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Abstract 

In collaboration with the ICAM university, this project approaches the problem of teaching 

a robot with a vacuum gripper to pick and place, from a box full of the same objects, one of 

the objects, by identifying the best position to place its vacuum gripper and without any 

major information about the object and only using a depth and color camera. In the project, 

a digital twin of the scenario is developed and a reinforcement learning algorithm is 

deployed, performing a sensitivity analysis and comparing the optimized results with 

different approaches of sampling the batch of experiences used for training. 
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Introduction 

Artificial intelligence is one of angular 

pieces of the smart industry, or industry 

4.0, which will disrupt the present 

paradigm of the day-to-day industrial 

processes as they are known.  

The smart industry focuses on two main 

objectives. The first objective is to 

improve the efficiency and efficacity of 

the current industrial processes. When a 

robot learns to do a task by his own, he 

will be often capable of delivering the 

same result as a human but in less time, 

with fewer defects and consuming less 

resources. These improvements will drive 

long term rentability on the enterprises 

and thus it is destined to arrive. The 

second important objective of the smart 

industry, and specially in reinforcement 

learning, is to place the humanity where 

the true value of the enterprise is. A robot 

will mostly serve to eliminate the 

repetitive tasks that a worker is forced to 

do and that do not contribute to giving 

meaning to his life, and to assist the human 

providing enhanced visibility where the 

human skills don’t keep up. 

The purpose of this project follows these 

objectives. The project and report that will 

be presented represent the next steps of a 

Research & Development team of the 

university of ICAM, in Toulouse. The 

team started developing this project two 

years ago, and its final objective is to teach 

a robot to pick up objects using vision. The 

scenario which the robot is set to resolve 

is formed by two boxes, one camera and 

the robot itself. One of the boxes is full of 

the same objects, and the other one is 

empty. Then, the objective is that the robot 

detects the point with the highest 
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probability of being apt for the pick. Then, 

the robot will then place the vacuum 

gripper in the point selected and 

successfully pick the object and place it in 

the other box.  

The main complexity of the problem is 

due to the lack of information about the 

object that is going to be picked. The 

algorithm will only have access to a color 

camera, a depth camera, and will know the 

depth of the floor. 

This project, could ultimately have 

various applications. Among them, this 

robot, trained correctly, would be able to 

place some objects, such as components of 

a product, screws, tools etc, from the 

inventory of a factory to the plate of an 

AGV which could, once the robot has 

finished approach these items to the 

operator, save him the time and the 

discomfort of having to stand up to go 

from the workspace to the storage and 

carry all the needed items with himself. 

Overview of the technologies 

Reinforcement Learning is a subfield of 

Machine Learning, but is also a general-

purpose formalism for automated 

decision-making and AI. A reinforced 

learning algorithm benefits from a 

continuous experience on the 

environment, enlarging the available 

dataset and continuously learning from the 

mistakes to improve recurrently the 

overall accuracy. 

One of the bigger differences between a 

reinforcement learning algorithm and a 

supervised algorithm is the existence of 

consequent decision-making processes 

that depend on each other. In a classic 

reinforcement learning system the 

algorithm will interact with a scenario, 

starting from an initial position and 

making a decision based on the scenario. 

This decision will drive a new position in 

which the algorithm will have to make a 

decision. This process will be repeated 

until the scenario gets to an end and the 

scenario is reset, starting from the starting 

position again. The group of consequent 

decisions and positions until the scenario 

finishes is called an episode.  

The process of continuously learning is 

defined using the concepts of state, action 

and reward, present in Figure 1. Firstly, a 

state gives the algorithm a full overview of 

the current scenario of the robot. 

Secondly, the algorithm chooses, from all 

the possible actions, one action. Thirdly, 

the action implemented in the scenario 

results in a reward and the next state. With 

this information in mind, the reinforced 

learning algorithm will learn to 

understand, for a given state, which 

actions are the ones that will maximize the 

total reward on the episode, which not 

only includes the reward resulted after an 

action, but also all the predicted rewards 

after the consequent actions on the states 

resulting from that action. 

 

 

Figure 1 Reinforcement Learning Block Diagram 

The reinforcement algorithm is divided 

into several modules that interact with 

each other: 

Environment  

The environment is the scenario (system, 

machine, game, etc) where the user wants 

to excel. A reinforcement learning 

algorithm communicates with the 

environment in two steps. In the first one, 

the environment sends information about 
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the current situation (current state, 

actions). In the second one, the 

environment receives the decision about 

the actions the environment should do, 

and receive a reward for this action as a 

reply, as well as the next state of the 

environment. 

