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Abstract: Wind energy has been recognized as the most promising and economical renewable
energy source, attracting increasing attention in recent years. However, considering the variability
and uncertainty of wind energy, accurate forecasting is crucial to propel high levels of wind energy
penetration within electricity markets. In this paper, a comparative framework is proposed where
a suite of long short-term memory (LSTM) recurrent neural networks (RNN) models, inclusive of
standard, bidirectional, stacked, convolutional, and autoencoder architectures, are implemented to
address the existing gaps and limitations of reported wind power forecasting methodologies. These
integrated networks are implemented through an iterative process of varying hyperparameters to
better assess their effect, and the overall performance of each architecture, when tackling one-hour
to three-hours ahead wind power forecasting. The corresponding validation is carried out through
hourly wind power data from the Spanish electricity market, collected between 2014 and 2020.
The proposed comparative error analysis shows that, overall, the models tend to showcase low
error variability and better performance when the networks are able to learn in weekly sequences.
The model with the best performance in forecasting one-hour ahead wind power is the stacked
LSTM, implemented with weekly learning input sequences, with an average MAPE improvement
of roughly 6, 7, and 49%, when compared to standard, bidirectional, and convolutional LSTM
models, respectively. In the case of two to three-hours ahead forecasting, the model with the best
overall performance is the bidirectional LSTM implemented with weekly learning input sequences,
showcasing an average improved MAPE performance from 2 to 23% when compared to the other
LSTM architectures implemented.

Keywords: long short-term memory; deep learning; wind power forecasting; time series forecasting

1. Introduction

The rising concerns over global warming, energy security, and the impact of Green-
house gas (GHG) emissions on the global economy have increased interest in developing
efficient renewable energy sources for the rapid replacement of fossil fuels [1]. Govern-
ments around the world have stepped up their climate ambitions. By the end of 2020,
28 countries had issued “climate emergency” declarations, many of which were accompa-
nied by plans and targets to transition to more renewable-based energy systems [2]. Wind
power has emerged as the most promising and economical renewable energy source. The
global wind power market expanded 19% in 2019 to 60 GW, for a total global capacity
of 650 GW (621 GW onshore and the rest offshore) [2]. While economic factors are the
driving force for the steady growth of wind power, the variability and uncertainty of wind
energy pose challenges in the operation, scheduling, and planning of power systems, which
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ultimately increase generation costs [3]. Therefore, accurate forecasting is crucial for wind
power generation systems and to propel high levels of wind energy penetration.

According to schedulers, dispatchers, and energy planners, among the most impor-
tant was the need for a day-ahead wind power forecast for energy trading and the unit
commitment schedule, followed by hourly forecasts (expressed in megawatts) inclusive
of error bars and uncertainty intervals, and forecasts several days ahead for maintenance
planning [4]. In order to meet these demands, numerous forecasting studies have been
carried out focusing on wind speed and power forecasting, uncertainty forecasting, and
ramp events forecasting in different time horizons [5,6]. Throughout the years, wind energy
forecasting has been tackled through different approaches such as physical or numeri-
cal weather prediction (NWP) models, statistical and probabilistic methods, intelligent
forecasting models, and hybrid or ensemble methods. These models are mainly carried
through four forecasting time horizons: very-short term (<30 min), short term (0.5–6 h),
medium term (6–24 h), and long term (1–7 days) [7].

The physical method uses physical and weather information, such as wind direction,
roughness, obstruction, pressure, and temperature, to model wind power. Due to its
high dependence on numerical weather forecast data, accuracy is greatly affected by the
precision of numerical weather predictions [8]. On the other hand, statistical methods are
mainly based on historical data, focusing on the time-varying relationships of given time
sequences, often requiring high model orders to describe the linear relationship of wind
series. Some traditional statistical models are the Kalman filter (KF) and the autoregressive
integrated moving average model (ARIMA) [9]. However, in recent literature, research
has moved towards the implementation of machine learning (ML) methods, mainly due
to the performance of such models in extracting robust features, which have reported
huge success in a wide range of applications [10,11]. ML models, such as artificial neural
networks (ANN) [12] and support vector machines (SVM) [13], can establish a nonlinear
mapping to accurately describe wind randomness. In this line of thought, in [14], wind
speed and wind power output are predicted in the short term by means of a group method
of data handling (GMDH)-neural network approach. Although this approach has presented
interesting results, some drawbacks have been reported. Specifically, the model tends to
produce an exceedingly complex network when it comes to highly nonlinear systems due
to its limited generic structure (quadratic two-variable polynomial) [15]. In order to obtain
higher accuracy values, SVM-based models have been proposed. For instance, in [16], a
hybrid model (LSSVM–GSA) based on the least squares support vector machine (LSSVM)
and gravitational search algorithm (GSA) has been proposed to forecast the short-term
wind power. For these kinds of approaches, it has been reported that they usually involve
a very complex optimization process [17].

While ML and hybrid models may better capture the nonlinear dynamics of renewable
energy generation processes, most models are non-trivial to tune and use in practice.
They depend on careful selection of input features and pre-treatment strategies and have
difficulties dealing with vanishing or exploding gradients [18]. Due to the limitations
and poor adaptability of traditional ML models, deep learning (DL) methods have been
applied to wind power forecasting. Recurrent neural networks (RNN) have been especially
highlighted to model the relationships among samples of time sequences. In this way, the
use of gates in recurrent units (long short-term memory (LSTM), gated recurrent units
(GRUs), among others) has successfully increased the accuracy of results in forecasting
tasks. GRU and LSTM both use different ways of gating information to prevent vanishing
gradient problems. In the first case, the GRU has two gates to model time dependencies that
are reset and update gates, while LSTM has three gates that are input, output, and forget.
In this way, the GRU controls the flow of information like the LSTM unit, but without
having to use a memory unit. As advantages, the GRU uses less training parameters and,
therefore, uses less memory, executes faster, and trains faster than LSTM, whereas LSTM is
more accurate on a dataset using longer sequences. In short, it has been proved in different
applications that if sequences are large or accuracy is very critical, LSTM performance
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is preferred, whereas GRU is selected in some classification tasks where less memory
consumption and faster operation is required [19–21]. For this reason, as will be seen, most
of the state-of-the-art research in wind power forecasting, using deep learning, involves
the LSTM approach.

In the literature, different wind power forecasting strategies have been developed
by implementing diverse LSTM models. In [22], medium-term wind power forecasting
was performed using LSTM networks on historical wind power data and NWP data. In
this case, the latter data type was first analyzed by principal component analysis (PCA) to
narrow down the meteorological inputs. The study produced similar results for both LSTM
and PCA-LSTM results; however, the latter hybrid model slightly outperformed the LSTM,
yet both proved to be superior when compared to SVM models and backpropagation (BP)
neural networks performance metrics. In [23], short-term wind power forecasting was
developed, for one to five steps ahead, based on discrete wavelet transform (DWT) and
LSTM networks. DWT decomposed original wind power data from three different wind
farms into low-frequency and high-frequency sub-signals, such that independent LSTMs
approximate the temporal dynamic behaviors of the sub-signals, respectively. The proposed
DWT LSTM model proved to perform better when compared to RNN and BP methods
alone; however, when steps ahead increased, the performance metrics deteriorated. In [24],
a combined model consisting of the variational mode decomposition (VMD), convolutional
LSTM network (ConvLSTM), and error analysis was conducted for short-term wind power
forecasting. The proposed VMD-ConvLSTM-LSTM model was implemented on historical
output data series from two wind turbines and two wind farms. The proposed model
proved to outperform traditional forecasting algorithms; however, model parameters were
selected by expertise given the large computational cost associated with the estimation of
optimal parameters.

