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Abstract: This paper deals with the problem of finding the optimal location and sizing of Energy
Storage Systems in DC-electrified railway lines. These devices increment the use of the regenerated
energy produced by the trains in the braking phases, as they store the energy to later provide
to the catenary the excess of regenerated energy, that otherwise would be lost in the rheostats.
However, these infrastructures require a high initial investment that, in some cases, may question
their profitability. We propose a multi-method ensemble meta-heuristic to obtain the optimal solution
to the problem, with a high level of accuracy. Specifically, the Coral Reefs Optimization with Substrate
Layers (CRO-SL) is proposed, an evolutionary-type approach able to run different search procedures
within the same population. We will evaluate the performance of the CRO-SL in the problem, and
we will show that it performs better than the best known existing meta-heuristics for this problem.

Keywords: railway lines; Energy Storage Systems; multi-method ensembles; CRO-SL algorithm;
meta-heuristics

1. Introduction

In the fight against climate change, there is a need for urban DC-electrified railway
systems (such as tramway or metro systems) to become more energy efficient. Indeed, the
authors of [1] state that energy efficiency goals are one of the main drivers for the future
evolution of transportation systems. Among the possible ways to achieve it, the installation
of electrical infrastructure improvements, such as Reversible Substations (RSs) [2–6] or
wayside Energy Storage Systems (ESSs) [2,4,7–9], are within the measures with the highest
energy saving potentials. These measures increment the use of the regenerated energy
produced by the trains in the braking phases, as they give back to the utility grid (in
the case of the RSs) or store to later provide to the catenary (in the case of the ESSs) the
excess of regenerated energy, that otherwise would be lost in the rheostats. However, these
infrastructures require a high initial investment that, in some cases, may question their
profitability. Due to this, railway operators must use accurate methodologies to study in
detail the impact that the installation of these improvements has on the system’s energy
efficiency, as well as their associated profitability before taking the final decision on whether
or not undertaking the installation. These methodologies must be based on the application
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of optimization algorithms, which determine the optimum installation in combination with
accurate railway simulation models (in charge of assessing the energy saving obtained with
the installation of the improvements). The high flexibility and great capacity to successfully
deal with the computationally intensive and highly nonlinear and non-convex problems
posed by the railway simulations, makes nature-inspired optimization algorithms a very
good choice to tackle the optimization of the installation of infrastructure improvements.
Nevertheless, there are few examples in the literature that combine the use of this type of
algorithms with the application of railway simulation models. Among them, we can find
authors that focus on the optimization of the RSs installation [10–12] or ESSs [13–15].

However, all these previous examples use low accurate railway simulation models,
especially from the point of view of the traffic modeling. As stated in [16], the traffic
model has a great impact when analyzing the receptivity (ability to re-use the regenerated
energy) of a line and, in general terms, the efficiency. Thus, an oversimplified traffic model
consisting of a single traffic timetable with constant dwell times can lead to significant
errors in the computation of the energy saving figures and, consequently, to an incorrect
decision-making. In order to avoid it, this paper continues the line of research proposed
in [16,17] and makes use of very realistic traffic models that allow to generate a large
number of representative and realistic scenarios, so that the information provided by the
optimization algorithms is accurate enough to make good decisions about the optimum
installation of RSs or ESSs.

In addition, even in sporadic cases where accurate and realistic models have been
used in combination with nature-inspired optimization algorithms, such as in [18], the al-
gorithms employed may have problems of rapid convergence to local optima (where they
get trapped, being unable to achieve the global optimum). This can be accentuated in cases
of very large and demanding search spaces, as it happens when the granularity of the
decisions’ variables increases. The higher the granularity of the power and capacity sizes
to be installed (this is, the higher amount of possible power and capacity sizes available),
the more demanding the search space is. This can be a problem for railway infrastructure
administrators, because if the optimization algorithm used cannot deal with the desired
level of granularity on the power or capacity sizes, the decisions about the infrastructure
improvements can be oversimplified, leading to non-optimal solutions. For this reason,
this paper goes a step further from all the previous research in this field and proposes the
application of a multi-method ensemble based on an evolutionary-type approach, the Coral-
reef Optimization with Substrate Layer (CRO-SL) algorithm. This algorithm is able to
outperform the algorithms from previous research when the granularity of the decision
variables is increased and, therefore, the search space becomes much more demanding.

