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RESUMEN DEL PROYECTO 

La adopción de vehículos eléctricos (VE) se considera una vía viable para reducir la huella 

de carbono del sector del transporte. Hay muchos incentivos a nivel estatal y nacional que 

pueden estimular la adopción de vehículos eléctricos. Además, la adopción de VE por parte 

de un hogar individual suele influir en sus vecinos para que adopten más VE. Estos patrones 

de difusión de la adopción se han estudiado para muchas tecnologías, incluidos los paneles 

fotovoltaicos. Este proyecto estudia los patrones de co-adopción entre la fotovoltaica y la 

adopción de vehículos eléctricos.  

En primer lugar, recogemos datos sobre dichas adopciones del Lawrence Berkeley National 

Laboratory y The Atlas EV Hub para realizar estudios de correlación. A continuación, 

simulamos un modelo de difusión paramétrico para la co-adopción. 

Palabras clave: Vehículos Eléctricos, Sistemas Fotovoltaicos, Correlación, Función 

de Utilidad, Modelo Dinámico de Elección Discreta. 

1. Introducción 

Tanto la adopción de sistemas fotovoltaicos (FV) en viviendas como la compra de vehículos 

eléctricos (EV) están convirtiéndose en piezas clave en la actual transición energética. Por 

esta razón, entender el proceso de adopción de estas tecnologías es importante para diseñar 

políticas que fomenten dicha adopción.  

Son muchos los incentivos e influencias que pueden hacer que un propietario de una 

vivienda en un determinado barrio se decida a adoptar una nueva tecnología. Por ejemplo, 

uno puede decidir comprar un vehículo eléctrico influenciado por la compara del mismo de 

un vecino o decidir comprar un panel solar debido a una rebaja y al ahorro en las facturas 

de los servicios públicos. 

Los modelos de difusión son una herramienta que considera este tipo de variables para 

predecir la propagación en el tiempo y el espacio de diferentes tecnologías. Ya existen 

modelos de difusión que estudian tecnologías como los sistemas FV o EVs. Sin embargo, 

no tienen en cuenta el posible efecto que tienen entre ellos. No es raro pensar que estas 

tecnologías tienen una correlación ya que los sistemas FV pueden producir electricidad para 

alimentar a los vehículos mencionados. Esto sumado al interés del propietario en conseguir 

que la factura de electricidad no se dispare con la carga de su vehículo hace necesario 

plantearse un modelo de co-difusión que considera también este efecto. 



 

2. Definición del Proyecto 

Este proyecto estudia los coeficientes de correlación entre las adopciones de vehículos 

eléctricos y sistemas FV en varios estados de EE.UU. con datos reales. Nuestros estudios de 

correlación revelan que existe una correlación significativa en las adopciones de sistemas 

FV y VE. Este estudio motiva la segunda parte de este proyecto, un modelo matemático de 

co-adopción. 

A continuación, propone un modelo de co-adopción de sistemas fotovoltaicos y vehículos 

eléctricos. A continuación, realiza simulaciones de una versión del modelo propuesto con el 

objetivo principal de demostrar que existe una diferencia considerable en la adopción de 

estas tecnologías cuando se considera su influencia mutua. Cabe señalar que este proyecto 

se basa en un trabajo anterior [1] en el que los autores implementaron un modelo dinámico 

de elección discreta (DDCM) para la adopción de sistemas fotovoltaicos en Austin, Texas. 

3. Descripción del modelo/sistema/herramienta 

En primer lugar, para el estudio de correlación empleamos un script de Python ejecutado en 

Jupyter Notebooks. Los resultados obtenidos para diferentes estados se obtuvieron 

comparando las matriculaciones de VE y de sistemas fotovoltaicos a lo largo del tiempo y 

la ubicación. Los datos del registro de vehículos eléctricos fueron proporcionados por The 

Atlas EV Hub y los datos del registro de sistemas fotovoltaicos se tomaron del Lawrence 

Berkeley National Lab. Considerando un registro como un nuevo adoptante de tecnología 

calculamos la correlación de instalación de estas tecnologías obteniendo resultados como la 

figura I. 

En segundo lugar, el modelo desarrollado simula la propagación de estas tecnologías 

teniendo en cuenta la influencia que tienen entre ellas, la influencia de una nueva adopción 

sobre otro posible adoptador y el factor económico por adoptar. Las simulaciones del 

modelo se hacen considerando un entorno con un numero 𝐼 de posibles consumidores en un 

tiempo 𝑇. Las simulaciones obtenidas, como se aprecia en la Figura II, muestran la 

propagación de estas tecnologías a lo largo del tiempo en un espacio definido de agentes. 

 
Figura I: Evolución de PV y EV por trimestres 

en el estado de Vermont. 

 
Figura II: Simulación del modelo; numero de 

adaptadores acumulados en un perido T. 

 

 



 

 

4. Resultados 

Este proyecto incluye dos tipos de resultados; los correspondientes al estudio de correlación 

y las distintas simulaciones del modelo de difusión desarrollado. 

En el estudio de correlaciones, el proyecto incluye graficas como las de la Figura I para 

varios estados de EEUU, que muestran la evolución de esas tecnologías a lo largo del 

tiempo, además de coeficientes de correlación para los condados del mismo estado. 

Por otro lado, también se aportan los resultados de simulaciones del modelo de difusión 

desarrollado que prueban distintas situaciones de evolución. 

Los resultados obtenidos intentan demostrar la relación directa que tienen los vehículos 

eléctricos y los paneles fotovoltaicos, y que el modelo propuesto es optimo para su estudio 

de difusión.  

5. Conclusiones 

Después de un fuerte análisis de los resultados obtenidos, la primera parte del proyecto 

muestra que la relación entre los VE y los sistemas FV tienen una importante relación para 

tener en cuenta. 

El modelo de difusión desarrollado puede considerarse una primera versión de lo que puede 

llegar a ser. La intención es llegar a desarrollar el modelo con datos reales para que pueda 

ser implementado en la realidad. Las simulaciones ejecutadas muestran el éxito de la idea 

de un modelo de co-difusión entre estas dos tecnologías. Las características de los resultados 

son similares a las de difusión de tecnologías de este tipo y dan pie a futuros avances en el 

desarrollo del modelo. 
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ABCTRACT 
 

The adoption of electric vehicles (EVs) is believed to be a viable path to reducing the 

transportation sector's carbon footprint. There are many incentives at the state and national 

levels that can spur the adoption of EVs. In addition, the adoption of EVs by an individual 

household typically influences their neighbors to adopt more EVs. Such diffusion patterns 

of adoption have been studied for many technologies, including photovoltaic (PV) panels. 

This project studies co-adoption patterns between PV and EV uptakes. 

First, we gather data on said uptakes from the Lawrence Berkeley National Laboratory and 

The Atlas EV Hub for correlation studies. Then, we simulate a parametric diffusion model 

for co-adoption. 

