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Abstract: Universal access to electricity is a crucial challenge in many developing countries. Estab-
lishing the electrification agenda of an underserved region is a complicated task where computer
models play a critical role in calculating geospatial plans that efficiently allocate resources. Such
plans should include—among other things—reasonable estimations of the designs and economic
costs of standalone systems, mini-grids, and grid extensions. This implies that computer models need
to estimate the network cost for many potential mini-grids. To that end, most planning tools apply
quick rules of thumb or geometric methods that ignore power flows and electric constraints, which
play a significant role in network designs. This paper presents a methodology that rapidly estimates
any low-voltage mini-grid network cost without neglecting the impact of electrical feasibility in such
cost. We present a case study where we evaluate our method in terms of accuracy and computation
time. We also compare our method with a quick estimation similar to the ones most regional planning
tools apply, showing the effectiveness of our method.

Keywords: energy access; rural electrification; geospatial planning; mini-grid; network design; linear
regression; hierarchical regression

1. Introduction

Around 759 million people do not have access to electricity [1], and significant efforts
are imperative to achieve universal access to energy in 2030 [2]. Moving towards this goal
implies dealing with complex electrification planning where regulatory, financial, political,
and techno-economic factors interact [3]. Even if we only consider the techno-economic
perspective, a robust analysis requires computational tools that help the decision-maker in
the planning process.

Electrification plans involve deciding which areas should be electrified with off-grid
solutions and where grid extensions are the most economical alternative. In addition,
these plans should estimate technical generation designs for off-grid systems and network
layouts for mini-grids and grid extensions, providing an approximated budget for the
material and components included in the designs.

Accurate cost estimations are crucial in planning as they provide a robust foundation
for the elaboration of plans. One essential cost is related to distribution networks of mini-
grids and grid extensions. According to reference [4], the cost of distribution networks,
metering elements and end-user devices of several mini-grids located in sub-Saharan Africa
is 21% of their total cost (on average). Similarly, reference [5] shows that the distribution
costs account for 14% of the total CAPEX (on average) for 53 mini-grids in developing
countries.

Several large-scale electrification planning models have been developed over the
past few years [6], and they can be classified according to their modeling complexity [7].
A high modeling complexity generally involves substantial data and long computation
times to calculate the recommended plan, but it leads to precise cost estimations and
detailed designs.
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Some models take advantage of Geographical Information Systems (GIS), providing
instant access to geospatial data. They generally divide the consumers into cells and
estimate the levelized cost of electricity (LCOE) of several alternatives to determine the
recommended electrification solution of each cell. The models in this category usually esti-
mate the network costs with analytical expressions or simple rules of thumb, providing fast
solutions at the expense of reduced modeling detail. The Open Source Spatial Electrification
Tool (OnSSET) [8,9] and IntiGIS [10,11] are representative models of this methodology.

Other planning models operate with villages or settlements, and calculate the net-
work layout of the grid extension with methods based on geometrical features. Network
Planner [12] works with villages, and applies an iterative approach based on the Kruskal
algorithm to calculate the network layout of the villages electrified with grid extensions.
GEOSIM also works with villages, clustering them among Development Poles (i.e., villages
that are considered particularly important according to several criteria) [13,14]. However,
these models also apply simplified methods to estimate the network cost of mini-grids.

The Reference Electrification Model (REM) operates with a very high level of modeling
detail. REM works with individual consumers instead of villages or cells, and calculates
detailed network designs that go down to the building level for grid extensions and
mini-grids [15]. The model also obtains precise generation designs for mini-grids and
standalone systems [16]. The optimization procedure that REM applies to obtain the
network layouts considers the usual electric constraints and power flows (among other
factors), but its iterative application to all the potential mini-grids and grid-extensions in
large-scale planning is computationally expensive.

Other methods and tools calculate network designs for a single off-grid system. Village
Power Optimization model for Renewables (ViPOR) calculates the network of a mini-grid
applying a simulated annealing algorithm [17]. Reference [18] presents a method that
calculates the network layout of a mini-grid in the context of rural electrification. However,
the scope of these methods is limited, and it is unclear if they could be directly applied at a
large scale—where the network cost of potentially thousands of mini-grids is calculated to
elaborate an electrification plan.

Therefore, the current methods that estimate the network costs of mini-grids in the
literature are oversimplified (which is the case of most regional planning tools), require a
significant amount of computation time (which is the case of REM), or it is unclear if they
could be applied in large-scale planning (which is the case of ViPOR and the remaining
village-based tools for network designs).

As network costs play a significant role in electrification plans, it is worthwhile to
develop a method that overcomes the limitations mentioned above by balancing accurate
network cost estimations with quick calculations. The regional planning tools that apply
oversimplified network cost estimations could greatly benefit from this method as their
results would include realistic network costs, and REM could take advantage of this method
to alleviate the computational burden related to high-level resolution planning.

This paper presents a methodology to estimate distribution network costs for mini-
grids in large-scale planning. The method goes beyond the rules of thumb that most
regional planning models apply. However, it avoids the computational burden of explicitly
calculating the detailed layout of the network considering electric constraints and power
flows (such as REM does). Instead, the method obtains a set of representative mini-grids
and calculates detailed network designs for them alone. Then, it uses this information to
estimate the cost of other designs rapidly and accurately.

The rest of this paper is structured as follows: Section 2 describes the relevant metrics
regarding the network cost of mini-grids, and Section 3 presents the network cost estimation
method. Section 4 introduces a case study, and the results of our method are compared
with an estimation aligned with the methods of regional planning tools. Finally, Section 5
includes the conclusions as well as suggestions for future research.
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2. Mini-Grid Metrics

This section describes the metrics that our method considers as potential drivers of
the network cost. The metrics capture the electric and geometric properties that we expect
to represent the network cost of a mini-grid. The method we present does not necessarily
use all the metrics described in this section, but it selects the ones that are better estimators
of the network cost for each case study.

