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Abstract. The PC algorithm is a popular method for learning the struc-
ture of Gaussian Bayesian networks. It carries out statistical tests to de-
termine absent edges in the network. It is hence governed by two param-
eters: (i) The type of test, and (ii) its significance level. These parameters
are usually set to values recommended by an expert. Nevertheless, such
an approach can suffer from human bias, leading to suboptimal recon-
struction results. In this paper we consider a more principled approach
for choosing these parameters in an automatic way. For this we optimize
a reconstruction score evaluated on a set of different Gaussian Bayesian
networks. This objective is expensive to evaluate and lacks a closed-form
expression, which means that Bayesian optimization (BO) is a natural
choice. BO methods use a model to guide the search and are hence able
to exploit smoothness properties of the objective surface. We show that
the parameters found by a BO method outperform those found by a
random search strategy and the expert recommendation. Importantly,
we have found that an often overlooked statistical test provides the best
over-all reconstruction results.

1 Introduction

Graphical models serve as a compact representation of the relationships between
variables in a domain. An important subclass is the Bayesian network, where
conditional independences are encoded by missing edges in a directed graph
with no cycles. By exploiting these independences, Bayesian networks yield a
modular factorization of the joint probability distribution underlying the data.
Of particular interest are Gaussian Bayesian networks for modelling variables in
a continuous domain, which have been widely applied in real scenarios such as
gene network discovery [11] and neuroscience [1].

When learning graphical models from data, two main tasks are usually dif-
ferentiated: structure and parameter learning. The former consists in recovering
the graph structure, and the latter amounts to fitting the numerical quantities
in the model. In Gaussian Bayesian networks, parameter learning involves us-
ing standard linear regression theory, whereas structure learning is not an easy
task in general, given the combinatorial search space of acyclic digraphs. There
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are two main approaches one can find in the literature for structure discov-
ery in Bayesian networks: score-and-search heuristics, where the search space is
explored looking for the network which optimizes a given score function, and
constraint-based approaches, where statistical tests are performed in order to
include or exclude dependencies between variables.

A popular constraint-based method with consistency guarantees is the PC
algorithm [6,16]. In this method, a backward stepwise testing procedure is per-
formed for determining absent edges in the resulting graph. Thus, of critical
importance are the choice of the statistical test to be performed, and the signif-
icance level at which the potential edges are going to be tested. However, both
are usually fixed after a grid search or directly set by expert knowledge [2,6].
In the literature on Bayesian network structure learning some empirical studies
explore exact structure recovery [9], the behavior of score-and-search algorithms
[8], and the impact of the significance level in the PC algorithm for high dimen-
sional sparse scenarios [2,6]. We are not aware, however, of any research work
using elaborated methods for hyper-parameters selection in this context.

In this paper we show that Bayesian optimization (BO) can be used as an
alternative methodology for choosing the significance level and the statistical
test in the PC algorithm. BO has been recently applied successfully in different
optimization problems [14,15]. We consider here a structure learning scenario in
moderately sparse settings that is representative of those considered in [6]. We
show that BO outperforms, in terms of structure recovery error, in a relatively
small number of iterations, both a baseline approach based on a grid search and
specific values set by expert knowledge obtained from previous results on this
problem [6]. Furthermore, we also analyze what values for the statistical test
and the significance level are recommended by the BO approach, and compare
them with those often used by the relevant literature on the subject.

This article is organized as follows. In Section 2, we introduce the main
concepts relative to Gaussian Bayesian networks that will be used throughout the
rest of the paper. Then, in Section 3, we describe the PC algorithm, emphasizing
its hyper-parameters and how they may affect its performance. Black box BO
is outlined in Section 4, with emphasis on the particular characteristics of our
problem. The experimental setting as well as the results we have obtained are
described in Section 5. Finally, we conclude the paper in Section 6, where we
also point out the main planned lines of future work.