 
Keywords: Electric Vehicle, Photovoltaic System, Correlation, Utility Function, 

Dynamical Discrete Choice Model 

 

1. Introduction 

Both the adoption of photovoltaic (PV) systems in homes and the purchase of electric 

vehicles (EVs) are becoming key elements in the current energy transition. For this reason, 

understanding the adoption process of these technologies is important to design policies that 

encourage adoption.  

There are many incentives and influences that can make a homeowner in a given 

neighborhood decide to adopt a new technology. For example, one may decide to buy an 

electric vehicle influenced by a neighbor's electric vehicle comparison or decide to buy a 

solar panel because of a rebate and savings on utility bills. 

Diffusion models are a tool that considers these types of variables to predict the spread in 

time and space of different technologies. Diffusion models already exist that study 

technologies such as PV systems or EVs. However, they do not take into account the 

possible effect they have on each other. It is not uncommon to think that these technologies 

have a correlation since PV systems can produce electricity to power the mentioned vehicles. 

This added to the owner's interest in making sure that the electricity bill does not skyrocket 

with the charging of his vehicle makes it necessary to consider a co-diffusion model that 

also considers this effect. 



 

 

2. Project definition 

This project studies the correlation coefficients between the adoptions of electric vehicles 

and PV systems in several U.S. states with real data. Our correlation studies reveal that there 

is a significant correlation in PV and EV system adoptions. This study motivates the second 

part of this project, a mathematical model of co-adoption. 

Then, it proposes a model of co-adoption of PV systems and EVs. It performs simulations 

of a version of the proposed model with the main objective of demonstrating that there is a 

considerable difference in the adoption of these technologies when their mutual influence is 

considered. It should be noted that this project builds on previous work [1] in which the 

authors implemented a dynamic discrete choice model (DDCM) for PV system adoption in 

Austin, Texas. 

3. Model description 
 

First, for the correlation study we used a Python script executed in Jupyter Notebooks. The 

results obtained for different states were obtained by comparing EV and PV system 

registrations over time and location. EV registration data were provided by The Atlas EV 

Hub and PV system registration data were taken from Lawrence Berkeley National Lab. 

Considering a registry as a new technology adopter we calculated the installation correlation 

of these technologies obtaining results like Figure I. 

Second, the developed a model the simulates the spread of these technologies considering 

the influence they have on each other, the influence of a new adopter on another potential 

one and the economic factor per adopter. The model simulations are made considering an 

environment with a number I of possible consumers at a time T. The simulations obtained, 

as shown in Figure II, show the propagation of these technologies over time in a defined 

space of agents. 

 

 
Figura I:  Plot of the Evolution of PV and EV new 

Adopters by quarters for VT state. 

 
Figura II: Model simulations; cumulative of new 

adopters over period T. 



 

 

4. Results 

This project includes two types of results; those corresponding to the correlation study and 

the different simulations of the diffusion model developed. 

In the correlation study, the project includes graphs such as those shown in Figure I for 

several US states, which show the evolution of these technologies over time, as well as 

correlation coefficients for the counties of the same state. 

On the other hand, we also provide the results of simulations of the developed diffusion 

model that test different evolution scenarios. 

The results obtained try to demonstrate the direct relationship between electric vehicles and 

photovoltaic panels, and that the proposed model is optimal for their diffusion study. 

 

5. Conclusion 

After a strong analysis of the results obtained, the first part of the project shows that the 

relationship between EVs and PV systems has an important relationship to take into account. 

The diffusion model developed can be considered a first version of what it can become. The 

intention is to eventually develop the model with real data so that it can be implemented. 

The simulations run show the success of the idea of a co-diffusion model between these two 

technologies. The characteristics of the results are similar to those of diffusion of 

technologies of this type and give rise to future advances in the development of the model. 
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1. Introduction 

Power system is concentrating its efforts on transitioning to an efficient way to produce 

clean energy. Distributed solar adoption and electrification of ground transport will play a 

vital role in that transition. Understanding the adoption process of these technologies is 

important to design policies that foster such adoption. 

The adoption of battery electric vehicles (BEVs) and plug-in hybrid vehicles (PHEVs) is 

growing. However, “EVs haven’t yet achieved mainstream adoption at scale” [1]. The 

impending adoption growth could increase the electricity demand and have many other 

effects on the transportation sector, such as vehicle usage trends. 

Studying how technology adoption evolves in a specific location is essential to plan a way 

to accelerate its adoption. It would help to understand what would make a single resident of 

a particular area make the decision to purchase a specific technology. Many incentives and 

influences could make a homeowner in a certain neighborhood decide to adopt new 

technology. For instance, one may decide to buy an electric vehicle because their neighbor 

decided to do the same or decide to buy a solar panel because of a rebate and savings on 

utility bills.  

Existing a pattern in the way a consumer decides whether a specific technology is acquired 

or not would make it possible to create a model that could predict the household decision-

making. Therefore, the adoption of these technologies is studied to understand how policy 

decisions might influence their adoption. Diffusion models are popular in technology 

adoption studies, e.g., see [2], [3], [4], [5], [6].  

Diffusion models of PV and EV already exist; however, they ignore the influence the 

diffusion of one technology might have on the diffusion of another. 

The decisions for a household to adopt PV systems and EVs are inter-dependent. A solar 

panel directly produces electricity for a particular house, and electric vehicles need that 

electricity. EV customers will typically have higher electricity bills since they need to charge 
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their vehicles, which can incentivize the installation of a solar panel to produce the extra 

electricity needed. 

If the adoption of PV systems and EVs happens to have a strong correlation, it would seem 

necessary to study their co-adoption considering their influence on one another. For this 

reason, we study correlations among adoptions of EVs and PV systems in various states 

across USA with data. Our correlation studies reveal that there is significant correlation in 

uptakes of PV systems and EVs. This study motivates the second part of this project, a 

mathematical model for co-adoption. 

We propose a model for co-adoption of PV systems and EVs. Then, we run simulations of 

a version of the proposed model with the primary aim of demonstrating that there is a 

considerable difference in the adoption of these technologies when considering their 

influence on each other. It should be noted that this project is based on a previous work [7] 

where the authors implemented a dynamic discrete choice model (DDCM) for the adoption 

of photovoltaic systems in Austin, Texas.  

We develop a discrete choice model to simulate PV systems and EVs adoption in tandem, 

considering economic considerations, peer effects, heterogeneity, and random shocks. The 

model's objective is to design incentives that would maximize their adoption.
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2. Overview of the Report 

This thesis is composed of five sections and two appendixes. 