Our method considers electric moments, which depend on the spatial distribution of
consumers and their demands. It also considers spatial metrics relatively fast to calculate,
such as the length of the minimum spanning tree (MST) that links all the consumers and the
generation site in a mini-grid. Similar approaches are present in other fields in the literature.
Moments have been successfully used for pattern recognition in diverse areas, such as
image recognition [19,20], but they have also proven to be useful in power systems [19].

If several mini-grids are very similar in terms of consumers and demand, they could
have similar network costs. Figure 1 provides an illustrative example, showing the dis-
tribution network of several mini-grids, which have been labeled 1, 25, and 82 in the
example. Mini-grids 1 and 25 are equal in terms of the number of consumers, with thirteen
consumers each. These mini-grids also have equal aggregated demands (we assume that
the load profile of each consumer is proportional to its size in Figure 1, and therefore all the
consumers have the same load profile in both mini-grids). Finally, the spatial distribution
of consumers in mini-grids 1 and 25 is very similar (if we overlap the graphical representa-
tion of both networks, then consumer 1 would be very close to consumer 1’, consumer 2
would be very close to consumer 2’, and so on). Therefore, all these similarities (number of
consumers, aggregated demands, and spatial distribution) imply that mini-grids 1 and 25
could have similar network costs.

Energies 2021, 14, x FOR PEER REVIEW 3 of 22 
 

 

compared with an estimation aligned with the methods of regional planning tools. Finally, 

Section 5 includes the conclusions as well as suggestions for future research. 

2. Mini-Grid Metrics 

This section describes the metrics that our method considers as potential drivers of 

the network cost. The metrics capture the electric and geometric properties that we expect 

to represent the network cost of a mini-grid. The method we present does not necessarily 

use all the metrics described in this section, but it selects the ones that are better estimators 

of the network cost for each case study. 

Our method considers electric moments, which depend on the spatial distribution of 

consumers and their demands. It also considers spatial metrics relatively fast to calculate, 

such as the length of the minimum spanning tree (MST) that links all the consumers and 

the generation site in a mini-grid. Similar approaches are present in other fields in the 

literature. Moments have been successfully used for pattern recognition in diverse areas, 

such as image recognition [19,20], but they have also proven to be useful in power systems 

[19]. 

If several mini-grids are very similar in terms of consumers and demand, they could 

have similar network costs. Figure 1 provides an illustrative example, showing the distri-

bution network of several mini-grids, which have been labeled 1, 25, and 82 in the exam-

ple. Mini-grids 1 and 25 are equal in terms of the number of consumers, with thirteen 

consumers each. These mini-grids also have equal aggregated demands (we assume that 

the load profile of each consumer is proportional to its size in Figure 1, and therefore all 

the consumers have the same load profile in both mini-grids). Finally, the spatial distri-

bution of consumers in mini-grids 1 and 25 is very similar (if we overlap the graphical 

representation of both networks, then consumer 1 would be very close to consumer 1’, 

consumer 2 would be very close to consumer 2’, and so on). Therefore, all these similarities 

(number of consumers, aggregated demands, and spatial distribution) imply that mini-

grids 1 and 25 could have similar network costs. 

On the contrary, mini-grid 82 is different from mini-grids 1 and 25. Mini-grid 82 has 

only eight consumers, and they are less scattered around its generation site than the con-

sumers of mini-grids 1 and 25. Consequently, it seems that mini-grid 82 has lower network 

costs than networks 1 and 25, but mini-grid 82 has a productive consumer with a large 

demand (consumer 6”). This productive consumer may significantly increase the overall 

network cost of mini-grid 82, which could end up being similar to the network cost of 

mini-grids 1 and 25. 

 

Figure 1. Example with similar mini-grids. The black dots in the network layouts represent the con-

sumers. The green triangles represent the generation sites, and the green lines represent the low-

voltage (LV) distribution network. 

There is a clear correlation between several metrics of a mini-grid and its network 

cost. If we compare two mini-grids that are identical in every aspect but demand, then the 

Figure 1. Example with similar mini-grids. The black dots in the network layouts represent the
consumers. The green triangles represent the generation sites, and the green lines represent the
low-voltage (LV) distribution network.

On the contrary, mini-grid 82 is different from mini-grids 1 and 25. Mini-grid 82
has only eight consumers, and they are less scattered around its generation site than the
consumers of mini-grids 1 and 25. Consequently, it seems that mini-grid 82 has lower
network costs than networks 1 and 25, but mini-grid 82 has a productive consumer with
a large demand (consumer 6”). This productive consumer may significantly increase the
overall network cost of mini-grid 82, which could end up being similar to the network cost
of mini-grids 1 and 25.

There is a clear correlation between several metrics of a mini-grid and its network cost.
If we compare two mini-grids that are identical in every aspect but demand, then the one
with the greater demand is expected to have a higher network cost. Similarly, if we account
for the network cost of two mini-grids that only differ in the location of their consumers,
then the one with more dispersed consumers is expected to be more expensive. Size and
demand are, therefore, two important cost drivers that our method considers.
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However, the network cost of a mini-grid does not change if we move all its consumers
a certain distance or if we rotate them around a certain point. The following properties
formalize these intuitive ideas about the metrics:

Cost-monotonicity: when the metric increases its value, the network cost also increases
or stays at the same level.

Translation-invariance: the network cost of a mini-grid does not change if all the
consumers of that mini-grid are translated a specific distance in the same direction.

Rotation-invariance: the network cost of a mini-grid does not change if all its con-
sumers are rotated a specific angle around the same point.

Scale-monotonicity: If we scale a mini-grid so that its consumers are more dispersed,
network cost will increase so the values of the metrics should also increase.

