

[kW/kvar].
pd
n Sum of electric power consumption and EV charging

power at node n, [kW/kvar].
pg
n/q

g
n Active/reactive power generation at n, [kW/kVar].

tjv Arrival time of v to node j, [min].
un Square of the voltage magnitude at n, [V 2].
wkv Auxiliary variable combining charge duration and

power usage at station, [kWh].
xijv Binary variable indicating whether vehicle v travels

directly from i to j, [–].
ykv Binary variable indicating vehicle v at charging

station k, [–].
I. INTRODUCTION

Until recently, large scale electrification of the transportation
sector has not gained so much attention, even though transportation
represents more than 25% of the world’s energy consumption [1].
The transportation sector contributes to a large share of greenhouse
emissions, e.g., in California, it accounts for more than 40% of emis-
sions [2]. Energy decarbonization road-maps highlight electrification
of the transport sector as a critical step to reach emission goals.
Likewise, emissions reductions are especially necessary for polluted
mega-cities, where an increasing number of projects have replaced
combustion-based bus fleets by electric ones. This modernization ben-
efits from improvements in rechargeable battery technology leading
to quantitative improvement in EV technology. EV manufacturing
companies continue to make measurable production growth with
a significant presence of EVs used for commercial transportation
services [3].

In terms of impact of vehicles charging on the distribution grid, let
us evaluate how much power is drawn from the grid during routing.
Using a Tesla model S with a battery capacity of 75kWh with
consumption of only about 33kWh for 100 miles driven translates
to a driving range of about 220 miles. This might mean only a single
charge in 2 days for private car owners which sit idle for about 95%
of the time on a daily basis [4]. However, when we consider that
ride sharing where cars would constantly be on the road, then the
effect on the electric network are: more frequent charging sessions
and increasing use of fast-charging stations.

If we consider fast chargers with power charging rate of 50kW,
twenty vehicles would be withdrawing 1MW from the power network
if they are charged simultaneously. New York uses about 11000MWh
of electricity per day which translates into an average hourly con-
sumption of approximately 450MW. Thus, only twenty vehicles
would represent about 0.25% of the city’s demand. An average ride-
sharing car makes between 5 to 12 trips per day. Thus, an EV would
require charging at least once or twice per day. If we consider a fleet
owner with 500 EVs, power requirement increases up to 25MW a
considerable increase on demand is requested to the electric network.

Transportation electrification then calls for modification of previous
vehicle routing algorithms, which have considered traditional internal
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combustion engine (ICE) vehicles. ICE vehicles estimate energy
consumption by distance traveled and gross weight of the vehicle. For
EVs, these assumptions are still valid, but additional considerations
such as battery properties and charging infrastructure must also be
considered.

A. Literature Survey

The vehicle routing problem (VRP) with simultaneous pickup and
delivery for material goods was introduced in [5]. In [6], customer sat-
isfaction was added as a model constraint. Time-window constraints
are included in the VRP to prevent situations in which customers wait
for long periods. A review on exact algorithms for time-and- capacity-
constrained models was presented in [7]. Including uncertainty, [8]
modelled the stochastic nature of drop-offs and pickups using chance
constraints. In another study, non-linear interval-based programming
was used to investigate VRP with uncertainty in drop-offs [9].

As energy management became increasingly important, various
studies incorporated partial battery charging stations into their model
while still using a conventional combustion engine model for energy
management. The green-mixed fleet VRP was proposed in [10].
Models with minimization of traveled distance and energy usage have
also been presented in [11]–[14].

Single user vehicles, due to their passive usage, are primarily
considered as static energy storage equipment. However, in this
paper we seek to address the question on EVs applicability based
on two premises: 1) EVs production continues to increase, and 2)
ride/car sharing popularity, which increases vehicle mileage. As EVs
increase in numbers, there will be an increasing request for power
reliability from the existing power infrastructure. Additionally, if EVs
are widely accepted as an alternative to commercial vehicles, we pose
a further question of how much impact this would have on the power
grid.