In Section 3, we provide a background of PV systems and EVs, including statistics of current 

adoption levels and incentives. The correlation study between uptakes of PV systems and 

EVs for multiple states within USA is presented in Chapter 4. Section 5 provides a literature 

review on DDCM and diffusion models used in [7] that are relevant for our work. In Section 

6, we propose a DDCM for co-adoption of PV systems and EVs and simulate it to gain 

insights. In Chapter 7, we end this project with the concluding remarks. Finally, Appendix 

A provides a list of the acronyms used throughout the thesis, and Appendix B shows more 

detailed results of the correlation study. 
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3. Current Adoption Levels and Incentives for 

PV Systems and EVs Adoption. 

Here we give a brief description of the most critical factors that affect these 

technologies. In addition, we comment some insights about the possible future 

concerns and plans that are predicted for them. 

3.1 PV and EV Financial Incentives Situation and 

Explanation 

In the following section, we explain the incentives situation of PV systems and EVs 

in the U.S. There are two main incentives: federal incentives, common to every state, 

and the different incentives that each state decides to implement. 

There are federal tax credit incentives at a state level that allows one to deduct a 

certain percentage of the cost of installing a solar energy system or adopting another 

renewable technology from ones federal taxes. The policies vary across different 

technologies. 

The federal tax credit for adopting a new electric vehicle after 2010 can be as high as 

$7,500. This incentive is specific to the type of vehicle adopted. Since there are many 

different types of electric vehicles, a detailed explanation of the exact incentive for 

every car would be long and especially irrelevant for the study. However, it suffices 

to say that it varies between $4,500 and $7,500 for most EVs and PHEVs [8]. 

For PV systems, the investment tax credit (ITC), also known as the federal solar tax 

credit, is 26% for constructions that started in 2021 and 2022, and 22% for 

construction beginning in 2023. The ITC was enacted in 2006 and has proven to be 

one of the most important federal policy mechanisms to incentivize clean energy in 

the United States; the solar industry in the U.S. has grown by over 10,000% [9]. The 

following table, with information gathered from the SEIA, summarizes the evolution 

of ITC over the years: 
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Table 1:  History of the ITC. 

Law Years Residential ITC 
(%) 

Commercial 
ITC (%) 

The Energy Policy Act of 2005 (P.L. 109-58) 2006 30% 30% 

The Energy Policy Act of 2005 (P.L. 109-58) 2007 30% 30% 

Tax Relief and Health Care Act of 2006 (P.L. 109-432) 2008 30% 30% 

The Emergency Economic Stabilization Act of 2008 (P.L. 110-
343) 1 (8-year extension) 

2009 30%  30%  

 2010 30%  30%  

 2011 30%  30%  

 2012 30%  30%  

 2013 30%  30%  

 2014 30%  30%  

The Omnibus Appropriations Act of 2015 (P.L. 114-113)2 2015 30%  30%  

 2016 30%  30%  

The Tax Cuts and Jobs Act of 2017(P.L. 115-97) 2017 30% 30% 

 2018 30% 30% 

 2019 30% 30% 

The Consolidated Appropriations act of 2020 2020 30% 30% 

 2021 26% 26% 

 2022 26% 26% 

 2023 22% 22% 

 2024 0% 10% 

As seen in the table, in the past years there has been a clear step-down on ITC. 

However, starting at the end of 2023, there will be a clear difference between 

residential and commercial ITC since the first one will be dropped down to zero and 

commercial to 10%. 

On top of the federal incentive, there are also city and state-level incentives available 

to encourage new technology adoption. In almost all cases, state and local programs 

stack with the federal incentive. The most common incentives, for both technologies, 

used by the different states are the following [10]: 

 
1 Also eliminated the monetary cap ($2,000) for residential solar electric installations and permitted utilities 
and companies to pay the alternative minimum tax (AMT) to qualify for the credit. 
2 Extension + changed the previous “placed-in-service” standard for qualification for the credit to a 
“commence construction” standard for projects completed by the end of 2023 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

CURRENT ADOPTION LEVELS AND INCENTIVES FOR PV SYSTEMS AND EVs ADOPTION  

10  

• Tax Credits: In addition to the federal tax credit that every U.S. citizen can access, 

some states offer a deduction from your tax obligation as a part of your renewable 

project. There is also another related incentive called property tax incentive that 

provides a tax exemption from the added value of the technology to your property. 

• Grants, Loans, and Rebates: They vary depending on the type of technology and size 

of the project for every state. 

• PACE: Property-Assessed Clean Energy financing, allows property owners to 

borrow money from the local government to pay for energy improvements. The 

amount borrowed is typically repaid via a special assessment on the property over 

years [11]. 

• SRECs (Solar Renewable Energy Certificates): Homeowners in the states that 

participate in this type of market can sell credits to utility companies. These 

companies buy the SRECs from independent producers to satisfy their Renewable 

Portfolio Standards; whenever they can’t generate the amount of renewable energy 

needed, they are able to buy it from other independent owners. Only 7 states have an 

SRECs market [12]: New Jersey, Massachusetts, Pennsylvania, Maryland, 

Washington D.C, Delaware, and Ohio. 

• Performance-Based Incentives (PBIs): These types of incentives are paid based on 

the production efficiency over time. Feed-in tariffs are an example of PBIs. 

All these incentives can be applied to different customers: residential, agricultural, 

commercial and industrial. 
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3.2 PV Systems and EVs Adoption Situation 

As seen in Figure 1, sales in the U.S. are expected to experience a growth of 29.5% 

through 2030 compared to 3.4% in 2021 [13]. 

 

Figure 1: EV’s sales forecast 2021-2023 [13]. 

The growth of this technology is evident. Recent surveys have shown that 30% of 

vehicle owners plan to buy an EV in their next car. In addition, 50% of people 

between 26 and 41 years old also plan to do so [14]. 

The purchase of these vehicles has an imminent task that the buyer must deal with, 

the vehicle's charging. However, it will be necessary to consider how to charge the 

EV and that the cost of electricity will increase. A survey conducted by Deloitte [15] 

shows that 75% of Americans would prefer to charge their EVs at home, meaning 

that the extra cost of electricity will be added to their electricity demand and bill. 

Additionally, 20% among them would consider using alternative energy sources such 

as solar for that cause. 

The speed at which this technology is expanding in the market raises the question of 

what future consequences it may have and whether we are prepared to deal with them. 

Despite others, such as the increase in the demand for battery inputs, including 
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lithium and cobalt, a consequence that would require early planning is the increase 

in demand for electricity. This consequence might seem obvious, but will there be 

enough supply to cater to the extra demand? For example, it is believed that if half 

the vehicles in America were EVs, the resources to produce the electricity needed 

would grow by 20% [14]. Distributed solar production can offset this increased 

demand. 

The adoption of PV systems in residential areas also seems to be growing. In 2021, 

the solar market experienced for the fifth consecutive year, growth of 30% compared 

to 2020 [16], and as seen in Figure 2, it is not expected to decrease. There is an 

explanation to growth pause that is forecast to happen after 2023. As seen in Table 

1, the investment tax credit (ITC) for residential areas will drop to 0% by 2024. The 

ITC has proven to be a vital incentive to expand PV technology all over U.S. Future 

predictions of Wood Mckenzie show that if another extension were to happen of the 

ITC, PV installation would increase by over 66% over the next decade [17]. 