Table 1 presents the metrics, which are described in Sections 2.1–2.3.

Table 1. Mini-grid metrics.

Type Variable

Electric
Electric moments (central)
Electric moments (rotation)

Aggregated and peak demand

Spatial Minimum-spanning-tree length
Minimal area rectangle (min{width, height}, area, perimeter)

Other Number of consumers

The metrics selected are fundamental as the results of our method depend on them.
The remainder of this section provides some insights regarding why we have selected the
metrics presented in Table 1.

The MST length is a crucial driver of the network cost of mini-grids as the MST
attempts to obtain a least-cost design under purely geometrical considerations. Many
regional planning tools estimate network cost by applying methods that rely on calculating
an MST [7]. For example, Network Planner uses an iterative method based on an MST
to determine which villages are electrified with the power grid and the layout of the
corresponding grid extension [12]. Similarly, reference [20] uses a technique that aims at
optimizing the topology of the power grid, and this technique starts by calculating the
MST of a set of clusters.

Although the MST length provides vital information regarding the network costs, it
lacks information regarding the size of the mini-grid. In that regard, we included several
metrics of the Minimal Area Rectangle (MAR) to capture information concerning the area
covered by the mini-grid.

Regarding the electric metrics, it is clear that demand plays a crucial role in elec-
trification planning [15] and mini-grid design [21]. High demand levels lead to high
distribution network costs and vice versa, so we included the aggregated and the peak
demand of mini-grids in the list of metrics considered to capture the impact of demand on
network costs.

Electric moments have been widely used as a dimensionality reduction tool in sev-
eral fields of power systems, such as transmission expansion planning [19,22] and rural
electrification [23]. Central moments are included because they capture a combination
of the spatial location and the peak demands of the consumers of a mini-grid, which is
an important piece of information regarding network costs. However, central moments
change when mini-grids are rotated around a point (i.e., they are not rotation invariant), so
we included the rotation moments too because they satisfy this property.

Finally, the number of consumers of a mini-grid is used as a quick approximation of
the network cost in several applications. For example, Network Planner estimates low-
voltage distribution costs multiplying the total number of consumers minus one by other
parameters [24]. Moreover, some regional plans that calculate the cost of densification by
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grid extension assume that the network needed is directly proportional to the number of
consumers [25]. Therefore, we included the number of consumers in the metrics that our
method considers.

2.1. Electric Metrics

In this section, we briefly introduce the electric metrics that our method considers.
These metrics include the electric central moments, the electric rotation moments, and the
demand-related metrics.

2.1.1. Electric Moments (Central)

The (p, q) central electric moment is defined by Equation (1):

µp,q =
x

(x− x)p(y− y)q f (x, y)dxdy (1)

where the integral limits are given by the boundaries of the mini-grid and f (x, y) is the
peak demand of the consumer (x, y). In practice, we have a discrete number of consumers
c so the integral becomes a summation when computing the moments.

µp,q =
i=c

∑
i=1

(xi − x)p(yi − y)q f (xi, yi) (2)

The (n + 1) moments of order n are given by the solutions of the equation n = p + q,
being p, q nonnegative integers. The moments of odd order decrease when a consumer with
negative coordinates (−x,−y) is included in a mini-grid. This causes undesired effects
since there is no difference in the final network cost between adding a consumer with
coordinates (x, y) or (−x,−y) to a symmetric (with respect to the origin of coordinates)
mini-grid. Therefore, all moments of odd order and moments of even order where variables
have an odd exponent do not satisfy the cost-monotonicity property, and we do not consider
them useful predictor variables.

Hence, we include only the central moments of even orders where all the variables
have even exponents. In practical terms, it is enough to include central moments of orders
2, 4, and 6. The inclusion of additional central moments does not tend to improve the
accuracy of the models and generally produces collinearity among the variables.

References [26,27] show that the central moments are invariant to translation. If a
mini-grid is scaled, then the distances between its consumers and the centroid of the
mini-grid increase and the central moments included increase too, so the central moments
included meet the scale-monotonicity property. Similarly, if one of the central moments
included increases, then the demand rises or the distances between its consumers and
its centroids increases, so the network cost should rise. Therefore, the central moments
included meet all the properties described in this section except rotation invariance. The
electric rotation moments are included to compensate for that.

2.1.2. Electric Moments (Rotation)

Reference [26] introduces the rotation moments for image recognition, and they are
translation and rotation invariant.

I1 = µ2,0 + µ0,2 (3)

I2 = (µ2,0 − µ0,2)
2 + 4µ2

1,1 (4)

I3 = (µ3,0 − 3µ1,2)
2 + (3µ2,1 − µ0,3)

2 (5)

I4 = (µ3,0 + µ1,2)
2 + (µ2,1 + µ0,3)

2 (6)

I5 = (µ3,0 − 3µ1,2)(µ3,0 + µ1,2)[(µ3,0 + µ1,2)
2 − 3(µ2,1 + µ0,3)

2] + (3µ2,1

− µ0,3)(µ2,1 + µ0,3)[3(µ3,0 + µ1,2)
2 − (µ2,1 + µ0,3)

2]
(7)



Energies 2021, 14, 7382 6 of 21

I6 = (µ2,0 − µ0,2)[(µ3,0 + µ1,2)
2 − (µ2,1 + µ0,3)

2] + 4µ1,1(µ3,0 + µ1,2)(µ2,1 + µ0,3) (8)

I7 = (3µ1,2 − µ3,0)(µ3,0 + µ1,2)[(µ3,0 + µ1,2)
2 − 3(µ2,1 + µ0,3)

2]

+ (µ0,3 − 3µ2,1)(µ2,1 + µ0,3)[3(µ3,0 + µ1,2)
2

− (µ2,1 + µ0,3)
2]

(9)

Reference [28] highlights that these moments are do not form a complete or indepen-
dent basis and adds another third-order rotation moment:

I8 = µ1,1[(µ3,0 + µ1,2)
2 − (µ0,3 + µ2,1)

2]− (µ2,0 − µ0,2)(µ3,0 + µ1,2)(µ0,3 + µ2,1) (10)

Since I1 is a linear combination of electric central moments of order two we will not
consider it as a candidate variable, and we will include the remaining rotation moments
I2 − I8.