Additional strategies have been implemented in related research areas, such as the
wind speed forecasting field. In [25], a model combining ARIMA and dynamic evolving
neural-fuzzy inference system (DENFIS) for wind speed forecasting has been proposed,
reporting RMSE values of 0.07 and 0.13 for 2 and 6 hour ahead forecasting, respectively. As
a reported drawback, DENFIS needs prior assumptions about data and requires domain
knowledge to define the associated parameters [26]. Other ML-based models have been
proposed to improve the forecasting accuracy. Specifically, in [27], a hybrid approach based
on the CRO (coral reefs optimization) algorithm and the extreme learning machine (ELM)
is presented. The CRO was implemented to reduce the number of variables and the ELM
was used to provide the wind speed prediction. The main limitation of this approach is
that the performance is very unstable. It is very difficult to find the best parameters such
that the training and testing accuracy is maximum for a given problem [28]. In order to
improve the error/accuracy metrics, DL-based models have been proposed.

In particular, in [29], a multivariate stacked LSTM model is proposed. Historical wind
speed, wind direction, temperature, humidity, pressure, dew point, and solar radiation are
used to predict future short-term wind speed. The study proposes a model with two LSTM
layers stacked after the input layer, with 64 neurons each. The results proved to outperform
multiple competing statistical methods, including multiple linear regression, LASSO, and
ridge-based strategies. In the same line, in [30], a hybrid particle swarm optimization–ant
lion optimizer (hPSO–ALO) was used for training the weight values of LSTM network.
However, limitations associated to ALO-based algorithms are related to the long run time
due to the random ant walking model and the associated exploration process, which usually
is not to the extent of obtaining optimal solutions [31]. In [32], a novel deep learning model
is proposed to forecast regional short-term wind speed. The study proposes a CNN-LSTM
model, where the CNN acts as encoder and decoder, while the LSTM acts as the temporal
predictor to forecast the previously extracted and translated deep features. The proposed
CNN-LSTM model showed that the prediction errors decreased as the models gradually
became more sophisticated, outperforming the persistence model, ANN, and LSTM with
a 32, 27, and 18% RMSE decrease, respectively. In [33], a hybrid VMD-DE-ESN model
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is proposed incorporating variational mode decomposition (VMD) as the decomposition
module, differential evolution (DE) as the optimization module, and echo state network
(ESN) as forecasting module of decomposed subseries of wind speed. Wind speed data
collected in March, June, September, and December (2018) from the Sotavento wind farm in
Galicia, Spain, are applied in the study. Results are compared, in terms of RMSE and MAPE,
to six forecasting models. The reported MAPE values for the persistence model (16.5179%),
BPNN (16.4407%), ESN (16.1745%), GA-ESN (16.0560%), DE-ESN (15.6445%), VMD-ESN
(2.1703%), and VMD-DE-ESN (2.0161%) show that the proposed ensemble model is far
superior, improving performance by 7–87.7% in MAPE values.

In [34], a novel genetic algorithm (GA) coupled with LSTM model is proposed for
one-hour ahead wind power forecasting for seven wind farms in Europe. The proposed
model governs the optimization of input learning sequence size and number of neurons of
LSTM layers by exploiting the strength of the bio-inspired framework of genetic algorithm.
When compared against support vector regressor (SVR) and LSTM models, the GLSTM,
on average, improves wind power predictions by 12–30% in RMSE values. In [35], a deep
sequence-to-sequence long short-term memory regression (STSR-LSTM) is proposed for
wind power forecasting at three different timescales (week-ahead, day-ahead, 15 min-
ahead) for three distinct wind farms. The data applied in this study were collected from
three sites in Belgium, two of which are offshore wind farms (sites 1 and 3). Results
are compared to Levenberg—Marquardt backpropagation neural network (LMBNN) and
BRNN, where the best MAPE value of 1.897% was achieved for site 3 in the week-ahead
forecast timescale; however, the proposed STSR-LSTM model consistently proved to be
superior across all timescales and sites when compared to LMBNN and BRNN.

Although the verified performance of LSTM and hybrid LSTM models surpass sta-
tistical and ML methods, the above literature review highlights both the advancements
and existing gaps in wind power forecasting. Most studies have focused on wind speed
forecasting, rather than wind power, and few studies have focused on comparing and
evaluating different DL models (LSTM, bidirectional-LSTM, convolutional-LSTM, stacked-
LSTM, autoencoder-LSTM). To the best of our knowledge, a comparative analysis of
short-term prediction results, given the estimation of optimum hyperparameters for each
LSTM model, has not been applied to wind power forecasting. In addition, although bidi-
rectional, convolutional-LSTM, and autoencoder-LSTM have been widely used to forecast
meteorological time series, they have not been deeply analyzed in the case of wind power
forecasting for single and multiple steps ahead. We aim to fill these research gaps by the
evaluation of a set of competitive LSTM-based models, applied in the field of wind power
forecasting (vanilla LSTM, stacked, and bidirectional), as a baseline to compare the results.
The evaluation of the models has been carried out considering statistical error measures
reported in the field (MAPE, RMSE). In addition, it is important to highlight that, unlike
most of the papers available in the literature, which deal with the prediction in a turbine or
a group of turbines, in this study, the wind power forecasting is carried out for the whole
system. In this way, the historical data in this study case not only depend on wind resource
availability in all the farms in the power system but also the balance between offer and
supply in the electricity market. To the best of our knowledge, the models analyzed in this
work have not been evaluated before tackling this problem.

In summary, in this paper, hourly wind power data is processed through a suite of
LSTM RNN-based models for single and multiple steps ahead (up to three) forecasting.
Moreover, these models are evaluated and compared through real data from the Spanish
electricity market. A descriptive analysis of the time series data is presented, and a
comparative error analysis is produced given the diverse modeling strategies employed,
where significant hyperparameters, such as the number of iterations, memory units, batch
size, and size of the input learning sequence, were implemented through an iterative
process aiming to estimate the model with the best predictive capabilities. The structure of
this work is as follows. Section 2.1 describes the dataset analyzed and the implementation
methodology used in this work. Section 2.2 focuses on detailed descriptions of the DL
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techniques and the definition of the evaluation metrics. Section 3 compares the results and
metrics, and finally, in Section 4, conclusions are drawn and future work is discussed.

2. Data, Models, and Methodology
2.1. Dataset Description

Unlike most of the papers available in the literature that deal with the prediction in
a turbine or a group of turbines, in this paper, the performance of a suite of LSTM RNN-
based models is evaluated on a whole system wind power forecasting. In other words, the
historical data in our study case not only depend on wind resource availability in all power
system farms but also the balance between offer and supply in the particular electricity
market. In this way, remarkable particularities make the Spanish study case attractive to
evaluate the performance of forecasting techniques. First, Spain is the fifth country in the
world in terms of installed wind power, after China, the US, Germany, and India. There are
currently 1265 wind farms installed in 16 out of the 17 states (autonomous communities),
covering 21.9% of the energy consumed in the country, making the participation of wind
power in the Spanish electricity market substantial [36]. Second, the time series of Spain
exhibits a high level of seasonality and trend because of the intrinsic nature of wind
resources in the region. Finally, because of the interconnections with Portugal and France,
the dataset reflects the behavior of other markets with different energy mixes and the state
of the cross-border interconnections. These characteristics make this a challenging study
case to evaluate the suitability of the LSTM RNN-based models in forecasting.