 

Figure 2: PV installations forecast with actual 
normative [16]. 

 

Figure 3: PV installations forecast with an extension of the 
actual ITC [17]. 

Regarding PV systems adoptions, there seems to be a trend heading toward the 

inclusion of storage in the PV systems installed; to be precise, battery storage 

attachments have been rising in the sector, reaching 8.1% in 2020, according to an 

annual report from the Berkley Lab [18]. Therefore, these trends that PV systems and 
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EVs adoption present, show that householders do have in mind to complement EVs 

adoption with solar panels. In addition, 66% of the individuals who own solar panels 

are more likely to have an EV [19]. Therefore, it seems that these two technologies 

have a strong relationship since it is possible to use one to satisfy the needs of the 

other. 

Using solar with storage to help meet the demand of an electrified transportation 

sector is not the only aspect these technologies have in common. The SEIA confirms 

that there are many aspects that they share, for instance, similar growth trajectory and 

policy needs, and provides a list [20]. 

Solar and EVs are both market disruptors and benefit from rapid technology 

evolution. They are both challenging established markets with an existing customer 

base. Solar and EVs also benefit from grid modernization. The rapid changes in 

technology generation, production, and distribution have forced a modernization in 

the grid. This translates to how easily solar and EVs can interact with each other and 

the grid. In addition, the SEIA is promoting a program called “Solar + Decade” [21], 

which implies the mutual use of PV systems and EVs to overcome the possible future 

scenarios that the grid will face. This program wants to incentive many initiatives 

such as “solar + storage”. They also claim to the necessity of embracing EVs as a 

“sister” technology [20]. 

As expected, the hypothesis that technologies such as PV systems and EVs are 

strongly related is well-founded, and even more, considering the future initiatives 

being considered for energy management. Consequently, it seems imperative to 

provide a diffusion model for co-adoption of PV systems and EVs to have the most 

accurate prediction of how the technologies will grow and how different influences 

such as the financial incentives can affect their evolution. 
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4. Correlation Study 

The main objective of this study is to prove our hypothesis that the adoption of PV 

systems and EVs in residential areas is correlated. Concluding that the residential 

adoption of these two technologies is correlated would open the door to a wide range of 

further studies regarding them, such as a diffusion model for co-adoption. If there is a 

significant correlation, studying the adoption of the two technologies together would 

yield more accurate adoption models. 

4.1 Process and Data Description 

The results shown in section 4.2 were acquired as a result of comparing the registrations 

of EVs and PV systems over time and location. The data for EVs registration was 

provided by The Atlas EV Hub, an online platform that offers extended information on 

the EV market. On the other hand, the data for PV systems registration was taken from 

a report called Tracking the Sun, a project from the Lawrence Berkeley National Lab 

that describes data and information on PV adoption in the United States. 

We calculated all the results from this study from a python script run on Jupyter 

Notebooks. Out of all the available information from both sources, we considered the 

zip code and the date for each registration. With those parameters, and considering every 

new registration a new adopter, we studied the behavior of uptakes of both technologies 

in a collection of U.S. states. The selected data was organized to have the sum of the 

county's PV systems and EVs registrations in every quarter.  

The counties and periods where there were both PV systems and EVs adoptions were 

the ones of our most interest. The program calculates the correlation coefficient for those 

periods where there was a coincidence in the same location. The explanation for this 

data selection comes from the idea that for this study, the objective is to analyze the 

behavior of the technology's adoption when they co-exist. 
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We obtained two correlation calculations from this data. One calculates the correlation 

of the number of new adopters only by considering the time variable. In other words, it 

calculates the correlation of the number of new adopters of PV systems and EVs during 

a specific time range. The other calculates the correlation also considering the location 

variable; therefore, the correlation for each county over time is obtained. 

To corroborate the zip codes from the input and organize the data into counties, we used 

a list with all the needed information. All this data was based on and acquired from the 

U.S Census Bureau and HUD's Office of Policy Development and Research. Thanks to 

this corroboration process, we found out that there were some data errors in the zip codes 

of some registrations during specific periods of time. This is the reason why for some 

of the results, the analysis encompasses shorter periods than others. 

From all the data available, we studied the correlation of the six states from which there 

were enough data gathered to derive meaningful results. The timeline of the study ends 

in 2019. This decision was made after analyzing all the available data and concluding 

that the data was complete in that period. The data from 2019 to 2022 was not 

completely updated. 

We have results for the states of New York, Connecticut, Minnesota, New Jersey, 

Vermont, and Wisconsin. The following table summarizes all the data available for each 

of the mentioned states. 

Table 2: Summary table of the input data for PV and EV registrations. 

State Nº EV 

Registrations 

EV Time 

Range 

(years) 

Nº PV 

Registrations 

PV Time 

Range 

(years) 

New York 304,239  2011 - 2020 83,311 2001 - 2019 

Connecticut 11,439 2011 - 2018 15,900 2012 - 2018 

Minnesota 43,628 2013 - 2020 1,445 2002 - 2018 

New Jersey 196,900 2000 - 2018 98,424 2000 - 2018 

Vermont 33,140 2003 - 2019 11,200 2000 - 2018 

Wisconsin 21,765 2018 - 2020 11,200 2003 - 2018 
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4.2 Results 

We calculated the correlation for each state over time and the correlation for their 

counties. Therefore, there is a correlation table and two graphics for each state. One 

shows the number of new adopters of PV systems and EVs over time. The other shows 

a histogram with the correlation coefficient for its counties. In addition, Appendix B 

shows a list of the individual county correlation coefficient results for each of the 

mentioned states. 

 

Figure 4: Plot of the Evolution of PV and EV new Adopters 

by quarters for NY state. 

 

Figure 5: Histogram with the PV and EV correlation per NY 

Counties. 

 

Figure 6: Plot of the Evolution of PV and EV new Adopters 

by quarters for CT state. 

 

Figure 7: Histogram with the PV and EV correlation per CT 

Counties. 
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Figure 8: Plot of the Evolution of PV and EV new Adopters 

by quarters for MN state. 

 

Figure 9: Histogram with the PV and EV correlation per MN 

Counties. 

 

Figure 10: Plot of the Evolution of PV and EV new 

Adopters by quarters for NJ state. 

 

 

Figure 11: Histogram with the PV and EV correlation per NJ 

Counties. 

 

Figure 12: Plot of the Evolution of PV and EV new 

Adopters by quarters for VT state. 

 

 

Figure 13: Histogram with the PV and EV correlation per VT 

Counties. 
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We make several important observations.  

First, the county correlation study does not necessarily cover 100% of each state. We 

could only do the calculations for the counties from which we had data available. 