2.1.3. Demand

Although the peak demands of individual consumers are already considered in the
calculation of electric moments, the aggregated and peak demands of a mini-grid may
provide valuable information, and they are included in the metrics considered. The
demand-related metrics included meet all the properties described in this section.

2.2. Spatial Metrics

In this section, we briefly describe the spatial metrics that our method considers. These
metrics include the MST length and several metrics related to the MAR.

2.2.1. Length of the MST

The length of the MST linking all consumers is calculated with the consumers of
the mini-grid and the generation site located at the demand-weighted center of the mini-
grid, which is an appropriate placement for the generation site (for example, REM always
locates the generation site at this spot). This metric meets all the properties described in
this section.

2.2.2. Minimal Area Rectangle

The MAR refers to the rectangle of minimum area that contains all the consumers of
the mini-grid. The main geometric attributes of the minimum rectangle of a set of points
(consumers) are rotation-invariant, translation-invariant, and scale-variant, meeting all
the desirable properties we identified beforehand. Besides, any increase in these metrics
should lead to a more substantial network cost. Figure 2 shows an example with several
points and their corresponding MAR.

MAR is sensitive to extreme values. The example provided in Figure 2 has one extreme
value with coordinates (50, 150) that significantly increases the area and perimeter values.
Since the perimeter depends linearly on the width and the height of the rectangle, the
metrics considered include area, perimeter, and the minimum between its height and width.
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2.3. Other Metrics

This section describes additional metrics that are useful to consider. For the time being,
the only metric that belongs to this section is the number of consumers of the mini-grids.

2.3.1. Number of Consumers

We included several metrics that measure the “size” of a mini-grid (such as the length
of the MST or the aggregated demand). The number of consumers of a mini-grid is an
additional metric correlated to its size, and it is also considered. This metric meets all the
properties described in this section.

3. Method

This section describes the method this paper proposes to estimate the network cost of
mini-grids accurately and quickly. We should highlight that the method has two constraints
or limitations. The first one is related to the voltage levels used in the distribution network:
our method assumes that all mini-grids deploy an LV distribution network, which is
consistent with the usual planning results. The second one is related to topography: our
method also assumes that the topographical features of the terrain are not critical in the
cost of the distribution network (i.e., for the time being, our method does not explicitly
consider the impact of topography on the network cost).

Figure 3 shows a flow chart of the method, which follows three sequential steps.
The first step is network assignment, which calculates the number of linear regression
models needed and assigns the mini-grids to the models (a data point represents each
one). The second step is clustering, which applies a k-medoids algorithm to obtain a set of
representative mini-grids for each linear regression model. The final step is the calibration of
linear models, which calculates detailed network designs for the representative mini-grids,
and determines the metrics and coefficients of the linear regression models.
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Regression methods have already been used in the context of large-scale electrification
planning to obtain accurate cost estimations within a reasonable computation time. Refer-
ence [29] uses a multivariate regression model to estimate the generation cost of mini-grids,
showing that the cost error between using their method and a quick approximation on
a rule of thumb is more than 10% on average for certain types of mini-grids. Similarly,
reference [30] applies regression methods to calculate the generation cost of mini-grids as
well as their installed capacities.

The application of these two regression methods follows a sequential process similar
to the one shown in Figure 3: a set of representative mini-grids is obtained (which our
method does in the clustering step), and accurate designs are calculated for these mini-grids.
Then, a model is adjusted so that the costs of the remaining mini-grids can be quickly
obtained without optimizing the corresponding designs from scratch (which our method
does in the calibration of linear models step).

However, our method includes an additional step at the beginning that is missing
in references [29,30], which is the network assignment and it distributes the mini-grids to
the models. This step is necessary because our method uses several linear regression
models instead of a single one. One advantage of using several linear models to estimate
the network cost of the mini-grids is that our method can select different metrics and
coefficients for each linear model.

For example, a linear model with small mini-grids that supply only residential con-
sumers could consider only the length of the MST of the mini-grids to estimate their
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network cost accurately. However, another linear model that estimates the network cost
of large mini-grids that include productive loads could also include several electric met-
rics to capture the impact of productive loads and provide accurate estimations of the
network costs.

Even if the metrics of several linear models are the same, their coefficients will be
different, and the cost estimation will be better than the one obtained with a single linear
model. The rest of this section describes our method in detail.

3.1. Network Assignment: Determination of the Number of Models to Fit and Their
Correspondence with Particular Mini-Grids

The network assignment step determines the number of linear regression models to use,
and it distributes all mini-grids of the case study among the models. The use of several
linear regression models and the classification of the whole analysis dataset among them
(i.e., piecewise linear regression) has been applied to capture trends in multiple fields in the
literature, such as suicide rates [31,32], cancer mortality rates [33,34], population structural
changes [35], and the impact of traffic policies [36].

