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Abstract. Bayesian Optimization (BO) is the state of the art technique
for the optimization of black boxes, i.e., functions where we do not have
access to their analytical expression nor its gradients, are expensive to
evaluate and its evaluation is noisy. A BO application is automatic hy-
perparameter tuning of machine learning algorithms. BO methodologies
have hyperparameters that need to be configured such as the surrogate
model or the acquisition function (AF). Bad decisions over the configu-
ration of these hyperparameters implies obtaining bad results. Typically,
these hyperparameters are tuned by making assumptions of the objective
function that we want to evaluate but there are scenarios where we do
not have any prior information. In this paper, we propose an attempt
of automatic BO by exploring several heuristics that automatically tune
the BO AF. We illustrate the effectiveness of these heurisitcs in a set of
benchmark problems and a hyperparameter tuning problem.

1 Introduction

Optimization problems, which task assuming minimization is to retrieve the min-
imizer x∗ = arg max f(x) | f : Rn → R, x∗,x ∈ X ∈ Rn, are often solved
easily when we have access to the gradient of the function that we want to op-
timize. Nevertheless, there exist a plethora of scenarios where we do not have
access to these gradients. Typically, metaheuristics [12] like genetic algorithms
[5] are used in this setting. Genetic algorithms and metaheuristics in general are
useful when the evaluation of the function is cheap whether the cheap definiton
refers to computational time or other resources such as the budget of the op-
timization process. This is not always the case. For example, we may consider
an scenario when the function to optimize requires to configure a robot [3] or
training a deep neural network [9]. We can not afford in these scenarios a high
number of evaluations. Ideally, we would like to consider a method that suggest
as an approximation x̂∗ ≈ x∗ of the optimum of the problem in the least number
of evaluations as possible. An approximated solution to the true minimizer of the
problem would be one with low absolute regret at the end of the optimization
process r = |f(x̂) − f(x)|, i.e. a local optima, not necessarily close, w.r.t. some
distance metric in Rn, in the input space to the minimizer.
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Moreover, we can even consider a more complicated scenario that the one
described if the function that we want to optimize f(·) is modelled as a latent
variable that we cannot observed as it has been contaminated by some random
variable, for example, a gaussian random variable, hence observing y = f(·) +
N (0, σ) where σ is i.i.d. ∀x ∈ X . In other words, for any two similar points of
the input space we observe a, without loss of generality, gaussian distribution
N (0, σ). Functions whose analytical expression is unknown, the evaluations are
costly and the observation is contaminated with noise are often referred to as
black boxes. Non convex Black box optimization has been dealt with success by
BO methodologies [2], being the current state of the art approach.

The most popular example of such an optimization is the task of automatic
Machine Learning tuning of the hyperparameters or the hyperparameter problem
of machine learning algorithms [20], such as the PC algorithm [4], but also all
kinds of subjective tasks like Suggesting Cooking Recipes [7] or other applications
belonging to robotics, renewable energies and more [19].

Automatic Hyperparameter Tuning of Machine Learning algorithms is a de-
sirable process that BO can tackle, but the BO procedure also have hyperpa-
rameters that need to be fixed a priori. As we are going to see in more detail in
the next section, BO needs to fit a probabilistic surrogate model M , such as a
Gaussian Process (GP) [18], in every iteration to the observations. This GP or
other model have a set of hyperparameters θ associated with it. An Acquisition
Function (AF) α(·) : Rn → Rn is then built in every iteration from the GP,
or other model, that tries to represent an optimal tradeoff between the uncer-
tainty given by the probabilistic model in every point of the input space and
its prediction. The AF is a free hyperparameter of BO and it could be a bad
choice depending on the problem. There are an infinite number of AFs α ∈ A,
being A the functional space of possible AFs. There is no single AF that is the
best for every problem. A bad choice on these and other hyperparameters of BO
lead to bad results in the optimization process. Hence, we ideally need a process
that performs automatic BO without the need of also hyperparametrize the BO
algorithm. This work tries to attempt this problem and starts dealing with the
automatic decision of which AF should we use by performing different heuristics.
We hypothesize that an automatic BO algorithm will deliver better results than
having to manually tune the hyperparameters of BO in problems where we do
not have prior information about them.

This paper is organized as follows, in section 2 we introduce the fundamental
theory of BO and GP. Then, in section 3, we exhibit our proposed approaches
for BO. We introduce a set of benchmark experiments and a real experiment to
show the utility of our approach in an experiments section. Finally, a conclusions
and further work section summarizes the paper.

