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Abstract
In this paper, the performance of a thermoelectric module

is analysed using the thermodynamic diagram Temperature-
Entropy. This diagram can be used as a graphical tool which
allows for the analysis of thermoelectric processes, both
reversible and non-reversible, in an elemental pair or
thermoelectric elements.

A similarity is found between the Seebeck coefficient and
entropy per unit of electrical charge.  This allows for the use
of the Seebeck coefficient and absolute temperature as
coordinates in a representative Cartesian system. All
processes, both reversible and non-reversible, in a pair of
thermoelectric elements can be represented in the above
mentioned system.

This analysis is completed with the identification of several
graphic elements such as lines and areas, and their association
to different equations and thermodynamic relationships of the
thermoelectric module performance. This approach is very
useful in the analysis of thermoelectric modules as it is
performed from an engineering point of view in classical
thermodynamics.

Seebeck coefficient and entropy
The Seebeck coefficient (σ) can be expressed according to

equation 1. This is an expression from the Onsager relations
[1] and [2] considering a bar of a thermal and electrical
conductor material under the application of a potential
electrical difference (εεεε)  and a difference of temperature (∆T).
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•
 is the entropy per time unit which crosses a

particular section.

dt
dI ς=  is the electrical charge flow per time unit, that is, the

electrical current through the same section.

Dividing the last two expressions, equation 1 can be
transformed into equations 2 and 3.
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If T=cte, the electrical charges do not receive heat due to
the Fourier and Joule effect and then, the entropy of these
charges is a property of the material where they are located at
the temperature of the section analysed and it is called entropy
transport parameter [1].

An important conclusion can be derived from equations 1
and 3 stating that the Seebeck coefficient of a particular
material at a temperature can be interpreted as the entropy per
electrical charge unit of that material and at that temperature.

Furthermore, the relationship between the Seebeck
coefficient and the entropy can be verified by analysis of the
Thomson effect in the material under study at a particular
temperature [3].

Figure 1. T-σ diagram for different materials.
Once it is accepted that the Seebeck coefficient can be

interpreted as the entropy per electrical charge unit in a
particular material, it is possible to use the relationship
“Temperature-Seebeck coefficient” in order to analyse the
thermoelectric process in a Peltier thermoelectric module.
This will allow an analogy between the analysis of a
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thermodynamic process in the plane T-S and a thermoelectric
process.

A diagram including the relationship T-σσσσ for several
materials is presented in figure 1. This graphic was
constructed under the hypothesis of constant pressure, so the
equation 0),( =σTf  would be the thermoelectric state
equation of each material.

After the previous results, the Seebeck coefficient can not
be interpreted as the absolute entropy of the electrical charges.
The reason for this is that the absolute entropy of any material
can not be negative according to the Third Principle of
Thermodynamics and as stated in figure 1, Bi2Te3 (n) has a
negative Seebeck coefficient.

This fact is not contradictory, because the existence of
negative values for the absolute Seebeck coefficient is
associated to doped semiconductor materials where the
Seebeck coefficient could be a consequence of electrical
carriers with a different sign according to the doped process.
So, these negative values for the Seebeck coefficient could be
not absolute, but relative to the semiconductors type p or n
analysed.

Qualitative description of the reversible effects of a
thermoelectric pair in a T-σσσσ diagram.

Figure 2 represents a typical scheme of a thermoelectric
pair consisting of two materials A and B. This pair of elements
is joined at two points through an electrical connection. A
current of I A circulates through this electrical circuit. The two
points of junction are at different temperatures T1 and T2.

Figure 2. Scheme of a pair of thermoelements.
The objective of this section is the description of all the

reversible effects in a pair of thermoelements by analogy with
a thermodynamic cycle. Figure 2 will be used as reference in
the following explanation.

The reversible thermoelectric effects, which would occur
in the pair shown in figure 2, are plotted in figure 3. Fourier
and Joule effects were not considered. The distinct processes
appear due to the circulation of a certain amount of electrical
charges per time unit (due to an electrical current of I A).

In figure 3, it can be observed that all the different
processes occurring in a thermoelectric pair configure a closed
cycle. In the case of a thermoelectric module for cooling
(Peltier effect) the direction to follow the cycle would be 1-2-
3-4-1, the same as in a conventional inverse thermodynamic
cycle for refrigeration, while the cycle has to be followed in
the opposite direction 1-4-3-2-1 when a Seebeck

thermoelectric module is analysed, the same as in a
conventional direct thermodynamic cycle. Next the processes
will be described.