However, the main goal of network assignment is to avoid assigning mini-grids whose
network costs have different orders of magnitude to the same model. Therefore, we
developed a tailored method to distribute the mini-grids among the linear models. In our
method, two mini-grids are assigned to the same linear model if and only if their network
costs are of the same order of magnitude. One way of achieving this is to ensure that the
quotient between the lengths of the MSTs of any pair of mini-grids that belong to the same
model is lower than or equal to a threshold Q. Equation (11) forces this constraint for each
model n ∈ {1, 2, . . . , N}:

max(length(MSTn))

min(length(MSTn))
≤ Q (11)

where MSTn refers to the MSTs of the networks assigned to the n− th model. The total
number of models N depends on each case and must be calculated. Let u and U be the
minimum and maximum lengths of all the MSTs (in km), respectively. We consider the
sequence: {

u, Q·u, Q2·u, . . . , QN−1·u, QN ·u
}

(12)

It is clear that the quotient between any pair of consecutive terms in the sequence is
equal to Q, so N linear models are necessary and sufficient. —if Equation (13) holds and
N is the minimum natural number that satisfies Equation (13), then we have u < Q·u <
Q2·u < . . . < QN−1·u < U ≤ QN ·u and we could group the mini-grids in N linear models
whose MST lengths lie in the ranges [u, Q·u),

[
Q·u, Q2·u

)
, . . . ,

[
QN−1·u, QN ·u

]
. Similarly,

if Equation (13) does not hold we would need at least N + 1 linear models to group all the
mini-grids ensuring that Equation (11) is satisfied—as long as N is the minimum natural
number that satisfies Equation (13):

U ≤ QN ·u (13)

Dividing both sides by u and taking logarithms yields:

logQ(U/u) = logQ(U)− logQ(u) ≤ N (14)

So Equation (15) provides the minimum number of linear models needed in terms of
U, u and Q.

N = logQ(U)− logQ(u) (15)

where dxe is the lowest integer that is greater than or equal to x. However, Equation (15)
implies that the number of models tends to infinity if u tends to zero, so Equation (15)
is only applied if u ≥ 1/Q to avoid potential issue. Otherwise, the number of models is
determined considering that a linear model could cover the range of MST lengths [u, 1],
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and N− 1 models could cover the range [1, U]. Equation (15) is applied to the range [1, U]
to determine N − 1, which yields:

N = logQ(U)− logQ(1) + 1 = logQ(U) + 1 (16)

Equation (16) is also valid if 1/Q < U ≤ 1 because in that case only one model is
needed to cover the range [u, U] ⊂ [u, 1], and

⌈
logQ(U)

⌉
= 0 so N is set to the correct

value. If U ≤ 1/Q, then N is directly set to 1. Equation (17) comprises all the expressions
used to calculate N in terms of U, u and Q.

N =


⌈
logQ(U)− logQ(u)

⌉
i f U > u ≥ 1/Q⌈

logQ(U)
⌉
+ 1 i f U > 1/Q > u

1 i f 1/Q ≥ U > u
(17)

Once the number of models has been determined, the mini-grids are distributed
among the linear models. This process initializes each model with the same number of
mini-grids. It calculates the quotients between the maximum and minimum lengths of
MSTs for each model and, for those models that do not satisfy Equation (11), it reassigns
mini-grids from the closest models (if they meet Equation (11)) to reduce their quotient.
This process goes on iteratively until Equation (11) holds for each model (the first model
may not be forced to satisfy this equation if u < 1/Q < U). Figure 4 shows a stylized flow
diagram of the network assignment.
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The threshold Q is set to ten in the case study [37], although other values are possible
because Equation (11) implicitly assumes that there is a perfect linear correlation between
the MST and the network cost, which is not true (although the correlation is usually
very high). Setting Q to a value slightly lower than ten could mitigate the impact of this
assumption because the maximum cost difference among the mini-grids that belong to the
same linear model would be reduced.
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3.2. Clustering (K-Medoids)

Once the algorithm has assigned the mini-grids to linear models, the clustering step
obtains a representative set of mini-grids for each linear model. Detailed network designs
are calculated later for representative mini-grids, so the clustering outcome should be real
mini-grids that exist in the case study. To that end, the clustering step applies a k-medoids
algorithm, which also turns out to be more robust to outliers than other methods such as
k-means [38].

There are several implementations of the k-medoids algorithm in the literature. The
Partitioning Around Medoids (PAM) calculates an initial solution, and then performs all
possible swaps among medoids and non-medoids to improve the solution [39]. The main
drawback of PAM is that it is a computationally-intensive process that does not perform
well when dealing with large datasets. Clustering for LARge Applications (CLARA) tries
to overcome this drawback by applying PAM only on a reduced sample of the original
dataset, trading optimality for computation speed. The Clustering LARge Applications
based on RANdomized Search (CLARANS) also samples only a part of the original dataset,
but the sample is not selected beforehand [40].

Our method applies the Matlab build-in function to perform the k-medoids algo-
rithm [41], which uses the PAM algorithm if input points are lower than 3000. If the input
points are between 3000 and 10,000, then it applies a method based on reference [42]. If the
number of input points is larger than 10,000, then it evaluates a subset of the data following
a procedure similar to CLARANS.

K-medoids is applied several times with an increasing number of clusters, and the
sums of point-to-medoid distances are computed. The process stops when the marginal
gain of increasing the number of clusters drops below a pre-established threshold [43].

The clustering step always considers the length of the MST (a representative spatial
metric) and the aggregated demand (a representative electric metric) to determine the
representative mini-grids. These two metrics are scaled since they are measured with
different units. The length of the MST is scaled with the average cost of the LV lines of the
catalog, which is a reasonable estimation of how much the network cost would increase for
a given increment of the MST length. The aggregated demand is scaled by an estimation
of the network cost per kWh in the analysis region, which could be obtained by expert
advice or looking at previous reports or publications that deal with electrification planning
projects in the corresponding region.

3.3. Calibration of Linear Models

This step calculates accurate network designs for the representative mini-grids, which
are calculated using the Reference Network Model (RNM) [44]. RNM designs distribution
networks considering power flows to ensure the feasibility of the networks. This model
operates with a network catalog that includes several line capacities for each voltage level
and several transformer sizes, and it can handle topographical elements such as altitudes
and penalized areas.