2 BO Issues for Automatic Optimization

The BO algorithm is executed in an iterative fashion, where it uses a probabilistic
surrogate model M(θ) as a prior over functions p(F ) which functional space F
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contains all the hypotheses about the objective function f(·) that we want to
get the maximum of x∗ = arg max f(x). This model M , hyperparametrized by a
set θ, is typically a GP [18], but other models such as Bayesian Neural Networks
[21] and Random Forests [15] are also used. In order for BO to work, we need to
assume that the function f can be sampled from it p(F ). Hence, depending on
the problem, different models may be optimal and even some of them may led to
bad result, being hence the model and its hyperparameters a hyperparameter of
BO. For example, if we consider the popular GP for a problem, if the objective
function is not stationary and we do not do any transformation of the input
space to treat this property of the objective function, the GP does not serve as
a prior for that function and independently of the other hyperparameters of the
BO algorithm and of the number of evaluations, we are going to retrieve bad
results.

Even by choosing the same probabilistic surrogate model M we need to define
the correct hyperparameters θ ∈ Θ for that model. In the typical case of a GP, a
wrong choice of kernel can imply that the function that we want to optimize is no
longer on the functional space that the GP defines. Even by optimizing the rest
of the GP hyperparameters by a maximum likelihood procedure or taking an
ensemble of different GPs with hyperparameters sampled from a hyperparmeter
distribution, as they depend on the choice of kernel, that optimization procedure
would be useless, leading again the BO algorithm to bad results.

BO uses the predictive distribution of the model in every point x of the
input space X to build an AF α(M(X|θ)). This AF represents the utility of
evaluating every point x ∈ X in order to retrieve the optimum of the objective
function in the, in the standard BO algorithm, next step of the iteration, being
a myopic optimization procedure. The literature contains different AFs that try
to represent the optimal trade off between exploration of the space areas that
have not been yet explored and the exploitation of previously good evaluated
results. Some of these AFs are the following ones:

Probability of Improvement: PI(x) = Φ(
f(xbest)− µ(x)

σ(x)
). This AF basically

represents, for each point of the space, the probability of this point to be better
if evaluated than the best observed value retrieved so far.

Expected Improvement: EI(x) = σ(x)(γ(x)Φ(γ(x))+φ(γ(x))).. The previous
function does not take into account, for every point and sample function of the
probabilistic model, how much does the point improve the maximum value found.
Expected improvement represents a theoretical improvement over the probability
of improvement by considering this quantity.

Lower Confidence Bound: LCB(x) = µ(x)− κσ(x).. This AF is representing
a tradeoff between the prediction of the probabilistic model in each point of the
space µ(x) and exploration over unknown areas given by the uncertainty of the
model in each point of the space σ(x. The κ parameter assigns a weight for each
quantity.

But there are a lot more, in fact, we could generate an infinite number of
possible AFs. As in the case of the probablistic surrogate model, the decision
of the chosen AF conditions the optimization. For example, if the function is
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monotonic, we do not need a heavy exploratory based AF. On the other way, if
the objective function is contaminated by a high level of noise, the exploitation
criterion is practically useless. There is no single best AF for every scenario, as
the no free lunch theorem states [14].

for t = 1, 2, 3, . . . ,max steps do
1: Find the next point to evaluate by optimizing the AF:
xt = arg max

x
α(x|D1:t−1).

2: Evaluate the black-box objective f(·) at xt: yt = f(xt) + εt.
3: Augment the observed data D1:t = D1:t−1

⋃
{xt, yt}.

4: Update the GP model using D1:t.
end
Result: Optimize the mean of the GP to find the solution.

Algorithm 1: BO of a black-box objective function.

BO have more hyperparameters, as for example the optimization algorithm of
the AF, typically a grid search over the space of the AF and a local optimization
procedure such as the L-BFGS algorithm [6]. The sampling procedure for the
hyperparameter distribution of the probabilistic surrogate model, the number of
samples and more. Varying the values of those hyperparameters condition the
quality of the final recommendation. We have observed that despite the fact that
BO is an excellent optimization procedure, it is not automatic and we need to
choose wisefully the hyperparameters. This is possible if we have prior knowledge
about the objective function, but this is not a scenario that always happens.

Hence, we ideally need a procedure to search for the best BO hyperparame-
ters, concretely the model and the acquisition, as the function is being optimized.
This work is a first step towards this goal. We explore different simple heuristics
to determine if they affect to the optimization behaviour. We have only focused
on the AFs, but the selection of a particular probabilistic surrogate model while
the optimization is being performed is also an essential issue to deliver automatic
BO.