Between the environment and the 

algorithm there is usually an environment 

manager, whose task is to mediate 

between the format the algorithm needs 

and the formats of the environment, for 

every state, action or reward. 

In this project, the environment will be the 

virtual representation (made in Coppelia) 

of the laboratory in Toulouse.  

Agent 

The agent is the decision maker who 

impersonates all the decisions that are 

made across the training of the algorithm. 

It is the agent that usually merges all the 

elements that form a reinforcement 

learning algorithm.  

Replay Memory 

At every timestep, the agent is in a state 

and has to make an action. The action 

leads to a reward and the next state. This 

tuple of state, action, reward and next step 

is called experience. Thus, Replay 

Memory is the term for the dataset that 

stores the agent’s experiences while 

training, so they can be accessed for 

improving the accuracy of the results. 

In this project the replay memory will be 

formed by tuples of all the points where 

the robot has tried to picked an object, 

represented by a preprocessed image of 50 

px around the point of grip, and the reward 

of the action once executed.  

It is important to outline that, at the end of 

every episode, if the number of 

experiences is higher than the batch size, 

the policy (Neural Network) is trained. To 

do that a batch of experiences in the 

Replay Memory is sampled. In a common 

reinforcement learning algorithm, this 

sampling is random, whereas in this 

project, other ways of sampling this batch 

will be explored.  

Policy 

The policy is the term that corresponds to 

the intelligence that recurrently progresses 

in the decision-making process across 

every training. In a classical reinforcement 

problem, the input is the current state of 

the environment, and the output is the 

recommendation of the action to be taken, 

having one node in the output layer for 

every possible action that the agent can 

take.  

In the cases with some complexity, 

notably in those cases where the number 

of possible states is not defined (i.e. a state 

defined by a photo), a Neural Network is 

used to reduce the computation needed to 

achieve acceptable results.  

In this project, the input of the Neural 

Network will be a preprocessed squared 

snapshot of 50 px centered in the point of 

grip. The neural network will have one 

node in the output layer, which represents 

the probability of the robot picking an 

object if positioning in this point. 

Thus, in this project, for every episode the 

Neural Network will be run as many times 

as eligible points in the current scenario. 

Then, the agent will pick the point whose 

probability is the highest. 

Strategy  

The strategy stands for the Epsilon Greedy 

Strategy. In every reinforcement learning 

algorithm, there is always a balance 

between exploration and exploitation. If 
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the agent is in mode exploration, it will 

pick an action randomly out of the 

possible options. Nevertheless, in the 

exploitation mode, the policy will be used 

to decide which of the actions is the most 

suitable, looking for maximizing the 

reward.  

In the first episodes of the training, the 

epsilon greedy strategy must be 

programmed to explore predominantly, as 

the scenario is still unknown and an 

exploration phase could drive results 

biased. For example, in a scenario with 

several positive rewards, if only exploiting 

the environment, the agent could find the 

less positive reward first, and keep 

exploiting this reward, without adverting 

that there is a bigger reward at reach. 

However, after the Neural Network is 

trained, if the scenario is not planned to 

change, the epsilon greedy strategy should 

be favoring more and more exploitation 

episodes, to maximize the output and 

perfectionate the current results. 

State of the Art 

The prior version of the solution uses a 

supervised learning algorithm to train the 

robot, based on three phases:  

1. The first one is the data 

acquisition, in which the robot 

tries to pick randomly points 

inside the box full of objects and 

saves a cropped snapshot of the 

camera around the selected point 

with a tag of success/fail 

depending if the object was picked 

or not.  

2. The second one is the training 

phase in which a Residual 

Convolutional Neural Network 

(Resnet CNN) and a Neural 

Network (NN) are used to provide 

the optimal weights to predict 

success/fail with the snapshot of 

the point selected. The 

Convolutional Neural Network is 

already trained to provide the main 

characteristics of a snapshot.  

3. The third one is the test phase, 

which ultimately will be the 

production phase, in which the 

algorithm is tested to calculate the 

accuracy. 

These phases are manually started and 

finished, and thus is not optimal.  

Objectives of the project 

Therefore, the project explained in this 

report will explore a different solution, 

using reinforcement learning. The CNN 

will still be a Resnet pretrained, but the 

NN will follow a reinforcement learning 

algorithm, which will convert the three 

phases mentioned above into one dynamic 

algorithm. 

