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Abstract 15 

Governments worldwide have adopted different public health measures in order to 
slow down the spread of COVID-19. As a result, the electricity demand has been 
impacted by the changes in human activity. Many of the Latin America and the 
Caribbean (LAC) countries have adopted different approaches to control the COVID-
19 pandemic, including severe shutdown of most social and economic activities. This 20 

paper analyses how this pandemic has influenced, from its appearance until the fall of 
2020, the demand of ten LAC countries (Peru, Bolivia, Costa Rica, Brazil, Guatemala, 
Mexico, Dominican Republic, Argentina, Chile and Uruguay). The approach is based 
on the concepts of size and shape impacts, which have been proposed in order to 
decompose the problem for a better understanding of the impact. The size impact 25 

accounts for the observed variations on the daily demand, whereas the shape impact 
focuses on the variations observed on the standardized hourly demand profiles for 
each day. To calculate both impacts, the observed demand is compared to the 
expected one if the COVID-19 crisis had not happened. To obtain reliable estimations 
in the scenario without COVID-19, machine learning techniques have been used. Peru 30 

and Bolivia are the two countries where the pandemic has had the greatest impact 
during 2020, with a size impact in April 2020 of around -30%. At the opposite 
extreme would be Chile and Uruguay, with a maximum monthly size impact of -6%. 
The other considered countries have maximum monthly impacts in the range of -11% 
to -17%. 35 
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Introduction 

In December 2019 the severe acute respiratory syndrome coronavirus 2 (SARS-40 

CoV-2) was detected in Wuhan (China). Just a few months later, it was spread to 

create the COVID-19 pandemic, the worst global public health crisis since the 1918 

flu pandemic [1]. In June 2021, the total number of COVID-19 cases in the world is 

counted in the hundreds of millions, with direct deaths attributable to COVID-19 in 

over three million cases [2].  45 

With the arrival of SARS-CoV-2, governments worldwide have adopted different 

public health measures in order to slow down the spread of the virus. These measures 

range from social distancing recommendations to stay-at-home orders by means of 

enforced partial or complete lockdowns, non-essential business closures, etc. Under 

this unusual situation, the electricity demand has been significantly impacted by the 50 

changes in human activity brought on by the COVID-19 pandemic. 

The impact of COVID-19 pandemic on the electricity demand has been previously 

reported in academic literature, where numerous studies can be found analyzing a 

wide range of countries applying different methodologies. This literature has been 

growing since the pandemic arrived, hence, an in-depth comparison of the available 55 

references has been performed with focus on several factors: regions of study, type of 

electricity demand analyzed, methodology used and observed impact of demand 

measured.  

The methodology followed to evaluate the impact of COVID-19 pandemic on the 

demand is diverse, however, it can be classified into two main approaches: On the one 60 

hand, Table 1 shows the articles that perform a direct comparison of the actual 

demand during the year 2020 with the consumption of year 2019 or with an average 

consumption of previous years. On the other hand, Table 2 shows the papers that 

follow a model-based approach, where the actual demand during the year 2020 is 

compared with an estimate of the demand in the event that COVID-19 would not have 65 

arrived. For this approach an statistical model is trained with pre-COVID-19 data to 

model factors such as trend, seasonality, holidays and the effect of temperature in the 

demand. 



Regarding the type of demand analyzed, most papers analyze daily or hourly 

electricity demand, except some anlayzing weekly consumptions. Depending on the 70 

study, aggregated demand at a National level is analyzed whereas others dive into the 

differences between residential and industrial consumptions. In general, the impact is 

measured as the difference between the observed demand and the reference demand in 

percentage with respect to the reference demand. The results show a wide variety of 

impacts, mainly ranging from 2% to 25% average demand reduction. However, not all 75 

impacts show reductions in consumption. Studies such as [7], [6] and [16], which 

analyze demand on different sectors, show that significant increases up to 13% have 

been observed on residential areas. In addition, studies such as [5] and [19] have 

analyzed daily load profiles, identifying time shifts in the morning consumption 

during weekdays. Moreover, weekday profiles during confinement resembled 80 

weekend profiles. 

Regarding the regions analyzed, while most studies have been performed for 

countries in Europe, North America, and Asia, very few studies address the impact on 

Latin American countries. 

The Latin America and the Caribbean countries (LAC) have adopted different 85 

approaches to control the COVID-19 pandemic, but many of them have imposed the 

severe shutdown of most social and economic activities during the first months of the 

pandemic. A sample of ten countries has been selected to carry out the study, based 

on the availability of the required data for the application of the proposed 

methodology. The existence of historical demand with hourly detail with a sufficient 90 

depth and quality has been a critical factor to adjust the proposed explanatory models 

used to estimate the reference demand. The LAC sample consists of the following 

countries: Peru, Bolivia, Costa Rica, Brazil, Guatemala, Mexico, Dominican 

Republic, Argentina, Chile and Uruguay. To the best of our knowledge, this is the 

first study that quantifies the impact of COVID-19 pandemic on electricity demand 95 

for a representative set of Latin American countries. 

This paper analyses how the COVID-19 pandemic has influenced the selected LAC 

countries, from its appearance until the fall of 2020. A model-based approach for 

estimating the impact is used, instead of a straightforward comparison with the 

average of previous years. Furthermore, our methodology is based on the computation 100 



of the size and the shape impacts, which decompose the problem for a better 

understanding of the impact. The size impact accounts for the observed variations on 

the daily demand time series, whereas the shape impact focuses on the variations 

observed on the standardized hourly demand profiles for each day. 

The paper is organized as follows. Section 2 describes the proposed methodology 105 

to carry out the study. In Section 3 the data preparation is described. Additional 

details about the proposed size and shape impacts are described in Sections 4 and 5, 

respectively. The results are shown in Section 6. Finally, conclusions are summarized 

in Section 7.  

  110 



Table 1. Summary of literature review for approaches mainly based on direct comparison. 

Ref. Regions Type of demand Methodology Observed impact on demand 
[3] Spain, Italy, 

Belgium, UK, 
Netherlands, 
Sweden 

Hourly electricity 
consumption. 
 
Daily load profiles. 

Comparison against reference week 
(the one with similar daily average 
temperature) form 2019. 
 
Analyzed the second week in April 
2020   

Hourly demand: Reduction in Spain 
(−25%),  Italy (−17.7%), 
Belgium (−15.6%), United Kingdom 
(−14.2%),  Netherlands (-11.6%). 
Increased in Sweden (2.1%) 
 
Load profiles: working days of 2020 
similar to weekends of 2019. 

[4] Spain Daily electricity demand 
 

 

Comparison against average of 2015-
2019 in same period. 
 