The current solution being proposed to curtail the impact of EVs
on the power grid is valley filling. Inherent challenges with this is
the possibility of creating a new peak and importantly, controlling
human behaviour. Valley filling [15] essentially seeks to smooth out
the individual or aggregate load curve by shaving peak loads and
increasing off-peak loads e.g. charging EVs at night.

In [16], [17], offline and online valley filling algorithms were
introduced. The authors recognised the challenge posed by large
fleet of EVs on the distribution network if the EVs are stationed
in residential areas. The EV charging problem was modelled using
a modified version of the optimal power flow problem with a
valley-filling objective. However, electricity price was considered
constant in the papers and EVs were taken as stationary. A mode
of decentralized coordination of charging large populations of EVs
using non-cooperative game theory was developed in [18]. The
charging schedule was also modeled as a valley-filling problem. As
in the previous literature discussed, electricity price was taken as
constant and uncertainties were not considered. A control algorithm
focusing on peak shaving was proposed to match the power curve
and scheduled EV usage curve in [19]. A grid that incorporates smart
meters, intelligent switches, two-way charge devices and a central
control center was considered. The charging decision is then made by
matching the load forecast curve and the available charge/discharge
curve of EVs.

A major drawback in these systems is the absence of mobility-
awareness when scheduling EV charging. An additional challenge
was lack of real data in justifying the proposed control algo-
rithms/frameworks developed. This is also a reason why authors
modeled electricity prices as time-invariant due to lack of evidence
regarding how the EVs will affect the dynamics of the power system.

Furthermore, several tools have been developed to address some
of the questions that we pose in our work. CASPOC, COMPOSE
and HOMER are three simulators that are closest to our proposed
methodology [20]. However, these tools have limitations which do
not capture the solution that we propose. HOMER, for instance, does
not include mobility and time dependent batteries based on specific
EVs could not be modeled on it. CASPOC and COMPOSE, though
can model EVs, do not support integration of mobility with the grid.

This paper introduces a new variant of co-optimization of multi-
energy systems which have included coordinated operation of power,
thermal and gas networks. An operational optimization model for
electricity, thermal and gas network was presented in [21]. Co-
ordinated operation of the heating and electricity system for the
United Kingdom is discussed in [22]. A survey on power and gas
system integration is presented [23]. These coordinated systems
offer environmental, system reliability, and economic benefits; similar
benefits can be achieved by the coordination of the transportation and
electricity network.

B. Paper Contribution and Organization

The main contribution of this work is to propose a co-optimization
model that combines the routing of an EV transportation fleet and
the distribution grid power flow. Additionally, we extend the proposed
model by incorporating pick-up and drop-off uncertainty in the VRP
model. The resulting model is formulated as a chance-constrained
optimization problem and reformulated as an equivalent deterministic
mixed-integer linear programming (MILP). Then, we present an
illustrative case study based on real data of the island of Manhattan,
New York.

The rest of the paper is organized as follows. Section II develops
the mathematical formulation of the VRP problem with vehicle
recharging, demand uncertainty and power flow in the electric dis-
tribution network. In Section III, we describe the test case data, and
how it is processed and used for computational tests. In Section IV
the proposed model is tested on the case study. Section V concludes
the study.

II. MATHEMATICAL MODEL

The overall aim of the optimization problem is to reduce the
EV operation cost by minimizing travel time and energy usage of
the vehicles and to minimize the cost of the distribution network
operation by efficiently scheduling EV charging periods. This section
is devoted to formulating electric transport routing, representative
energy management model and the distribution grid. Noting that some
parameters are not exactly known during planning, equations used to
describe stochasticity will also be highlighted. Our goal is to provide a
routing and EV charging plan for EV-fleet owners and electric utility
companies. This plan will enable a reduction in distance traveled,
contribute to reduced energy usage and consequently lead to efficient
and operation of the distribution grid.

