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• Multidisciplinary modelling is required
to conduct a resilient energy transition.

• Policies’ aim should not be limited to
short-term maintenance of jobs and
growth.

• Decarbonization and sustainability
must be the drivers for policy action.

• Energy transition needs to assess poten-
tial impacts on social aspects.

• Energy modelling is called for including
new features and extreme scenarios.
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Relevant energy questions have arisen because of the COVID-19 pandemic. The pandemic shock leads to emis-
sions’ reductions consistent with the rates of decrease required to achieve the Paris Agreement goals. Those un-
foreseen drastic reductions in emissions are temporary as long as they do not involve structural changes.
However, the COVID-19 consequences and the subsequent policy response will affect the economy for decades.
Focusing on the EU, this discussion article argues how recovery plans are an opportunity to deepen the way to-
wards a low-carbon economy, improving at the same time employment, health, and equity and the role of
modelling tools. Long-term alignmentwith the low-carbon path and the development of a resilient transition to-
wards renewable sources should guide instruments and policies, conditioning aid to energy-intensive sectors
such as transport, tourism, and the automotive industry. However, the potential dangers of short-termism and
carbon leakage persist. The current energy-socio-economic-environmental modelling tools are precious to
widen the scope and deal with these complex problems. The scientific community has to assess disparate,
non-equilibrium, and non-ordinary scenarios, such as sectors and countries lockdowns, drastic changes in con-
Keywords:
Climate change
Energy transition
Socio-economic modelling
Energy-environmental modelling
so).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2021.150329&domain=pdf
https://doi.org/10.1016/j.scitotenv.2021.150329
mailto:angeles.cadarso@uclm.es
https://doi.org/10.1016/j.scitotenv.2021.150329
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


1 Discussions around the Green New Deals have more
2010b; Bauhardt, 2014; Patel and Goodman, 2020; UNEP, 2
now as proposal for the post-COVID-19 crisis (Galvin and
quarie, 2020; Salter, 2020).
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sumption patterns, significant investments in renewable energies, and disruptive technologies and incorporate
uncertainty analysis. All these instruments will evaluate the cost-effectiveness of decarbonization options and
potential consequences on employment, income distribution, and vulnerability.
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1. Introduction against climate change and contributing to sustainable and resilient so-
The COVID-19 pandemic has caused profound and unforeseen ef-
fects in all spheres of human life around the planet.Measures to prevent
the spread of the pandemic, primarily the confinement of citizens and
the lockdown of non-essential economic activities, have led to a dra-
matic decline in GDP (gross domestic product) and employment. The
European Union (EU) experienced a 6.1% contraction of the GDP in
2020, with an unemployment rate of 7.0% (7.3% in April 2021) and a
public deficit of 6.9% (EC, 2021a, 2021b, 2021c). Simultaneously, global
CO2 emissions estimates decreased by 17% in early April 2020, which is
associatedwith an annual decrease of 4.2-7.5% (Le Quéré et al., 2020). In
the European Union, CO2 emissions from fossil fuel combustion
decreased by 10% in 2020 compared to the previous year (EC, 2021d).

To cope with the economic impacts of the pandemic, the European
Commission (EC) and the Governments of the Member States (MS)
have announced and developed many recovery plans. From the long-
run perspective, the EC and the MS work on designing stimulus pack-
ages to boost the economic recovery, the so-called Green Recovery
Plans (GRPs). In the face of the COVID-19 crisis, the EC indicated that
it will continue promoting its flagship project, the European Green
Deal (EGD),1 the most comprehensive proposal for economic transfor-
mation, delivered in July 2021 (EC, 2021e). The Next Generation EU
(NGEU) fund is at the core of the recovery policy in the EU. This tempo-
rary recovery instrument consists of more than €800 billion to help re-
pair the immediate economic and social damage brought about by the
coronavirus pandemic. The aim of this plan is to foster a greener, more
digital, more resilient Europe and a better fit for the current and forth-
coming challenges. In parallel, and in order to benefit from the NGEU,
the MS have submitted to the EC their National recovery and resilience
plans (EC, 2021f), outlining how they will invest the funds, and how
they will contribute to a sustainable, equitable, green and digital transi-
tion. The reforms and investments included in the plans should be im-
plemented by 2026. The NGEU fund will operate from 2021 to 2023
and will be tied to the regular long-term budget of the EU, running
from 2021 to 2027. The EU's long-term budget, coupled with NGEU,
will be the most extensive stimulus package ever financed in Europe
with a total budget of €2 trillion.