In this context, the original dataset for this study covers approximately six and a half
years of hourly wind power observations in Spain, collected from the Spanish Electric
Network [37]. Specifically, the wind power time series was recorded from 1 January 2014
to 30 May 2020 and reported in megawatts-hour (MWh) for a total of 56,231 observations.
Figure 1 represents the wind power data processed and analyzed in this work. Firstly,
in order to remove innovational outliers, additive outliers, or level shifts, the approach
described in [38] was used for the automatic detection and removal of outliers in the time
series. This strategy uses spatial outlier detection by implementing the variogram method,
where outliers are considered those that considerably deviate from the majority of the data.
This methodology assumes that the outliers are not correlated in time and space, and can
be modeled using an α-stable distribution. The selection of this approach was based on its
extensive use in the time series preprocessing [39]. Taking this approach into account, no
outlier was found in the analysis of the whole time series. Initial observations on the data
suggest that there are no changes in trend over the years. In addition, there are relevant
peaks at the beginning of each year, marking the annual seasonality of the wind power
time series. These ideas are explored in more detail below.

Figure 1. Real wind power time series data from January 2014 to May 2020.

In order to describe the wind power time series analyzed in this work, in Figure 2, the
sample descriptive statistics, its corresponding histogram distribution, and the Quantile–
Quantile (QQ) plot are summarized. Based on the reported results, it can be seen that
the skewness value describes a non-normal wind power time series with a right-skewed
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distribution. Moreover, the calculated Kurtosis value, being less than three, indicates the
data are light-tailed and flatter than a normal distribution (platykurtic).

Mean SD Min First Quantile Median Third Quantile Max Skewness Kurtosis
5634.18 3317.08 143.00 3023.50 4985.83 7680.25 17435.83 0.7608 −0.0153

Figure 2. Kernel density plot, histogram, QQ plot, and descriptive summary of time series data.

2.2. Deep Learning Strategies for Time Series Forecasting Using LSTM

Deep learning (DL) is a subset of machine learning (ML) that uses restructured multi-
layered ANNs to deliver improved accuracy in diverse tasks, such as object detection,
speech recognition, language translation, among many other applications. Given the suc-
cess of DL models in tackling classification and regression problems, research continues to
move towards implementing diverse DL model architectures for a plethora of applications.
A particular DL model architecture has gained popularity over the years given its success
in handling long and short-term time dependencies and its ability to work with raw time
series data without extensive feature engineering or data preprocessing. This DL model is
known as RNNs.

2.2.1. LSTM RNNs Based Models Description

RNNs are dynamic systems that efficiently use the temporal information of a model’s
input sequences. For this reason, they are a widely used tool for time series forecasting.
RNNs are derived from feed-forward neural networks (FFNN), where the network is
forward propagated according to the number of time steps per sample. RNNs are composed
by a memory gate that allows the network to process sequential data, maintaining previous
inputs to predict the outputs. The RNN model updates its memory, also known as its
recurrent hidden state ht, as follows:

ht = σ(Wxxt + Whht−1 + bt) (1)

where x = (x1, x2, . . . , xt) is a sequence of length t, σ is a nonlinear function such as
sigmoid or rectified linear unit (ReLu), Wx and Wh are weight matrices, and bt is a constant
bias value [40]. Standard RNNs suffer from short-term memory and are limited to look
back in time, such that the larger the size of the input learning sequence, the less it learns.
Moreover, RNNs struggle with long sequential data, leading to exploding and vanishing
gradients, where the former refers to the assignment of high importance to the weight
matrices without any reason and the latter refers to significantly small gradient values that
prevent the RNN model from learning further [40].
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LSTM networks address the short-term memory problem of RNNs that leads to
vanishing and exploding backpropagation error signals that either grow or shrink with
every time step in RNNs. In order to overcome this problem, gated units to control the
information flow have been proposed. Specifically, LSTM units have reported successful
results in different fields to forecast time series [8,11]. LSTM networks are capable of
modeling long-term dependencies in time series, learning more than 1000-time steps,
whereas RNNs are limited to 10 steps [41]. Given the competency of LSTM networks in
handling long and short-term time dependencies, the study developed in this work utilizes
a suite of LSTM-based models to better capture the real-time dynamics of wind energy.

2.2.2. Vanilla LSTM

The traditional LSTM network structure is composed of three gates: the forget gate,
the input gate, and the output gate. The forget gate determines which information is
valuable enough to be maintained within the network, assigning a value between 0 and 1.
Values close to 0 are discarded, while values close to 1 are kept. The input gate decides
what information is allowed to flow into the memory cell and be stored there.

Equations (3) and (4) below represent this decision, where kt produces a vector of
new values to be added to the memory cell based on the update signal given by it. The
network is then updated as defined in Equation (5), where ct (long-term state) considers
whether to keep or forget the previous values and add new values. Lastly, the output of ht
(short-term state) is also composed by two layers. Here, ot is the output value given by the
σ activation, which determines what values from the memory cell are to be considered as
output, followed by a tanh layer with an output range [−1, 1] [42]. Equations (2)–(7) show
how the network is updated, which was also illustrated in Figure 3.

ft = σ
(

W f .[ht−1, xt] + b f

)
(2)

it = σ(Wi.[ht−1, xt] + bi) (3)

kt = tanh(Wk.[ht−1, xt] + bk) (4)

ct = ft × ct−1 + it × kt (5)

ot = σ(Wo.[ht−1, xt] + bo) (6)

ht = ot × tanh(ct) (7)

where ft, it, kt, ot are the output values of the forget gate, input gate, update signal,
and output gate, respectively, and their input values are xt at the current time t and the
output value ht−1 at time t − 1. W f ,i,k,o are weight matrices and b f ,i,k,o are bias vectors
corresponding to the respective gates. σ is a nonlinear activation function and ct is the
memory unit.
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σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

ht

ht

ft it

kt

ot

Figure 3. LSTM network representation.

2.2.3. Bidirectional LSTM

While the vanilla LSTM takes unidirectional processing of the information from left
to right, the bidirectional model learns the input time series sequences both forward and
backward, ultimately combining both interpretations. The data are processed through
independent networks, where one network will process the time series data from left to
right, while the other network will process the data from right to left. In this way, each
network holds information at time t, while also holding information from either the past or
the future. In this case, the hidden state equation is redefined to incorporate the forward
layers, backward layers, and combined output. The forward layer’s output sequence

−→
h

is computed by going through the input sequence from left to right (t− 1 to t− n). In
contrast, the backward layer’s output is computed from right to left using the reverse
inputs. Ultimately, both outputs are computed as previously defined in Equations (2)–(7).

Figure 4 exemplifies the incorporation of the direction for the forward and backward
layers. The concatenated output is defined in Equation (8), where W−→

h y
and W←−

h y
are the

weights of the forward and backward networks, respectively, and by is the bias of the
output layer. Equation (8) can be generalized for multi-step forecasting problems such that
yt would be otherwise computed given by yt+1, yt+2, and so on.

yt = W−→
h y

−→
ht + W←−

h y

←−
ht + by (8)
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LSTM LSTM LSTM

LSTM LSTM LSTM

xt xt+1 xt+2

yt yt+1 yt+2

σ σ σ

−→
h t

←−
h t

−→
h t+1

←−
h t+1

−→
h t+2

←−
h t+2

Forward Layer

Backward Layer

Figure 4. Bidirectional LSTM network representation.