A. Electric Vehicle Routing Model

The vehicle routing problem consists of assigning routes to a
fleet of transportation vehicles based on drop-off and pick-up needs
of customers distributed on a set of nodes on the transportation
network. The objective (1a) of the VRP is the minimization of total
time traveled by the transportation fleet. xijv represents whether
the vehicle v travels directly from stop i to stop j, and Tij is the
distance between these stops. In combination with (1a), the VRP can
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be modelled by the following problem.

min
∑
i∈J0

∑
j∈J0

∑
v∈V

xijvTij (1a)

s.t.:
∑
i∈J0

∑
v∈V

xijv = 1, ∀j (1b)∑
i∈J0

xisv =
∑
j∈J0

xsjv, ∀s ∈ J, v (1c)

l0v =
∑
i∈J0

∑
j∈J

Djxijv, ∀v (1d)

ljv ≥ liv −Dj + Pj −ML
ijv, ∀i 6= j, v (1e)

ljv ≤ Lv, ∀j, v (1f)

πj ≥ πi + 1− |J0|(1−
∑
v∈V

xijv), ∀i 6= j (1g)

ETj ≤ tjv ≤ LTj , ∀j, v (1h)

tjv ≥ tiv + τkv + xijvTij −MT
ijv, ∀i∈J, j∈J0, k, v (1i)

ljv, tjv, πj ≥ 0, ∀j, v (1j)

xijv ∈ {0, 1}, ∀i, j, v. (1k)

Constraints (1b) and (1c) define that each customer should be moved
from a pick-up point to a drop-off point by exactly one vehicle. Initial
vehicle load from the depot is set by (1d). (1e) represents the vehicle
loads en route; with ML

ijv = ML(1 − xijv). The constant ML is
a large number that sets a common lower bound to constraints in
which xijv has a unitary value. The value of ML can be calculated
beforehand based on demand levels of the transportation network.
Vehicle capacity limits are set by (1f).

As the algorithm searches for solutions to satisfy given constraints,
many disjointed routes which have no connections with the depot
will be created. However, a fleet manager requires all vehicles to
be returned to the starting station at the end of every tour. Sub-tour
eliminating constraint, (1g), removes solutions without connections
to the depot.

Based on customer-established pick-up times, expression (1h) sets
the bounds for the arrival time at different stops. Arrival time is
calculated with (1i), where the value MT

ijv is calculated analogously
as ML

ijv , but with a large time constant MT . The lower bounds on
vehicle load, traveled time and sub-tour breaking variable is set by
(1j), whereas (1k) defines xijv as a binary variable.

B. Energy Usage Model

For the routing of the electric fleet, it is necessary to model
energy usage of the vehicle and time spent at charging stations. The
objective of the VRP with energy management can be set either as
the minimization of the total time spent at charging stations or as the
total cost of energy used. If a constant electricity price is considered,
both objectives are equivalent. Thus, we express the objective of the
VRP with energy management as:

min
∑
k∈K

∑
v∈V

τkv, (2a)

s.t.: ejv ≤ eiv+τkvRv−CvxijvTij+ME
ijv, ∀i6=j, k, v (2b)∑

v∈V

xijvTij ≤ T
rech
, ∀i, j (2c)

T kykv ≤ τkv ≤ ykvT k, ∀k, v (2d)

ekv + τkvRv ≤ Ev, ∀k, v (2e)

Ev ≤ ejv ≤ Ev, ∀j, v. (2f)

Battery energy levels at each node are calculated by (2b). ME
ijv =

ME(1−xijv) is a large value that is used to activate this constraint
(2b) when the edge connecting the stops i and j is traveled.
Expression (2c) sets an upper bound on the time a vehicle can

move before returning to depot. (2d) and (2e) respectively define
the lower and upper bounds on the time of charging for a vehicle
visiting a charging station and the energy after a charging stop.
Battery capacity limits are defined by (2f). Battery degradation is
not considered in our formulation due to modern battery technology
which are designed to ensure a good lifetime. Studies have shown
that EV battery degradation rate is non-linearly correlated with its
usage, and for EV fleets, increased utilization does not necessarily
impact battery life [24].