Political economy may tell us more about how this will play out in
the end (depending on, e.g., the interest of well-positioned lobbies
and/or large firms, the need to take advantage of planned projects, the
built or needed infrastructure, etc.). According to Cowen (2021), energy
policy is often judgedby three criteria (cost, reliability, and effect on car-
bon emissions), while suggesting an alternative approach based on
which green energy policies can get the support of most special-
interest groups and the fewest forces in opposition. Academic, online
and political debates are then greatly modulating and adapting the
above principles. Still, according to Pianta et al. (2021), surveys about
the next 5 years to policy-makers and stakeholders from 55 different
countries and sectors suggest that expectations that the COVID-19 pan-
demic will accelerate decarbonization efforts are widely shared, simi-
larly to what citizens seem to reveal (EU, 2020).

A critical question is how to shape the GRPs to rapidly deliver jobs
and improve citizens’ quality of life without compromising the fight
than a decade (Barbier, 2010a,
009), retaking themedia scene
Healy, 2020; Micale and Mac-

2

cieties (Shan et al., 2021). This article, complementary to the discussions
on carbon pricing and COVID-19 (Mintz-Woo et al., 2020), how the dis-
ease impacts the ongoing energy transitions (Sovacool et al., 2020), and
the role of international governance in the recovery (Obergassel et al.,
2020), discusses the challenges and potential of the GRPs, highlighting
the value of energy systems modelling for informing policy-makers in
managing an efficient, secure, and fair energy transition. It is organized
into five main sections, each raising a challenge of the post-COVID-19
plans for recovery and energy transition in the EU.

2. How have the energy system, the associated environmental
pressures, and the European policy agenda changed with the
COVID-19 crisis?

In the period of tightest restrictions against COVID-19, most of
Europe experienced a notable load drop. Interestingly, while coal, oil
and nuclear power generation considerably decreased in most coun-
tries, the production of renewables increased, proving that intermittent
renewables are a reliable resource in critical times (Werth et al., 2021).
Likewise, energy trade between countries increased. As a result, CO2

emissions fell by 17 million tonnes in April 2020, a drop that had not
been registered since 2006 (Le Quéré et al., 2020). Schumacher et al.
(2020) estimated that greenhouse gas (GHG) emissions reductions
from changes in EU consumption accounted for 6% in the EU, and
around 1% globally.

However, unless the future economic recovery is tilted towards
green stimulus and reductions in fossil fuel investments (Forster et al.,
2020), the decline in 2020 is unlikely to persist in the long term, as it
does not reflect structural changes in economic systems, nor do they
seem to have much effect on global climate change in the medium
term (IEA, 2021; Linares, 2020). Nevertheless, studies on the impact of
the COVID-19 on health, economy and the environment serve to ana-
lyze possible scenarios of considerable load reduction and higher re-
newable production.2 In this context, the permanence of changes
depends on how production and consumption patterns evolve
(e.g., teleworking and tourism), the scope of the energy transition,
and, ultimately, to what extent climate change is taken into account
when planning economic responses after COVID-19. This framework is
genuinely at stake, particularly in the post-pandemic EU with the GRPs.

3. How is the European energy transition linked with the GRPs?

The European energy transition appears intimately connected with
the GRPs by the common goal of decarbonization. The energy transition
as an engine of recovery can lead to large investments in clean energy
technologies. According to the priorities of the GRPs, mobilization of
funds will mainly focus on the renovation of buildings, renewables
and hydrogen, and cleanmobility; a share of 30%will be spent on fight-
ing climate change (EC, 2021g).

As pointed out by Escribano et al. (2020), the set of EU policies can
provide the regulatory certainty that the private sector needs to em-
brace the low-carbon transition as a recovery opportunity (Campiglio,
2014). Additionally, the EU has built a framework for aligning financial
and climate goals through the Sustainable Finance Action Plan
2 See CAT (2020), EC (2020), Guan et al. (2020), Illanes and Casas (2020), McKibbin and
Fernando (2020), OECD (2020), Oxford_Economics (2020), among others.
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(European Commission, 2018), and the recently published EU taxon-
omy for sustainable activities (OJEU (Official Journal of the European
Union), 2020). These initiatives should aim to neutralize any attempt
to reverse the trend towards energy and climate policies and regula-
tions, aligning recovery plans and energy transition.