Appendix B shows the exact correlation coefficient calculated for each state's possible 

counties. In addition, we are only focusing the study on the locations where new 

adopters of both PV systems and EVs were recorded in data. For example, if there were 

no registrations for one of the technologies for a county, then that county was ignored 

in our calculations. 

Second, as seen in Figures 4, 6, 8, 10, 12, and 14, the time range for which the 

correlation coefficient is calculated for every state is different. This results from the 

organization and filtering process done to all the input mentioned in section 4.2. In this 

process, we confirm that the registration zip codes of the new adopters are legitimate, 

and we organize the data to see if there are uptakes of both technologies in the same 

timeline. This necessary corroboration process ignores all the registrations with data 

errors and, as a result, the time range of the study of each state differs. 

The following table summarizes the numerical results of the studies: 

 

 

Figure 14: Plot of the Evolution of PV and EV new 

Adopters by quarters for WI state. 

 

Figure 15: Histogram with the PV and EV correlation per 

WI Counties. 
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Table 3: Summary Table of important observations of the 6 studies. 

  
Timeline 

 

State Correlation Begin Date End Date Counties Studied 

NY 0.911576 2014 Q2 2019 53/62 

CT 0.47339 2012 Q3 2018 8/8 

MN 0.315692 2014 Q2 2019 15/87 

NJ -0.809013 2017 Q2 2019 21/21 

VT 0.82134 2009 Q3 2019 13/14 

WI 1 2018 Q2 2019 14/72 

Before drawing any conclusions, it would be interesting to analyze the individual results 

of each state to understand their meaning and the relevance they might have to the study. 

The state of New Jersey seems to contradict our hypothesis. As seen in Table 3, the 

correlation coefficient calculated is -0.809, meaning that for this state, the behavior of 

EVs and PV systems new adopters seem to have a strong negative correlation. As 

appreciated in Figure 10, when new adopters of EVs tend to grow, PV systems new 

adopters drop. 

New Jersey's new PV systems adopters have indeed decreased since 2018 [22]. In 

addition, the state financial incentive for solar in NJ appears more focused on 

commercial solar adoption rather than on its residential counterpart. Most of the solar 

incentives available in this state are promoting the commercialization of solar energy 

[23]. This state is also the only one, out of the six states present in the study, with an 

SRECs market, as explained in section 3. These companies buy the SRECs from 

independent producers to satisfy their Renewable Portfolio Standards; whenever they 

cannot generate the amount of renewable energy needed, they can buy it from other 

independent owners [12]. On the other hand, the number of new adopters over the period 

studied would make sense to be higher since; as seen in Table 2, New Jersey is the state 

with more PV systems registrations compared to the others and is the 8th state in the 

solar market ranking according to the SEIA. 
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It is also important to mention that the study for the state of New Jersey is one from 

which we experienced a lot of data loss when organizing and filtering the input data. 

This explains why the timeline for when the correlation is studied is considerably shorter 

than the others.  

The results for the states of New York and Vermont show to be favorable to the study's 

hypothesis. They both happen to have a strong correlation, over 0.8, and there is no 

evidence of data loss; the timeline of both studies almost covers that of the input data 

available. In addition, as seen in Table 3, we were able to get results for almost all the 

counties of both states; 53 of 62 for NY and 13 of 14 for VT. Going over the results 

shown in Appendix B, more than 46% of the counties of these two states have a strong 

correlation (over 0.7). For the state of Vermont, 0% of the counties have a lower 

correlation than 0.3, as for NY, only a 23% have a lower correlation than 0.3. 

The states of Minnesota and Connecticut also support the theory that there is a positive 

correlation between the uptakes of PV systems and EVs. The results show a medium 

correlation coefficient; 0.47 for Connecticut and 0.31 for Minnesota. For CT, there is no 

considerable data loss, the timeline of the study seems appropriate, and there are results 

for 100% of the state's counties. On the other hand, while the timeline for the study of 

MN is also appropriate, there are results for 15 of 87 counties. This represents only 17% 

of the state. However, this observation is not alarming considering that the number of 

PV systems registrations, available in Table 2, is just 1,445 from 2002 to 2018; and 

compared to the 43,628 new EVs adopters, the calculated correlation coefficients 

represent the few counties for which there are data available for residential PV systems 

and EVs uptakes. 

Finally, going over the promising results of Wisconsin, we discover that this individual 

study had the most considerable data loss. The period studied is not even a year, and 

there are results for less than 20% of the state's counties. From Table 2, the number of 

PV systems and EVs registration of the data available does not explain these 

observations; on the contrary, it proves that there has been a considerable loss of data 
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input. Despite this apparent issue, for the short time range studied, the strong obtained 

results suggest that, for this state, it would not seem odd to expect a positive result if 

studied in a longer timeline. 

 

4.3 Concluding Remarks 

The objective of this correlation study is to prove that a positive correlation exists 

between the new adopters of PV systems and EVs. For that task, we presented a series 

of results for six states where the correlation of these two technologies was calculated 

over time and for counties where data was available. 

In the presented results, three states, New York, Vermont, and Wisconsin, show a strong 

positive correlation; two, Minnesota and Connecticut, with a medium positive 

correlation; and New Jersey, with a strong negative correlation. The results then show 

that five out of the six studies prove that the hypothesis first presented is possible and 

true. 

As mentioned in section 4.3, some observations in the individual state studies could 

determine the relevance of the obtained findings. The results for the states of New Jersey 

and Wisconsin presented some results that we could consider irrelevant since there was 

a considerable amount of data loss, and as a result, the time range for which the 

correlation was calculated was significantly short. Compared to the periods that cover 

the studies of the other states, all been more than five years, the results of these two 

states could be considered less relevant than the others. Therefore, we can conclude that 

the four most relevant studies, New York, Vermont, Minnesota, and Connecticut, prove 

a positive correlation between EVs and PV systems uptakes.
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5. Literature Review 

There is extended literature dedicated to the investigation of models for technology 

diffusion. Technology diffusion cumulative adoption over time usually represents an S-

form, and as Rogers explains [24], depending on the level of evolution, different types of 

adopters are found. Most importantly, his theory explains that other previous adopters 

strongly influence new adopters. Diffusion models typically are based on the Bass model, 

and it has been successfully used for market prediction of the integration of many products 

at an aggregated level [25]. 

The model proposed in the research is a DDCM in which householders are able to analyze 

the benefits between adopting at a certain moment or in the future when costs are lower, 

considering the peer effects of adoption in their neighborhood. The model was developed to 

differentiate adopters by wealth and geographic location to consider the influence that these 

different adopters could have on each other. To estimate the model's parameters and 

extended data of PV systems adoption in Austin, Texas was used. This model builds upon 

an earlier work by Rust, see [26], that differs with the ones existing because it doesn’t study 

the technology diffusion at an aggregated level. 

From all the technical aspects that could be mentioned, for the intentions of the modeling 

exercise that will follow, it is only necessary to mention the ones that affect the most. The 

utility function present in the model is a linear combination of the following elements: 

• The net present value of installing a PV system in that exact household. 