Analyzed from March 14th  to April 
30th 2020 

Percentage of reduction in electricity 
demand. 13% reduction on average. 
25% maximum reduction 

[5] Italy, France, 
Spain, 
Germany, 
Sweden, 
Switzerland 

Hourly demand time 
series. 
 
Daily load profiles. 

Comparison to same period in 2019. 
 

Analyzed beginning of March 2020 
until June 2020 

Hourly demand: demand reduced  in 
Italy (-20.9%),  in France (−18.9%), 
Spain (−16.9%), UK (−15.2%), 
Belgium (−13.3%), The Netherlands  
(−12.0%). 

 
Load profiles: working days of 2020 
similar to weekends of 2019. Working 
day profiles shifted in time. 

[6] Romania Monthly electricity 
consumption. 
 
Differences in domestic, 
household and non-
household consumption 

 
 

Comparison with same period in 2019 
for analyzing impact. 
 
Analyzed March to December 2020 
 
*Model-Based for Relation between 
GDP and demand by statistical model. 
Time series and multi-linear regression 
models for GDP vs Demand 

Domestic: Average demand reduction 
in March (-2.75%)  and -14.25% 
reduction in April. 
 
Household: Demand increase to a total 
maximum of 8.33% in December 2020 
 
Non-household: Average demand 
reduction of -4% in March and -21.3% 
reduction in April. 

[7] Spain Smart Meter data 
 
Differences in residential 
and non-residential  

Comparison with same period in 2019 
for analyzing impact. 

 
*Model-based for first days. Short-
term forecasting model for first days 

Residential sector: 13% increase for 
residential sector.  
 
Non-residential sector: -35% demand 
reduction. 

[8] Warsaw 
(Poland) 

Hourly consumption for 
residential users 
 
Daily load profiles. 

Direct comparison with same period in 
2018 for analyzing impact. 
 
Analyzed 5 week from March 16th to 
April 18th 2020 

Hourly demand: 16% increase 
compared to analogous period in 2018. 
 
Load profiles: Changes in the shape of 
the daily profile Increase in energy 
consumption during the daytime. 

[9] Italy Hourly consumption data 
 

 

Direct comparison with same period in 
2018 and 2019 

 
Analyzed 5 week from March to April 

Reduction of consumption up to -37%. 

[10] Canada 
(Ontario) 

Hourly consumption data Direct comparison with same period in 
2019 
 
Analyzed April 2020 

-14% reduction in the monthly 
electricity demand, with the highest  
daily reduction of -25% 

  



Table 2. Summary of literature review for approaches based on models for comparison. 

Ref. Regions Type of demand Methodology Observed impact on demand 
 

[11] 

UK Daily electricity demand 
 
All 2020 analyzed. 

Linear regression with temperatures: 
population weighted Heating Degree Days 
(HDD) and Cooling Degree Days (CDD). 
Separate regressions for weekdays, weekends 
and holidays. 
 

Model trained with years 2017-2019.  
Use of temperature scenarios for uncertainty. 

Percentage of reduction during restrictions: -11.7 
± 1.2% 

[12] India (5 
different 
regions) 

Log series of energy 
consumption data 

Obtain relationship between indian energy 
consumption and number of cumulative 
confirmed COVID-19 cases. 

 
Auto-regressive time series models. 

As lockdown measures are relaxed, energy 
consumption in India is inclined to increase to  
levels before the lockdown. 

 

Regions with higher income levels are quicker to 
recover their energy consumption to levels  
before the lockdown. 

[13] Brazil (4 
regions) 

Weekly consumption 
data 

Identify significant trend changes in weekly 
data using joinpoint Regression 
Analyzed  

Percentage change between time interval 
(Weekly Percentage Change) 
Between -7% and -20% consumption drop 
depending on the zone. 

[14] Jordan (3 
main arieas) 

Half-hourly, daily and 
monthly consumption of 
commercial, household, 
demand and factories. 

Comparison with same period in years 2016 
to 2019 for analyzing impact. 

 

Trend removal of monthly demand. 

Average demand reduced by -40% with respect 
to 2019 in city center. 

[15] Poland Hourly data demand data Difference between energy consumed in 
subsequent weeks and the expected values of 
consumption. 

 

Linear regression based on weekly values of 
consumption in the 4 weeks before lockdown. 

Energy consumption drop between -15% to 23% 
during the first lockdow. 

 

[16] US ( 
California, 
Florida, New 
York) 

Hourly electricity 
demand 

Weather correction method with Cooling 
Degree Days (CDD) and Heating Degree 
Days(HDD). 

10% increase in electricity demand is likely to 
have occurred due to COVID-19 for the city of 
Grainesville. 

[17] Kuwait Daily electricity demand Linear regression model with temperatures, 
weekdays and holidays. 
 

Train with last 4 years. Test with 2020 
 

Analyze 3 months from March to May 2020 

The stay at home phase (13–21 March) recorded 
a -2.2% reduction  
 

The partial curfew (March 22nd –10 May) and 
full lockdown (11–30 May) phases showed -
13.7% and -17.6% respectively 

[18] China Daily electricity demand Auto-regressive time series and Artificial 
Neurlal Networks with explanatory variabes 
such as GDP and population increase and 
epidemic variables.  

Identified effects of different variables on 
demand: 
A 1% increase in population infected induces a -
0.58% demand reduction 

[19] Germany, 
France, Italy, 
Spain and 
Poland 

Hourly electricity 
demand 
 
Daily load profiles. 

High dimensional time series change-point 
models to the electricity log-load of each 
country. 
 

Analyzed 2 months from March to April 2020 

Hourly demand: Significant demand reduction 
(not specified)  
 

Load profiles: Identifies shifts in the morning 
load peak on the daily demand profiles 

[20] Austria, 
Germany, 
Spain France, 
Italy UK, 
USA (Florida 
& New York) 

Daily electricity demand Dynamic harmonic regression with Fourier 
terms for complex seasonality, quadratic 
temperature, and calendar effects. 
 

Analyzed 5 months from March to August 
2020 

Most countries experienced a reduction between 
-3% and -12%, except Florida, which showed no 
significant impact. 

[21] Canada Hourly electricity 
demand 

Linear regression with weekdays, holidays, 
Heating Degree Days (HDD) and Cooling 
Degree Days (CDD). 
 