The IEA proposes greater cooperation, coordination based on the na-
tional energy and climate plans (NECPs) andworking on the integration
of the energy market, cross-border trade, and developing stronger sig-
nals from the price of carbon (IEA, 2020a).3 Cooperation mechanisms
included in the European Renewable Energy Directive (OJEU (Official
Journal of the European Union), 2018) enable EU countries to work to-
gether to meet their targets more cost-efficiently. The EGD is an oppor-
tunity to deepen measures affecting the EU pooling investments in key
innovative technologies. In general, GRPs should accelerate and priori-
tize some of the action plans contemplated in the NECPs. Governments’
role will be very relevant in innovative public procurement processes
setting the benchmark for companies (Lindström et al., 2020; EC, 2014).
4. Are there specific opportunities for the energy transition
(e.g., more investment for more employment-generating electricity
production technologies) with these plans?

There are several clear synergies between energy transition and job
creation (IRENA, 2019) and improved health. For instance, pollution as-
sociated with fossil fuel combustion takes premature lives annually
while increasing the respiratory risk associated with diseases such as
COVID-19 (Vandyck et al., 2018). Environmental and social ratings
have been resilient during COVID-19 featuring higher returns, and re-
newable energy technologies may yield environmental and health ben-
efits (Guerriero et al., 2020).

The IEA estimates that investing 0.7% of global GDP could create or
save 9 million jobs a year in improving the efficiency of buildings,
grids, and renewables, but also in improving the energy efficiency of
manufacturing, food, and agriculture, textiles, infrastructure for low-
carbon transport (which should also be of low-carbon concrete and
steel, e.g. for railway), and more efficient vehicles (with the reasonable
substitution of the vehicle park based on its useful life) with enhanced
electricity grids (IEA, 2020b).

In the business field, there have been “winners” in the COVID-19 cri-
sis (e.g., technology, distribution, food and pharmaceutical companies).
Their expansion offers the chance to include them in the fight against
climate change actively. For instance, electronic commerce is here to
stay. Therefore, distribution companies must develop the modal shift
towards electric vehicles (Shahmohammadi et al., 2020). In the same
vein, technology-based electricity-intensive companies should be en-
couraged to keep low carbon footprints, penalizing possible carbon
leakage in carbon-intensive countries (Ortiz et al., 2020; Jiborn et al.,
2018) and including carbon border adjustment mechanisms (as
intended by EGD for selected sectors by 2021).

GRPs need to target not only the most relevant sectors in terms of
emissions and economic growth (e.g., airlines committed to reducing
their emissions in the medium term, or industries focused on fossil
fuels that do not have much time to live in their current configuration)
but also, significantly, critical activities in which the conditionality of
aids can be very effective towards decarbonization (e.g., the power
3 Reasonable concerns may emerge on the fact that carbon taxes could derive into fur-
ther austerity policy and hence not actually be a “recovery” measure. The recovery pack-
age designed by the EU requires some reforms for the funds to be released, including
fiscal reforms of which carbon taxes may be a part. Actually, carbon taxes, particularly in
the sectors not included in the ETS (Emissions Trading System), may be required as one
of the policies needed to reduce emissions, and hence ensure that the recovery is aligned
with theGreenDeal. Carbon border taxes (or alternativemechanisms, such as climate con-
tribution) are also needed to prevent relocation, and to help fund the decarbonization of
industry and the recovery package. Both of them can (and probably should) include redis-
tributive measures (such as refunds to households) to prevent the austerity thatmay cre-
ate negative impacts on households.

3

sector or the automotive sector). The allocation of GRPs stimuli is cru-
cial, because it could increase global five-year emissions by −4.7% to
16.4% depending on the structures and strength of incentives (Shan
et al., 2021), and a “green GRP” could outperform an equivalent stimu-
lus package while reducing global energy CO2 emissions by 10% (Pollitt
et al., 2020).

Further opportunities arise from the investment in renewable elec-
tricity, hydrogen and energy storage technologies, which are set to
play a fundamental role. Promoting home-grown technology produc-
tion becomes relevant for job creation. In strategic sectors for Europe,
such as electricity and digital technologies, effortsmay bemade towards
developments in the field of management, control, security, and digiti-
zation. In production technologies such as photovoltaics, aspects such
as adaptation to urban environments, integration in buildings, and ad-
vances in high-efficiency cells remain as opportunities. Hydrogen re-
search, especially electrolyzers, can be a differential technological
factor. Concentrated solar technology for electricity production is an ex-
ample of such technological leadership that could be promoted, being
entirely consistent with the spirit of the objectives of the EGD,
supporting high-value-added and sustainable economic activity in
southern European countries like Spain, heavily hit by the crisis
(Banacloche et al., 2020).