Another pain point of the researches of 

ICAM these years is that they have had to 

resolve all the problems in the robot in 

order to train the CNN/NN algorithm, 

which sometimes results in slow project 

advances. Thus, the project will be built 

under a digital twin of the laboratory in 

Toulouse, using the simulation software 

Coppelia.  

To do so, the 6 months of the project will 

be divided in three parts equally 

distributed in time. The first two months 

of the project will focus on acquiring the 

expertise on both the reinforcement 

learning and Coppelia. The second two 

months of the project will be reserved for 

developing the software and the 

algorithm. Lastly, in the last two months 

the results will be analyzed, a sensitivity 

analysis will be conducted, and the report 

will be written. 
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Model Deployed 

Figure 2 shows the scenario built in the 

software Coppelia. The robot UR5 is in 

the middle of the scenario, and has two 

boxes at either sides of the robot, one full 

of objects and the other one empty. Each 

box has two different cameras, one RGB 

and one that measures depth. The output 

of these cameras can be seen on the top left 

and top right of the figure.  

 

 

Figure 2 Coppelia Environment Representation 

 

The general procedure of the algorithm 

will start by making RGB and depth a 

photo of the box full of objects. The depth 

camera will preprocess the points, being 

eligible points only those with a height 

higher than a threshold, to prevent the 

robot from picking a point in the base of 

the box. Then, the reinforcement learning 

algorithm will select, following 

exploration/exploitation, the point that 

will be picked. 

 

Figure 3 Preprocessed photo of the virtual box 

with contour, grid, and the point where the robot 

will pick 

Figure 3 shows a green rectangle, 

corresponding to the computed contour of 

the box, some blue points, corresponding 

to non-eligible points in the grid (height 

lower than threshold), some red points, 

corresponding to the eligible points, and a 

green point, corresponding to the point out 

of the eligible points that the algorithm has 

decided to place the vacuum gripper. 

(image of exploration episode) 

Figure 4 shows a schema of the CNN and 

the Neural Network, that relates the 

snapshot of the camera with the 

success/fail variable. Note that the final 

layer of the NN is only one node 

(success/fail). 

 

Figure 4 Illustrative Block Diagram of a CNN 

followed by a Neural Network 

Once the point has been selected, the robot 

targets the point, places the vacuum 

gripper there, and activates it. If the pick 
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was successful, the robot places the point 

in the other box. If not, it returns to the 

position of safety (Figure 2). As the 

algorithm improves, the reinforcement 

learning algorithm will predominantly use 

the Neural Networks to select the points, 

and the accuracy of the algorithm will be 

higher and higher.  

Once the model is deployed, a sensitivity 

analysis will be conducted to find the 

optimal hyperparameters that provide the 

best accuracies. Additionally, an 

improvement on the batch of images used 

to train the NN will be presented. In a 

general reinforcement learning algorithm, 

the batch of images is randomly selected. 

In this project two new ways of selecting 

the batch of images will be presented. The 

first one will be selecting those points 

whose prediction is closer to 0,5 

(indecisive sampling, algorithm not 

deciding between success/fail). The 

second one will select those points whose 

prediction is further from the real outcome 

of the point (worst-case sampling). 

Results 

A sensitivity analysis has been conducted 

to find the best hyperparameters for the 

whole model. Specifically, the following 

parameters have been optimized:  

 

• Percentage Decay: Term 

acquainted in the study, directly 

related with the actualization rate 

in the Epsilon Greedy Strategy, 

which is responsible for deciding 

if between exploration and 

exploitation. A percentage decay 

of 30% means that when the 

training has arrived to the 30% of 

all its training episodes, epsilon is 

0,5, and thus the probability of 

exploration vs exploitation is 50%.  

• Learning Rate: Learning rate of 

the Neural Network. A high 

learning rate will trust more the 

new trainings than the old weights. 

Therefore, a high learning rate can 

drive a faster convergence, but it 

can lead to higher variance in the 

final results. 

• Memory Capacity: Number of 

experiences that can be stored in 

the Replay Memory, which will be 

used for training the NN. A high 

Memory Capacity drives an 

unbiased random distribution, but 

can have difficulties in a changing 

environment. 

Batch Size: Number of 

experiences used from Replay 

Memory to train the NN in every 

episode. A higher batch size drives 

faster convergence but needs 

higher computation resources. 

 

For every sensitivity analysis three 

different plots have been analyzed.  