Analyzed March 2020 until June 2020 

Demand variation form -4% to -10% 

[22] US Weekly averaged 
electricy demand 

Polynomial regression and a two-step 
augmented regression prediction  model were 
used for forecasting energy demand during 
the test period 
 

Analyze late March to June 7th 

Overall reduction in electricity demand around -
7%  

 

 



Methodological approach 115 

In this section the proposed methodology to analyze the main impacts of COVID-

19 pandemic on the electricity demand of a specific country is described. Two 

different impacts are considered. The size impact, that accounts for the observed 

variations on the daily demand time series, and the shape impact, that focuses on the 

variations observed on the hourly demand profiles for each day. The use of these two 120 

impact components is based on the fact that the hourly demand can be decomposed 

using a simple multiplicative decomposition: 

𝐷ௗ,௛ ൌ 𝑤ௗ,௛𝐷ௗ ,    (1) 

where 𝐷ௗ ൌ ∑ 𝐷ௗ,௛௛  is the daily demand at day 𝑑 and 𝑤ௗ,௛ is the proportion of 𝐷ௗ 

observed at hour ℎ. Thus, the vector 𝐰ௗ ൌ ൫𝑤ௗ,ଵ, … , 𝑤ௗ,௛, … , 𝑤ௗ,ଶସ൯
்
 represents the 125 

standardized hourly demand profile for day 𝑑. Note that the profile's coefficients are 

calculated straightforward as the ratio of the hourly demand 𝐷ௗ,௛ divided by the daily 

demand 𝐷ௗ.  

Therefore, instead of analyzing directly the impact of COVID-19 on hourly 

demand, the proposed approach is based on decoupling the effect in two factors. The 130 

first factor, the size impact, focuses on quantifying how the daily demand 𝐷ௗ has 

changed due to the alterations in human activity brought on by the COVID-19 

pandemic. On the other hand, the shape impact accounts for the pandemic-induced 

changes in the standardized hourly demand profile 𝐰ௗ for each day. Thus, both the 

size and the shape impacts will show different aspects of the same issue, allowing a 135 

better understanding by decoupling the problem. 

The proposed methodology to calculate both impacts relies on a simple idea: 

compare the observed demand to the expected one if the COVID-19 crisis had not 

happened. In this way, size and shape impact indicators can be defined from the 

differences between the observed demand and the reference one. The key point of this 140 

approach is how to obtain a reliable estimation of the daily demand 𝐷ௗ and the 

standardized demand profile 𝐰ௗ in the scenario without COVID-19. In this paper 

these estimations are obtained applying well-known machine learning techniques. In 



particular, the proposed methodology consists of the following main steps (see Fig. 

1): 145 

 Step 1: Data preparation for implementing the approach. 

 Step 2: Creation of the reference models from the available data prior to 

2020 (before COVID-19 crisis). 

 Step 3: Extrapolation of the fitted reference models to 2020 to obtain the 

references for the daily demand and the standardized demand profile. 150 

 Step 4: Comparison of the real data to the references and calculation of 

impact indicators. 

 

Fig. 1. Proposed methodology to calculate the size and shape impacts of COVID-19 on 
demand. 155 

Data preparation 

To implement the methodology proposed for estimating the impact of COVID-19 

pandemic on the LAC's electricity demand, a complete dataset of different variables 

has been collected. In addition to the hourly demand data, daily temperatures as well 

as holidays and special events have been collected. Note that the temperature is the 160 

main weather driver of the demand, whereas including public holidays as inputs in the 



forecasting demand models is especially useful in order to improve their accuracy (see 

e.g.  [23]). Therefore, a special effort has been undertaken to obtain a valuable dataset 

of input variables for explaining the demand.  

Demands 165 

Hourly demand data has been obtained from the web sites of the system operators 

of each country. This hourly demand is used to calculate the daily demand and the 

standardized demand profiles using Eq. (1), required to estimate the proposed size and 

shape impacts. 

Fig. 2 shows the daily demand time series collected for the LAC countries. Note 170 

that the number of recovered years is different for each country, according to the 

availability of data. A simple visual inspection allows detecting the high impact of the 

COVID-19 pandemic in some countries such as Peru, Bolivia or Costa Rica. On the 

other hand, Fig. 3 shows the standardized demand profiles for the two first 

consecutive weeks of February 2020. Note that the profiles are quite stable for each 175 

country, with visible differences in shape during the weekends. It is also easy to see 

the clear differences between the country profiles. For example, in Guatemala the 

standardized demand spreads out in a larger range of values that in Peru, with a 

significant peak at 6:00 p.m. 



 180 

Fig. 2. Daily demand for the LAC countries. 

 

Fig. 3. Standardized demand profiles for the LAC countries (weeks from 3/2/2020 to 
16/2/2020). The Saturday and Sundays hours are marked in red. 
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Temperatures 185 

As aforementioned, it is well known that the temperature is one of the main drivers 

of electricity demand (see e.g. [24], [25], [26]). For example, Fig. 4 shows how the 

daily demand of Mexico changes with the average daily temperature. During summer 

the electricity demand reaches its maximum values due to high temperatures. In 

particular, during summer 2018, two heat waves (early June and late July) were 190 

responsible of several weeks with very high electricity demand due to the use of air 

conditioning for cooling. 

For each country, the average daily temperature (TAVG), measured in different 

weather stations distributed throughout the country, has been collected from NOAA 

(National Oceanic and Atmospheric Administration, www.noaa.gov). For example, 195 

Fig. 5 shows the 37 weather stations in Argentina for which there is quality data for 

TAVG since 2004 (with less than 250 days without measurement). 



 

Fig. 4. Example of variations in the daily demand of Mexico due to temperature. Top: real 
demand, the magenta circles mark holidays. Bottom: Reference temperature (black) and 200 
smoothed reference temperature (blue). 

 

Fig. 5. Selected 37 weather stations for Argentina. Left: Location (longitude and latitude). 
Right: average daily temperature for each weather station. Source: Extracted from [28] (Fig. 5, 
p. 11). © 2021 Inter-American Development Bank (BID). Reprinted with permission of BID. 205 
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The proposed model to estimate the reference demand for each country requires a 

unique temperature, representative of those temperatures in the region that have larger 

influence in the demand. Thus, in order to create this reference temperature for each 

country, we first clustered similar weather stations using hierarchical clustering. Then, 

the reference temperature is obtained as a weighted average of the TAVG of a subset 210 

of weather stations, selected by hand taking into account both the information 

provided by the dendrogram and the spatial distribution of the main cities and the 

stations. It should be noted that in order to better select the reference temperature, 

methods such as those described in [25] would provide better results in terms of error. 

However, in this study we have decided to exploit the spatial information available 215 

about the location of the weather stations and the relevant cities of the country to 

select a reasonable set of TAVG to be averaged. 

Fig. 6 shows the dendrogram obtained for the candidate 37 weather stations of 

Argentina. Taking into account the location of the three main cities where most of the 

population is concentrated (Buenos Aires, Córdoba and Rosario), the high correlation 220 

between weather stations and their spatial location, we finally decided to calculate the 

reference temperature for Argentina as the mean of TAVG_WS01 and TAVG_WS30. 

Table 3. shows, for each country, the selected stations and the weights used in the 

average to obtain the final reference temperature. 