In the last decades, a large number of meta-heuristics have been developed and ap-
plied in many real-world problems [19–21]. According to the No-Free-Lunch theorem,
there is not a single algorithm that outperforms the rest in all possible optimization prob-
lems. Thus, the process of designing, testing, and comparing different methods can be
time-consuming or even lead to poor performances. To avoid this point, the authors of [22]
present many advises when tackling real problems with meta-heuristics. For that matter,
in practice the number of problems that one algorithm can successfully solve is finite; thus,
one of the recent research lines consists in hybridizing different existing methods into
ensembles [23] in order to reach a better performance than the original algorithms on their
own, and to provide a versatile method that can be able to perform well in different prob-
lems. There are two main ways to build an ensemble evolutionary method (EEM): mixing
parts, also called agents, from different algorithms (low-level multi-method), or mixing en-
tire algorithms into one (high-level multi-method). In general, the agent represents a search
method acting over one or more populations, where the individuals compete or cooperate
in the optimization task, but an agent may also represent different encodings, parameter
configurations, or constraints. Many examples of EEM can be found in literature such as
in [24], where two variants of the well-known L-SHADE algorithm were alternated over
the population, as each one on their own produces stagnation. This ensemble approach
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was tested in CEC 2014 and CEC 2017 benchmark functions. Furthermore, the work in [25]
introduces a memetic algorithm where a Tabu Search process was used as local search and
the global search was performed by the Teaching–Learning-Based Optimization algorithm,
showing competitive results in large graph coloring problems. In [26], the authors propose
a cooperative framework, where Differential Evolution (DE) and Quantum Evolutionary
search methods were combined in order to enhance the convergence speed as well as
the diversity of the population, for large-scale global optimization problems. In [27], a
hybrid multi-objective methodology is proposed, where the leader direction of the Whale
Algorithm is set by a competition among two DE crossovers. Finally, more EEMs can
be found in the review given in [28]. In this case, the CRO-SL is a novel multi-method
ensemble evolutionary-based approach, in which different search methods are applied to
the individuals of a single population. This algorithm was first proposed in [29], and fur-
ther described in [30]. It is based on a basic version of the CRO meta-heuristic proposed
in [31] and successfully applied to different optimization problems [32,33]. The CRO-SL
has been further applied to a large number alternative optimization problems, in differ-
ent engineering fields [34–37]. The main advantage of the CRO-SL is the cooperation of
many global and local search processes over the same population, which allows a balance
between exploration and exploitation, and avoids stagnation in local optima. Furthermore,
this algorithm also encourages diversity in the population, by keeping hollows in the reef
(empty positions) for new offspring.

The contributions of this paper are twofold:

• The main contribution of this work is to apply the CRO-SL in a very realistic railway
simulation model to determine the optimum installation of ESSs in a railway line,
increasing the number of decision variables (therefore, a more demanding search
space for the algorithm) when compared to previous works [18].

• From an algorithmic point of view, a novel cooperative multi-agent ensemble method,
the CRO-SL, has been successfully applied to a hard combinatorial optimization
problem in the field of ESS design for transportation systems.

The results obtained are then compared to those provided by the algorithm with best
results in a similar problem [18], to show the best performance of the CRO-SL and its great
potential when dealing with very demanding search spaces.

The remainder of this paper has been structured as follows. The next section presents
the problem definition, with details on the problem’s encoding, fitness function proposed,
and its calculation using simulation software. Section 3 presents the CRO-SL, its main
characteristics, and the substrates (search procedures) considered in this paper. Section 4
presents the experimental part of the paper, where we have illustrated the good perfor-
mance of the CRO-SL in two different case of study with an extremely high search space.
Section 5 closes the paper by giving some final conclusions and remarks on the research
carried out in this work.

2. Problem Definition
2.1. Formulation

The optimization proposed in this paper consists of determining the best configuration
of Energy Storage Systems (ESSs) to be installed in a railway line, in terms of the following.

• Number of ESSs to be installed.
• Location of the ESSs to be installed.
• Power (kW) of each ESS to be installed.
• Capacity (kWh) of each ESS to be installed.

Note that ESSs have been selected instead of RSs because they are more demanding
from the point of view of the decision making (the capacity is not a variable of decision
in the case of the RSs). However, the application of the proposed optimization to the RSs
is straightforward.
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For the particular case of this optimization problem, each individual (potential solution
to the problem), x, from the population is represented by a 2D matrix. The rows of the
matrix correspond to the features of the installation. As the infrastructure improvements
selected for the optimization are the ESSs, there are two rows: the first one associated with
the power and the second one with the capacity. The columns of the matrix correspond
to the potential locations where the ESS can be installed. Therefore, the dimension of the
matrix that represents each individual i is [2×N], and N stands for the number of potential
locations where the ESS can be installed. In a visual way, the structure of x is given by
Equation (1).

xi =

[
P1 P2 . . . PN
C1 C2 . . . CN

]
(1)

where

• Pn stands for the power feature of xi at location n. The values for this variable are
discrete, ranging from 0 kW (no ESS installed at position n) to Pmax kW (maximum
power that can be installed) in steps of SP kW. Therefore, each power feature must

take one value from the set of
Pmax

SP
discrete values available (being Pmax) a multiple

of SP ).
• Cn stands for the capacity feature of xi at location n. The values for this variable are

discrete, ranging from 0 kWh (no ESS installed at position n) to Cmax kWh (maximum
capacity that can be installed) in steps of SC kWh. Therefore, each capacity feature

must take one value from the set of
Cmax

SC
discrete values available (being Cmax) a

multiple of SC ).

Although the optimization algorithms will treat each feature (power and capacity)
independently, there must be a coherency between the power and capacity values installed
at the same location, which means that there must be an element-to-element correspondence
between the values from the different rows that share the same column. Specifically, in case
of selecting a non-zero value for the power at a certain location, the value of the capacity
must also be non-zero, and vice versa. The same happens in case of selecting a zero value
(no installation) for power or capacity at a certain location. This restriction will be named
“constraint of coherency among features”, is formulated in Equation (2) and must be applied
in all optimization algorithms used.

Pn = 0←→ Cn = 0 (2)

2.2. Fitness Function

The optimal solution that the optimization algorithms must find is the one that yields
to the highest installation’s Net Present Value (NPV). Therefore, the fitness function for a
given individual x is the NPV associated with its ESSs configuration, given by (3).