C. Distribution Grid Model

The conventional methods for solving power flow in distribution
grid follow the fundamental electrical current flow laws. We for-
mulate the electrical distribution grid using LinDistFlow equations
[25] which is a linear form of the power flow equations in electrical
distribution grids, resulting into a computationally and numerically
efficient formulation for distribution network operation modeling.

pnm = pg
m − P de

m −
∑

m′:(m,m′)∈L

pmm′ , ∀(n,m) ∈ L (3a)

qnm = qg
m −Qde

m −
∑

m′:(m,m′)∈L

qmm′ , ∀(n,m) ∈ L (3b)

um = un − 2(rnmpnm + xnmqnm), ∀(n,m) ∈ L (3c)

pnm ≤ Pnm, ∀(n,m) ∈ L (3d)

qmn ≤ Qnm, ∀(n,m) ∈ L (3e)

Pn ≤ p
g
n ≤ Pn, ∀n (3f)

Q
n
≤ qg

n ≤ Qn, ∀n (3g)

V 2
n ≤ un ≤ V

2
n, ∀n, (3h)

Where P de
n + iQde

n represents the complex power consumption of
electric demand only at node n. pnm + iqnm is complex power
flowing along the power line (nm). pg

n+ iqg
n is the power generation

at node n. un is the square of the nodal voltage. Equations (3a)
and (3b) model power flow through the lines. The nodal voltage is
calculated by (3c); while line flow, generation, and voltage limits are
set by (3d)–(3h).

D. Transportation Network and Electrical Grid Coupling

The transportation network and the electric grid are coupled by EV
charging stations. The power required by EVs during charging should
be added to the grid’s existing demand. Note that the location and
power demand from EVs are dependent on the routes resultant of the
VRP. Electricity consumption in the distribution grid can be summed
up to that in the transportation grid at the nodes where charging
stations are present by the following expression:

pd
n = pd,e +Rv, (∀n ∈ J, ∀k ∈ K) ∧ ykv = 1. (4)

Thus, active power consumption pd
n at node n, is equivalent to regular

electrical load pd,e, plus electric load related with transportation grid,
Rv , at charging station k.

E. Modelling Uncertainty

Given the uncertain nature of demand, we need to express the
uncertainty in the drop-off and pick-up parameters of the transporta-
tion demand balance (1e). We opt for the use of chance-constrained
programming to describe demand uncertainty because this approach
allows us to satisfy customer demands with a certain degree of
confidence, i.e., we model the constraints in such a way that drop-offs
and pick-ups are complied with a probability above the established
level (1− εj):

P(ljv ≥ liv −Dj + Pj −ML
ijv) ≥ 1− εj , ∀i 6= j, v (5)
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where liv and ljv are variables representing vehicle nodal loads, and
Dj and Pj are bounded parameters. The probability of the nodal
constraint satisfaction is given by (1 − εj) ∈ [0, 1]. The use of
nodal constraint satisfaction allows us to assign differential priority to
transportation nodes based on their importance by selecting different
values of the risk parameter εj , i.e., more important transportation
nodes have lower risk values εj . The following reformulation of
vehicle capacity conservation is made [26]:

ljv≥liv−E[Dj − Pj ]± Φ−1
1−εjσj−M

L
ijv, ∀i 6= j, v (6)

The value E[Dj−Pj ] represents the net demand expected at node
j. Φ−1

1−εj is the inverse cumulative distribution function evaluated at
1−εj , and σj the standard deviation of the nodal net demand.

F. Overall Objective

We consider writing a single objective by making some adjust-
ments to our prior objectives defined above.
• A penalization factor CT is introduced to assign a cost related

to traveling time in (1a). This factor is similar to a transport
service cost based on distance or time traveled.