 225 

Fig. 6. Selection of the reference temperature for Argentina. Left: Dendrogram of the 37 
weather stations of Fig. 5. The dissimilarity threshold has been set to 0.15, resulting five 
clusters (colored). Right: Main weather stations for Argentina (TAVG_WS01 y TAVG_WS30). 
Source: Extracted from [28] (Fig. 7, p. 13). © 2021 Inter-American Development Bank (BID). 
Reprinted with permission of BID. 230 

Fig. 7 shows the relationship between the daily demand and the reference 

temperature for each country. As it can be seen, depending on the range of 

temperature values, this relationship is very different. For example, it is clearly non-

linear for Argentina, Chile and Uruguay. 

Finally, note that in our pre-processing step of temperatures, missing values have 235 

been filled by using a hierarchical regression imputation process, based on the 

approach presented in [27]. First, single missing values are filled by linear 

interpolation with the days before and after of the same TAVG time series. Second, 

the remaining missing values are filled by means of a multiple linear regression using 

as inputs the temperatures of other weather stations where there are values for the 240 

days to be filled. 
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Table 3. Selected weather stations for each country. The STATION_NAME is the name of the 
weather station according to NOAA. 

 245 



 

Fig. 7. Relationship, for each country, between the daily reference temperature and the real 
electricity demand. Data from 2020 has been removed to avoid the COVID-19 period. 

Holidays and special events 

It is well-known that electricity demand time series show regular weekly patterns, 250 

usually modified when a public holiday or a special event occurs (see e.g., public 

holidays marked in Fig. 4). Therefore, it is of utmost importance to correctly model 

the calendar effects to obtain an accurate reference model  [23]. 
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Special events that have been considered in this study are those rare events that 

make the demand lower than what could be expected according to temperature, public 255 

holidays, and calendar. In particular, four types of special days have been considered 

and specific dummy variables have been created and labeled for each realization: 

1. Significant national and regional holidays. 

2. Relevant natural disasters that have influenced the demand, such as 

catastrophes associated with tropical storms, hurricanes, floods, 260 

earthquakes, etc.  

3. Important atypical social events that have influenced the demand, such as 

strikes, protests, riots, etc.  

4. Other fortuitous events with a clear impact on demand, such as power 

outages. 265 

This information has been obtained from different sources. For public holidays, the 

holiday calendars for each country have been consulted. The approach for obtaining 

the information has been different for natural disasters or atypical social events, based 

on the fitted regression model. For each country, the residuals from the daily demand 

model were analyzed, identifying those days where the residual was negative and 270 

significatively large. Once these atypical periods were detected, a web search was 

carried out to determine the occurrence of a significant event on those dates that could 

have affected the electricity consumption of the particular country. Fig. 8 shows two 

examples, a power outage affecting one day and a strike impacting the electricity 

demand during two weeks. 275 



 

Fig. 8. Examples of unusual demands, identified by analyzing the residuals of the fitted model. 
Top: In Argentina, an electricity blackout that lasted several hours meant a 33% decrease in the 
demand expected for June 19th, 2019. Bottom: In Brazil, a truckers' strike severely altered the 
demand for electricity between May 23rd and June 2nd, 2018, with a decrease of 81% over 280 
expected. Source: Extracted from [28] (Fig. 13, p. 20). © 2021 Inter-American Development 
Bank (BID). Reprinted with permission of BID. 

Proposed methodology for size impact 

The size impact accounts for the observed variations on the daily demand due to 

COVID-19. As aforementioned, to calculate this impact during 2020, a good estimate 285 

of the daily demand that should have existed without COVID-19 is required. In this 

section, the models designed to obtain this daily reference demand are described, as 

well as the particular size impact indicators proposed to quantify the observed 

variations. 



Reference models 290 

The reference model for each country has been created from the available data 

described in Section 3. In particular, a multiple regression model has been used to 

estimate the daily demand from the available exogenous variables (temperature, 

calendar, holidays, and special events). This model cannot capture the COVID-19 

effects because it is fitted using data before the pandemic, providing the required 295 

reference to determine the COVID-19 effect. 

The proposed reference model has the same main terms for all the LAC countries. 

It has been designed to capture the most relevant features of the demand time series 

properly: 

𝐷ௗ ൌ 𝐷ௗ෢ ൅ 𝜀ௗ ൌ 𝑇ௗ ൅ 𝑆ௗ ൅ 𝐻ௗ ൅ 𝑅ௗ ൅ 𝜀ௗ ,  (2) 300 

where 𝐷ௗ is the actual demand at day 𝑑, 𝐷ௗ෢  is the reference demand and 𝜀ௗ is the 

error term. The reference demand is obtained as a sum of four terms: 𝑇ௗ is the trend 

component, 𝑆ௗ is the annual seasonal component, 𝐻ௗ is the term related to regular 

weekdays, holidays and special events effects, and 𝑅ௗ is the component related to the 

reference temperature effect. These model components are built using a set of basic 305 

variables that can be grouped according to their nature (see Table 4.): 

 TIME, a continuous variable used to model the linear trend. This variable 

interacts, when required, with a categorical variable PIECE specifying 

different ranges of years in the training set to model non-linear trends. To 

obtain the reference demand for 2020, the last linear section of the trend 310 

component of the regression model has been extrapolated. 

 MONTH, month of the year, included as a categorical variable. 

 RTAVG, the average reference temperature for that country. All models 

use the interaction between MONTH and the quadratic RTAVG to 

properly model the response of the demand to the temperature. 315 

 DAYTYPE, a categorical variable used to label each day with a particular 

type. Most of the days are considered regular and labeled with the day of 

the week. However, the significant national and regional holidays have 

been labeled with the name of the holiday. Furthermore, we have used this 

variable also to label relevant natural disasters such as storms, hurricanes, 320 



floods, earthquakes, important atypical social events such as strikes or 

riots, and other fortuitous events with a clear impact on demand, such as 

power outages, observed from time to time in one of the demand series 

studied. 

Table 4. Specification, using Wilkinson notation, and number of coefficients estimated for the 325 
proposed reference models for quantifying the size impact of COVID-19. 

 

 

Once the reference model has been fitted using ordinary least squares, it can be 

extrapolated to 2020 to obtain the reference demand for each day. Fig. 9 shows the 330 

estimated demand for Peru, both during the training period and the extrapolation to 

2020. The analysis of this figure allows us to determine that the effect of the COVID-

19 pandemic on electricity demand in Peru started on March 16th, 2020, with a very 

significant decrease in consumption. 



 335 

Fig. 9. Daily electricity demand for Peru.  

Impact indicators 

Once the reference daily demand for each country has been estimated using the 

proposed reference model, it is possible to compare the observed daily demand with 

the reference daily demand to quantify the impact of the COVID-19 pandemic on the 340 

electricity demand. 
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A set of simple impact indicators have been defined to facilitate the interpretation 

of the effect observed daily and to be able to have a robust measure of what happened. 