NPV(x) =
T

∑
t=1

[
EA
R − EA

E (x)
]
· ecost

[1 +Wacc)t]
− C0(x)

s.t. C0(x) ≤ Mb

(3)

where:

• EA
R is the annual energy consumption obtained when the infrastructure is not im-

proved. This value is obtained from simulation (the details about the communication
between optimization algorithms and railway simulations are given in Section 2.3).

• EA
E (x) is the annual energy consumption when installing the ESSs configuration

associated with x. This value is also obtained from simulation.
• ecost is the energy price.
• C0(x) is the installation cost of the ESSs configuration determined by x.
• Wacc is the Weighted Average Cost of Capital.
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• T is the period to evaluate the investment (in years).
• Mb is the maximum budget.

The reason why the NPV has been selected for the fitness function is that it is capable
of finding a balance between the energy saving (the main target from the environmental
point of view) and the installations costs (very important in the final decision about
installing or not the infrastructure improvements). On the one hand, the positive cash
flows of the NPV are directly related with the energy saving. Particularly, the energy
saving associated with individual x) is obtained from comparing the energy consumption
with and without the ESSs installation (EA

R − EA
E (x)), and it is transformed into economic

cash flows by multiplying it by ecost. On the other hand, the installation costs represent the
negative cash flows of the NPV.

The investment will be economically profitable if the NPV is positive in the period T.

2.3. Middleware between Optimization Algorithms and Railway Simulations

As previously stated, the optimization algorithms need information from the railway
simulations in order to compute the fitness function. The description of the railway
simulator used in this research is out of the scope of this paper, but it must be noted that
it thoroughly detailed in [16,17,38], both from the traffic and electrical modeling points
of view. The traffic modeling and simulation include use of different headways for the
different time bands (the headway being the time interval between consecutive trains), use
of different Automatic Train Operation (ATO) speed profiles, variability in the dwell times
of the short-turn and terminal stations, use of realistic dwell times in passenger stations
obtained from stochastic models and implementation of a centralized traffic regulation
model that automatically manages traffic operation on metro lines. For more details about
the traffic models implemented in the simulator, see [16,17].

The electrical modeling and simulation are based on the generation and resolution
of the electrical scenarios associated with the traffic scenarios given by the traffic model.
A time step of 1 second is used. Iterative techniques have been applied to solve the load
flow problem associated with each electrical scenario. The iterative technique selected has
been the unified-mixed AC-DC Newton–Raphson method. For more details about the
electrical modeling and simulation, see in [38].

The middleware between the optimization algorithms and the railway simulations is
depicted in Figure 1 and enumerated below. This process is repeated in a kind of feedback
loop, until achieving the optimum solution.

1. The algorithm gives the characteristics of the ESSs configurations to be tested (in
terms of number, location, power, and capacity) to the railway simulation module.
This information becomes part of the electrical infrastructure data, included within
the data required to perform the simulations.

2. Several traffic scenarios (selected to represent the traffic operation in a realistic way)
are simulated with the ESSs configuration provided by the algorithm. The output
from the simulations is the energy saving associated to each configuration. This
information is, at the same time, the input data for the optimization algorithm.

3. The value for the fitness function of each configuration is computed from its associated
energy saving and installation costs (see Equation (3)). This fitness value provides the
information required by the optimization algorithms to update the configurations to
be tested by the simulator in the next iteration.
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Figure 1. Middleware communicating the railway simulator and the optimization algorithm.

3. Methods

In this Section, the optimization algorithms considered in this work are described.
First, the Coral Reef Optimization (CRO) algorithm, the basic form of the algorithm, is
explained. Then, the multi-method ensemble algorithm defined on top of the CRO, Coral
Reef Optimization with Substrate Layers (CRO-SL) algorithm, as well as search methods
implemented in the substrate layers are detailed. Finally, the Genetic Algorithm (GA) used
for comparison purposes is also described in this section.

3.1. The Coral Reef Optimization Algorithm for Optimization

The Coral Reef Optimization Algorithm (CRO) was recently proposed by Salcedo et al.
in [30,31]. This approach is a kind of evolutionary-type algorithm which imitates the evolu-
tion of coral reefs and the different processes occurring in these ecosystems. Mathematically,
the algorithm considers a square model for the reef (Λ) of size N ×M. Each square located
in Λ(i, j) is a place that can host a coral Ξ(i, j) where i and j are the coordinates of the square
in the reef. Each coral is a representation of a solution to our optimization problem. Once
we have modeled the reef and the corals, the algorithm’s processes are defined using the
following steps: After the reef initialization described above, the phase of reef formation
is artificially simulated. This phase consists of κ iterations: at each of such iterations the
corals’ reproduction in the reef is emulated by applying different operators and processes as
described in Algorithm 1—a modeling of corals’ sexual reproduction (broadcast spawning
and brooding) and asexual reproduction.

After the reproduction stage, the set of formed larvae (newly produced solutions to
the problem) attempts to find a place on the reef to develop and further reproduce. This
deployment may occur in a free space inside the reef (hole), or in an occupied location
(by fighting against the coral currently settled in that place). If larvae are not successful in
locating a place to settle after a number of attempts, they are considered as predated by
animals in the reef, and so that solution is discarded from the reef. The coral builds a new
reef layer in every iteration. Note that the CRO approach is an evolutionary-type approach
with some characteristics from Simulated Annealing, as the number of holes in the reef
allows that poorly fitted solutions are considered, yet allowing the search in other parts of
the search space and not focusing on local optima. This process of considering poorly fitted
solutions is more intense in the first stages of the algorithm. Figure 2 shows a flowchart of
the CRO algorithm’s dynamics.
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Algorithm 1 Pseudocode for the CRO algorithm.