The renovation of buildings offers an excellent opportunity to con-
tribute to the economic recovery of the construction sector. The solu-
tions to improve the thermal insulation of façades in existing
buildings would not only redirect sectoral activity and avoid job losses
but also fight against energy poverty. Likewise, the tourism sector has
great potential to decarbonize and become more resilient if the neces-
sary investments are made. It seems reasonable to implement plans at
a regional and local level aimed at improving energy efficiency, circular
economy, and public awareness.

5. Are there specific dangers to the energy transition, e.g. economic
recovery measures that could indirectly generate more pressure on
the energy and environmental system?

According to IEA (2020c), the energy investment has been reduced
by 20% in 2020 due to supply chain disruptions, lockdownmeasures, re-
strictions on people and goods’ movement, and emerging financing
pressures. Moreover, some key lobbyists and stakeholders have
expressed short-term priorities for sustaining employment and eco-
nomic growth of any kind. If so, there is a risk of targeting aid to specific
emission-intensive industries, incentivizing vehicles’ purchase, or
protecting traditional tourism, which would perpetuate unsustainable
production and consumption patterns. In the context of low oil prices,
aggravated by the reduction in demand due to the pandemic, such in-
terventions would dangerously delay fossil fuels’ substitution.

Furthermore, the potential rebound effects resulting from technol-
ogy innovations and energy efficiency improvements cannot be ignored
(Greening et al., 2000; Sorrell et al., 2009; Sorrell and Dimitropoulos,
2008; Antal and van den Bergh, 2014). Several instruments and inter-
ventions should be considered to mitigate the magnitude of the re-
bound effects: policies that promote changes in consumer behaviour
and sustainable lifestyles, environmental taxation, non-fiscal measures
to increase the effective price of energy services, or the development
of new business models (Maxwell et al., 2011).

The pandemic also has the potential to change consumer prefer-
ences, alter social institutions, and rearrange the structure andorganiza-
tion of production. Greening et al. (2000) refer to these potential effects
as transformational rebound effects. No theory exists to predict the sign
of these effects, which in the longer term could lead to higher or lower
energy consumption, as well as to changes in the mix of energies used
in production and consumption throughout the economy. In this regard,
it is worth recalling the take-back in GHG emissions observed after the
economic-financial crisis of 2008-2009, or in leisure travel after the 9/11
terrorist attacks.



4 Developed in the LOCOMOTION (https://www.locomotion-h2020.eu) project. The
economic module of the model departs from a structure inspired in the FIDELIO model
(Kratena et al., 2013, 2017) and theDENIOmodel, used for the economic, employment, so-
cial and public health impact of the Spanish Integrated Energy and Climate Plan 2021-
2030 (MTE, 2020).
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6. What type of energy modelling can be particularly useful to
address current challenges and to anticipate advantageous
situations and trade-offs from these plans?

The COVID-19 pandemic has caught the world in the transition to a
sustainable low-carbon energy system and economy, and it raises new
challenges to the existing ones. Environmental-energy-economic
models must adapt and report on the specific dimensions of those chal-
lenges.Modelling energy transition in a post-COVID eramust go beyond
typical technical variables to meet environmental and social goals, flex-
ibility and uncertain parameters and indirect effects of increasing re-
newables use (Tovar-Facio et al., 2021). Modellers are increasingly
claimed to include aspects such as uncertainty derived from agents’ in-
teractions or evolution in their behaviour, ability to integrate shocks in
both demand and supply, and non-enforcement of Say's Law or equilib-
rium or quick adjustment in markets and sectors (Shan et al., 2021;
Pollitt et al., 2020). The integration of social indicators with a perspec-
tive of global supply chains to identify winner and losers from policy ac-
tions or inaction can be crucial to improvemodels’ relevance to the real
world. To this end, insights from political economy –regarding individ-
uals not just as rational optimizers, mass movements, public opinions,
confidence and quality of institutions, trade linkages of sectors and
trade policy, among others– can be helpful, although hard to model
due to data availability (Peng et al., 2021).