In particular, the size impact indicators are based on the daily residuals, i.e., the 

differences between the observed demand and the estimated one. These indicators are 345 

expressed as a percentage of variation with respect to the reference demand estimated 

by means of the regression model. Specifically, three size impact indicators have been 

defined: 

 Daily size impact index: 

𝐷𝐼ௗሺ%ሻ ൌ 100 ൫𝐷ௗ െ 𝐷ௗ෢൯ 𝐷෡ௗ⁄    (3) 350 

 
 Weekly size impact index: 

𝑊𝐼௪ሺ%ሻ ൌ 100 ∑ ൫𝐷ௗ െ 𝐷ௗ෢൯ௗ∈௪ ∑ 𝐷෡ௗௗ∈௪ൗ   (4) 
 

 Monthly size impact index: 355 

𝑀𝐼௠ሺ%ሻ ൌ 100 ∑ ൫𝐷ௗ െ 𝐷ௗ෢൯ௗ∈௠ ∑ 𝐷෡ௗௗ∈௠ൗ   (5) 
 
In the previous expressions 𝐷ௗ is the daily demand on day 𝑑, and 𝐷ௗ෢  is the 

reference daily demand, estimated by the model. The subscripts 𝑤 and 𝑚 indicate the 

week and the month, respectively. 360 

These indicators allow not only to quantify the impact observed in a given country 

but also to compare the impact in different countries as they are expressed as 

percentage values referred to demand. In addition, they also allow, for example, to 

determine in which month or months the impact has been more significant. 

Fig. 10. Impact of COVID-19 on the demand in Peru during 2020. Thanks to the 365 

estimated reference demand, it can be stated that the demand suffered a very sharp 

decrease as of March 16th, 2020, reaching the maximum impact in the month of 

April, with an impact of -32%, the highest of all the countries studied. In August 

2020, the demand had not yet recovered the expected values according to the 

reference demand. Fig. 10 shows the impact indicators estimated for Peru, the country 370 

with the most impacted electricity demand of the ten countries analyzed. The daily 

size impact index provides highly detailed information, complemented by the actual 

and estimated weekly and monthly demands, as well as the monthly and weekly 

impact indicators calculated in the period considered. As can be seen, April 2020 is 



the most affected month, with a 32% decrease in demand. On a weekly basis, the most 375 

significant impact is observed in the fourth week of April, with an impact of -34%. 

From that moment on, a gradual recovery in demand is observed, but even so, in 

August 2020 the demand still had not recovered the levels it would have had if the 

pandemic had not existed. 
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Fig. 10. Impact of COVID-19 on the demand in Peru during 2020. Thanks to the estimated 
reference demand, it can be stated that the demand suffered a very sharp decrease as of March 
16th, 2020, reaching the maximum impact in the month of April, with an impact of -32%, the 
highest of all the countries studied. In August 2020, the demand had not yet recovered the 
expected values according to the reference demand. Source: Extracted from [28] (Fig. 15, p. 385 
23). © 2021 BID. Reprinted with permission of BID. 

Proposed methodology for shape impact 

The shape impact accounts for the observed variations on the demand profile due 

to COVID-19. Following a similar approach to the size impact, a good estimate of the 

hourly demand profile that should have existed without COVID-19 is required to 390 



calculate the impact during 2020. In this section, the models designed to obtain this 

hourly reference are described, as well as the particular shape impact indicators 

proposed. 

Reference models 

In order to study the impact on the shape of the consumption, the normalized 395 

hourly demand time series for each country is segmented into daily demand profiles, 

where each profile is composed of the 24 coefficients given by the percentage of the 

demand of the day consumed in each hour. Therefore, a multivariate data set is 

obtained with one sample per day and 24 demand variables, one for each hour. The 

objective is, therefore, to analyze the time evolution of the 24 hourly demands 400 

simultaneously.  

In order to analyze the daily demand profiles it is common in the literature to 

represent the set of historical profiles reliably with a small number of reference 

profiles that need to be identified ([26]). Therefore, the first step in the proposed 

methodology consists in applying a kmeans clustering algorithm to all historical daily 405 

profiles up to 2020 to obtain representative profiles of pre-COVID consumption. For 

each country, the number of clusters is selected by accounting for the quantization 

error. 

Fig. 11 shows the representative profiles of normalized demand obtained with the 

clustering model for each country. It can be observed that the number of clusters 410 

needed to model the demand profiles in each country is different. A common behavior 

stands out: a low demand in the early morning hours that increases throughout the 

morning. Then, a slight decrease in the late afternoon to then have a peak 

consumption at night and finally go back down at the end of the day. Nevertheless, 

the representative profiles obtained can vary significantly from one country to 415 

another. For example, comparing Guatemala with Chile, it can be seen that the 

difference between the maximum and minimum consumption of the day is much more 

pronounced in Guatemala. 



 

Fig. 11. Representative profiles of normalized demand obtained with the kmeans clustering 420 
model for each country.  

 

The next step is to develop a prediction model that estimates the representative 

profile that should be activated each day of 2020. A decision tree is trained for 

estimating the historical representative profiles associated to each day of the training 425 

period (before 2020) using the weekday, the month and a holiday variable as 

explanatory variables. 

For training the different decision trees, it is critical the selection of the length of 

the tree to avoid overfitting. 10-fold Cross-Validation has been used to select the 

optimum length for each country. Table 5. shows the number of representative 430 

profiles obtained and the Cross-Validation accuracy of the tree. 
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Table 5. Number of representative profiles obtained and the Cross-Validation accuracy of the 
tree for each country.  

 435 

 

Fig. 12 shows an illustrative example of the methodology for Bazil. On top, the 

representative profile associated to each day in the training period is represented. 

Below, the tree estimated representative profile is shown. As can be seen, the tree's 

predictions reflect the seasonal dynamics in the activation of the patterns and the 440 

estimate for 2020 can be used as a reference to compare it with the actual observed 

profiles. 

 

 

Fig. 12. Illustration of the performance of the decision tree used to model the activation of 445 
the representative daily demand profiles for Brazil. The heatmaps represent in each cell the 
cluster activated for each day. Rows are days of the week and columns represent weeks. 

Country
Number of 

clusters
Tree k-fold 

CV - Accuracy

R. Dominicana 4 0.59
Costa Rica 5 0.82

Bolivia 4 0.85
Guatemala 6 0.87
Argentina 6 0.70

Brazil 7 0.84
Uruguay 6 0.63

Peru 6 0.87
Mexico 8 0.90
Chile 6 0.84



Impact indicators 

The representative profile forecasted by the decision tree for 2020 is an estimate of 

the profile that would be expected in a situation where COVID-19 had not existed 450 

and, therefore, can be used as a reference to compare it with the actual profiles 

observed in 2020. 