RNM was initially designed to help the regulator estimate distribution network
cost and establish a fair remuneration for the operation, maintenance and expansion of
the distribution network in developed regions. REM applies RNM to calculate accurate
network designs for mini-grid and grid extensions, showing that RNM can be used in the
context of rural electrification (such as we do in this paper). Reference [45] gives further
details on the interaction between REM and RNM.

Once our method has calculated accurate distribution networks for the representative
mini-grids, the “Calibration of linear models” step determines the most representative
metrics for each model and their coefficients applying hierarchical regression [46]. This
technique has been successfully applied in many fields [47,48].

Hierarchical regression starts with an initial linear model and adds blocks of variables
sequentially. The process continues until the addition of variables does not improve the
model, or there are no more variables to add. The hierarchical levels determine the order
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followed to include variables in the model: the first hierarchical level corresponds to the
initial linear model, the second level contains the first block of variables added to the model,
and so on.

The expertise of the analyst plays a critical role in hierarchical regression, as he or
she needs to determine which variables are assigned to each hierarchical level. The most
relevant variables should be included in the initial levels, and the less important ones
should be incorporated in later stages.

We also considered applying stepwise regression, which is a similar procedure that
starts with an initial linear model, and variables are introduced or removed sequentially.
In stepwise regression, the sequential order of variables is determined by their statistical
significance (i.e., the computer determines the order by calculating p-values).

Results are hard to replicate with stepwise regression, as small variations in the dataset
could lead to different regression models [49]. This would be a significant issue since we
are obtaining our representative networks with a k-medoids algorithm (whose outcome
may depend on the initial solution).

Table 2 shows the variables included in each hierarchical level (a hierarchical level
also includes all the variables of the previous levels). The initial level also includes a
constant term.

Table 2. Models used in the hierarchical regression.

Hierarchical Level Variables Added

1 Length of the MST
2 Number of consumers
3 Central moments of order 2
4 Central moments of order 4
5 Central moments of order 6
6 Minimum area rectangle metrics
7 Demand
8 Rotation moments

We consider the MST length the most relevant variable, followed by the number of
consumers and its central moments grouped by their order. This way, levels 1–5 include
the spatial, electric, and “other” metrics that we consider paramount. Levels 6–8 include
the remaining metrics.

To avoid collinearity, our method applies the Belsley collinearity test [50] and removes
the collinear variables from their corresponding hierarchical level. We also compute the
p-values to check at which point it is not worth adding more variables to the model.

4. Case Study

This section presents an application to a case study located in Rwanda, comparing
the exact network cost of mini-grids with the approximation that our method provides.
The location of the consumers and their demand profiles are based on the case presented
in [51]. The location of residential consumers was obtained by combining information
from the HRSL [52], a report from SOFRECO [53], and the expected population growth for
2024 [54]. Energy Development Corporation Limited (EDCL) provided the location of the
productive loads.

The shape of the hourly demand profile of the loads was estimated according to
in-the-field surveys conducted in the village of Gicumbi [55,56]. The peak demands of the
residential consumers are based on the high-demand case shown in [15], whereas the peak
demands of the remaining loads are based on [51].

The network catalog is based on the experience of the Universal Access Laboratory,
which is based on their participation in several projects combined with field trips and
conducted interviews.

Rwanda has a total surface of 26,340 km2 [57] (see Figure 5) and a population density
of 525 people per km2 of land area, being one of the countries with the highest population
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density in Sub-Saharan Africa [58]. The case study has 1,598,842 unelectrified consumers,
and we use REM to group them into potential, realistic mini-grids. REM applies a cluster-
ing algorithm that groups the consumers into candidate mini-grids and grid extensions
following a two-steps logic. In the first step (off-grid clustering), the model assumes that
all consumers are electrified with off-grid alternatives and grid extensions are not consid-
ered. This first step is the one we use to group the consumers into potential mini-grids.
Reference [15] provides a thorough description of REM’s clustering.
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REM may only consider off-grid clusters of a specific size (i.e., with a minimum
number of consumers or demand) when it determines the consumers to be electrified with
mini-grids. In our analysis, we exclude off-grid clusters with less than five consumers
as potential mini-grids. The off-grid clusters with less than five consumers account for
0.71% of the total number of consumers. The remaining off-grid clusters account for
24,381 candidate mini-grids.

The location of the consumers and the candidate mini-grid sizes are shown in Figure 5.
Rwanda’s high density of consumers leads to considerably large candidate mini-grids,
with an average size of 65.11 consumers. Many candidate mini-grids (97.73%) have at most
200 consumers, and the biggest candidate mini-grid has 647 consumers.

As a general trend shown in Figure 5, the number of candidate mini-grids of a certain
number of consumers tends to decrease as the number of consumers increases (i.e., mini-
grids with a large number of consumers are less frequent than mini-grids with a low number
of consumers). For example, there are 713 candidate mini-grids with five consumers,
whereas there are 128 candidate mini-grids with 100 consumers and only 14 candidate
mini-grids with 200 consumers.

Our method groups the mini-grids into three linear models, and the shortest and the
largest MST lengths are 34.93 m and 13.64 km, respectively. Figure 6 shows the mini-grids
that our method assigns to the linear models.

In iteration 0 (see Figure 6), our method assigns the same number of mini-grids to the
first, the second, and the third linear model. The quotients between the maximum MST
length and the minimum MST length of the first, second, and third models are 39.99, 2.03,
and 4.81, respectively. Therefore, the first model does not satisfy Equation (11). Since the
maximum MST length of the first model is higher than 1 km, our method performs an
additional iteration (iteration 1) to ensure that the first model satisfies Equation (11) or has
a maximum MST length lower than 1 km.