• By considering power consumption and time spent charging at
different nodes, multiplied by electricity cost, it is possible to
obtain the total cost of energy. The electricity cost is constant
here because of the resolution of our planning horizon which is
within an hour or less and the electricity cost is generally non-
variant within this time period. Thus, the electricity cost will be
updated according to prevalent prices during the time when the
planning schedule is required.

The new objective function becomes:

min
∑
i,j,v

CTxijvTij +
∑
v,k

CEpckτkv (7)

The second part of the final objective (7) introduces non-convexity
to the model because both power consumption and charging time
are variables. However, power consumption and charging time are
both bounded by battery capacity and charge rate. We overcome the
non-convexity by combining these two variables via the introduction
of a McCormick envelope [27] which is represented by the set of
constraints (8):

wkv ≤ Evτkv + pckT k − EvT k, ∀k, v (8a)

wkv ≤ pckT k + Evτkv − EvT k, ∀k, v (8b)

Ev ≤ p
c
k ≤ Ev, (8c)

T k ≤ τkv ≤ T k, ∀k, v (8d)

A linear representation of the objective is finally given by:

min
∑
i,j,v

CTxijvTij +
∑
v,k

CEwkv (9)

G. Model Summary

For further analysis, we classify our formulation into two broad
groups: deterministic and chance-constrained stochastic models. As
shown in Table I, the main difference in formulation appears in the
set of constraints defining the EV routing problem.

III. CASE STUDY

A. Transportation Network Data

The case study selected for validating our proposed methodology
is based on the Downtown Manhattan transportation network. Drop-
off and pick-up data is taken from taxi trip records by the New York
City Taxi and Limousine Commission for 2018 [28]. The data set
includes pick-up and drop-off dates, times, locations, trip distances
and driver-reported passenger counts. Table II shows a snippet from
this data set where PULID and DOLID are respectively the pick-up

TABLE I: Model Summary

Deterministic Stochastic CC
Objective (9) (9)
EV routing problem (1b) – (1k) (1b) – (1d),

(1f) – (1k), (5) & (6)
Energy usage (2b) – (2f) (2b) – (2f)
Electric distribution OPF (3) (3)
Coupling constraint (4) (4)
Total charged energy (8) (8)

TABLE II: Representative Data Snippet

Pickup Drop-off Trip PULID DOLID Passenger
date-time date-time distance count

12/31/2018 1/1/2019 16.6 162 26 1
11:58:45 12:37:04

12/31/2018 1/1/2019 3 144 170 2
11:58:44 12:16:54

12/31/2018 1/1/2019 6.4 162 13 1
11:58:37 12:14:04

location ID and drop-off Location IDs, which indicate exact latitudes
and longitudes of these locations.

In order to use the data in our proposed VRP model, it was
necessary to process through clusterization, while preserving its
accuracy. The first opportunity for aggregation comes from passenger
count. Taxis routinely pick up just one passenger per trip. Here, we
extend our focus beyond one passenger scenario to ride-sharing cases.
With ride-sharing, passengers can be added to each vehicle in the
fleet until it reaches its capacity. This aggregation makes it possible
to add all demand for an extended period, for example all drop-offs
and pickups between 6am and 11am are aggregated and the case is
evaluated such that all the demands are within a 2-hour interval.

Using latitudes and longitudes, we divided the data into distinct
locations such as commercial, industrial, and residential regions. With
this, we were able to track movement patterns at different times of
the day. For example, people generally move from residential areas
to commercial centers in the mornings and vice versa in the evenings.
The routes from the solution of the model ensures that vehicles
can pick up passengers until their capacity is exhausted while still
fulfilling the pick-up time and other constraints.

Fig. 1a shows a geographical snapshot of the demand data, which
is at the Downtown Manhattan grid, where green squares represent
originating nodes, red circles represent destination nodes and large
blue triangles are EV charging stations.