 

Figure 5 Sensitivity plots: Average of last 

rewards 

The first plot in Figure 5 corresponds to 

the average of the last 10 rewards for 

every training. Therefore, this plot 

represents how the algorithm is 

performing in the last episodes.  
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Figure 6 Sensitivity plots: First episode with 

recurring accuracies of above 0.9 

The second plot in Figure 6 shows the first 

episode for every training in which the 

accuracy in the training batch is higher 

than 0,9. Hence, this plot shows how fast 

the algorithm is converging.  

 

Figure 7 Sensitivity plots: Accuracy on training 

batch and loss function 

The third plot in Figure 7 shows the last 

values of the accuracy and loss of the 

Neural Network, representing how well 

the Neural Network has been optimized 

through the episodes. 

Once the hyperparameters were optimal, 

the different memory samplings were 

compared to find the most suitable one. 

Figure 8 shows the accuracy growth over 

episodes in the reinforcement learning 

algorithm, for the optimized 

hyperparameters, for the three cases of 

batch sampling mentioned above 

(Randomly Sampling, Indecisive 

Sampling and Worst-case Sampling, 

respectively). 

 

 

Figure 8 Comparison on results based by batch 

sampling 

The model which seems to be converging 

faster is the indecisive sampling, with a 

convergence of around 90% in the episode 

100, but the worst-case sampling has the 

best accuracy of everyone. Therefore, if 

this model was to be implanted in a 

warehouse, the worst-case sampling 

would be selected. 

As indecisive sampling and worst-case 

sampling offer different advantages 

throughout the episodes, a dynamic 

sampling has been explored, which means 

that the way of sampling changes across 

the training. As the indecisive sampling 

has a fast convergence, and the worst-case 

sampling is giving a good final result, the 

training will start with indecisive 

sampling, then random sampling (to 

soften the changes) and lastly worst-case 

sampling. 

Two different models have been created, 

with split 30/40/30 % and 15/35/50% of 

indecisive sampling, random sampling 

and worst-case sampling, respectively. 

The result is in Figure 9:  
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Figure 9 Comparison of the dynamic sampling 

strategies 

It seems that the model in blue (30/40/30 

% split) is converging faster, which makes 

sense as the indecisive sampling is longer. 

Nevertheless, the two models finish with 

similar end results, which do not seem 

higher than for the worst-case scenario. In 

the Figure 10 all the models have been 

analyzed: 

 

 

Figure 10  Comparison of all the final results 

As mentioned, the dynamic sampling, 

though promising, seems to have worse 

results that the worst-case sampling, and 

therefore the worst-case sampling is the 

selected one.  

Conclusions 

There are several conclusions to drive 

from the results. The first conclusion is 

that the indecisive sampling seems to have 

a faster improvement in accuracy, but a 

lower final accuracy than the worst-case 

sampling. Thus, the best solution is the 

worst-case Sampling, because the final 

accuracy is far higher than the other two 

solutions. The final accuracy over 300 

episodes of training is around 97%. 

In second place, a dynamic sampling, even 

though it has not given the correct results, 

could be furtherly explored as it could 

provide the perfect balance of fast 

convergence and final accuracy.  

The third conclusion concerns the digital 

environment. It seems to be working well 

as it mimics perfectly the normal 

operation of an anthropomorphic robot, 

such as the one in the laboratory. In terms 

of the objects used, the shape and the 

orientation of the object is similar to the 

objects used in the laboratory. The 

dynamic behavior of the objects is also an 

acceptable representation of the physical 

world. Therefore, it can be used for testing 

the algorithms built in the laboratory when 

the real environment is not working.  

Nevertheless, there are two features of the 

robot that could be improved to better 

represent the reality: the vacuum gripper 

and the sensor that detects if the object is 

attached. The vacuum gripper only grips 

an object if the point if the middle of the 

tool is touched by the object. In that case, 

the base of the gripper may not be entirely 

covered by an object, and still pick the 

object (something impossible in a real 

vacuum gripper). Additionally, the sensor 

that detects if an object is gripped 

corresponds to the same point, in the 

middle of the vacuum gripper. The object 

is detected only if the object is touching 

the middle of the base of the vacuum 

gripper, which could not always be the 

case in the real world (Due to pression in 
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the vacuum gripper the height of the base 

could change). 

The fourth conclusion of the project is 

regarding the robustness of the results. 

Even though these results are promising, 

the scenario is a software. The main next 

step should be to deploy the solution in the 

real laboratory, to confirm the results in a 

physical scenario. 
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