Require: Valid values for the parameters controlling the CRO algorithm
Ensure: A single feasible individual with optimal value of its fitness

1: Initialize the algorithm
2: for each iteration of the simulation do
3: Update values of influential variables: Depredation probability, etc.
4: Sexual reproduction processes (broadcast spawning and brooding)
5: Asexual reproduction process
6: Settlement of new corals
7: Depredation process
8: Evaluate the new population in the coral reef
9: end for

10: Return the best individual (final solution) from the reef

Figure 2. Flowchart of the CRO dynamics.

3.2. The CRO-SL: A Multi-Method Ensemble Evolutionary Algorithm

The concept of ensemble in optimization refers to a combination of algorithms or parts
of them to better deal with optimization problems [23]. The aim of this idea is that the new
strategy can lead to better performance than any single strategy on its own in the same
problem. In [23], the authors present a classification of ensembles attending to the type
of the constituent agents and its implementation: when the agents are different types of
search strategies, operators or processes, etc., it is classified as a low-level ensemble; on the
other hand, high-level ensembles refer to the methods which combine complete algorithms
to select the best approach for a given problem.

The CRO-SL approach is a recently proposed low-level multi-method ensemble, based
on the CRO algorithm defined above. Specifically, in the CRO-SL, a set of “substrates”
are defined in the CRO reef [39]. At each substrate, a different search operator is applied
to the corals for the formation of the offspring. Likewise, the CRO-SL introduces novel
forms to maintain the diversity of the reef and promotes the cooperation of different search
operators within a single population.
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Figure 3 presents a flowchart that describes the main characteristics of the CRO-SL
ensemble. Note that the algorithm’s structure is similar to that of the basic CRO (see
Figure 2), but the reefs structure is different. In this case, the reef is divided into different
“substrates”, each one representing a search procedure. The corals in each different substrate
will be evolved by applying the corresponding search procedure assigned to that substrate,
i.e., Gaussian Mutation, Differential Evolution, Two-points crossover, etc. This approach
can be seen as a multi-method ensemble, where the different search procedures in each
substrate cooperate in order to obtain the best solution to the optimization problem at hand.
See in [37] for further details on the proposed algorithm.

HSDEGM Mpx2Px

Figure 3. Flowchart of the CRO-SL dynamics.

The CRO-SL was first introduced in [29], and further developed in [39]. As previously
summarized, the CRO-SL algorithm is a general ensemble approach which promotes
cooperative evolution, where each substrate layer represents different processes, in this
case, different search space techniques. The CRO-SL has shown previous considerable
results in a large number of hard optimization problems in engineering, such as Micro-grids
design [34,35], antennas design and vibration control in civil structures [40,41], medical
image processing [42], or data clustering [36], among others.

Substrate Layers Defined in the CRO-SL

Very different search methods can be defined in the CRO-SL as agents (substrates)
for the ensemble approach. They are usually defined at the practitioner’s discretion.
In previous approaches, it has been shown that combinations of well-known traditional
operators with novel search techniques provide the best set of techniques (substrates) in
the CRO-SL. In this paper, the operators considered to tackle this problem are the same as
used in previous applications of the CRO-SL, such as Harmony Search (HS), Differential
Evolution (DE), classical two-points crossover (2Px), classical multi-points crossover (MPx),
and Gaussian-based mutation (GM).

1. HS: A metaheuristic method based on stochastic optimization [43]. It imitates the
process found in music improvisation which searches for better harmony. There
are two parameters that determine the way in which new larvae are generated:
(i) Harmony Memory Considering Rate (HMCR), which ranges from 0 to 1. If a
uniformly spawned value is above the value of HMCR, then the encoded parameter
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value is uniformly drawn from the values in the coral, (ii) Pitch Adjusting Rate (PAR)
which ranges from 0 to 1, which sets the probability of choosing a neighbor value of
the current larva.

2. DE: An Evolutionary Algorithm (EA), which has good abilities for global search [44].
The new larvae can be generated either by the mutation or crossover process. For a
randomly selected encoded parameter, if a uniformly generated value is above the
Crossover Probability (CR) value, which ranges from 0 to 1, the new value is obtained
by x′i = x1

i + F(x2
i − x3

i ), in which F is the evolution factor. Otherwise, the value is
crossed with the randomly selected encoded parameter.

3. 2Px: The crossover operator is the most used exploration mechanism in genetic and
evolutionary algorithms [45], as its combination with an efficient mutation process
allows achieving a suitable balance between exploration and exploitation. 2Px selects
two random parents and exchanges the genetic material in-between two random
points on them. Despite each substrate is linked to a searching process, when another
parent must be picked, the selection is not limited to their substrate, but it can be
chosen from any part of the population instead. The reason is to contribute to genetic
information exchange among substrates, so they can easily cooperate.

4. MPx: This search method is a generalization of the 2Px. In this case, k points are
selected in the parents. In this work, due to the dimensionality of the problem,
the value of k has been chosen to be 3. Thus, a binary vector decides whether the
parts of each parent are exchanged or not for the new offspring generation.