(a) Passenger concentration and
EV CS in Downtown Manhat-
tan btw 6-10am, 13 Aug ’18

(b) Downtown Manhattan en-
ergy consumption by area

Fig. 1: Downtown Manhattan transport and energy demands
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B. Electric Network Data

For local electricity consumption, we obtained information from
[29] and New York City Mayor’s Office of the Long-Term Planning
and Sustainability [30]. Electricity consumption at each block and lot
level was obtained from [29] and consumption patterns are shown by
the different shades of red in Fig. 1b. Darker red and lighter/yellow
colors show regions of high and low power consumption respectively.
Voltage ratings of each charging station location and reactance
between stations were estimated similarly to [31].

IV. COMPUTATIONAL TESTS
We compare the results of the deterministic and stochastic op-

timization here using the cases defined in Section II-G. For the
deterministic model, known input include data outlined in Table II
and power requirements while variables to be determined include the
route and energy consumption of each vehicle. For the stochastic
model, demands at each node is unknown and modeled after a
Gaussian distribution following analysis of historical data.

For clarity, we chose a 15-location case from the original data
set with about 600 passengers over a 2-hour period. We consider a
modest number of 6 vehicles deployed by the fleet owner to meet
these demands, resulting in a model with over 1350 variables. As
number of locations and vehicles increases, so does the dimension
of xijv . Since there are 36 EV charging stations in Downtown
Manhattan, (Fig. 1a), distance mapping is used to determine the
nearest charging station when vehicles run out of charge or when
power available would not be enough to reach the next passenger
location.

A. Routing Results

Using historical data, Fig. 2a shows the routing results under as-
sumption of perfect demand knowledge, i.e., deterministic modeling.
Only 5 out of 6 available vehicles were deployed from the depot.
However, when uncertainty is introduced in this scenario, result of
routes varies from the deterministic model. It is shown in Fig. 2b that
the routing is changed and also an additional vehicle is deployed.
This is the case when a high degree of confidence is used, i.e.,
1− εj ≥ 99.5%.

However, for 90% < 1−εj < 95%, 5 vehicles were deployed, but
with a different set of routes. The confidence levels translate to how
many passengers will be picked or dropped in a particular location.
Thus, as the tolerated risk varies, the optimal amount of vehicles and
routes also change.

(a) Routing plan for deterministic
model

(b) Routing plan for chance-
constrained model

Fig. 2: Results of vehicle routing problem

Table III presents the optimization results of different test cases.
Labels starting with ’D’ and ’U’ represent deterministic and stochas-
tic problems respectively. Here, we contrast results of determinis-
tic versus stochastic chance-constrained model. For few locations,

|J | ≤ 25, number of routes and objective value have similar value for
both types of models. However, as number of locations |J | increases,
number of routes differ greatly between both models. The same trend
is seen with the objective value. The number of routes is equivalent
to number of vehicles deployed from the fleet while the objective
function, (9), represents cost of travelling plus cost of energy usage
for the deployed EVs. The increase in number of vehicles deployed
can be thought of as the price paid to satisfy an uncertain demand.

TABLE III: Results Summary

Code Locations Expected Passengers Routes Objective [$]

D-L5 5 224 2 1.32
U-L5 5 224 2 1.32
D-L10 10 492 4 0.87
U-L10 10 492 6 1.51
D-L15 15 696 5 1.12
U-L15 15 696 6 1.14
D-L20 20 904 8 1.33
U-L20 20 904 9 1.33
D-L25 25 1 196 11 1.10
U-L25 25 1 196 12 1.12
D-L30 30 1 396 12 1.31
U-L30 30 1 396 15 1.31
D-L50 50 2 144 18 1.43
U-L50 50 2 144 20 2.43
D-L75 75 3 208 35 2.12
U-L75 75 3 208 38 2.66
D-L100 100 4 424 65 2.50
U-L100 100 4 424 72 3.22

B. Energy Consumption

Fig. 3 presents the battery energy levels at different locations for
scheduled routes for the 15-node case. The locations visited by each
vehicle are represented in the spider web diagram while the height
of spike is battery level of the EV. Where the line representing
each vehicle changes direction from downward-movement to upward-
movement depicts a charging station. In this 15-node problem, the
charging stations are located at nodes 1, 2, 6, 8, 9 and 10. Take
Vehicle 1 in Fig. 3a for example. Its route plan is 1-11-8-10-1 and
this plan takes it through two charging stations at nodes 8 and 10.
However, it only charges at one of them, node 8. The route is
complete when it returns to the depot and again recharges to the
full energy level.