• The influence of neighbors. 

• Unobserved heterogeneity is modeled as a time-variant random effect that could affect the 

householder.  

The simulations ran, showed high accuracy compared with real data. The study shows that 

the best model simulated for two years set had 4.89% average percentage error, which is 

more accurate than other models based on the Bass model. 
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The paper concluded by mentioning that wealthy agents were more likely to adopt PV 

systems and that neighbor influence plays a major role in the technology diffusion. More 

importantly, it shows that the model can be useful to consider policy incentives planning. It 

shows that not necessarily the incentive with the highest budget is the optimum for 

maximum diffusion. The period of time and the requirements of the incentives are as 

relevant. If the period is too short, then diffusion never accelerates, but if the period is too 

long, the adopters tend to prolong the decision to adopt. In conclusion, on the urge to 

maximize PV system adopters, having a limited budget, incentives need to be planned 

carefully, and the model is a perfect tool to reach that goal. 

Given the success of DDCM for PV systems adoption, we present a DDCM for co-adoption 

of PV systems and EVs. 
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6. DDCM for Co-Diffusion 

The objective of this chapter is to develop a co-diffusion model that includes economics and 

peer effects, heterogeneity and random shocks for PV systems and EVs. Furthermore, using 

the model we simulate the diffusion under different scenarios, and demonstrate that the 

diffusion of the technologies is much different when considering each other’s influence.  

The consumers are indexed by 𝑖 ∈ 𝐼, being 𝐼 the set of consumers present in the given space, 

and time is denoted by 𝑡 = 1, 2, … , 𝑇, being 𝑇 the end of the horizon. The type of technology 

is indexed by 𝑘 and 𝑘´, with 𝑘 = 1 for PV and 𝑘 = 2 for EV. 

The parameters and states that compose the utility function are listed below:  

Table 4: Model notation 

Structural Parameters 

𝑁𝑃𝑉𝑘 Represents the net present value (NPV) of technology 𝑘. 

𝛼𝑘 Technology 𝑘′𝑠 base constant for the utility function. 

𝛽𝑘´
𝑘  Peer effects of technology 𝑘´ over technology 𝑘. 

𝛿𝑘 Economic effect over technology 𝑘 

𝜌𝑖
𝑘 Consumer 𝑖 heterogeneity regarding technology 𝑘. This 

parameter represents the believes that an agent 𝑖 has on 

technology 𝑘. (Random variable Normal Distribution with 

mean equal to 0 and standard deviation equal to 1). 

𝜖1  𝑖,𝑡
    𝑘  Random shock of consumer 𝑖 at time 𝑡 regarding adopting 

technology 𝑘. (Random variable of Type I distribution). 

𝜖0  𝑖,𝑡
    𝑘  Random shock of consumer 𝑖 at time 𝑡 regarding non 

adopting technology 𝑘. (Random variable of Type I 

distribution). 
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States at time t  

𝐴𝑖,𝑡
𝑘  Equal to 1 if consumer 𝑖 has adopted technology 𝑘 before 

time 𝑡. 

𝑁𝑘,𝑡 Number of technology 𝑘 adopters at time 𝑡. 

We formulate the utility function for a consumer 𝑖 of adopting a technology 𝑘 at time 𝑡 as 

follows: 

𝑢𝑖,𝑡
𝑘 =  𝛼𝑘 +  ∑ 𝛽𝑘´

𝑘

𝑘

𝑘´=1

𝑁𝑘´,𝑡 + 𝛿𝑘𝑁𝑃𝑉𝑘 +  𝜌𝑖
𝑘 +  𝜖𝑖,𝑡

𝑘  . 
(1) 

As seen, it is a linear combination of the peer effects and the economic incentive of adopting 

a certain technology. Consumer 𝑖 adopts technology 𝑘 at time 𝑡 if he has not adopted yet 

and 𝑢𝑖,𝑡
𝑘  ≥  𝜖0  𝑖,𝑡

    𝑘 .  

The decision variable 𝑎𝑖,𝑡
𝑘  is equal to 1 if the consumer 𝑖 decides to adopt technology 𝑘 at 

time 𝑡 and is equal to 0 otherwise: 

𝑎𝑖,𝑡
𝑘  =  {

0,          𝑖𝑓        𝐴𝑖,𝑡
𝑘 = 1,

0, 𝑖𝑓 𝑢𝑖,𝑡
𝑘  <  𝜖0  𝑖,𝑡

    𝑘 ,

1,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(2) 

And the state transition functions are defined as: 

 

𝐴𝑖,𝑡+1
𝑘 =  𝐴𝑖,𝑡

𝑘 +  𝑎𝑖,𝑡
𝑘  , (3) 

  

𝑁𝑘,𝑡+1 =  𝑁𝑘,𝑡 +  ∑ 𝑎𝑖,𝑡
𝑘

𝑖

 . (4) 
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For the given problem, the decision of a consumer to adopt a technology only considers the 

information available at that moment in time: the number of PV systems and EVs adopted 

at the moment, and the NPV for the adoption. We study a model where what happened in 

the past or what is expected to happen in the future is not taken into consideration. Also, we 

consider a simple model for peer effects, where every adoption affects other adoption 

decisions equally. 

6.1 Simulations and Analysis 

The objective of this simulation exercise is to prove that with this model for co-adoption it 

is possible to study the adoption of PV systems and EVs together, and to demonstrate that, 

if the model is viable, that the adoption evolution is substantially different than when 

modelled individually. For the simulations we expect to obtain the typical S-Shape of the 

adoption over time over the whole population in Section 5. 

We created an environment composed of 100 consumers and we studied the adoption 

evolution for a period of 100 steps, i.e., 𝐼 = 100 and 𝑇 = 100. To fix the parameter values 

we ran the simulations with the values obtained for the model that studied PV adoption in 

Austin, Texas [2], shown below in Table 5. 

Table 5: Parameters values fixed for the simulations. 

𝛼𝑘 -6,8 

𝛽𝑘´
𝑘  0,03 

𝛿𝑘 0,00028 

𝑁𝑃𝑉𝑘 6000  

Note that the parameters for the exercise will stay constant for both technologies and only 

the cross-peer effects, 𝛽2
1 and 𝛽1

2, are set to 0 to study the evolution without the influence of 

one on the other. We chose 𝑁𝑃𝑉𝑘, was decided to be fixed at 6000, similar to the range of 

values used in the Austin’s research [27]. 
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Two models are studied. Model 1 has in consideration of the cross-peer effects, mentioned 

in the table, and Model 2 does not, and only considers the individual influence of each 

technology. Therefore, Model 1 is design with peer effect parameters 𝛽2
2 = 𝛽1

1 = 𝛽1
2 =

 𝛽2
1 = 0,03 and Model 2 with  𝛽2

2 = 𝛽1
1 = 0,03 and 𝛽1

2 = 𝛽2
1 = 0.  