Figure 3. T-σ diagram of the reversible effects in a
thermocouple.
Process 1-2 represents the different thermoelectric states of the
distinct physical points along the thermoelement B. Points 1
and 2 of the diagram are the states at the ends of the
thermoelement of which the temperatures are T1 and T2
respectively. Notice the one-dimensional and not topological
sense of the representation used.
Process 2-3 represents the heat exchange between system and
medium (environment) which occurs at the union between the
two materials A and B at temperature T2. The intermediate
states between 2 and 3 do not correspond with physic points in
the thermoelements, therefore they are not thermoelectric
equilibrium states.
Process 3-4 represents the different thermoelectric states of the
distinct physical points along the thermoelement A. Points 3
and 4 of the diagram are the states at the ends of the
thermoelement whose temperatures are T2 and T1 respectively.
Process 4-1 represents the heat exchange between the system
and the medium which occurs at the union between the two
materials A and B at temperature T1. The intermediate states
between 4 and 1 do not correspond with physic points in the
thermoelements, therefore they are not thermoelectric states of
equilibrium.

The previous description of processes suggests that the
characteristics of a thermoelectric plane T-σσσσ are the same as
those of a thermodynamic plane T-s. Next, these similarities
will be enunciated.
•  The areas comprised between the process lines and the

abscissa axis represent the heat per unit of an electrical
charge exchanged in the reversible processes.

•  The area closed in the cycle represents the “net work”
done by the unit of electrical charge. This work is
positive, done by the system, when the cycle is followed
clockwise and negative, done against the system, in the
contrary direction.
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•  The “net work” performed  is positive in the case of using
a thermoelectric module for generating electricity
(Seebeck effect), similar cycles are called “work cycles”
in classical thermodynamics.

•  The “net work” performed is negative when electrical
energy is supplied to the system in order to absorb heat in
the heat sink with less temperature and reject it in the heat
sink with higher temperature (Peltier effect). This type of
cycle is called the “inverse cycle” in classical
thermodynamics.

•  The graphical representation of the different processes in
figure 3 is consistent with several states of the system, if
they are considered to be one-dimensional, in such a way
that the plotted states are the average of all the states
which can exist in a cross section to the charge flow in the
physic installation where the process is developed.

•  It is assumed in the previous points that the flow of
electrical charges is produced in stationary regimen. The
properties of any point of the thermoelement do not
change with time.

•  The graphical representation of the processes in figure 3
is not topological. There is no proportionality between the
distances from any point of a process to its end and the
distance between the points corresponding to the physical
system in which the process is developed.

•  The thermoelements and specially their unions must be in
contact with good thermal conductors to facilitate the heat
exchange between system and medium.

Figure 4. Interruption of the electrical circuit in one
thermoelectric element (left side) and in both thermoelectric
elements (right side) for connection of an electrical machine.
•  It is necessary to interrupt the continuity of the electrical

circuit through the thermoelements so that an electrical
machine can be connected between the ends of the pair of
the thermoelement in order to exchange work between the
system and the medium. Both ends of the thermoelement
will be at the same temperature. So, although the
processes with exchange of work are represented in a
continuous line in the T-σ diagram (see figure 3), in the
physical configuration of the thermoelectric pair at least
one of its thermoelements must be connected to the
electric system which interacts with the thermoelectric
pair. If the electrical circuit is only opened in a
thermoelement, the work exchanged through its ends will
be the “net work” of the cycle. This is represented in
figure 4. If the electrical circuit is opened in both

thermoelements, each of them exchanges the work
associated with the process which occurs in that
thermoelement, adding work in one of them and
extracting it in the another one depending on the direction
the cycle follows. This is represented in figure 4.

Mathematical analysis of the reversible effects of a
thermoelectric pair in a T-σσσσ diagram.

Once a qualitative description of all the reversible
processes has been done, the mathematical relations which
govern these processes will be formulated underlining the
similarities between the T-σσσσ and T-s diagrams.

All the processes to be presented will be opened systems in
which the electrical charge per time unit, I, evolves and for
that, the first principle of thermodynamics will be formulated
using the following expression:

εddwdq =− (4)
All terms in equation 4 are expressed in units of energy per

unit of electrical charge (J/C, or power per unit of electrical
intensity, W/A). On the left side of the equation, the two terms
represent respectively the heat and the work exchanged
between the system and the medium, while the right term is the
variation of the energy accumulated in the system due to the
changes in its state variables. In this case, the only change is
reduced to the variation in the electrical potential of the
charges.