In Appendix A, we display some examples of current efforts in mul-
tidisciplinary energy modelling to address the challenges of a sustain-
able energy transition, some of them already applied to the
implementation of Energy and Climate Plans in the Spanish context.
Input-Output Tables (IOT) and the extended Multiregional Input-
Output (MRIO) models provide a systemic, multisectoral, multiregional
view, in which it is possible to include different indicators for policy ad-
vice (Wood et al., 2020; Vanhamet al., 2019; Tukker andDietzenbacher,
2013; Wiedmann and Barrett, 2013): environmental impacts (emis-
sions), resource needs (water, land), socio-economic impacts (employ-
ment, qualifications), and social risks along the value chains. They can
help to define and quantify synergies and trade-offs between different
measures and investments. They are also useful to assess the resilience
of the economy (and in a sense, of the energy sector) to situations such
as pandemic experiences since it allows modelling the closures of sec-
tors/countries or the resource/employment needs of specific sectors
by identifying bottlenecks and hotspots including all phases of the
global production chain. On the demand side, they allow elaborating
scenarios of change in consumption patterns. Besides, MRIO-disaster
models deal explicitly with disequilibrium shortfalls in supply and de-
mand in different markets and sectors (Shan et al., 2021).

Energy systems modelling based on simulation/optimization, such
as TIMES (The Integrated MARKAL-EFOM System, IEA-ETSAP, 2020), is
the one chosen by, e.g., the Spanish Government to establish the narra-
tives of the energy system for long-term energy planning (Loulou et al.,
2005). In the same fashion as Computable General Equilibrium (CGE)
models have been criticized for assuming optimal (“rational”) behav-
iour, introducing optimizing behaviours in the energy sector but not
anywhere else in themodellingwould be inconsistent aswell. Addition-
ally, depending on the scale of application and the dimension of analy-
sis, we should implement other modelling types. Linking MRIO models
and energy systems optimization models with methodologies such as
Life Cycle Sustainability Assessment (LCSA) allows understanding the
implications of alternative investment options in broader sustainability
aspects (Navas-Anguita et al., 2020). LCSA typically consists of an envi-
ronmental life cycle assessment (LCA), a life cycle costing, and a social
life cycle assessment (S-LCA) within a consistent, holistic framework
(UNEP/SETAC Life Cycle Initiative, 2011). In this regard, we note that
decarbonization and sustainability are expected to continue to be the
drivers for policy action, especially regarding energy systems.

Environmental-Energy-Economic integrated assessment models
(E3 IAMs) are useful tools to provide ex-ante information on the
4

potential impacts of recovery plans, but, to that end, they must be
able to report on the specific dimensions of the challenge. Accord-
ingly, models should inform on employment, income (distribu-
tional), and environmental impacts of different green policies
portfolios. Full multi-agent econometric input-outputmodels should
be included in the economic part of the IAMs, as done in the WILIAM
model, an IAM with detailed representations of the economic, socio-
demographic, resources (energy, materials, land, water) and envi-
ronmental spheres.4

The E3ME macro-econometric model (Cambridge Econometrics,
2019), based on post-Keynesian theory, shows an IOT base to model
sectors and countries relationships and integrates the energy system,
including bottom-up sub-models of several key energy sectors. It can
be used to build scenarios to reflect the critical aspects of the pandemic
and allow consideration of both demand- and supply-driven impacts
derived from it (Pollitt et al., 2020). Besides, themodel does not assume
(as, in general, CGE models do) that the economy adjusts quickly after
the pandemic impact to full employment of resources and allows funda-
mental uncertainty affecting spending and saving behaviour.

Many models will have to adapt to the new challenges (Pfenninger
et al., 2014; Solé et al., 2020) and to the new features involved with
the COVID-19 crisis and the coming times with the recovery plans
(Table 1). For example, they could usemicrodata to analyze, for specific
groups of households (e.g., along with a set of socio-demographic char-
acteristics of interest), the environmental and economic implications of
different recovery policies, including distributive impacts. Another crit-
ical feature is linking the economic production and consumption func-
tions to bottom-up energy and resources modules, looking for higher
resolution models in this aspect (Prina et al., 2020).