2.2.4. Stacked LSTM

A stacked LSTM refers to a model architecture composed of multiple LSTM layers,
making the model deeper. Under a standard LSTM model, the layer would receive an input
sequence and output a value or a specified number of values to be predicted. However,
under a stacked model, as it is shown in Figure 5, the output of a hidden LSTM layer is
not only propagated forward through time but also used as one of the inputs for the next
LSTM hidden layer. In this way, the hidden states are a function of all previous hidden
states. Consequently, the l-th layer can be updated by the Equations (9)–(14).

f l
t = σ

(
W l

f .[hl
t−1, hl−1

t ] + bl
f

)
(9)

il
t = σ

(
W l

i .[hl
t−1, hl−1

t ] + bl
i

)
(10)

kl
t = tanh

(
W l

k.[hl
t−1, hl−1

t ] + bl
k

)
(11)

cl
t = f l

t × cl
t−1 + il

t × kl
t (12)

ol
t = σ

(
W l

o.[hl
t−1, hl−1

t ] + bl
o

)
(13)

hl
t = ol

t × tanh(cl
t) (14)

Based on this configuration, the input associated to the first layer is the raw time
series:

h0
t = xt, (15)

while its respective output is an input abstraction, which is then fed as a hierarchical
feature to the next LSTM layer. The final layer is composed by the number of neurons
corresponding to the number of time steps predicted through the model. Different advan-
tages reported for this methodology include that a stacked configuration allows the neural
network to learn features from the raw time series in different components at each time
step [43]. The parameters associated with the neural network are spread across the whole
model’s space, which accelerates the algorithm’s convergence and fine-tunes the nonlinear
operations applied to the time series.
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LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

xt xt+1 xt+2 xt+3

yt

h1
1

h2
1

h1
2

h2
2

h1
3

h2
3

h1
4

h2
4

Figure 5. Stacked LSTM architecture.

2.2.5. Convolutional LSTM

Convolutional neural networks (CNNs) have been widely used for data feature ex-
traction with grid-like configurations, such as images. The CNN architecture was initially
developed for two-dimensional data, allowing the model to learn patterns hierarchically
such that the patterns learned will be recognized throughout the network. Presently, one-
dimensional CNNs have become more popular given their application to sequence data,
such as text and time series. However, their performance is suboptimal when compared to
other models, such as LSTMs [44]. CNNs are usually composed by three stacked layers:
convolutional layer, pooling layer, and fully connected layer. First, the input layer holds
the input vector of values, followed by the convolutional layer where features are extracted
through a filter or kernel, to be output into a fully connected layer [45]. The basic structure
of CNNs is portrayed in Figure 6. A LSTM network can be connected to the dense or fully
connected layer of the CNN configuration as portrayed, such that the convolutional LSTM
network would be updated in a similar way as in the vanilla LSTM, replacing the matrix
addition and dot product operators by convolutional operators.

6464 I

64 64 I/
2

256 256 256 I/
4

I/
8

xlabel

512 512 512 I/
16

4096 4096 K I/
32

K I/
16

K I/
8

K K I

Conv 
Layer I

Conv 
Layer II

Conv 
Layer III

Conv 
Layer IV

Conv 
Layer V

Conv 
Layer VI Dense

LSTM

Figure 6. Example of a CNN with six convolutional layers.

A convolutional LSTM RNN (ConvLSTM) incorporates the convolutional structures
of the CNN in both the input-to-state and state-to-state transitions. The network is rede-
fined such that the operators previously defined in (2)–(7) are replaced by the convolution
operator (∗) and the Hadamard product (�) as exemplified in Equations (16)–(20), where
the latter operator keeps the constant bias property of the cells. As it can be noted, these
equations differ from the standard LSTM network in that, in order to extend the LSTM net-
work’s capability to remember or forget information throughout the convolutional LSTM
configuration, the information from the cell state is included in all output computations
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for each gate to take into account the analogous transitions between the states. Moreover,
the weight matrices of the respective gates now include a convolution operator in order to
incorporate the function of the filter. The network is updated as follows:

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci � ct−1 + bi) (16)

ft = σ(Wx f ∗ xt + Wh f ∗ ht−1 + Wc f � ct−1 + b f ) (17)

ct = ft � ct−1 + it � tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc) (18)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco � ct + bo) (19)

ht = ot � tanh(ct) (20)

2.2.6. Autoencoder LSTM

The autoencoder (AE) architecture consists of three sequentially connected layers
defined as the encoder, the code, and the decoder. AEs extract features from input data in
an unsupervised manner and are often used as generative models [44]. The AE architecture
is illustrated in Figure 7.

The encoder maps high-dimensional input data into a low-dimensional representa-
tion, where the decoder is then responsible for reconstructing the data. This architecture
allows the decoder weights to be tuned first, although both the encoder and decoder are
trained simultaneously where, ultimately, the model minimizes the difference between the
reconstructed output and the original input data. The encoded features et are given by:

ei = σ(Wext + be) (21)

The decoded values given by the original input data x are given by:

x̂i = σ(Wdxt + bd) (22)

where σ is the selected activation function, We is the encoder weight matrix, be is the
encoder bias vector, Wd is the decoder weight matrix, and bd is the decoder bias [46].
According to the architecture of AE models, LSTM units can be included in order to process
time series, where multiple sequences are taken as input and later as output. This model
presents special characteristics to deal with multi-step ahead forecasting, where the output
predictions mapped represent several hours to be forecasted at a time.

Figure 7. Autoencoder LSTM architecture.
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2.3. Implementation Methodology

Upon completion of the exploratory data analysis, all observations were scaled [0 to
1] for the sake of the networks’ speed, learning rate, and convergence. A data split of 70:30
for training and testing sets is implemented, such that we are able to evaluate the models’
predictive performance for up to two years (at least two periods of annual seasonality).
Each model was implemented considering the mathematical background explained in
Section 2.2, following the pseudocode presented in Algorithms 1–5. For the LSTM models
to learn the mapping function of our historical wind power observations sequence, the
original sequence must be transformed into multiple time-series samples from which
the LSTM learns. The network maps these sequences as input to an output observation
(one-step ahead) or to multiple output observations (multi-steps ahead). Input learning
sequence size is based on the weekly seasonal behavior of wind power time series [47].
Considering these characteristics, weekly, monthly, and quarterly time scales have been
considered in the preparation of the input data. First, we consider a transformation where
168-time steps are used as input, such that the network learns by week. Then, 720-time
steps are proposed, such that the model’s input sequence is equivalent to roughly a month
worth of observations. Lastly, we consider a quarterly transformation with 2160-time steps
used as input. It must be noted that a larger input sequence size of 8760 steps (annual
steps) is not considered due to implications that the size of the time window has on the
availability of data for the validation of the models, as we would only have very limited
observations as part of the testing dataset. Moreover, the annual input sequence would
also require an increasing number of neurons in the hidden layers, which would positively
affect the computational times of the networks, which makes the implementation in a
timely manner unfeasible.