Next, all the processes which occur in a Peltier
thermoelectric module are analysed in a separate way and then
the complete cycle is studied. The numbers correspond to
those used in figure 3. Only the reversible effects were
considered.
Process 1-2. This process is developed along the
thermoelement B. Applying equation 4, the following
expression will be obtained:
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If only reversible effects were being considered, the only
heat exchanged would be the Thomson heat and the work
performed would be associated with the Seebeck effect.
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In a T-σ diagram, the enclosed area between any curve
T=f(σ), the abscissa axis and the ordinates corresponding to
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Then, as shown in figure 3, the area (σσσσB1-1-2-σσσσB2) limited by
the line which defines the process 1-2 ( ( )Tfσ B = ), the
ordinates of these points 1 and 2 and abscissa axis (with the
ordinate origin in the absolute zero, T=0K) represents the heat
per unit of electrical charge absorbed by theThomson effect.
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process 1-2 ( ( )TgσB = ), the abscissas of these points and the
ordinate axis represents the work to be applied to the electrical
intensity unit in order to move from state 1 to 2, which is the
Seebeck work.

The process 1-2 can not be adiabatic because it has to
absorb the heat due to the Thomson effect which depends on
the coefficient σ of the material. If this process would have to
be externally reversible, the heat would have to be
interchanged with infinite heat sources located along the
thermoelement B and each of them would be at the same
temperature as the section of the thermoelement which
exchanges heat with it. The previous reasoning suggests that
the thermoelement does not have to be isolated in its laterals.
If this occurs, the Thomson heat would be transmitted by
thermal conduction across the thermoelement producing
effects that are not reversible and the temperature distribution
would be different from the reversible case.

The process 1-2 would only be adiabatic if σσσσB = cte, in this
case, the Thomson heat would be null.

Process 2-3. This process occurs at the physic union between
the thermoelements A and B (one-dimensional model). The
following expression is obtained applying equation 4 to the
process:

222323 BAwq εε −=− (6)
Considering only reversible effects, the only heat

exchanged in the process is the Peltier heat expressed by
equation 7:

( )22223 BATq σσ −= (7)
The work performed is null, 023 =w , because

dTdw BS σ=  and dT=0, and then equation 6 can be rewritten
as the following:

( ) 2222223 BABATq εεσσ −=−= (8)
Equation 8 is equivalent to the area σσσσB2-2-3-σσσσA2 in figure

3. Then, this area represents the Peltier heat transferred from
the system to the medium in the reversible process 2-3.

Process 3-4. This process is equivalent to process 1-2 but
along the thermoelement A. Applying equation 4 and
following the same procedure as in process 1-2, the following
expression will be obtained
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In this case, the area σσσσA2-3-4-σσσσA1 in figure 3 represents the
Thomson heat per unit of electrical charge rejected by the
system and the area T1-4-3-T2 corresponds to the electrical
work developed by the system in order to move the electrical
intensity unit from state 3 to 4. This process is not adiabatic if

cte  σ A ≠ .
Process 4-1. This isothermal process is similar to process 2-3,
however it occurs in the physic union between both
thermoelements A and B at temperature T1. The following
expression is obtained applying equation 4 to the process

( ) 1111141 ABABTq εεσσ −=−= (10)

The expression in equation 10 is equivalent to the area
σσσσA1-4-1-σσσσB1 in figure 3. Then, this area represents the Peltier
heat transferred from the medium to the system in the
reversible process 4-1.

The heat per unit of electrical charge supplied to the
system in the cycle (qa) would be:
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The heat per unit of electrical charge yielded by the system
in the cycle (qc) would be:
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The net heat per unit of electrical charge exchanged in the
cycle (qn) would be:
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The net work (wn) developed in the cycle would be:
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It is obvious that the cycle verifies nn wq =  and then:
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Being T and σσσσ state variables, the following relation can
be written:
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replacing and grouping terms in the equation above:

( ) ( ) 0=−−=−− dTTdTddTTdTd BBBAAA σσσσσσ (14)

Knowing that PqT =σ , Peltier heat, TdqTd =σ ,
Thomson heat and SddT εσ = , Seebeck work. The following
equation is verified in a thermoelement:

STP ddqdq ε+= (15)
The analysis of the electrical potentials can be started

knowing that their addition has to be null 0=�
cycle

ε , and:
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However these two last equations 16 and 17 do not express
the difference of electrical potential which would exist at the
ends of the connections to the hypothetical electric machines
which would exchange work with the system, points 0A y 0B in
figure 4.  The electrical potential at these points can be
expressed as follows:
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Making the differences of the last expressions:
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If only one thermoelement is interrupted to exchange work
between the system and the medium, the difference of
electrical potential can be expressed as:
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Obviously:

120 w
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The cooling efficiency of the inverse cycle can be
calculated dividing the heat absorbed in the cycle by the “net
work” supplied to it. This is expressed in equation 21.
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The coefficient of performance (COP) of the same
inverse cycle is the quotient between the heat rejected by the
cycle and the “net work” supplied to it. This is equation 22.
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If the cycle was analysed as a work cycle, its
thermodinamic quality (also the thermoelectric one) would be
measured  with the thermal performance according to equation
23.
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If in equations 21 to 23, the Seebeck coefficients of both
thermoelements (σσσσA and σσσσB) were independent from the
temperature, the cooling efficiency, the COP and the thermal
performance would be the values of a Carnot cycle (ηηηη tC , εεεε fC

and CCOP ) working between the same temperatures.
According to this, the main parameters mentioned would have
the following expressions:
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Notice that because the material Seebeck coefficients are
constants with the temperature, the Thomson heat would be
null and the thermoelectric cycle will consist of two isothermal
processes and two adiabatic ones alternated. This is the typical
Carnot cycle in the classical thermodynamic processes.

In a real case, the Seebeck coefficients are not independent
from the temperature, and the Thomson heat would appear in
the pair of thermoelements. Although this effect is reversible,
the thermal efficiency of the cycle (also reversible) would be
less than or equal to the efficiency of the Carnot cycle working
between the same temperatures. The reason, as in classic
thermodynamics, is based on the fact that the heat exchanged
by the Thomson effect comes from heat sources whose
temperatures are lower or are transferred to sinks whose
temperatures are higher than the temperatures of the
isothermal processes in the cycle (in figure 3 cases 2-3 and 4-
1. Next, this will be verified in mathematical terms.

Taking into account figure 3, the expression of the thermal
performance in equation 23 can be rewritten as:
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The thermal efficiency of a Carnot cycle working between
the same temperatures would be:
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Equations 24 and 25 demonstrate that ηηηη ηηηηt tC≤≤≤≤ .
Using the same method it can be verified that the cooling

efficiency and the coefficient of performance in an inverse
cycle have as upper limits the values corresponding to a
Carnot cycle working between the same higher temperatures:
εεεε εεεεf fC≤≤≤≤  and cop copC≤≤≤≤ .

It is possible to achieve ttc ηη ≥ , fCf εε = , Ccopcop =  in

a reversible thermoelectric cycle, whenever the values of area
512 and area 463 in figure 3 were the same but with different
signs. This would occur if the lines which represent processes
1-2 and 3-4 in figure 3 were parallel, although not necessarily
straight lines. That is, functions T=g(σσσσA) and T=g(σσσσB) can
only differ in an additive constant, as shown in equation 26
obtained from equations 23 and 13.
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The temperature distribution inside the thermoelements of
a pair of thermoelements is not lineal, so the T-σσσσ diagram for
the reversible processes can adopt strange shapes but the T-σσσσ
diagram continues being useful in order to represent the cycle



and all the conclusions, specially the similarity between the T-
σσσσ and T-s planes, are valid.

The analysis performed in this paper has only taken into
account the reversible effects (Peltier, Thomson and Seebeck)
in a pair of thermoelectric elements. This analysis can be
extended to consider non-reversible effects (Fourier and Joule)
in a similar way. A study of non-reversible effects has also
been developed by the authors, but the inclusion of this
analysis would surpass the limits of this paper.

Conclusions
This paper has presented an engineering perspective of the

processes occurring in a pair of thermoelectric elements. An
analogy has been presented between a classical
thermodynamic cycle, like a Carnot cycle, and the typical
cycle of work performed by a pair of thermoelectric elements.
The analogy has been based on the use of the thermodynamic
diagram Temperature-Entropy. This diagram can be used as a
graphical tool which allows for the analysis of thermoelectric
processes, both reversible (Peltier, Seebeck and Thomson) and
non-reversible (Joule and Fourier), in a pair of thermoelectric
elements.

The use of the Temperature-Entropy diagram was selected
because a similarity was found between the Seebeck
coefficient and entropy per unit of electrical charge.  This
allowed for the use of the Seebeck coefficient and absolute
temperature as coordinates in a representative Cartesian
system. All processes, both reversible and non-reversible, in a
thermoelectric element can be represented in the above
mentioned system.

The paper describes the mentioned analogy using only
reversible effects, however the authors have also extended this
analysis  to the non-reversible ones.
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