Additional aspects to implement include the criticality of the mate-
rials expected to be essential in the energy transition, the role of citizens
(such as human behaviour, types of demand and users), the use of
water, visual and sound impact, market regulatory advances
(e.g., with schemes which avoid speculation on energy storage), energy
servitization (to check whether it brings social benefits and improves
the efficiency of the system), and adaptation mechanisms. Planning ca-
pacity at the regional and city levels will be crucial to the success of na-
tional measures. These modelling developments will pose a challenge
for economists (input-output regionalization, recirculation, and dynam-
ics), systems engineers (complex simulation models with high load of
artificial intelligence tools and big data to configure demands, project
resources, etc.), chemical engineers, and environmental scientists (re-
gionalization and dynamic inventories in LCA), as well as decision engi-
neers (strategies, multi-criteria decision-making, PESTEL analysis,
group work, governance models and policy design).

Finally, it is important to point out that “scenarios are the primary
tool for examining how current decisions shape the future, but the fu-
ture is affected asmuch by out-of-ordinary extremes as by generally ex-
pected trends. Energy modellers can study extremes both by
incorporating them directly within models and by using complemen-
tary off-model analyses” (McCollum et al., 2020). Thus, uncertainty is
an intrinsic attribute of macro-systems such as those evaluated by
means of energy systems models (cities, regions, countries…). In this
sense, uncertainty will have an effect on decisions and strategic plan-
ning. There are several types of uncertainties that affect decision-
making processes. Some uncertainties can be quantitatively addressed
and some others not, which relates to the rationale of ‘(un)known
(un)knowns’ in Courtney et al. (1997): there are knownknowns (things
we knowwe know), known unknowns (thingswe know that we do not

https://www.locomotion-h2020.eu


Table 1
Key modelling developments for analyzing energy transitions in the context of post
COVID-19 green recovery funds.

Advanced feature Description/key aspects

Oil/gas scenarios & associated Context of low oil prices, risks for renewables
transition, but also potential for introducing
further environmental taxation.

Carbon price scenarios The IEA proposes developing stronger signals
from the carbon price.

Renewables penetration Supervening role of hydrogen, which requires
developments of roadmaps, infrastructure, etc.

Electric car penetration Different possible paths towards an electrical
paradigm. Potential automotive sector
redistribution.

Agents’ heterogeneity/firm
heterogeneity

Use of different databases (e.g., EU surveys on
consumption, income, etc., linked through
statistical matching). Different demographic
and socio-economic characteristics to identify
potential social, environmental and economic
implications of varying recovery policies,
including distributive impacts, vulnerability,
gender inequality, resilience, etc.

Bottom-up energy link to
economic production &
consumption

The monetary and physical spheres need to
work together with a dual system
guaranteeing full consistency. It is essential to
capture the environmental effects of stimulus
packages and investments.

Mobility restrictions/scenarios COVID-19 has shown the strong effects of
reduced mobility on CO2 emissions. Different
restrictions may apply and scenarios to occur.

Foreign sector closures Alternatives depending on trade and travel
restrictions.

Full multipliers analysis (full
scope/wide range of impacts)

Evaluating different implications of getting
them with input-output, social accounting
matrix and computable general models.
Potentialities to obtain them from bottom-up
renewable energy investments via investment
matrices which link to macroeconomics and
hybrid models.

Several impact levels (meaningful
disaggregation level)

Multiregional, national, regional, city, etc.
Sectoral disaggregation to allow uneven
shocks and behaviour.

Non-equilibrium states Allowing disequilibrium shortfalls in supply
and demand of different markets in the short
or medium term.

Additional uncertainty analysis Uncertainty of fossil fuel resource availability,
technology penetration, etc., but also
consideration of out-of-ordinary extremes.

Biophysical limits The limits on the availability of non-renewable
and renewable energy resources and critical
materials may determine some restrictions to
growth.

Assessment and feedback of the
impacts of climate change

Feedback of the impacts of climate change on
the economy and well-being of society. Some
of these relationships can have knock-on
consequences.