The results are shown below. 

 

Figure 16: Model 1. Cumulative number of PV and 
EV adopters over time T. (Existence of cross-peer 
effect). 

 

Figure 17: Model 2. Cumulative number of PV 
and EV adopters over time T. (No cross-peer 
effect). 

As seen in Figures 16 and 17, the adoption evolution of PV systems and EVs, when studied 

without the influence that these technologies have on each other, is entirely different. The 

difference between the curves is apparent. We also used the area under the curves (AUC) as 

a comparison tool to have a numeric value to compare. The AUC for both curves in Model 

1 is double the ones in Model 2. In addition, Model 1 has the expected typical S-Shape for 

technology diffusion well represented.  

As mentioned before, the values of the parameters are synthetic, and the results are for 

simulating and testing purposes only. They do not represent a particular state or reality. 

However, some insights can be taken as a motivation for future work. The curves in Model 

1 show the typical exponential growth at half a period when technology has gained in 

popularity. 
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In the following figures, other simulations of variations of Model 1 are shown. The 

following values given to the parameters are for testing. The intention is to guide and 

compare the graphics if some of the hypothesis discussed in the thesis. Therefore, for the 

following simulations, we studied some hypothetical cases.  

As discussed in Section 3, there is a belief that PV owners are more likely to adopt EVs, 

meaning that the value 𝛽1
2 could be higher than 𝛽2

1. Moreover, the NPV for adopting EVs is 

not realistic to have a similar value to the NPV for adopting PV systems. When adopting 

PV systems, there is a direct income for the generation of energy, while for EV adoption, 

there is an economic gain or cost versus the alternative transportation mediums. The 

following figures try to simulate a more realistic model considering the mentioned 

hypothesis with the intention of representing a more realistic curve, even though the values 

are synthetic. 

 

Figure 18: Model 3. Cumulative number of PV and 
EV adopters over time T. (Existence of cross-peer 
effect). 

 

Figure 19: Model 4. Cumulative number of PV and 
EV adopters over time T. (Existence of cross-peer 
effect). 

 

Table 6: Parameter values table per model.  

Model 𝑁𝑃𝑉1 𝑁𝑃𝑉2 𝛽1
2 𝛽2

1 

1 6000 6000 0,03 0,03 

3 6000 3000 0,05 0,02 

4 6000 -1000 0,05 0,02 
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Table 6 shows the parameters that we changed from the initials of Model 1. Note that Models 

3 and 4 show the PV systems and EVs diffusion considering the hypothesis mentioned. The 

peer influence of PV systems over EVs has increased, and EV's influence over PV systems 

has decreased. In addition, Model 3 is set to have an NPV for EVs lower than the one for 

PVs, and Model 4 has been lowered to the extent of being negative. 

The results still show the same characteristics described before. Even with variations, all 

three models show that considering the cross-influence is key to obtain the most accurate 

diffusion model possible. If the cross-influence is as strong as it looks, it opens a wide range 

of new approaches that could help incentivize adoption. For instance, Model 4 is fixed to 

have a negative NPV for adopting EVs, and that would seem very unattractive to a 

consumer; however, as shown in Figure 19, the growth of PV systems manages to boost the 

adoption of EVs at the end of the set period. 

6.2 Model Conclusions 

The exercise proves the significant difference between the adoption predictions of the two 

proposed models, with co-adoption and without. The results also indicate that the proposed 

model, if augmented with more realistic values for NPV, peer effects and such, is rich 

enough to capture the dynamics of the co-diffusion of EVs and PV systems. Furthermore, 

having proved a considerable correlation between PV systems and EVs, it seems necessary 

to consider that influence for the desired model. These two reasons prove that the cross-peer 

effect changes the distribution of PV systems and EVs and are motivation enough to 

continue refining this model further. 

The simulations have also introduced some interesting insights that motivate future work. 

As explained in previous chapters, proper use of the proposed diffusion model could help 

clear the path to accelerate PV systems and EVs adoptions and even help policymakers 

design efficient budget plans to incentive such technologies. By incentivizing properly one 

of the technologies it is possible to maintain the growth in adoption of the other. 
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7. Concluding Remarks 

Through this thesis, we demonstrated that it is possible and necessary to develop a diffusion 

model for the co-adoption of PV systems and EVs with a DDCM. 

For the first part of the study, we explained and demonstrated considerable influence 

between photovoltaic panels and electric vehicles in residential areas. Then, we carried out 

a correlation study for six different states in the U.S.: New York, Connecticut, Minnesota, 

New Jersey, Vermont, and Wisconsin. For each of the six states, the registration of PV 

systems and EVs overtime was calculated and analyzed. With the data available from the 

Berkeley Lab and Atlas EV Hub, the correlation coefficient of the two technologies was 

calculated at a county level. The analysis revealed the existence of a correlation between PV 

systems and EVs uptakes, motivating the second part of the thesis. 

The second part of this thesis consisted of developing a model that intended to demonstrate 

that a diffusion model for PV systems and EVs co-adoption differs widely from an 

individual diffusion model approach. The model had a utility function for adopting both 

technologies. It was a linear combination of the peer effect and the economic outcome of 

adopting a new technology. The model simulated the decision-making of a particular 

customer to adopt PV systems or EVs at a specific moment in time, considering the influence 

of the technologies adopted by other peers and the NPV of adopting at that moment. For this 

version, the agent was not influenced by past or future predictions and all the peers’ 

adoptions had the same influence on the customer concerned. Through the simulations, we 

demonstrated that adoption predictions for a model design with co-adoption are very 

different from those that model these technologies individually.  

The simulations also led to a series of insights that motivate future work. The strong 

correlation in the adoption of PV systems and EVs, opens a range of different approaches 

in which their adoption could be maximized. By incentivizing the growth of one of the 

technologies’ adoption, the other one could be affected and grow in parallel.  
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In conclusion, the presented work in this thesis demonstrates that the correlation between 

PV systems and EVs is strong enough to be taken into consideration and that the model 

proposed with cross-technology peer effects changes the distribution of these technologies. 

As explained at the beginning of the thesis, the long-term objective of the project is to 

develop a DDCM for co-adoption of PV systems and EVs. In other to do so, it is first 

necessary to create a develop a theorical DDCM framework desired. We will briefly 

describe some of the future steps that will follow this thesis. 

The modeling exercise, in addition of having the objective explained in Section 6, it is also 

the first step for achieving the complete framework. The model design in that section 

considered the peer effects of installing a technology equally. In reality this is not true, one’s 

next-door neighbor would obviously have more influence over him than someone that lives 

miles away. In order to simulate this, one can create a space in which the consumers are 

spread randomly, and each agent will be influenced depending on the distance from the other 

adopters. 