After iteration 1, the first model has a maximum MST lower than 1 km (see Table 3),
and the remaining models satisfy Equation (11), so the network assignment procedure
ends. Table 3 shows the number of mini-grids that are assigned to each model and the MST
lengths that determine whether a mini-grid is assigned to a model.
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Table 3. Mini-grids assigned to each model.

Model Condition for Assignation (m) Number of Mini-Grids

First length(MST) < 999.8 5892
Second 999.8 ≤ length(MST) ≤ 2833.7 10,362
Third 2833.7 < length(MST) 8127

For each model, the procedure selects a few representative mini-grids. The number
of mini-grids is determined imposing that the marginal gain of having more mini-grids
drops below 10%, and the candidate number of mini-grids considered are 25, 31, 40, 50, 63,
79, 100, 126, 159, and 200 (10 points logarithmically spaced between 25 and 200). We scale
the MST length with a factor of 10,132.3 $/km and the aggregated demand with a factor
of 0.4 $/kWh. Figure 7 shows the number of representative mini-grids (clusters) for each
model.

The within-clusters sums of distances shown in Figure 7 for the second linear model
are one order of magnitude higher than the within-clusters sums of distances of the first
linear model. Similarly, the within-clusters sums of distances of the third linear model are
one order of magnitude higher than the within-clusters sums of distances for the second
linear model. This is very reasonable as the goal of the network assignment step is to assign
mini-grids whose network costs have different magnitudes to different linear models.

The marginal gain of the within-clusters sum of distances related to having more
mini-grids is more than 20% in the initial iteration (when the number of representative
mini-grids goes from 25 to 31) for the three linear models shown in Figure 7. The marginal
gain drops below 10% in the fifth iteration (when the number of representative mini-grids
increases from 50 to 63) for all the linear models. The within-clusters sums of distances of
the selected number of representative clusters (i.e., 63 for all the linear models) are less than
half the within-clusters sum of distances of the initial number of representative mini-grids
tested (25 mini-grids).

The method adjusts three linear models calculating the network costs of the represen-
tative mini-grids and using hierarchical regression. We consider that it is not worth adding
more variables into the model when the marginal gain of the adjusted R2 is less than 10%,
which corresponds to the third hierarchical model in all cases (see Figure 8).



Energies 2021, 14, 7382 15 of 21Energies 2021, 14, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 7. Number of clusters selection. Our method selects 63 clusters for the first, second, and third 

models. 

The within-clusters sums of distances shown in Figure 7 for the second linear model 

are one order of magnitude higher than the within-clusters sums of distances of the first 

linear model. Similarly, the within-clusters sums of distances of the third linear model are 

one order of magnitude higher than the within-clusters sums of distances for the second 

linear model. This is very reasonable as the goal of the network assignment step is to as-

sign mini-grids whose network costs have different magnitudes to different linear models. 

The marginal gain of the within-clusters sum of distances related to having more 

mini-grids is more than 20% in the initial iteration (when the number of representative 

mini-grids goes from 25 to 31) for the three linear models shown in Figure 7. The marginal 

gain drops below 10% in the fifth iteration (when the number of representative mini-grids 

increases from 50 to 63) for all the linear models. The within-clusters sums of distances of 

the selected number of representative clusters (i.e., 63 for all the linear models) are less 

than half the within-clusters sum of distances of the initial number of representative mini-

grids tested (25 mini-grids). 

The method adjusts three linear models calculating the network costs of the repre-

sentative mini-grids and using hierarchical regression. We consider that it is not worth 

adding more variables into the model when the marginal gain of the adjusted 𝑅2 is less 

than 10%, which corresponds to the third hierarchical model in all cases (see Figure 8).  

Figure 7. Number of clusters selection. Our method selects 63 clusters for the first, second, and third
models.

Energies 2021, 14, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 8. Adjusted 𝑅2 for each hierarchical level. 

Although the three linear models have the same explanatory variables (length of the 

MST, number of consumers, and central moments of order two), it is still advantageous to 

have different linear models as the coefficients are different. 

We compare the exact and approximated network cost of the 24,381 candidate mini-

grids to obtain the relative linear error (defined as the absolute value of the quotient be-

tween the difference of costs and the real cost) that we incur with the model. Figure 9 

provides the corresponding results. 

We also compare our method with a linear model that only considers the MST length 

(plus a constant term) to estimate the network cost. In this case, we directly force the 

model to use 200 representative networks instead of using the marginal gain procedure 

described in Section 3.2. Most regional planning tools apply techniques based on the cal-

culation of an MST to calculate the network costs. 

Figure 10 shows the linear error (p.u.) obtained for the 24,381 networks with both 

procedures. The naïve estimation provides a linear relative error lower than 20% for 

56.36% of the networks, whereas our method obtains a linear relative error lower than 

20% for 96.73% of the networks. 

Figure 8. Adjusted R2 for each hierarchical level.

Although the three linear models have the same explanatory variables (length of the
MST, number of consumers, and central moments of order two), it is still advantageous to
have different linear models as the coefficients are different.
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We compare the exact and approximated network cost of the 24,381 candidate mini-
grids to obtain the relative linear error (defined as the absolute value of the quotient
between the difference of costs and the real cost) that we incur with the model. Figure 9
provides the corresponding results.
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We also compare our method with a linear model that only considers the MST length
(plus a constant term) to estimate the network cost. In this case, we directly force the model
to use 200 representative networks instead of using the marginal gain procedure described
in Section 3.2. Most regional planning tools apply techniques based on the calculation of
an MST to calculate the network costs.

Figure 10 shows the linear error (p.u.) obtained for the 24,381 networks with both
procedures. The naïve estimation provides a linear relative error lower than 20% for 56.36%
of the networks, whereas our method obtains a linear relative error lower than 20% for
96.73% of the networks.