Multi-objective criteria Focus the results on multi-objective criteria of
well-being. (SDG, social indicators,
environmental indicators, …)

Behavioural change Change in social behaviour. Some changes in
social behaviour, such as diets or
transportation habits, can be decisive in the
fight against climate change.
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know, and that typically are addressed with varying parameters to re-
duce risks of error, testing robustness of results, etc.), and unknown un-
knowns (things we do not know we do not know). While known
unknowns could be faced through sensitivity analysis on relevant sys-
temic variables, unknown unknowns open the door to qualitative stra-
tegic thinking based on out-of-the-box scenarios (what happens if a
pandemic arrives, what happens if oil price reaches 200 USD a barrel,
etc.). As we conclude below, these questions highlight the importance
of a modelling approach that takes into account existing uncertainty
and that non-equilibrium outcomes are the common situations with
changing and heterogeneous patterns.
5

7. Conclusions, final warnings, and recommendations

Once the health crisis is over, it will be necessary to invest more in
public health and communication technologies with environmental
and social sustainability criteria, not just monetary. Besides, although
it is required to reactivate the economy and recover the lost or at-risk
jobs, it is essential to redefine the productive schemes at all levels.
This includes the commitment to a circular economy, reducing the pres-
sure on resources through innovative eco-design solutions, dematerial-
ization, and creating second-life solutions away from precariousness
and the underground economy. Besides, the mobility model must be
changed, and a sustainable work-life balance scheme should be pro-
moted via teleworking, whenever possible, not only to avoid the expo-
nential expansion of contagions but also to reduce pollution. Fourth, the
EU's leadership has to extend beyond its borders, undertaking actions to
prevent carbon leakage, and engage in global actions and alliances dis-
seminating experiences and learnings.

Finally, some policies are likely to generate much better economic
and distributive outcomes than others. Energy-socio-economic-envi-
ronmental modelling, which allows evaluating alternative and non-
ordinary scenarios, is crucial to provide information to policy-makers
to make informed decisions. We emphasize the need for consistency
with integrated modelling approaches that consider uncertainty, non-
optimizing behaviours, heterogeneous agents, non-equilibrium out-
comes across sectors, rigidities, institutional frictions, etc. Specifically,
we highlight the need to develop advanced modelling frameworks
that integrate dynamic econometric multiregional models and inter-
sectoral models of the EU economy, and multi-household micro-
simulation models (representative of the population of the EU), as
well as developing national energy systemsmodels oriented to produc-
tion technologies (electricity/fuels). Further research is needed to ex-
plore the possibility of hybridizing integrated models and
methodologies from other fields, like behavioural economics, political
science, and social engineering. In this sense, there are analytical aspects
that will require more outstanding modelling efforts, such as the so-
cial dimension (via S-LCA, agent-based models, diffusion models,
physical models, neural networks, etc.), the adaptation of uncer-
tainty analysis to the most relevant parameters, and aspects related
to sustainability and energy and resource security. In summary, in
order to tackle the significant challenges posed by the energy tran-
sition, applied research requires a multidisciplinary approach with
the participation of energy modellers, data scientists, specialists in
advanced governance and tax innovation, social researchers, philos-
ophers, etc. Many of the techniques and lessons we learn today will
guide future crises.
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Appendix A. Somemultidisciplinarymodels to address the energy transition challenges in the context of post-COVID-19 green recovery funds.
Model/tool
 Features
 Potentialities/Questions
 Publication/Project
ENIO model
 Hybrid between an econometric input-output model
and a computable general equilibrium model.
Integration of rigidities and institutional frictions that
make fiscal policies and investments have a different
impact in the short term and in the long term.
High detail in the energy sectors (and link to bottom-up
ones), and high detail of households and estimates
using and merging (through Statistical Matching)
micro-data from the Household Budget Survey and the
Living Conditions Survey.
The cited features make it highly useful for
linking micro and macroeconomics in terms
of, e.g., distribution questions.
Capable of evaluating the economic impact of
different plans and strategies designed by
the Government of Spain such as the Inte-
grated National Energy and Climate Plan
(PNIEC 2021-2030), the Long-Term
decarbonization Strategy (ELP 2050) or the
“Long-term Strategy” for specific sectors.
Also used by the European Commission to
analyze the economic impact of the Clean Air
Package.
Inspired by Kratena et al. (2013, 2017).
González-Eguino et al. (2020), MITECO (2020a, 2020b,
2020c), Arto et al. (2015, 2019), MITMA (2020).
A similar one in the Basque Country: DERIO (Dynamic
Econometric Regional Input-Output model)
ICASO energy
systems
optimization
model
Thorough technology breakdown of (alternative) fuel
production technologies.
Integration of life-cycle sustainability indicators.
To assist energy decision- and policy-makers
in developing roadmaps focused on prospec-
tive technology production mixes of alterna-
tive fuels for road transport, with time
horizon 2050.
Related to the national project PICASO
(ENE2015-74607-JIN AEI/FEDER/UE)

