

Insights into Ionic Liquid/Aromatic Systems from NMR Spectroscopy: How Water Affects Solubility and Intermolecular Interactions

Noemí Delgado-Mellado,^[a, b] Julián García,^[b] Francisco Rodríguez,^[b] and Robin D. Rogers^{*[a]}

Hydrocarbon solubility and chemical interactions in ten imidazolium- and pyridinium-based ionic liquids (ILs) with four different anions (thiocyanate [SCN]⁻, dicyanamide [DCA]⁻, tricyanomethanide [TCM]⁻, and bis(trifuoromethylsulfonyl)imide [NTf₂]⁻) have been studied by ¹H and ¹³C NMR spectroscopy. The anion structure has the main influence on the anionaromatic chemical interaction strength; it is directly correlated to the NMR chemical shift deviations but not to the hydrocarbon solubility. The [TCM]⁻ anion shows the largest chemical shift deviations, but the [NTf₂]⁻ anion has the highest hydrocarbon solubility due to steric effects. Higher water contents decrease the hydrocarbon solubility in ILs. Ion-water solvation mainly occurs until 1 mol_{water}/mol_{IL} with the saturation limit at 10 mol_{water}/mol_{IL}. Toluene-ion interactions are stronger than water-ion interactions in [DCA]⁻ and [TCM]⁻-based ILs, but they have a similar or even lower strength in [SCN]⁻-based ILs.

 [a] N. Delgado-Mellado, Prof. Dr. R. D. Rogers College of Arts and Sciences The University of Alabama Tuscaloosa, AL 35487 (USA) E-mail: RDRogers@ua.edu
[b] N. Delgado-Mellado, Dr. J. García, Prof. Dr. F. Rodríguez Department of Chemical Engineering Universidad Complutense de Madrid 28040 Madrid (Spain)
Supporting information for this article is available on the WWW under https://doi.org/10.1002/cplu.201900192

ChemPlusChem 2019, 84, 872-881