Figure 11 shows the linear absolute error obtained with both procedures (defined as
the absolute value of the difference of costs). Our method obtains a linear absolute error
lower than 100 $/yr for 83.57% of the networks, and the more straightforward procedure
obtains the same error for only 57.73% of the networks. However, the difference between
our method and the straightforward procedure is reduced as the annual cost threshold used
for the comparison increases. For example, our method provides an absolute error lower
than 300 $/yr for 99.21% of the mini-grids with our method, whereas the straightforward
procedure obtains the same error for 91.28% mini-grids. Similarly, the absolute error is
lower than 500 $/yr for 99.94% of the mini-grids with our method and 97.96% of the mini-
grids with the straightforward method. We can conclude that the MST is a decent initial
approximation of the network cost of mini-grids, but it should be noted that relatively low
absolute errors may correspond to high relative errors and the straightforward procedure
provides a linear relative error higher than 100% (i.e., an error well beyond a reasonable
threshold) for approximately 7.92% of the mini-grids whereas our method always provides
a linear relative error lower than 100% (see Figure 10).
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Results show that our method significantly improves naïve approximations without
increasing computation time considerably, as it requires only the calculation of accurate
designs for less than 1% of the total mini-grids in this case study. Table 4 shows the
computation times required to apply our method (which only optimizes the network
designs of representative mini-grids) and to optimize network designs for all the mini-
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grids. The computation times were obtained with a Hewlett-Packard (HP), Palo Alto, CA,
USA, computer with 16 GB of RAM and the Intel(R) Core (TM) i7-8550U CPU @ 1.80GHz
1.99GHz processor. The operating system of the computer is Windows 10 (64 bits).

Table 4. Computation times needed to apply our method and calculate the network designs.

Our Method Optimize Network of All Mini-Grids

21 min, 56.03 s 23 h, 52 min, 38.48 s

The computation time needed to apply our method is 1.53% of the computation time
required to calculate the network designs for all the mini-grids. The most time-consuming
part of our method is the network optimization of the representative mini-grids, which
lasts 16 min, 22.31 s.

5. Conclusions

Access to energy is a fundamental right of every individual, and substantial progress
is necessary to achieve universal access to energy by 2030. Regional planning tools play a
prominent role since a computer-based rural electrification plan based on rigorous analysis
is undoubtedly more likely to be implemented, although other factors such as the regulatory
or political background should not be neglected. A realistic electrification plan should
provide a reasonable approximation of the necessary budget and cost estimations of the
systems involved in the solution (i.e., grid extensions, mini-grids, and standalone systems).
One such cost is the network cost of mini-grids.

Most computer tools estimate the network cost of mini-grids with quick rules of thumb
based solely on spatial considerations, providing on-the-spot solutions at the expense of
losing accuracy. However, it is possible to obtain accurate estimations of the network cost
of mini-grids without explicitly obtaining the layout of each network design.

This paper presents a method that estimates the network cost of all the potential LV
mini-grids of a large-scale electrification case. The algorithm uses a combination of spatial
metrics (such as the MST length), electric metrics (such as demand and electric moments),
and other metrics (such as the number of consumers) as potential drivers of the network
cost of a mini-grid. The selection of adequate metrics is crucial as results heavily depend
on them.

First, mini-grids are distributed among linear regression models based on their MST
lengths to avoid assigning mini-grids with network costs of different orders of magnitude
to the same linear model. Then, our method performs a k-medoids clustering for each
linear regression model to obtain a reduced set of representative mini-grids. The k-medoids
method considers the MST lengths and aggregated demands of mini-grids to determine
the representative mini-grids.

Finally, our method calculates detailed network designs only for the representative
mini-grids and uses the corresponding information to determine which metrics are key
drivers of the network cost for each linear regression model. The calculation of such key
drivers is done by applying hierarchical regression, which starts with a simple model and
determines which metrics are worth incorporating into the model following a sequen-
tial process.

We compare the exact network costs of mini-grids with the estimations that our
method provides in a realistic large-scale case study, where our method optimizes the net-
work designs of less than 1% of the mini-grids to obtain the estimations. The computation
time required to optimize the networks of all the mini-grids is approximately one day. In
contrast, the computation time needed to apply our method is around twenty-two minutes.

We also compare our method with a more straightforward estimation that is aligned
with the rules of thumb that some regional planning tools apply. Our method provides an
estimation where the linear relative error is lower than 20% for 96.73% of the mini-grids,
whereas the straightforward method provides an estimation where the linear relative error
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is lower than 20% for only 56.36% of the mini-grids. We also contrast the linear absolute
errors, and our method obtains an error lower than 100 $/yr for 83.57% of the mini-grids,
and the more straightforward procedure obtains the same error for 57.73% of the mini-grids.
We can conclude that a straightforward method (such as the ones that regional planning
tools apply) may lead to significant errors when estimating the network costs. Therefore,
many regional planning tools could profit from the method presented in this paper, as
their solutions would be based on accurate network costs that go beyond oversimplified
calculations based on rules of thumb.

Regarding additional developments, the method should be expanded to estimate the
cost of medium-voltage mini-grids too. Most of the steps of the current approach could
hold for medium-voltage mini-grids, but it may be necessary to change the hierarchical
order of explanatory variables and add new variables because transformers could account
for a significant amount of the total network cost.

It would also be interesting to explore ideas that allow us to expand our method
to incorporate the impact of topographical features of the terrain in the network cost
estimation. Such topographical features include terrain slopes and penalized areas, and
may substantially impact the network cost of mini-grids.

We could also study the impact of the parameter Q on the results that our method
provides. The case study shows that our method performs well when Q is set to 10, but
a sensitivity analysis would allow us to quantify the impact of Q and determine if other
values of Q could lead to an improvement of our method.
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