Algorithm 1 Vanilla LSTM

1: x ← RESHAPE(x, shape(168, 720, 2160))
2: y← RESHAPE(y, shape(168, 720, 2160), (1,2,3))
3: Neurons← (32,64,128)
4: Batch Size← (12, 24, 46, 48)
5: Epochs← (100, 200, 300)
6: Input Learning Sequence← (168, 720, 2160)
7: lstm (x, y, Neurons, Batch Size, Epochs, optimizer, loss)
8: for e← Input Learning Sequence do
9: TRAIN_DATA, VALID_DATA← TEST_TRAIN_SPLIT(e,0.7)

10: for i, j, k← EPOCHS, Batch Size, Neurons do
11: for data← TRAIN_DATA do
12: X ← data[0], Y ← data[1]
13: prediction_results← lstm(x,y, i,j,k)
14: cost← CALCULATE_COST(prediction_results, y)
15: optimizer← ADAM_OPTIMIZER(learning_rate = 0.001).MIN(MSE)
16: end for
17: end for
18: end for
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Algorithm 2 Stacked LSTM

1: x ← RESHAPE(x, shape(168, 720, 2160))
2: y← RESHAPE(y, shape(168, 720, 2160), (1,2,3))
3: Neurons Layer 1← (32,64,128)
4: Neurons Layer 2← (32,64,128)
5: Batch Size← (12, 24, 46, 48)
6: Epochs← (100, 200, 300)
7: Input Learning Sequence← (168, 720, 2160)
8: lstm (x, y, Neurons Layer 1, Batch Size, Epochs, optimizer, loss)
9: ADD(lstm, Neurons Layer 2)

10: Epochs← (100, 200, 300)
11: for e← Input Learning Sequence do
12: TRAIN_DATA, VALID_DATA← TEST_TRAIN_SPLIT(e,0.7)
13: for i, j, k, h← EPOCHS, Batch Size, Neurons Layer 1, Neurons Layer 2 do
14: for data← TRAIN_DATA do
15: X ← data[0], Y ← data[1]
16: prediction_results← lstm(x, y, i, j, k, h)
17: cost← CALCULATE_COST(prediction_results, y)
18: optimizer← ADAM_OPTIMIZER(learning_rate = 0.001).MIN(MSE)
19: end for
20: end for
21: end for

Algorithm 3 Bidirectional LSTM

1: x ← RESHAPE(x, shape(168, 720, 2160))
2: y← RESHAPE(y, shape(168, 720, 2160), (1,2,3))
3: Neurons← (32,64,128)
4: Batch Size← (12, 24, 46, 48)
5: Epochs← (100, 200, 300)
6: Input Learning Sequence← (168, 720, 2160)
7: bilstm (x, y, Neurons, Batch Size, Epochs, optimizer, loss)
8: for e← Input Learning Sequence do
9: TRAIN_DATA, VALID_DATA← TEST_TRAIN_SPLIT(e,0.7)

10: for i, j, k← EPOCHS, Batch Size, Neurons do
11: for data← TRAIN_DATA do
12: X ← data[0], Y ← data[1]
13: prediction_results← bilstm(x, y, i, j, k)
14: cost← CALCULATE_COST(prediction_results, y)
15: optimizer← ADAM_OPTIMIZER(learning_rate = 0.001).MIN(MSE)
16: end for
17: end for
18: end for
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Algorithm 4 CNN LSTM

1: x ← RESHAPE(x, shape(168, 720, 2160)
2: y← RESHAPE(x, shape(168, 720, 2160), (1,2,3))
3: Neurons← (32,64,128)
4: Batch Size← (12, 24, 46, 48)
5: Epochs← (100, 200, 300)
6: Input Learning Sequence← (168, 720, 2160)
7: Filter← 24
8: Kernel Size← 1
9: Pool Size← 2

10: conv←RELU_ACTIVATION_FUNC(CONV1D(x, y, Filters, Kernel Size ))
11: conv← ADD(conv,MAX_POOL1D(conv, Pool Size)
12: conv.lstm← ADD(conv, lstm)
13: conv.lstm← RESHAPE(conv.lstm)
14: for e← Input Learning Sequence do
15: TRAIN_DATA, VALID_DATA← TEST_TRAIN_SPLIT(e,0.7)
16: for i, j, k← EPOCHS, Batch Size, Neurons do
17: for data← TRAIN_DATA do
18: X ← data[0], Y ← data[1]
19: prediction_results← conv.lstm(x, y, i, j, k)
20: cost← CALCULATE_COST(prediction_results, y)
21: optimizer← ADAM_OPTIMIZER(learning_rate =0.001 ).MIN(cost)
22: end for
23: end for
24: end for

Algorithm 5 Autoencoder LSTM

1: x ← RESHAPE(x, shape(168, 720, 2160)
2: y← RESHAPE(x, shape(168, 720, 2160), (3))
3: Neurons← (32,64,128)
4: Batch Size← (12, 24, 46, 48)
5: Epochs← (100, 200, 300)
6: Input Learning Sequence← (168, 720, 2160)
7: aulstm(x, y, Neurons, Batch Size, Epochs, Optimizer, Loss)
8: aulstm← ADD(aulstm, RepeatVector(3))
9: aulstm← ADD(aulstm, Neurons)

10: for e← Input Learning Sequence do
11: TRAIN_DATA, VALID_DATA← TEST_TRAIN_SPLIT(e,0.7)
12: for i, j, k← EPOCHS, Batch Size, Neurons do
13: for data← TRAIN_DATA do
14: X ← data[0], Y ← data[1]
15: prediction_results← aulstm(x, y, i, j, k)
16: cost← CALCULATE_COST(prediction_results, y)
17: optimizer← ADAM_OPTIMIZER(learning_rate =0.001 ).MIN(cost)
18: end for
19: end for
20: end for
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The models are first evaluated, given the different input learning sequences for one-
step ahead forecasting. An iterative training process is first implemented to find the
DL-based model and configuration with the best performance. Then, the models and their
respective configurations, yielding the lowest possible error rate, are selected to evaluate
their performance when facing three-steps ahead forecasting. The iterative process is only
completed for one-step ahead forecasting due to the exhaustive computational load that
the forecasting of three steps entails, considering the different DL architectures. Lastly, we
are able to conduct a comparative analysis to evaluate the performance of the three-steps
ahead forecasting models against an AE-LSTM model, which is commonly used to tackle
multi-step forecasts rather than one step. The general implementation process is shown in
Figure 8.

Figure 8. Implementation process of the different DL models, for one-step and three-steps ahead
forecasting.

Since batch size relates to the number of training samples to be considered at a time
for updating the network, batch size may affect the network speed, learning rate, and
convergence. Therefore, different batch sizes are considered according to the number of
samples obtained through the selected time windows, such that the samples are divisible
by the proposed batch sizes. As such, models set up according to weekly and monthly
learning sequences are implemented with batch sizes 12, 24, and 46. In contrast, models set
up through a quarterly learning sequence are implemented with batch sizes 12, 24, and
48. Likewise, we select a different number of memory units for the LSTM layers. Since the
initial model configurations are based on increasing learning sequence sizes, an increasing
number of units is proposed to understand whether more complex models are able to better
solve the problem at hand. The number of neurons in each hidden layer play a key role in
the neural network training and impact the prediction accuracy [23]. The more the number
of neurons in each layer, the more complex the model. Lastly, a varying number of training
cycles is proposed (100–300 epochs). In this way, the iterative process will be performed
such that the models’ training cycles and batch sizes vary, so the networks are trained
with different patterns. Given all the possible hyperparameter configurations portrayed in
Table 1, and according to the number of steps in the input sequence, there are 27 possible
combinations for each, at minimum, given the number of epochs, size of the batches, and
the number of neurons.

The activation function employed is ReLu, as its gradient does not tend to suffer
from gradient vanishing or diffusion [46]. In addition, models are trained using the Adam
optimization algorithm [48], where the default recommended parameters are used (learning
rate = 0.001, β1 = 0.9, β2 = 0.999, ε = 1 × 10−8), unless otherwise stated and required by
the model. The Adam optimizer is useful in handling sparse and noisy problems as it
combines the properties of AdaGrad and RMSProp optimizers, and is applicable to LSTM
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time series forecasting as it does not require a stationary objective [48,49]. Additionally,
the selection of this model is based on the reported advantages of its implementation to
support DL-based models: straightforward implementation without the need of extensive
data preprocessing and decomposition methods, small memory requirement, invariance
to the diagonal re-scalation of gradients, suitability for models that involve large datasets,
and/or large number of parameters [48,49]. Finally, the mean square error (MSE) is the
selected loss function to be minimized, based on the successful results reported of this loss
function in conjunction with the Adam optimizer [49–51].