The next section will illustrate the first possible methods that we can execute
to perform a simple search of the possible AFs belonging to the set A of all
possible AFs to build from a probabilistic surrogate model.

3 Heuristic driven Bayesian Optimization

In this work, we begin to explore the possibilities of combining AFs in order to
build criteria that satisfies the majority of the problems or that it adapts to the
optimization process.

Formally, if we have a set A of AFs, we are going to build criteria that
combines these AFs.

We hypothesize that different GP states of an underlying objective function
need different AFs in order to discover which is the optimum of the underlying
function. Which is in contrast to the typical BO algorithm that just uses the
same AF for all the iterations.
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We propose, given the same probabilistic surrogate model, using different
AFs or linear combinations between AFs in the same BO algorithm. For every
iteration, a different AF will be used, defining now for BO problems not an AF
as in standard BO but an AF generator G that generates for every iteration
t = 1..N a different AF αt(·) ∈ A. These generators can use any possible AF
as seeds for the generation of AFs in every iteration. We illustrate different
approaches for an AF generator that are basically heuristics that search the best
possible AF.

In practice, we have explored combinations of Standard AFs used in the BO
literature. We formulate the hyperparameter tuning of AFs for BO as a search
problem and start tackling it with heuristics to observe how the global behaviour
of BO is conditioned.

We propose the following approaches over the AFs described in the previous
section. As it has been described, we could use an extended set of AFs like in-
cluding PES [13], MES [22] or any other. We also hypothesize that the behaviour
of the heuristics will improve with the addition of more and more diverse AFs to
the seed set of AFs that we consider. The heuristics that we propose are, in first
place, the Random criteria, basically defined by placing un uniform distribution
U over the functional set of AFs A and sampling from it in every iteration.
For every iteration a different AF α(·)t is going to be executed. We hypothe-
size that the optimization process will be enriched by the random execution of
different criteria, obtaining good results. In our case, as we only consider the
EI, LCB and PI acquisitions, the criterion will be given by the following expres-
sion: Rand(x) = U(PI(x),EI(x),LCB(x))., but in the general case it would be:
Rand(x) = U(A).

We could perform the same logic as in the Random case but performing
a Sequential criterion. Seq(x, niter) = Cands(x)[nitermod(ncands)].. We model
here all the acquisitions in an ordered list and sample them sequentially, one
acquisition for every iteration. We have proposed this two initial strategies in
an analogy with respect to the grid search and random search, hypothesizing
that they fully explore the set of seed AFs and enriching the optimizing process
results.

If we assume that all the AFs can be valid in any time of the optimization
process and retrieve different but interested results, then, a logical suggestion
will be to consider a linear combination over all the considered AFs, that is
the weighted AF criterion, defined by the following expression: αw(x|A,w) =∑|A|

i=1 wiαi(x) :
∑|A|

i=1 wi = 1. In our particular case the weighted criterion func-
tion would be αw(x) = κPIPI(x) + κEIEI(x) + κLCBLCB(x).

Lastly, lots of metaheuristics and machine learning algorithms include mech-
anisms such as the mutation probability in genetic algorithms or dropout in deep
neural networks that act as regularizers, enforcing exploration and preventing
from overfitting, improving the results. We hypothesize that we can establish an
analogy for the AF search so we introduce a noised criterion, that basically trans-
forms the acquisition in a latent functional variable and contaminates it with i.i.d
gaussian noise to enforce exploration: f(x) = g(x) + acquisition noiseN (0, I).
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All these approaches are heuristic but explore a space defined by the set A.
Our procedure combines AFs like this: The weighted AF criterion contains a
weight for each AF to measure its the importance. This is a generalization of
common BO but does not solve the automatic BO scenario. If, instead of being
hardcoded by the user, these weights were adapted as the problem is being
optimized or in function of the problem, the optimization would be automatic.
As a first attempt towards automatic BO, we propose to use a Metaoptimization
of the weights w using BO over the weight space R|A| ∈ [0, 1]|A|. We define a
search space of |A| weights that are associated with their respective AFs. Then,
we execute a standard BO procedure that gives us the weights that minimize
the predicted error by the underlying BO algorithm. By performing this double
loop, the weights are optimized and the underlying BO algorithm is automatic.
Nevertheless, the upper BO algorithm still needs to be tuned but we can study
several problems to adjust a reasonable prior over the weight space.