Navas-Anguita et al. (2020)
DISON* tools
 Supply-Use Tables (SUTs), input-output tables (IOTs),
social accounting matrices (SAMs), input-output &
computable general equilibrium models for energy pol-
icy analysis.
Capable of capturing flexible forms in production and
consumption, with all sectors in the economy, and
detail in specific industries/products such as electricity.
The cited features make it highly useful for
evaluating footprints (notably GHG
emissions), questions on drivers of change
and scenario analysis on the energy
transition, decarbonization, etc. in Spain and
in the world.
Currently questions on electricity
self-production and self-consumption using
disaggregated SUTs are specifically
addressed.
Cazcarro et al. (2014, 2015, 2020), Doumax-Tagliavini
& Sarasa (2018), Duarte et al. (2010, 2017, 2018),
Langarita et al. (2019, 2020), Schumacher et al. (2020)
NERKAD
 Energy assessment tool for urban scenarios that
performs energy and environmental simulations.
Through energy simulation, ENERKAD calculates the
annual and hourly energy demand and consumption at
building, district or city level, allowing the analysis and
comparison of current and future scenarios based on the
application of different strategies.
It has an easy-to-use interface based on QGIS,
facilitating the visualization of the results
obtained, helping to make decisions to
reduce energy consumption and CO2

emissions and promoting sustainability. It is
based on the so-called Building Stock Models
(BSM) and allows calculating on an hourly
basis the energy demand, energy consump-
tion and environmental emissions associated
with such consumption for each building in a
city, using data from the cadastre and basic
cartography. This data is combined with
information such as building envelope
characteristics, consumption patterns and
climate information for the area, among
others, to characterize the model as a whole.
ENERKAD
EAP-OSeMOSYS
 Modelling tool based on an accounting framework
(energy balances) and parametric simulation of energy
flows. Its foundation is based on the idea of scenario
analysis.
LEAP allows the analysis of energy
consumption, production and resource
extraction in all sectors of the economy, as
well as emissions. Its versatility allows
analyses to be carried out on any scale (from
local and regional to national and
supranational). Depending on the
behavioural rules chosen, behaviour based
on sectoral or technological activity can be
introduced, as well as deterministic
relationship rules on how entities
consume/produce energy. Coupling with
OSeMOSYS or NEMO allows for optimization
(cost minimization subject to constraints).
LEAP-OSeMOSYS
IAM_EX
 Sustainability Impact Assessment Model for
Extremadura (SIAM_EX) is an extended (social,
economic and environmental) multiregional
input-output model with detail at regional level from
the EUREGIO Database.
The model allows a complete assessment of
socio-economic impacts by productive
sectors, ranging from the generation of
added value (wages and benefits), to the
identification of wage income generated by
income quintiles or by population density, as
well as to indicators of employment gener-
ated by gender, age, occupation or education
attained.
PEIEC 2030 – Integrated Plan of Energy and Climate for
Extremadura (Spain) 2030
ISA
 Framework for Integrated Sustainability Assessment
(FISA) is based on a combination of a multiregional
The combined framework allows for the
simultaneously capture of the socioeconomic
Rodríguez-Serrano et al. (2017a, 2017b)
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Publication/Project
input-output analysis (MRIO) and a social risk database
entitled “Social Hotspots Database” (SHDB)
and environmental impacts as well as the
social risks involved within the supply chain
of projects.
IMES-Spain
 Energy optimization model of the TIMES family
representing the Spanish energy system.
TIMES (The Integrated MARKAL-EFOM System)
(IEA-ETSAP, 2020) is a generator of optimization
models to estimate long-term and multi-period energy
dynamics developed by the IEA in the frame of the
ETSAP Technology Collaboration Programme.
TIMES optimization models aim to provide
energy services at the lowest cost by
simultaneously making investment and
operating decisions in equipment, primary
energy supply and energy trading. The
investment decisions made by the models
are based on the analysis of the
characteristics of alternative generation
technologies, on the economic analysis of
energy supply, and on environmental
criteria.
The TIMES-Spain energy model has been developed by
CIEMAT within the framework of several European
projects (NEEDS project https://cordis.europa.eu/-
project/id/502687; RES2020 project https://ec.europa.
eu/energy/intelligent/projects/en/projects/res2020
REACCESS project https://cordis.europa.eu/project/-
id/212011)
Information of the model can be found in
García-Gusano (2014) and Labriet et al. (2010)
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