Table 1. Possible parameter configurations for iterative training of vanilla LSTM model.

Input Sequence Size Epochs Batch Size Neurons

Weekly (168 steps) 100 12 32

Monthly (720 steps) 200 24 64

Quarterly (2160 steps) 300 46, 48 128

2.4. Evaluation Metrics

The performance evaluation of the different LSTM models is performed by comparing
the root mean square error (RMSE), the mean absolute percentage error (MAPE), the mean
absolute error (MAE), and the coefficient of determination (R), defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)2 (23)

MAPE =
1
N

N

∑
i=1

xi − x̂i
xi

× 100% (24)

MAE =
1
N

N

∑
i=1
|xi − x̂i| (25)

R2 = 1− ∑N
i=1 (xi − x̂i)

2

∑N
i=1 (xi − x̄i)2

(26)

where N is the number of predicted samples, xi and x̂i are the real and predicted values,
respectively, and x̄i is the real values’ mean. RMSE provides the overall agreement between
estimated and original data, avoiding error compensation, while the performance in actual
units is achieved through root implementation [34]. RMSE has been considered one of the
most commonly used indicators for power forecasting in renewable energy stations because
it can be used effectively with the satisfaction of objectivity and symmetry criterion. In
addition, it can be used uniformly for different measurement durations [52]. In contrast to
RMSE, the MAE metric weights all values equally, and thus does not add additional weight
to extreme forecasting events. This metric has been widely used in the renewable energy
industry to assess the effectiveness of the forecast [53]. MAPE, on the other hand, represents
the quantum of error relative to the actual data expressed as percentage, thereby directly
indicating the accuracy of the model [54]. This metric has been proposed as the most widely
used unit-free accuracy measure for forecasting tasks and it has been recommended by
many textbooks, M-competition, and the previous literature [55,56]. Finally, the accuracy
is measured using the coefficient of determination R2. This metric compares the sum of
the square of the residuals with the total sum of squares, which is proportional to the
variance of the data. These evaluation metrics have been selected because they are the most
used performance measures in the field of short-term wind power forecasting using deep
learning techniques [4,5,8,23].
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3. Wind Power Forecasting—Experimental Results

Based on the methodology described in the previous section, the experiments for each
model were carried out. It is important to note that every model was compiled in Python
3.8 with Tensor Flow 2.4.0 backend and Intel(R) Core(TM) i7-8565U.

3.1. One-Step Forecasting

First, single-step ahead forecasting strategies were assessed. Single, bi-directional,
stacked, and convolutional LSTM RNNs were implemented according to the previously
defined implementation process, varying the number of input neurons with only one
output defined by the value to be predicted.

Given the hyperparameter configurations portrayed in Table 1, and according to the
number of steps in the input sequence, there are 27 possible combinations for each given
the number of epochs, size of the batches, and the number of neurons in the hidden layer.
The first technique implemented was the vanilla LSTM. The performance of each model is
illustrated in Figures S1–S3 of the Supplementary Material. For this approach, the smallest
MAPE error of 4.30% was recorded under a configuration of 168-time steps corresponding
to a weekly input learning, 200 iterations, batch size of 46, and 32 neurons in the hidden
layer. The models implemented using monthly input sequences produced errors between
4.61 and 8.49%, while the quarterly input sequence models reported errors between 4.84
and 12.21%. It is possible to see that, as the size of the input learning sequences increase, so
do their corresponding error metrics.

The bidirectional LSTM models were implemented using all possible configuration
parameters referenced in Table 1. Once again, as it can be seen in Figures S4–S6 of the
Supplementary Material, the best performing model configuration, with a reported MAPE
of 4.44%, is given by the model that learned by weekly time steps (168 steps) implemented
with 200 epochs, batch size of 46, and 32 neurons. However, the highest reported error
rates were found within the implementation with monthly time steps (720 steps), where
the errors ranged between 4.60 and 8.91%. In comparison, the models implemented
with quarterly time steps (2160 steps) produced a 4.79–7.04% range. Overall, the models
initiated with weekly time steps maintained values between 4.44 and 5.53%, resulting in
lower variability among the reported metrics. This architecture maintained similar metrics
for the weekly and monthly input sequence implementations, and it improved the resulting
error range under the quarterly input steps. In contrast, the range for the vanilla for the
quarterly input sequence (2160 steps) was 4.84–12.21%, the bidirectional reported a range
of 4.79–7.04%, resulting in lower variability.

In addition, a stacking architecture with two LSTM layers is implemented, where
each layer is independent, and the number of neurons in each layer may vary between
32 or 64 neurons, being these two values the most commonly employed under stacked
architectures [57,58]. Under this configuration, we exclude the implementation of 128 neu-
rons for the sake of implementation times as a higher number of neurons may prevent the
models from finding a solution within a suitable time frame. A dense layer then connects
the layers with one neuron for a single time step output. Given all the possible parameter
configurations portrayed in Table 2, there are a total of 108 possible combinations given the
size of the input sequence, iterations, size of the batches, and the number of neurons in the
first and second layers.

Table 2. Possible parameter configurations for iterative training of stacked LSTM model.

Input Sequence Size Epochs Batch Size Neurons
(Layer 1)

Neurons
(Layer 2)

Weekly (168 steps) 100 12 32 32

Monthly (720 steps) 200 24 64 64

Quarterly (2160 steps) 300 46, 48
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Figures S7–S9 of the Supplementary Material show the MAPE reported for stacked
LSTM models with 32 neurons on the first layer and a varying number of neurons on the
second layer. The lowest recorded error of 4.37% was produced by the model implemented
with 32 memory units in the first and second layers, 300 epochs, a batch size of 12, and
a weekly input sequence (168 steps). The models implemented under the monthly input
sequence yielded errors ranging from 4.68 to 8.82%, while the quarterly sequence approach
produced errors ranging between 4.75 and 9.37%. The results for the stacked model with
64 neurons on the first layer are portrayed below in Figures S10–S12 of the Supplementary
Material. Once again, the lowest recorded MAPE of 4.50% was produced by the model
configured with an input sequence of size 168, 32 neurons in the second layer, 300 epochs,
and batch size of 12. The models implemented under the monthly input sequence yielded
MAPE errors ranging from 4.70 to 8.99%, while the quarterly sequence approach yielded
errors ranging between 4.73 and 14.13%. Overall, the models implemented with a weekly
input sequence (168 steps) produced the lowest MAPEs ranging between 4.37 and 5.13%.
The lowest reported error (4.37%) was produced by the model configured with 32 neurons
on the first and second layers, 300 epochs, and a batch size of 12. This architecture achieves
a slightly lower variability in relation to weekly input sequence (168 steps) implementations
when compared to the vanilla (4.30–5.38%) and bidirectional (4.44–5.53%) models.