Therefore, the profile estimated by the model can be compared with the actual 

profile observed. First, the differences between the two profiles are calculated, which 

allows to measure how the shape of demand has changed on that day.  455 

Fig. 13 shows the calculation of the profile differences and the two main proposed 

indicators that allows to visualize the impact: the heat map of the differences and the 

shape impact index.  

The heatmap of the differences illustrates how differences between the estimated 

and the real profiles evolves over time. It's a matrix where each column is a day and 460 

each row is an hour. The color of each cell in the array depends on the value of the 

observed hourly difference. Hours whose observed normalized demand is less than 

the expected value are shown in blue. In red, the hours whose observed normalized 

demand is greater than the expected value. It is observed that, in the first months, 

there are no major differences between the observed and expected profile. However, 465 

since the beginning of confinements, the differences change significantly. In the case 

of Brazil, there is a reduction in demand during the central hours of the day and an 

increase in the early morning and at night, starting at 7 p.m. It is also observed that the 

impact is much more pronounced during the beginning of confinement and is lessened 

as the months go by. 470 



 

Fig. 13. Illustration of the calculation of the differences between the actual and estimated 
profile and calculation of the impact for Brazil. In the top-left figure, the estimated profile 
(blue) and the actual profile (orange) are shown for one day. The top-right bar chart is displayed 
with the difference between the estimated and the actual value. The middle figure represents the 475 
heat map of the differences in time. At the bottom, the daily shape impact index calculated. 
 

Finally, to quantify the impact for a specific day, the proposed shape impact index 

is defined as follows  

 Daily shape impact index: 480 

   𝐷𝐼𝑤ௗሺ%ሻ ൌ  ∑ |𝑤ௗ,௛ෟ െ 𝑤ௗ,௛|௛∈ௗ    (5) 



 
 

Therefore, for each day, its impact index is the average of the differences in 

absolute value of that day. Conceptually, this can be interpreted as the average 485 

percentage change in an hour from daily demand.  

In addition, a weekly index is obtained that helps visualizing the time evolution. 

 Weekly shape impact index: 

𝑊𝐼𝑤௪ሺ%ሻ ൌ  ∑ |𝑤ௗ,௛ෟ െ 𝑤ௗ,௛|ௗ,௛∈௪   (6) 
 490 

Analyzing the temporal evolution of the impact index allows us to quantify how 

relevant the impact was during confinement and whether the differences have been 

reduced over the months. 

Results 

Following the proposed decomposition approach, in this section the main results on 495 

the impact of the COVID-19 pandemic on the demand for the ten LAC countries 

studied are described. 

Size impact results 

This section contains the main results on the impact of the COVID-19 pandemic on 

the daily demand for the ten LAC countries studied. During 2020, according to the 500 

methodology used, COVID-19 has impacted on the daily demand of all the countries 

considered, but in a very different way. In the vast majority of countries the impact on 

daily demand begins to be observed in mid-March 2020, less in the case of Mexico, 

where the effect begins to be significant on April 1st, 2020. 

Fig. 14 shows the temporary evolution of daily demand in 2020 for each country. 505 

For the LAC countries analyzed, a general decrease in daily demand is observed in 

2020 with respect to the reference demand. The months most affected were April and 

May, with an average decrease in demand of approximately 10%. The difference 

between the real demand and the estimated one, i.e. the daily size impact index, is 



shown in Fig. 15. It can be observed that the greatest differences occurred in the first 510 

months of the onset of the pandemic, with Peru and Bolivia being the most affected. 

Table 6. summarizes the impact obtained for each LAC country. Important 

differences are observed in the maximum impacts, with Peru and Bolivia being the 

two countries where the reduction in demand during the onset of the COVID-19 

pandemic has been greater, in contrast to Chile and Uruguay, countries with a lower 515 

size impact. According to the maximum monthly impact in Table 6., the LAC 

countries can be grouped into three main groups. The countries clearly most affected 

are Peru and Bolivia, with an impact in April 2020 of around -30%. At the opposite 

extreme would be Chile and Uruguay, with an approximate maximum impact of -6%. 

The rest of the countries have maximum impacts between -11% and -17%.  Table 7. 520 

shows the monthly detail of the impact of COVID-19 during the first months of 2020. 



 

Fig. 14. Daily comparison for 2020 between the real demand (in black) and the reference 
demand estimated by the model. The reference demand is shown before the start of the effect of 
the pandemic (in blue) and during the pandemic (in orange). 525 
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Fig. 15. Differences between the reference demand estimated by the model and the real daily 
demand (see Fig. 14). Two periods are shown, before the start of the effect of the pandemic (in 
blue) and during the pandemic (in orange). The mean of the daily residuals during the COVID-
19 period are shown. 530 
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Table 6. Summary of the impact of COVID-19 during 2020 on the daily demand for each LAC 
country. 
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Table 7. Monthly summary of the impact of COVID-19 during the first months of 2020. For 
each country, the observed monthly demand, the reference demand estimated with the 
regression model and the monthly size impact are shown. 

 

Country

Start of COVID‐19 

impact

Month  of maximum 

size impact

Maximum monthy 

size impact

Week of maximum 

size impact

Maximum weekly 

size impact

Peru 16‐Mar‐20 Apr‐2020 ‐32.00% 4th Apr ‐34.00%

Bol ivia 16‐Mar‐20 Apr‐2020 ‐27.60% 3th Apr ‐29.40%

R. Dominicana 16‐Mar‐20 Apr‐2020 ‐16.80% 4th Mar ‐21.90%

Mexico 01‐Apr‐20 May‐20 ‐14.30% 3rd May ‐17.00%

Argentina 16‐Mar‐20 Apr‐2020 ‐13.30% 4th Mar ‐15.20%

Costa  Rica 16‐Mar‐20 May‐20 ‐12.50% 2nd May ‐13.50%

Brazi l 23‐Mar‐20 Apr‐2020 ‐11.40% 3rd Apr ‐12.80%

Guatemala 16‐Mar‐20 May‐20 ‐10.90% 4th Mar ‐14.70%

Chi le 23‐Mar‐20 July‐20 ‐6.30% 5th Jun ‐6.50%

Uruguay 16‐Mar‐20 Apr‐2020 ‐5.80% 5th Mar ‐8.10%

Month Peru Bolivia CostaRica Brazil Guatemala Mexico Rdomincana Argentina Chile Uruguay