5. GM: The Gaussian Mutation is a noisy search method based on adding random values
from the Gaussian distribution to the encoded parameter values, thus generating
an offspring. The standard deviation σ value in this work is linearly decreasing
during the run, from 0.2 · (A− B) to 0.02 · (A− B), where [B, A] is the domain search.
The Gaussian probability density function is

fG(0,σ2)(x) =
1

σ
√

2π
e−

x2

2σ2 .

With the aim of exploring the search space at the beginning of the optimization process
and exploiting it at the end, the parameter σ is adapted during the simulation.

Note that we have considered a version of the CRO-SL where the parameters of
the algorithm such as the reef size, probabilities of reproduction, or substrates size are
fixed at the beginning of the algorithm and they are not changed during the CRO-SL run.
A dynamic version of this algorithm is possible, where its parameters are dynamically
updated during the search process.

3.3. Genetic Algorithm (GA)

As explained in the introduction section, different nature-inspired optimization al-
gorithms were used in [18], in a similar—but more simplified—problem to determine the
optimal installation of ESSs in railway lines: the Genetic Algorithm (GA), the Particle
Swarm Optimization Algorithm (PSO), and the Fireworks Algorithm (FA). The best perfor-
mance among the three optimization algorithms was by the GA. Particularly, the rate of
convergence of the GA was 100% (achieving the optimum solution in the 20 instances run),
while the rate of convergence of the PSO was only 65% (achieving the optimum solution in
13 of the 20 instances run). Additionally, the GA demonstrated to be faster than the FA,
requiring less iterations to achieve the optimum. Therefore, in this paper we have used the
GA as the algorithm to be compared against the CRO-SL.

The main characteristics of the GA proposed by [18] are below. For the sake of clarity,
the general nomenclature used in Section 2.1 will be adapted to the usual nomenclature
of the GA: the individuals will be referred to as chromosomes, the power features will be
referred to as power genes, and the capacity features will be referred to as capacity genes.

• Selection: the tournament selection has been selected. A pair of chromosomes is ran-
domly selected from the previous iteration’s population (or from the initial population
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in case of the first iteration). The fitness of both chromosomes is compared and the
chromosome with the highest fitness is chosen for the next generation. The same
chromosome can be selected more than once and the procedure is repeated until
obtaining a new population with the same size as the previous one.

• Crossover: the one-point crossover mechanism has been selected. In this variant,
chromosomes are randomly selected in pairs, as well as a single crossover point for
each pair. The part of the chromosome after the crossover point is exchanged between
the pair of chromosomes (this exchange includes both power and capacity genes).

• Mutation: each chromosome can modify a maximum number of 2 power and capacity
genes (to comply with the constraint of coherency among features, the power and
capacity genes mutated must be in the same position, or what is the same, must share
the column in the matrix of (1)). The probability for a chromosome to mutate 1 power
and capacity gen (randomly selected) is 20% and to mutate 2 power and capacity genes
(randomly selected too) is 10%. These mutations consist of adding or subtracting SP
or SC (each possibility with a 50% probability) to, respectively, the power and capacity
genes randomly selected for the mutation.

4. Experiments and Results
4.1. Case Study Characteristics

A real Spanish metro line has been used for the case study, but with modifications
to the topology to increase the difficulty of the decisions that the optimization algorithms
must take to improve the infrastructure. The main characteristics of this topology are
depicted by Figure 4. As can be seen, it is a Y-shaped line with short-turn and terminal
stations in the branches and a terminal station in the common section. Regarding the
passenger stations, there are 12 in the common section, 12 in the longest branch (branch 1),
and 9 in the shortest branch (branch 2). Regarding the train services, there are four different
types: all of them change from down to up direction in the terminal station of the common
section and each one changes from up to down direction in one of the short-turn or terminal
stations located in the branches (each type of service in a different one).

11

Service type 1

Service type 2

Service type 3

Service type 4

Train station

Terminal station

A B

C

D
E

UP

DOWN

BRANCH  1

BRANCH  2

COMMON SECTION

1 2 3 4 5 6

9 10

7 8

SS and potential location 
for installing a RS/ESS

BPT

Short-turn station

Figure 4. Case study line’s topology.

The main electrical characteristics of the case study are given below.

• Infrastructure: 11 traction substations (SSs): 4 SSs of 6.6 MVA in the common section,
4 SSs of 4.4 MVA in the longest branch, and 3 SSs of 4.4 MVA in the shortest one.
The nominal voltage is 1600 V and the no-load voltage is 1650 V. The total impedance
of the active plus return circuit is 26 mΩ/km.

• Rolling stock: Automatic Train Operation-guided trains with a maximum motoring
power of 5 MW, a maximum regenerating power of 4 MW and an auxiliary consump-
tion of 200 kW. They incorporate a regenerative braking system (pneumatic braking
is only used when the electrical braking is not able to provide the braking force
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commanded) and the voltage threshold for the activation of the rheostatic braking is
1800 V.

• ESSs storage technology: electrochemical double-layer capacitors (EDLC) have been
chosen as they have an excellent balance between power and energy density. The ESS
management control is determined by the control curve described in [18]. This control
curve tries to maximize the availability of the ESS to store regenerated energy by
setting the activation values of the charging and discharging phases very close to the
no-load (VNL). In fact, these values are, respectively, 1.01×VNL and 0.99×VNL.