The Conv-LSTM implementation, on the other hand, considers some fixed parameters
based on the results reported previously in the literature. As such, for these experiments,
64 filters were used in the convolutional layer and a max-pooling kernel size of 2. This pa-
rameter configuration has been previously employed in studies of short-term wind power
forecasting [42]. This model required a further split of the input sequences into subse-
quences to take advantage of the feature extraction capability. Given the already established
data splits (168, 720, 2160 input sequence), each sample is split into smaller samples. Our
selection splits every sample by 24 h for the model to read subsequences equivalent to daily
data. In this way, the number of subsequences per sample, according to input sequences of
sizes 168 (weekly), 720 (monthly), and 2160 (quarterly), is 7, 30, and 90, respectively. Given
the additional subsequences, only the models initialized with weekly input time steps
(168 steps) were processed considering all the other possible configurations of the hyperpa-
rameters referenced in Table 1. This was due to the significant increase in computational
times of this architecture that made their implementation infeasible. The results, using the
full suite of possible configurations given a weekly input learning sequence (168 steps),
were produced in roughly 22 h (Figure S13 of the Supplementary Material). However,
the results given monthly and quarterly input time steps, implemented with 100 epochs
only, took 27 and 57 h, respectively (Figures S14 and S15 of the Supplementary Material).
Under these Conv-LSTM configurations, the MAPE results range from 5.45 to 10.15, 5.31 to
7.31, and 5.87 to 6.81%, given weekly (168 steps), monthly (720 steps), and quarterly (2160
steps) input learning sequences, respectively. While the previously analyzed architectures
produced the lowest error variability under weekly input sequences, the Conv-LSTM
produced the lowest error variability according to the quarterly input sequence implemen-
tations (5.87–6.81%). The lowest reported MAPE of 5.31% was found under monthly input
time steps (720 steps), 100 epochs, batch size of size 12, and 128 neurons.

For one-step ahead wind power forecasting, according to the overall performance
results recorded in Table 3 and portrayed in Figure 9, it can be observed that the majority of
the architectures produce better results when implemented with an input learning sequence
of 168 steps (weekly time steps). Further, it is possible to observe that the trade-off between
the error metric results and implementation times is not valuable enough to choose a
more complex nor deeper model (stacked-LSTM or Conv-LSTM). While the standard
and bidirectional models yielded MAPEs between 4.30–12.21 and 4.44–8.91%, the stacked
and convolutional architectures produced errors between 4.37–14.13 and 5.45–10.15%,
respectively. Additionally, standard and bidirectional models were able to implement
all proposed hyperparameter configurations, referenced in Table 1, in approximately
23 and 40 h, respectively. In contrast, the stacked and convolutional models involved



Energies 2021, 14, 7943 19 of 26

implementations between 32 and 106 h, respectively. As the size of the input time steps
increased, so did the associated error variability and the implementation times. However,
the increase in execution times is also positively related to the number of neurons and the
complexity of the models.

Table 3. Performance summary for all models executed according to time steps.

Model Input Time Steps Min MAPE
(%)

Max MAPE
(%)

Mean MAPE
(%)

Implementation Time
hh:mm:ss

Optimum Configuration
by Lowest MAPE (%)

Weekly (168) 4.30 5.38 4.75 05:50:03
Monthly (720) 4.61 8.49 5.93 06:43:03Vanilla

LSTM Quarterly (2160) 4.84 12.21 6.56 11:09:53

Time steps: 168
Neurons: 32
Epochs: 200
Batch Size: 46

Weekly (168) 4.44 5.53 4.85 08:04:21
Monthly (720) 4.59 8.91 6.19 13:18:53Bidirectional

LSTM Quarterly (2160) 4.79 7.04 5.62 18:50:08

Time steps: 168
Neurons: 32
Epochs: 200
Batch Size: 46

Weekly (168) 4.37 5.13 4.71 06:25:27
Monthly (720) 4.68 8.99 6.18 09:07:01Stacked

LSTM Quarterly (2160) 4.73 14.13 7.22 16:23:17

Time steps: 168
Neurons per layer: 32, 32
Epochs: 300
Batch Size: 12

Weekly (168) 5.45 10.15 7.49 21:47:49
Monthly (720) 5.31 7.31 6.60 27:19:05Convolutional

LSTM Quarterly (2160) 5.87 6.81 6.60 57:39:11

Time steps: 720
Neurons: 128
Epochs: 100
Batch Size: 12

Figure 9. Boxplot of recorded MAPE (%) by model and input learning sequence, implemented
through different hyperparameter configurations.

3.2. One-to-Three-Steps Forecasting

Given the results of the one-step forecasting models implemented in the previous
section, now, the model configurations that produced the lowest errors are selected to carry
out a forecasting three steps ahead. Lastly, an autoencoder LSTM architecture is introduced
for this task to compare its performance against the previously studied models. This DL
architecture is only presented for the three-steps ahead forecasting task due to its inner
configurations, where multiple neurons are found at the input and output layers.

The one-step LSTM model that yielded the best predictive performance had a con-
figuration of weekly input time steps (168 steps), 200 iterations, batch size of 46, and 32
neurons in the hidden layer, with an error rate of 4.30%. Based on this configuration, the
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model was updated such that there are three neurons in the output layer, instead of 1, to
produce the three-steps ahead predictions. The reported MAPE and RMSE increased with
each further time step predicted, as has been reported in the literature, ranging from 4.47
to 13.61% and from 269.64 to 745.22 MW, respectively (Figure S16 of the Supplementary
Material).

In the same way, the best performing one-step BiLSTM model configuration, with a
reported MAPE of 4.44%, was given by a configuration of 168 input time steps implemented
with 200 epochs, batch size of 46, and 32 neurons. Based on this configuration, the model
was updated such that there are three neurons in the output layer, instead of 1, to produce
the three-steps ahead predictions. The three-steps ahead forecast we implemented with
this configuration produced almost identical results for the first hour predicted, yet it also
proved that the MAPE errors increase with each additional hour forecasted, ranging from
4.50 to 13.27%, which translates into 267.95–741.82 MWh.

Under the lowest error yielding configuration for the stacked LSTM referenced in
Table 3, the model was updated such that there are three neurons in the output layer, instead
of 1, to produce the three-steps ahead predictions. The stacked architecture has produced
a lower MAPE, MAE, and RMSE for the first step predicted in comparison to the vanilla
and bidirectional three-steps ahead models; however, these previous implementations
showcase a better performance for the second and third hours predicted.

According to the Conv-LSTM results presented in Table 3, the model was updated
such that there are three neurons in the output layer, instead of 1, to produce the three-steps
ahead predictions. The model’s performance for this task proves to be the highest error-
yielding network compared to the previous architectures, as all error metrics for each step
have virtually doubled under this configuration, with a MAPE between 8.24 and 17.21%
and a RMSE between 463.22 and 962.18 MWh.

Finally, the AE-LSTM networks are introduced given their encoder and decoder
architecture, which is especially helpful in multi-step forecasting given their generative
capabilities. The recorded metrics for this first implementation show that there is little
variation among the models implemented with a different number of neurons in the
hidden layer. Overall, the hyperparameter configuration yields the lowest MAPE by
the implementations set up with a batch of size 46 and 32 neurons, ranging between
4.24 and 13.03%. At the same time, the reported RMSE for this model produced negligible
differences in terms of MWh. For executing the models according to a monthly input
sequence (720 steps), 32 and 64 neurons were considered during the parameters tuning
process. Lastly, the models with quarterly-sized input sequences (2160 steps) had to
be trimmed down due to the extreme computation time that made the implementation
unfeasible using more than 32 neurons in the hidden LSTM layer. Results are portrayed
in Figure S22 of the Supplementary Material. The lowest reported MAPE ranges between
4.19 and 12.60% and is related to the model with 32 neurons and a batch size of 12.