mar‐20 4054.4 814.4 984.0 49049.4 913.1 25854.3 1462.9 11139.4 6766.9 909.2

Apr‐20 3089.2 598.2 887.5 40939.2 836.9 23496.7 1430.1 8534.1 6186.6 772.0

may‐20 3393.5 618.6 877.5 41338.5 871.1 25459.7 1596.3 9613.8 6413.4 878.2

jun‐20 3798.6 663.7 890.2 41165.8 842.5 27205.3 1728.8 10776.7 6418.6 971.4

jul ‐20 4181.9 698.2 901.1 43882.9 896.3 29320.9 1794.8 12179.5 2698.2 1088.8

Aug‐20 2351.1 710.8 901.4 44989.9 926.7 6632.5 1776.6 10725.5 970.4

sep‐20 708.2 438.8 1571.4 93.5 1684.3 207.8

oct‐20 861.6

Month Peru Bolivia CostaRica Brazil Guatemala Mexico Rdomincana Argentina Chile Uruguay

mar‐20 4752.3 872.4 1012.0 50189.5 976.3 26724.2 1660.6 11454.2 6807.7 928.9

Apr‐20 4546.2 826.1 971.5 46204.8 933.4 26813.8 1719.6 9849.4 6314.3 819.6

may‐20 4676.6 805.0 1002.4 45548.6 977.7 29722.5 1839.5 10688.8 6659.6 905.1

jun‐20 4528.0 782.2 948.9 43933.2 927.3 30046.8 1817.7 11527.4 6689.6 987.9

jul ‐20 4621.1 807.2 964.8 45164.6 973.1 30791.0 1894.9 12394.9 2879.5 1089.8

Aug‐20 2535.2 815.0 965.0 45259.2 963.9 6988.5 1890.0 11203.9 993.6

sep‐20 765.9 464.3 1580.6 96.8 1764.4 194.4

oct‐20 917.8

Month Peru Bolivia CostaRica Brazil Guatemala Mexico Rdomincana Argentina Chile Uruguay

mar‐20 ‐14.7 ‐6.6 ‐2.8 ‐2.3 ‐6.5 ‐3.3 ‐11.9 ‐2.7 ‐0.6 ‐2.1

Apr‐20 ‐32.0 ‐27.6 ‐8.6 ‐11.4 ‐10.3 ‐12.4 ‐16.8 ‐13.4 ‐2.0 ‐5.8

may‐20 ‐27.4 ‐23.1 ‐12.5 ‐9.2 ‐10.9 ‐14.3 ‐13.2 ‐10.1 ‐3.7 ‐3.0

jun‐20 ‐16.1 ‐15.2 ‐6.2 ‐6.3 ‐9.1 ‐9.5 ‐4.9 ‐6.5 ‐4.1 ‐1.7

jul ‐20 ‐9.5 ‐13.5 ‐6.6 ‐2.8 ‐7.9 ‐4.8 ‐5.3 ‐1.7 ‐6.3 ‐0.1

Aug‐20 ‐7.3 ‐12.8 ‐6.6 ‐0.6 ‐3.9 ‐5.1 ‐6.0 ‐4.3 ‐2.3

sep‐20 ‐7.5 ‐5.5 ‐0.6 ‐3.4 ‐4.5 6.9

oct‐20 ‐6.1

Real demand (GWh)

Estimated demand (GWh)

Monthly size impact index (%)



Shape impact results 540 

This section shows the results of the methodology for estimating shape impact for 

each country. Firstly, a comparison is done similar to other studies and is followed by 

a comparison of the proposed shape impact methods. 

Following the methodology in [3] or [5], the demand profiles observed in 2020 are 

compared with the demand profiles observed in former years. In this study, the first 545 

four weeks from the start of confinement measures in each country are analyzed. Fig. 

16 shows for each type of day (Working days, Saturdays, and Sundays), the average 

of the actual 2020 profiles in the four weeks from the beginning of the confinements 

(orange curve) and compared with the average of the real profiles in those same four 

weeks in previous years (blue curve). 550 

It is observed that, in general, the greatest changes are observed on working days, 

while on weekends, especially Sundays, no great differences are observed worth 

noting that confinement has produced, in general, a horizontal shift of the 

consumption profile in the early hours of the morning. That is, the beginning of the 

rise in demand has been displaced a few hours during the confinement. It is also 555 

interesting to highlight the case of the Dominican Republic, where the consumption 

profile is very different compared to the expected one.  

In addition, Fig. 17 shows the detail of the differences between the average profiles 

in the first 4 weeks of COVID-19 and those same weeks in past years for the working 

days of each country. These graphs reflect the essence of the impact that containment 560 

measures have had in each country on the standardized demand profile.  

 



 

Fig. 16. Analysis of profiles during the first four weeks from the start of confinement 
measures in each country. The average of the actual profiles in those 4 weeks of 2020 by type 565 
of day (orange curve) is compared with the average of the actual profiles in those 4 weeks of 
previous years by type of day (blue curve). 
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Fig. 17. Differences between the average profiles in the first 4 weeks of COVID-19 and 
those same weeks in past years for each country's weekdays. 570 

0 5 10 15 20

0.04

0.045

0.05

Weekday
Peru

Difference in demand
Peru

0 5 10 15 20 25
-2

-1

0

1

10-3

0 5 10 15 20

0.04

0.05

0.06
Bolivia

Bolivia

0 5 10 15 20 25

-4

-2

0

2
10-3

0 5 10 15 20
0.03

0.035

0.04

0.045

CostaRica
CostaRica

0 5 10 15 20 25
-4

-2

0

10-3

0 5 10 15 20
0.035

0.04

0.045

Brazil
Brazil

0 5 10 15 20 25

-2

-1

0

1

10-3

0 5 10 15 20
0.03

0.04

0.05

Guatemala
Guatemala

0 5 10 15 20 25

-2

-1

0

1
10-3

0 5 10 15 20

0.04

0.045
Mexico

Mexico

0 5 10 15 20 25
-2

0

2
10-3

0 5 10 15 20

0.04

0.045

0.05
RDominicana

RDominicana

0 5 10 15 20 25

-2

0

2

10-3

0 5 10 15 20
0.035

0.04

0.045

Argentina
Argentina

0 5 10 15 20 25
-2

-1

0

1
10-3

0 5 10 15 20

0.04

0.045
Chile

Chile

0 5 10 15 20 25

-2

-1

0

1

10-3

0 5 10 15 20
Hour

0.04

0.05
Uruguay

Uruguay

0 5 10 15 20 25
Hour

-2

-1

0

1
10-3



While the former comparison is easy to interpret, it does not show the temporal 

dynamics of the changes in the shape of the demand. Therefore, the proposed shape 

impact methods are compared ahead. 

 Fig. 18 shows the heatmap of the differences obtained for each country. The 

following conclusions can be drawn. 575 

Before the start of confinements due to COVID-19, it is seen that, in general, the 

heatmap has a greenish color, indicating that the differences between the expected 

pattern and the actual profile are not very large. However, when COVID-19 begins, 

areas in dark blue (indicating a significant decrease in actual normalized demand 

versus expected at those times) and areas with reds (indicating a significant increase 580 

in actual normalized demand versus expected at those times) begin to appear.  