4 Experiments

We carry out several experiments to evaluate the performance of the described
heuristics in the previous section. We also compare the approaches to a pure
exploration method based on Random Search [1]. The set of seeds AFs and
the proposed ones have been implemented in SkOpt [16]. In each experiment
carried out in this section we report average results and the corresponding stan-
dard deviations. The results reported are averages over 100 repetitions of the
corresponding experiment. Means and standard deviations are estimated using
200 bootstrap samples. The hyperparameters of the underlying GPs are maxi-
mized through maximum likelihood in the optimization process. The AF of each
method is maximized through a grid search.

4.1 Benchmark Experiments

We test the proposed AFs and compare with GP-Hedge over a set of benchmark
problems, namely, the Branin, 3-dimensional Hartmann and 3-dimensional Ras-
trigin functions. We plot the results in Figures 1, 2 and 3.

We can observe that, for the Branin function, the best method is the weighted
AF optimized by the metaoptimization process. GP-Hedge method also delivers
good results, tying at the end with the weighted AF. We hypothesize that the
good behaviour of the ensemble AFs (weighted and hedge) is a consequence
given by the fact that every seed adds some value in the problem. Separated,
although, they do not provide good results.

We observe a different behaviour in the Hartmann function, where only the
pure exploitation AFs (EI and PI) report a good result. This happens due to the
shape of Hartmann, where exploration is a bad strategy as with pure exploitation
we can reach to the optimum. We can observe empirically that EI is better than
PI as it considers the amount of improvement over the incumbent. Ensemble
AFs, as they consider exploration or other criteria rather than EI and PI lose
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Fig. 1. Means and standard deviations of the log difference w.r.t the absolute regret
of the maximizer of the different considered AFs in the Branin Function.
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Fig. 2. Means and standard deviations of the log difference w.r.t the absolute regret
of the maximizer of the different considered AFs in the Hartmann Function.

performance, but they are not as bad as LCB, which is not a good strategy here.
This property of ensemble AFs guarantees that they are not as bad as the worst
case in any scenario.

In the Rastrigin function, we can observe that the random methods do not
perform well but the others tie, performing a better result. No AF seems to
govern, maybe all locating just local optima of Rastrigin. The large standard
deviations of the Rastrigin function may be explained for different reasons, first
is the shape of the function with lots of local optima, each repetition may end
in different points and hence the deviation is big. Other explanations are the
optimization of the AF being done with a grid search. We need to perform a
L-BGFS optimization of the maximum valued point retrieved by this search
to discard the hypothesis that the large deviations are happening for local op-
tima. Another important fact is to consider a hyperparameter distribution of
the GPs to sample from it with an algorithm such as slice sampling instead of
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Fig. 3. Means and standard deviations of the log difference w.r.t the absolute regret
of the maximizer of the different considered AFs in the Rastrigin Function.

simply optimizing the hyperparameters through maximum likelihood, incurring
in overfitting of the model as BO performs a small number of evaluations.

4.2 Real Experiment

In this section we perform a hyperparameter tuning problem of the learning rate,
minimum samples split and maximum tree depth of a Gradient Boosting En-
semble classifier on the Digits Dataset. We do not find the issues of the Rastrigin
function in this problem as, typically, the shape of the estimation of the gener-
alization error function for machine learning algorithms is smooth, so we expect
that the retrieved results by BO in this case will not contain a high standard
deviation and favour the weighted criterion. The results can be seen in Figure 4.
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Fig. 4. Means and standard deviations of the log difference w.r.t a perfect classification
error of the different considered AFs in the Hyperparameter Tuning of a Gradient
Boosting Ensemble.
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As we can see, the weighted criterion is the best one in this problem, that
might contain some local optima and irregularities as the random search also
work pretty well. Maybe due to certain combinations of parameters that gen-
erates good results. There is a lot more to do for automatic BO but the first
necessary step towards that goal is to explore the set of all possible AF through,
as in this case, generators of linear combinations of AFs that, in average, produce
great results.

5 Conclusions and Further Work

The proposed approaches provide alternatives for Hyperparameter Tuning prob-
lems with respect to the standard AFs. There is still a lot of work to do for au-
tomatic BO, such as doing a similar approach as this one but with probabilistic
graphical models and AF optimizers. In future work, we would like to build a
dataset from a plethora of GP states and try to train a deep neural network
that learns to predict which is the best AF to use or even the best point to
consider given the dataset and the state of the current GP. We would like to
test whether if the transformations made in the input space to deal with inte-
ger [8] and categorical-valued variables [10] change the behaviour of the given
AF heuristics. The final purpose of this research is to employ automatic BO for
the optimization of the hyperparameters of the machine learning architecture
of the creative robots that exhibit human behaviour [17] [11] to test machine
consciousness hypotheses.
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