As a performance summary, the three-steps ahead forecasting executions suffered
from high implementation times and computational load, and the overall observed metrics
variations did not justify the selection of deeper nor more complex models. Table S1
in the Supplementary Material shows the overall performance of the AE-LSTM model
implemented with varying hyperparameters. The implementation times under the AE-
LSTM model architecture are extremely high; however, the vast majority of the recorded
metrics produced similar results regardless of the input learning sequence size and suffered
less variations among the metrics when compared to the reported performance of the
other models. Table 4 shows the overall performance of the vanilla, stacked, bidirectional,
autoencoder, and convolutional models implemented given the configurations that yielded
the lowest error, also including reported metrics for MARS and M5Tree models, as statistical
baseline models. In summary, it can be observed in those results that for multi-steps ahead
(2–3) the bidirectional LSTM shows the best performance, providing the best trade-off
between computation time and lowest recorded MAE, MAPE, and RMSE for the different
number of steps ahead considered in this study. These results can be explained considering
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that bidirectional LSTM-based models can exploit the temporal correlations in the time
series data in both forward and backward directions. In addition, taking into account
the presented study case, where the time series have a characteristic seasonality, the
bidirectional approach provides better feature representation as compared to vanilla and
stacked LSTM structures. Regarding to the R2 results, the vanilla, stacked, bidirectional,
and autoencoder LSTM models have similar values, with slightly better performance for
the vanilla LSTM.

Figure 10 shows the scatter diagrams of the obtained results for 1-step, 2-steps, and
3-steps ahead predictions. According to the results, it can be seen that the vanilla, stacked,
bidirectional, and autoencoder LSTM models present the best performance, while the
convolutional LSTM has comparable results to MARS and M5Tree. As expected, the best
results were obtained in T + 1 prediction, while T + 2 and T + 3 predictions followed the
T + 1, respectively. In general, the results do not reveal significant differences between
autoencoders, bidirectional, and LSTM models, according to the determination coefficient.
The scatter plots clearly revealed that these last models’ outputs are more aligned to the 1:1
perfect line for T + 1 prediction, while for T + 2 and T + 3, the determination coefficient
is smaller.

Figure 10. Cont.
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Figure 10. Scatter plots of the final LSTM models, MARS, and M5Tree for one-three steps ahead
forecasting; the red line represents the 1:1 perfect line and blue line represents the regression line.

Table 4. Performance summary of V-LSTM, BI-LSTM, LSTM-LSTM, CONV-LSTM, and MARS models executed for
three-steps ahead forecasting.

Model Forecasted
Steps

MAPE
(%)

RMSE
(MWh)

MAE
(MWh)

R2

(%)
Implementation Time

hh:mm:ss
Model

Configuration

1 4.47 269.64 200.49 99.41
2 9.04 512.83 375.89 97.74Vanilla LSTM
3 13.61 745.22 551.67 95.25

02:42:46
Time steps: 168
Neurons: 32
Epochs: 200, Batch Size: 46

1 4.17 259.76 188.01 99.40
2 8.98 514.61 382.79 97.68Stacked LSTM
3 13.86 749.57 566.29 95.13

19:24:30
Time steps: 168
Neurons—Layer 1 and 2: 32, 32
Epochs: 300, Batch Size: 12

1 4.50 267.95 197.26 99.40
2 8.76 510.28 378.83 97.68Bidirectional LSTM
3 13.27 741.82 558.82 95.11

03:44:40
Time steps: 168
Neurons: 32
Epochs: 200, Batch Size: 46

1 4.52 289.27 211.41 99.35
2 8.91 554.97 412.58 97.47Autoencoder LSTM
3 13.46 807.43 605.94 94.57

41:54:38
Time steps: 2160
Neurons: 32
Epochs: 100, Batch Size: 12

1 8.24 463.22 342.99 98.13
2 12.72 718.48 555.27 95.24Convolutional LSTM
3 17.21 962.18 757.90 91.29

03:53:02
Time steps: 720
Neurons: 128
Epochs: 100, Batch Size: 12

1 6.77 373.64 284.29 98.75
2 12.98 685.52 526.94 95.81MARS
3 18.82 953.36 737.91 91.89

00:00:10

1 6.71 373.94 284.04 98.76
2 12.66 686.66 526.09 95.81M5TREE
3 18.04 956.06 736.28 91.89

00:00:07
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4. Conclusions

The suite of LSTM RNN-based models presented in this study, along with the diverse
patterns in which each architecture was implemented, allowed for a vast comparative
analysis for one-step to three-steps ahead wind power forecasting. LSTM models con-
figured in standard, bidirectional, stacked, encoder/decoder, and also coupled with a
CNN model, were executed with varying input learning sequences defined as weekly
(168 time steps), monthly (720 time steps), and quarterly (2160 time steps). In addition,
the diverse model architectures were implemented through an iterative process, where
different hyperparameters were varied, such that the models learned in different patterns.
This implementation process was executed in order to tackle one-step and three-steps
ahead wind power predictions.

For one-step ahead wind power forecasting, the results showed that the majority of the
architectures produced better results when implemented with an input learning sequence
of 168 steps (weekly time steps). In particular, while the standard and bidirectional
models yielded MAPEs between 4.30–12.21 and 4.44–8.91%, the stacked and convolutional
architectures produced errors between 4.37–14.13 and 5.45–10.15%, respectively. The
three-steps ahead forecasting executions suffered from high implementation times and
computational load, and the overall observed metrics variations did not justify the selection
of deeper nor more complex models.

The model with the best performance in forecasting one-hour ahead wind power is
the stacked LSTM, implemented with weekly learning input sequences, with an average
MAPE improvement of roughly 6, 7, and 49%, when compared to standard, bidirectional,
and convolutional LSTM models, respectively. In the case of two- or three-hours ahead
forecasting, the model with the best overall performance is the bidirectional LSTM imple-
mented with weekly learning input sequences, showcasing improved performance from 2
to 23% when compared to the other LSTM architectures implemented.

While the study completed within this work fills in some of the research gaps concern-
ing DL comparative analysis and hyperparameter optimization, we have laid the blueprint
for future research focused on LSTM-RNN architectures for short-term forecasting in the
field of wind energy applications. In order to complement the presented comparative
analysis, other study cases could be analyzed to determine the performance of these tech-
niques under different wind power and electricity market dynamics, as well as different
weight of the wind resources in the energy mix in a power system. Given the increasing
implementation times and computational load of the more complex models, future works
may consider the incorporation of parallel or high performance computing (HPC) in order
to efficiently solve the forecasting tasks at hand, consider more hyperparameters to be
included in the iterative process, and assess even deeper models.

As a final conclusion, it is well known that the high variability of wind power makes
it difficult to predict their energy output. In fact, the unpredictability of the wind energy
could reduce system reliability and increase power curtailments in power systems. Conse-
quently, additional support mechanisms and policies are needed to deal with wind power
uncertainty. In this way, accurate wind power forecasting based on DL strategies could
boost the security of electricity supply and help guide the policies and decision making in
power systems. Precise forecasting helps to design policies estimating suitable reinforce-
ments and reserves needed in the power system according to the wind energy shortages.
Furthermore, it could help build realistic scenarios to develop support mechanisms to
reduce the firms’ risk exposure in the short-term electricity markets.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
en14237943/s1.
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The following abbreviations are used in this manuscript:

AE Autoencoder
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average Model
BPNN Back Propagation Neural Networks
ConvLSTM Convolutional LSTM
CNN Convolutional Neural Network
DE Differential Evolution
DL Deep Learning
DW Discrete Wavelet Transform
ESN Echo State Network
FFNN Feed-Forward Neural Networks
GA Genetic Algorithm
GHG GreenHouse Gas
GLSTM Genetic Long Short-Term Memory
KF Kalman filter
LMBNN Levenberg–Marquardt Backpropagation Neural Network
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
MARS Multivariate Adaptive Regression Splines
ML Machine Learning
MSE Mean Square Error
NWP Numerical Weather Prediction
PCA Principal Component Analysis
QQ Quantile–Quantile
RMSE Root Mean Square Error
RNN Recurrent Neural Network
STSR-LSTM Sequence-to-sequence Long Short-term Memory Regression
SVM Support Vector Machine
VMD Variational Mode Decomposition
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