(a) Energy levels resulting from
Deterministic model

(b) Energy levels resulting from
chance-constrained model

Fig. 3: Energy levels during routing

C. Energy Consumption and CO2e Emissions

In this section we analyse possible emissions’ reductions when
EVs are deployed instead of ICE vehicles for city-wide transportation.
5% of power required by public transit in NYC is from electricity
while 80% comes from petroleum. For the types of vehicles listed,
the emission factor is 2.26KgCO2e/unit of fuel and approximately
3.4 million gallons of gasoline and diesel fuel are used per day
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[30]. The average GHG emissions then stands at 19.23kgCO2e per
vehicle. On the other hand, the emission factor for electricity is
0.257kgCO2e/kWh.

Tables IV and V present the energy consumption and emissions
results for the deterministic and the stochastic chance-constrained
cases respectively. The value of GHG emissions for liquid fuel
vehicles were estimated using the fuel emission factors above and
a fuel-oil equivalent of energy used by EVs. Approximately, a 43%
reduction would be made in GHG emissions if EVs are utilized for
shared taxi, as seen in Table IV. When shared vans are used, which
can accommodate between 8 and 10 passengers, we observe even
greater savings. Van utilization lowers the number of vehicles, leading
to a reduction in total CO2e emissions. If the energy consumption
by vans and taxis is scaled based on number of passengers, emission
by vans would be about 10% of that of taxis.

TABLE IV: Total Emissions for Deterministic Demand

Type Vehicles Passengers Energy use Emissions
[kWh] [kgCO2e]

Taxi (EV) 12 30 402.9 103.5
Van (EV) 5 150 228 58.6
Taxi (Liquid fuel) 12 30 – 815.4
Van (Liquid fuel) 5 150 – 461.04

TABLE V: Total Emissions with Stochastic Demand

Type Vehicles Expected Energy use Emissions
passengers [kWh] [kgCO2e]

Taxi (EV) 14 30 422.9 108.7
Van (EV) 6 150 248.9 64.0
Taxi (Liquid fuel) 14 30 – 854.3
Van (Liquid fuel) 6 150 – 503.75

V. CONCLUSION

This paper describes a new mixed integer linear programming for-
mulation for EV routing which incorporates demand uncertainty, EV
energy modelling and electric power grid utilization. Formulations
were done such that bounds on confidence levels, simplicity and true
representation of the systems we intended to describe were preserved.
To reflect real life scenarios, we proposed a chance-constrained
formulation for uncertainty. We thereafter based our case studies on
inferences from real transport and electric network data of New York
City. For our computational tests, differences between deterministic
and stochastic model solutions were presented and analysed. This was
done using the analysis of routing, energy consumption and emission
of EVs deployed from the fleet.

Results from deterministic and stochastic models were contrasted
for large number of locations and we noted that the increase in
objective value for stochastic model is the extra cost of uncertainty.
This increase in the objective value is reflected both in the amount
of deployed vehicles and in their total energy consumption. Finally,
we exhibit equivalent CO2 emissions’ reduction when EVs are used
as taxis and as shared vehicles/vans. We show that there is a sig-
nificant emissions’ reduction when EVs are utilized for commercial
transportation and we opine that this is a viable solution for climate
change mitigation. The effect of a single aggregator of EVs on
emissions reduction has been shown here. Future research direction
could be investigating the cost/benefit for individual fleet owners if
they collaborate with other fleet owners. Other advantages which
include power system support and provision of ancillary services
could be realized.
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