In addition, we want to consider forward looking consumers. The consumer would compare 

the benefits of adopting the technology at time 𝑡 or waiting for other future time. Finally, 

the consumer would have to choose between accepting and investing in the technology with 

all its economic consequences or not investing [28]. 
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Appendix A: List of Acronyms 
 

EV  Electric Vehicles 

PV  Photovoltaic Panels 

PHEV  Plug-in Hybrids Vehicles 

BEVs  Battery Electric Vehicles 

ITC  Investment Tax Credit 

SEIA  Solar Energy Industries Association 

SREC  Solar Renewable Energy Certificates 

NY  New York State 

CT  Connecticut State 

NJ  New Jersey State 

VT  Vermont State 

WI  Wisconsin State 

MN  Minnesota State 

DDCM Dynamic Discrete Choice Model 

NPV  Net Present Value 

AUC  Area Under the Curve 
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Appendix B: County Correlation Results per State 

State of New York 

 

Table B1: Correlation coefficient per county of NY. 

County Name County FIPS Correlation 

Albany 001 0.394745 

Bronx 005 0.890491 

Broome 007 0.791272 

Cattaraugus 009 0.937201 

Cayuga 011 0.887357 

Chautauqua 013 0.753905 

Clinton 019 0.955938 

Columbia 021 0.538647 

Dutchess 027 0.915316 

Erie 029 0.923773 

Essex 031 0.548442 

Franklin 033 0.216777 

Fulton 035 0.344865 

Genesse 037 0.142857 

Greene 039 0.138431 

Jefferson 045 0.636560 

Kings 047 0.906222 

Livingston 051 -0.190611 

Madison 053 -0.636364 

Monroe 055 0.912381 

Montgomery 057 0.977140 

Nassau 059 0.815951 

New York 061 -0.131393 

Niagara 063 0.969629 

Oneida 065 0.633631 

Onondaga 067 0.822972 

Ontario 069 0.402229 

Orange 071 0.665979 

Orleans 073 0.455709 

Oswego 075 0.990087 

Otsego 077 0.911489 

Putnam 079 0.410272 

Queens 081 0.919758 
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Rensselaer 083 0.720774 

Richmond 085 0.683915 

Rockland 087 0.784886 

St. Lawrence 089 0.452574 

Saratoga 091 0.193153 

Schenectady 093 0.113851 

Schoharie 095 0.661924 

Schuyler 097 1.000000 

Steuben 101 0.346050 

Suffolk 103 0.215201 

Sullivan 105 0.513145 

Tioga 107 0.680688 

Tompkins 109 0.541962 

Ulster 111 0.823219 

Warren 113 0.837388 

Washington 115 0.753814 

Wayne 117 0.919126 

Westchester 119 0.904284 

Wyoming 121 0.976656 

Yates 123 0.489735 

 

 

 

 

 
Figure B1: Heat map for correlation per county for NY.  

https://en.wikipedia.org/wiki/Schenectady_County,_New_York
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State of Connecticut  

 

Table B2: Correlation coefficient per county of CT. 

County Name County FIPS Correlation 

Bridgeport 001 0.498986 

Hartford 003 0.464302 

Litchfield 005 0.243063 

Middletown 007 0.243353 

New Heaven  009 0.666871 

New London  011 0.277655 

Rockville 013 0.216769 

Willimantic 015 0.190058 

 

 

 

 

 

Figure B2: Heat map for correlation per county for CT.  

  



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

APPENDIX B: COUNTY CORRELATION RESULTS PER STATE  

40  

State of Minnesota  

 

Table B3: Correlation coefficient per county of MN. 

County Name County FIPS Correlation 

Chisago 025 1.000000 

Dakota 037 0.170488 

Goodhue 049 -0.944911 

Hennepin 053 0.291134 

Olmsted 109 1.000000 

Ramsey 123 0.228904 

Rice 131 0.593999 

St. Louis 137 -0.866025 

Scott 139 -0.125926 

Stearns 145 0.799456 

Steele 147 -0.296432 

Wabasha 157 -1.000000 

Washington 163 0.299387 

Winona 169 -0.231423 

Wright 171 0.242180 
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State of New Jersey  

 

Table B4: Correlation coefficient per county of NY. 

County Name County FIPS Correlation 

Atlantic 001 -0.973862 

Bergen 003 -0.545675 

Burlington 005 -0.786160 

Camden 007 -0.727538 

Cape May 009 -0.543623 

Cumberland 011 -0.289345 

Essex 013 -0.894856 

Gloucester 015 -0.784314 

Hudson 017 -0.739084 

Hunterdon 019 0.265198 

Mercer 021 -0.853028 

Middlesex 023 -0.126016 

Monmouth 025 -0.319636 

Morris 027 0.120910 

Ocean 029 -0.591979 

Passaic 031 0.219519 

Salem 033 -0.828995 

Somerset 035 -0.661322 

Sussex 037 0.220149 

Union 039 -0.991765 

Warren 041 -0.659582 
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State of Vermont  

 

Table B5; Correlation coefficient per county of VT. 

County Name County FIPS Correlation 

Addison 001 0.656508 

Bennington 003 0.784234 

Caledonia 005 0.507645 

Chittenden 007 0.688237 

Franklin 011 0.514880 

Grand Isle 013 0.422502 

Lamoille 015 0.621314 

Orange 017 0.755877 

Orleans 019 0.825788 

Rutland 021 0.700456 

Washington 023 0.807545 

Windham 025 0.503500 

Windsor 027 0.878219 

 

 

 

 

 
Figure B3: Heat map for correlation per county for VT. 
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State of Wisconsin  

 

Table B6: Correlation coefficient per county of WI. 

County Name County FIPS Correlation 

Brown 009 -1.0 

Dane 025 1.0 

Eau Claire 035 1.0 

Milwaukee 079 1.0 

Outagamie 087 1.0 

Portage 097 1.0 

Racine 101 1.0 

Rock 105 1.0 

Saint Croix 109 -1.0 

Sauk 111 1.0 

Sheboygan 117 -1.0 

Waukesha 133 1.0 

Winnebago 139 -1.0 

Wood 141 1.0 
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Appendix C: Alignment of the project with 

Sustainable Development Goals 

 

This thesis is aligned with the following sustainable development goals: 

• Goal 7: Ensure access to affordable, safe, sustainable, and modern energy. The 

model will be essential for expanding renewable energy technologies in residential 

areas. The model would help to understand the best way to expand PV and EV in 

residential areas for a specific place. Having the key to maximizing the use of electric 

vehicles and installing PV panels in residential houses will help create sustainable 

cities. 

• Goal 8: Promote inclusive and sustainable economic growth, employment, and 

decent work. The model could help policymakers plan the periods and budget 

dedicated to the incentives for maximum adoption of PV and EV. 

• Goal 13: Take urgent action to combat climate change and its impacts. Helping the 

residential sector in the transition to clean energy use will help to decrease the 

emissions of CO2 to the atmosphere. 