Regarding the traffic operation, different moments of operation have been considered:

• Very peak-hour with large perturbations: it is represented by 200 different traffic
scenarios with 3.5 min headway. All the traffic scenarios have been generated with
the realistic traffic model for large perturbations of [17].

• Very peak-hour/peak-hour/off peak-hour/sparse traffic operation with small per-
turbations. Each moment of operation has an associated headway of, respectively,
3.5/5/7/15 min and is represented by 200 different traffic scenarios, generated all of
them with the realistic traffic model for small perturbations of [16].

Note that each traffic scenario previously mentioned represents the operation during
a long enough period. According to the work in [16], to represent a typical operation cycle,
the time length for each scenario must be approximately the time required by a train to
go from one terminal station to the other. As trains can give different types of service for
the case study line, the simulation length has been defined as the time required by the
longest service to make its itinerary in one direction (up or down direction), including the
time spent before departing in the other direction. This time varies from 3700 s to 6400 s
depending on the headway value.

The distribution of the annual hours of operation with each headway and perturbation
type is depicted in Table 1 (operation is from 6:00 a.m. to 2:00 + 1 a.m., while maintenance
is from 2:00 a.m. to 6:00 a.m.).

Table 1. Annual operation hours of the line under study.

Annual Operation Hours Percentage of Total

3.5 min with large perturbations 942.5 (12.95% of total)
3.5 min with small perturbations 942.5 (12.95% of total)
5 min with small perturbations 1885.0 (25.90% of total)
7 min with small perturbations 2782.0 (38.20% of total)
15 min with small perturbations 728.0 (10.00% of total)

Additionally, the train load varies depending on the value of the headway: with 3.5
and 5 min headway (very peak hour and peak hour) the train load is 90% of the maximum
load, with 7 min headway (off peak-hour) the train load is 50% of the maximum load and
with 15 min headway (sparse traffic conditions) the train load is 25% of the maximum load.

4.2. Search Space

Decision variables for both optimization algorithms are as follows:

• Locations: Every SS location in the line’s case study is considered as candidate where
an ESS could be installed, therefore N = 11.

• Power to be installed at each location: this decision variable can take any value from
the set [0 : SP : Pmax], where the power step is SP = 500 kW and the maximum
power that can be installed is Pmax = 3000 kW.

• Capacity to be installed in each location: this decision variable can take any value from
the set [0 : SC : Cmax], where the capacity step is SC = 2.5 kWh and the maximum
capacity that can be installed is Cmax = 15 kWh.
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Note that the search space used in this optimization process is far bigger than the
search space considered in [18], where the optimum ESSs installation in the same line
was determined using three different nature-inspired optimization algorithms: Genetic
Algorithm (GA), Particle Swarm Optimization algorithm (PSO), and Fireworks Algorithm
(FA). In that paper, the best performance, in terms of effectiveness, speed of convergence,
and robustness, was given by the GA, and the only decision variables were the locations of
the ESSs and the power to be installed. In order to determine the good performance of the
CRO, this algorithm was first applied to the original search space used in [18], achieving
always the same solution as the one given by the GA (which always performed better than
the PSO an FA algorithms).

In the present work, five instances have been run for each optimization algorithm (GA
and CRO-SL) in the new—and far more demanding—search space. With the aim to speed
up the simulation time and reduce the computational burden associated with the high
number of electrical simulations that must be performed during the optimization process
(each individual has an associated ESSs configuration to be simulated in each iteration),
parallel computing has been used. Therefore, the configurations to be simulated at each
iteration have been distributed among a number of workers equivalent to the number of
logical processors of the server, whose properties are given below.

• CPU: Intel(R) Xeon(R) Silver 4116, 24 Cores-2100 MHz (48 logical processors).
• RAM: 128 GB.
• Disk: DELL PERC H330 1.65 TB.

The simulation time required to complete a single iteration of any optimization al-
gorithm is, on average, ~60 min, so the time required to run a whole instance is around
8 days. As five instances have been run for both algorithms (CRO-SL and GA), the total
simulation time was around 80 days.

Although computation time is high, this is not critical regarding the applicability of
the proposal, because optimizing the railway infrastructure is an off-line process (not in
real-time) that takes place in the planning phase. Besides, note that the big responsible for
such long computation time is not the algorithm, but the electrical simulations associated
with any new configuration of ESSs that must be tested. These electrical simulations
are extremely demanding in terms of computation time because they must solve a lot of
nonlinear load flows.

4.3. Parameterizations of Algorithms and Objective Function

The CRO internal configuration and parameters used in the simulations run are
the following:

• Reef size: 200 individuals (corals) which 20% are initially empty places.
• HS substrate: HMCR = 0.8, PAR = 0.2, δ = 0.8.
• DE substrate: F linearly decreasing during the run from 1 to 0.5.
• GM substrate: σ linearly decreasing during the run from 1 to 0.5.
• 2Px and MPx substrates: k = 2, 3 respectively.
• Number of maximum attempts in larvae setting: 3.
• Depredation process: Probability of depredation per iteration is set to 0.1. If depreda-

tion succeed, 10% of the weakest corals are removed from the reef.