In addition, it can be seen how each country's reaction to COVID-19 has had a very 

different impact on demand. In countries such as Brazil, the Dominican Republic, 

Bolivia, Mexico or Chile, significant decreases in demand were detected in the central 

hours of the day, and increases in the early morning and afternoon hours from 7 p.m. 585 

However, countries such as Guatemala and Bolivia had an evolution with more 

dynamic changes over the months. Guatemala, for example, had a significant decrease 

in hours 16 to 19h at the beginning, but the decline in the latter dan be seen gradually 

changing over the months ending in a decrease in demand in hours 21 to 23. 

Fig. 19 shows the shape impact index on the daily profiles aggregated on a weekly 590 

basis. In this way, it is possible to quantify the weeks that had greater differences with 

respect to what was expected, and, in addition, it allows to see if a stability has been 

achieved in the way of consuming electricity. It is observed that the first weeks since 

the start of the measures are the ones that have had the highest impact rate. In 

countries like Peru, Brazil and Bolivia the impact was very significant in the first few 595 

months, however, it has returned to pre-COVID levels. On the other hand, other 

countries, such as Chile, have not recovered.  

 



 

Fig. 18. Heat maps of the differences for each country during 2020. The vertical red line 600 

marks the start of confinement in each country. 



 

 

Fig. 19. Evolution of the weekly Shape Impact Index for each country.  



Discussion 605 

COVID-19 has significantly affected electricity consumption under lockdown all 

over the world. For example, in the United States, average load reductions in the 

range of 8% to 10% have been reported by the New York Independent System 

Operator [29] and up to 5% by the California Independent System Operator [30]. The 

International Energy Agency (see [31]) reported an electricity demand drop to Sunday 610 

levels under lockdown across Europe and India and a reduction in China that reached 

11% in February 2020. In Europe, most of the countries have experienced a negative 

cumulative impact of between 4% and 13% within the four months following the start 

of the crisis (see [20]). In Spain, from March 14th to April 30th, there has been a 

13.49% reduction in electricity consumption compared to the previous five years 615 

(2019–2015), see [4]. 

The monthly size impacts estimated in this research for the LAC countries are 

coherent with the previously reported effects in different regions over the world, 

except for Peru and Bolivia, where the impact during the onset of the COVID-19 

pandemic was notably more significant. 620 

Countries declared quarantine measures at different times and with varying levels 

of enforcement. The Peruvian government announced a general quarantine on  March 

16th, the effects of which were visible a week later (see Fig. 15). In Bolivia, a 

quarantine was declared on March 22th, with a significant impact vis-à-vis the 

baseline scenario once the measures were taken and enforced. In Chile, measures 625 

were taken locally, affecting only some regions of the country and increasing in 

intensity over time as the pandemic expanded. In that case, we can observe a 

progressive increase of electricity demand shifting on the Shape Impact Index. 

Conversely, in Uruguay, where no measures were imposed in the period analyzed in 

this study, there are no significant changes in the Shape Impact Index compared to the 630 

estimated counterfactual demand, both before and after the pandemic's start. 

Countries with large electro-intensive industries were affected more significantly 

by the adopted sanitary measures, as shown in Fig. 15 and Fig. 19. This is the case of 

Peru and Bolivia, where the mining sector accounts for 67.9% and 78.2% respectively 

of their exports. However, even though Chile has similar mining exports (54.4% in 635 



2019), the change in electricity consumption was not as abrupt as in Bolivia or Peru, 

according to the Economic Complexity Observatory  [32]. This is probably a 

consequence of its gradual adoption of sanitary measures. When focusing on Costa 

Rica, with a service sector covering 76% of its GDP according to the Central bank of 

Costa Rica [33], a much more modest impact is seen in comparison to the baseline 640 

scenario (see Fig. 15). 

Consequently, a general trend is distinguished in all these countries that links the 

composition of the country's economy and the rhythm in which the measures were 

imposed to the size and shape of the impact on electricity demand. 

Conclusions 645 

The objective of this study has been the quantitative analysis of the impact of the 

COVID-19 pandemic on the demand for electricity in a group of ten countries in Latin 

America and the Caribbean. In particular, it has analyzed how the pandemic has 

influenced from its appearance until the fall of 2020. 

To carry out this study, a particular methodology has been used. The proposed 650 

approach, instead of analyzing directly the impact of COVID-19 on hourly demand, 

considers decoupling the effect in two terms. The size impact accounts for the 

observed variations on the daily demand time series, quantifying the changes due to 

the alterations in human activity brought on by the COVID-19 pandemic. The shape 

impact accounts for the pandemic-induced changes in the standardized daily demand 655 

profile, i.e. on the variations observed on the demand profiles for each day. Thus, both 

the size and the shape impacts show different aspects of the same concern, allowing a 

better understanding by decoupling the problem. To calculate both impacts, the 

observed demand is compared to the expected one if the COVID-19 crisis had not 

happened. In this way, size and shape impact indicators have be defined from the 660 

differences between the observed demand and the reference one. To obtain a reliable 

estimation of the daily demand as well as the standardized demand profile in the 

scenario without COVID-19, well-known machine learning techniques have been 

used. 



In all the countries studied, the daily demand for electricity has experienced a 665 

reduction to a greater or lesser extent during 2020 compared to the values that would 

be reasonable to expect if the COVID-19 pandemic had not occurred. To quantify the 

observed impact for each LAC country, a multivariate regression model has been 

created to explain the daily behavior of the demand based on input variables such as 

temperature or festivity. This model, adjusted with data prior to the onset of the 670 

pandemic, has allowed to generate an estimate of the expected daily demand for 2020, 

used as a reference to measure the decrease in observed demand. Peru and Bolivia are 

the two countries where the pandemic has had the greatest impact during 2020, with 

an impact in April 2020 of around -30%. At the opposite extreme would be Chile and 

Uruguay, with a maximum monthly impact of approximately -6%. The rest of the 675 

countries have maximum monthly impacts between -11% and -17%. 

On the other hand, the results of the analysis of the daily demand profiles have 

allowed to study the impact of COVID-19 on electricity consumption habits. To this 

end, an explanatory model has been created for each country that allows obtaining an 

estimate of the expected demand profile for the whole of 2020 if there had been no 680 

COVID-19. Comparing the expected profiles with the actual profiles, significant 

changes have been observed in the way electricity is consumed. Mainly, a shift in the 

profile has been observed in the morning hours, between 7 and 12, indicating that the 

start of electricity consumption in the countries has been delayed. In addition, this 

reduction in demand in the morning produces an increase in demand in the afternoon 685 

or evening hours. 
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