In turn, the GA’s internal configuration and parameters used are the following. Note
that the parameters selected are those which yield the best performance in previous
research [18] (except the population size, which is bigger because the search space is more
demanding in this case study):

• Population size: 200 individuals (chromosomes).
• Crossover: One-point crossover.
• Mutation: During the mutation process, only two positions (genes) of each individual

can be modified. The probability for a chromosome to randomly mutate 1 position is
20% and to randomly mutate 2 positions is 10%. If mutation takes place at a power
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gene, the position is modified in ±SP . If it takes place in a capacity gene, the position
is modified in ±SC .

Finally, the values considered for the fitness function are as follows:

• ecost = 0.0642 e/kWh. This value has taken into account the energy tolls established
by the Spanish Government and the average energy price for Spain in 2018. See in [46]
for more details about the calculation methodology.

• The installation cost (C0(x)) is calculated with values inspired by the work in [4] (the
storage technology chosen for the ESSs are EDLCs).

• Wacc = 2.5% of interest rate.
• T = 15 years. This is a fair estimation of the ESSs’ life according to the International

Renewable Energy Agency (IRENA) [47].
• Mb = 280000 e. This value makes it possible to try a considerable amount of different

ESSs combinations that are within the budget limits and, at the same time, it is
restrictive enough to unable highly costly configurations. Railway operators must
provide this value in a real project.

4.4. Results
4.4.1. Performance Comparison between the CRO-SL and GA

Figure 5 shows the fitness evolution for both algorithms with the number of iterations.
The first subplot represents each of the five instances run for each optimization algorithm,
while the second subplot represents the average.

Figure 5. Comparison of the fitness achieved using the GA and the CRO-SL.

It can be seen that the GA, although faster than the CRO-SL obtaining a good solution
at the beginning, gets trapped in several different local optima. By contrast, the CRO-SL is
slower achieving an initial evolution, but it is always able to escape from the local optima
(where the instances of the GA get trapped) at a reasonably constant speed (measured
in number of iterations) and evolves its fitness until achieving a shared maximum value,
which is very likely to be the global optimum. Therefore, this shows that the CRO-SL
outperforms the GA, especially in terms of effectiveness.
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4.4.2. Analysis of the Solutions

Before analyzing the solutions, the main conclusions obtained from pre-optimization
tests to characterize the case-study line will be given. This will help us to understand
the search space better. In these tests, it was found that the receptivity of the line was
reasonably high. Indeed, it was found that, from the power-to-be-installed perspective,
the receptivity is almost absolute (which means that practically the whole amount of
regenerated energy is recovered) when the total power installed is greater than or equal to
3 MW. Besides, from the capacity-to-be-installed perspective, small sizes were found to be
more than enough. This is mainly because the control curve applied for the ESSs tries to
discharge them as soon as possible, so that the energy is not accumulated for a long time in
the ESSs and the probability to accept the excess of regenerated energy in any time without
the need of big capacities is high.

The analysis of the solutions given by the two algorithms shows several differences
between them. As the best solution is always provided by the CRO-SL, an initial detailed
analysis is given for this solution. Then, it will be compared with the sub-optimal solutions
provided by the GA.

The optimum configuration obtained by the CRO-SL (the same in the five instances
run) is given in Figure 6 and also displayed in Table 2.

1 2 3 4 5 6 7 8

9 10 11

COMMON SECTION BRANCH 1

BRANCH 2

500 kW
5 kWh

500 kW
5 kWh

500 kW
5 kWh

FITNESS: 363.1 k€ 

500 kW
5 kWh

500 kW
2.5 kWh

500 kW, 5 kWh

Figure 6. Optimum installation obtained by the CRO-SL algorithm for all the runs.

Table 2. Best solution found by the CRO-SL. The solution is represented by a pair of columns, where
the first one refers to the power size (P [kW]) and the second to the capacity size (C [kWh]).

CRO-SL Solution
Location P C

1 500 2.5
2 500 5
3 500 5
4 500 5
5 – –
6 – –
7 – –
8 500 5
9 – –

10 – –
11 500 5

Fitness 363.1 [ke]
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As can be seen, the total power installed is 3 MW, distributed into ESSs of 500 MW
located at positions 1, 2, 3, 4, 8, and 11. The fact of not installing more power (until the
maximum theoretical value from the pre-optimization tests of 3 MW) is due to economic
reasons: the marginal benefit, in terms of energy saving, from installing the additional
power does not compensate the cost associated to it. Small power sizes (500 kW) have
been selected in order to install a big number of ESSs—six, distributed along the whole
line—so that they can store the energy regenerated at any part of the line. Particularly,
most of the ESSs are installed at the common section (shared by all the types of service and,
therefore, with the highest number of trains). Besides, the ESSs installed at the common
section, especially those closer to the branches, are also able to store the regeneration that
takes place at the beginning of the branches (the whole line is a single electrical sector and,
consequently, electrically connected). Finally, the regeneration that takes place at the end of
the branches is stored by the two ESSs installed at the end (positions 8 and 11). Regarding
the capacity, all the ESSs have a capacity of 5 kWh, except the one installed at position
no.1, which has a capacity of 2.5 kWh. These values are also very reasonable because,
as found in the pre-optimization tests, the capacities do not have to be very big, thanks to
the ESS control curve used (which maximizes the ESS capability to store the regenerated
energy that otherwise would be lost in the rheostats). Additionally, the big number of ESSs
installed increases the probability to always have available (at least) one of the ESSs.

Regarding the solutions of the GA, Table 3 shows the characteristics of the solutions
achieved in each of the 5 instances run (each solution is represented in two consecutive
columns, where the first column corresponds to the power sizes and the second column to
the capacity sizes).

As can be seen, each solution is different to the other, which means that the GA gets
trapped in different local optima. This is largely due to (1) the big search space (with respect
to the original search space presented in [18]) and (2) the difficulty of the fitness landscape.

Regarding the difficulty of the landscape, first it must be noted that the search space
seems to have many different local optima, as different configurations can lead to similar
energy savings. Additionally, it has been observed that the different variables of decision
have different levels of influence on the fitness function, the power sizes and locations
being the main variables of decision, relegating the capacity to a secondary level (which
means that the fitness is less sensitive to most of its variations). This is largely due to
their impact on the installation costs (crucial for the fitness function): in all the solutions
obtained, the cost associated with the total power installed is more than 15 times higher
than the cost associated with the total capacity installed.

Table 3. Fitness values obtained for best solutions provided by the GA. Each solution is represented
by a pair of columns, where the first refers to the power sizes (P [kW]) and the second to the capacity
sizes (C [kWh]).

Solution #1 Solution #2 Solution #3 Solution #4 Solution #5
Location P C P C P C P C P C

1 500 5 500 2.5 500 2.5 500 2.5 500 2.5
2 500 2.5 500 2.5 500 5 500 5 500 2.5
3 500 2.5 500 7.5 500 2.5 500 2.5 500 2.5
4 500 5 500 2.5 500 2.5 500 2.5 500 2.5
5 – – – – – – – – – –
6 – – – – – – 500 2.5 500 7.5
7 – – 500 7.5 500 12.5 – – – –
8 500 7.5 – – – – 500 2.5 500 2.5
9 – – – – – – – – – –

10 – – – – – – – – – –
11 500 2.5 500 2.5 500 2.5 500 2.5 500 2.5

Fitness 360.2 [ke] 359.6 [ke] 358.5 [ke] 358.3 [ke] 358.1 [ke]
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This makes the GA to focus on the power size and location selection (which are
the variables with the highest influence on the fitness), being unable to deal properly
with the capacity selection. On the contrary, the CRO-SL can carry out a powerful global
search of location and power sizes, but also an excellent treatment of the capacity values
of the ESS. This way, note that the main difference between these algorithms seems to
be the higher ability of the CRO-SL to carry out a good search for all the variables of
decision, without relegating the capacity search of the solution. Indeed, among all the
solutions provided by the GA, the one with the best fitness is very similar to the solution
provided by the CRO-SL: it has the same locations and the same power sizes for each ESS,
and the only difference is on the capacities of the ESSs, which are better selected by the
CRO-SL approach.

Regarding the computational performance of the CRO-SL in this problem, Figure 7a
shows the number of larvae (potential solutions to the problem) getting into the reef per
substrate, over the iterations. Note that a new individual can enter in the population at a
random place if its associated fitness value is better than the occupied one or if the place is
empty. Due to the initial spots in the reef, in the first iterations of the algorithm’s run there
is a higher probability to enter, independently of the quality of solutions, so this number
is usually larger at the beginning of the algorithm’s run. In Figure 7b, the accumulative
ratio of times that each substrate is producing the best larva is shown. It is remarkable that
the best larva might not be better than the fittest coral of the reef. Regarding both figures,
it can be pointed out that DE substrate seems to be the best for search space exploration
and exploitation. The contribution of the other substrates seems to be smaller, but note
how all of them include solutions in the reef, especially the GM substrate, at the end of the
algorithm’s evolution.
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Figure 7. Number of larvae entering to the reef and percentage of best larva generated per substrate
in the CRO-SL: (a) # of larvae into the reef and (b) % of best larvae per substrate.



Energies 2021, 14, 4753 17 of 19

To conclude the analysis of results, it has been shown that the GA is faster than the
CRO-SL but it gets trapped in local optima. The CRO-SL finds the best solution with fitness
function 363.1 k€. The solutions provided by the GA are not the optimal solution found
by the CRO-SL, and the difference in the value of fitness goes from 0.81% to 1.4%. This
would have an impact on the profitability of the investment. In addition, the decision on
the location and the sizes of the ESSs would vary depending on the algorithm applied
to solve this decision problem. Thus, the CRO-SL is more effective finding the optimal
solution of the proposed problem.

5. Conclusions

In this paper, we have faced a problem of optimal location and sizing of Energy
Storage Systems (ESS) in DC-electrified railway lines. We have proposed and evaluated the
performance of a multi-method ensemble meta-heuristic in this problem: the Coral Reefs
Optimization with Substrate Layers (CRO-SL). It is an evolutionary-type multi-method
approach able to run different search procedures within the same population. We have
adapted the CRO-SL to cope with the problem at hand, by incorporating specific operators,
a mix of the most successful search procedures in evolutionary algorithms, such as 2-point
or multi-point crossovers, Gaussian mutation, Differential Evolution, or Harmony Search.
All these approaches are combined into a single population algorithm to carry out an
accurate search for the optimal solution to the problem. In fact, the CRO-SL has shown
excellent performance in a real case study to determine the location and sizing of ESS in a
real Spanish metro line, consistently improving the results obtained by an existing Genetic
Algorithm in this problem in all the instances run.
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