2 Preliminaries on Gaussian Bayesian networks

Throughout the remainder of the paper, X1, . . . , Xp will denote p random vari-
ables, andX the random vector they form. For a subset of indices I ⊆ {1, . . . , p},
XI will denote the random vector corresponding only to the variables indexed by
I. We will use XI ⊥⊥ XJ | XK for denoting that XI is conditionally indepen-
dent of XJ given the values of XK , being I,K, J disjoint subsets of {1, . . . , p}.
Let G = (V,E) be an acyclic digraph, where V = {1, . . . , p} is the vertex set
and E ⊆ V × V is the edge set. When G is part of a graphical model, its vertex
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set V can be thought of as indexing a random vector X = (X1, . . . , Xp). In a
Bayesian network, the graph G is constrained to be acyclic directed and with no
multiple edges.

A common interpretation of edges in a Bayesian network is the ordered
Markov property, although many more exist, which can be shown to be equiva-
lent [7]. This property is stated as follows. For a vertex i ∈ V , the set of parents
of i is defined as pa(i) := {j : (j, i) ∈ E}. In every acyclic digraph, an ancestral
order ≺ can be found between the nodes where it is satisfied that if j ∈ pa(i),
then j ≺ i, that is, the parents of a vertex come before it in the ancestral order.
For notational simplicity, in the remainder we will assume that the vertex set
V = {1, . . . , p} is already ancestrally ordered. The ordered Markov property of
Bayesian networks can be written in this context as

Xi ⊥⊥X{1,...,i−1}\pa(i) |Xpa(i)

for all i ∈ V .
The above conditional independences, together with the properties of the

multivariate Gaussian distribution, allow to express a Gaussian Bayesian net-
work as a system of recursive linear regressions. Indeed, if for each i ∈ V =
{1, . . . , p}, we consider the regression of Xi on its predecessors in the ancestral
order, X1, . . . , Xi−1, then from the results regarding conditioning on multivariate
Gaussian random variables we obtain

Xi =

i−1∑
j=1

βji|1,...,i−1Xj + εi, (1)

where the regression coefficient βji|1,...,i−1 = 0 when j /∈ pa(i), and εi are inde-
pendent Gaussian random variables with zero mean and variance equal to the
conditional variance of Xi on X1, . . . , Xi−1. Therefore, both the structure and
parameters of a Gaussian Bayesian network can be directly read off from the
system of linear regressions in Equation (1).

3 Structure learning with the PC algorithm

The PC algorithm for learning Gaussian Bayesian networks proceeds by first
estimating the skeleton, that is, the underlying undirected graph, of the acyclic
digraph, and then orienting it. That is, for each vertex i ∈ V = {1, . . . , p}, it looks
through the set of its neighbors, which we will denote as ne(i), and selects a node
j ∈ ne(i) and subset C ⊆ ne(i) \ {j}. Then, the conditional independence Xi ⊥⊥
Xj | XC is tested on the available data. It is a backward stepwise elimination
method, in the sense that it starts with the complete undirected graph, and then
proceeds by testing conditional independences in order to remove edges, doing
so incrementally in the size of the neighbor subset C.

The PC main phase pseudocode can be found in Algorithm 1. The output
of Algorithm 1 is the skeleton, or undirected version, of the estimated Gaus-
sian Bayesian network, which is later oriented. Algorithm 1 is typically called
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Algorithm 1 The PC algorithm in its population version

Input: Conditional independence information about X = (X1, . . . , Xp)
Output: Skeleton of the Gaussian Bayesian network
1: G← complete undirected graph on {1, . . . , p}
2: l← −1
3: repeat
4: l← l + 1
5: repeat
6: Select i such that (i, j) ∈ E and |ne(i) \ {j}| ≥ l
7: repeat
8: Choose new C ⊆ ne(i) \ {j} with |C| = l
9: if Xi ⊥⊥ Xj |XC then

10: E ← E \ {(i, j), (j, i)}
11: end if
12: until (i, j) has been deleted or all neighbor subsets of size l have been tested
13: until All (i, j) ∈ E such that |ne(i) \ {j}| ≥ l have been tested
14: until |ne(i) \ {j}| < l for all (i, j) ∈ E

the population version of the PC algorithm [6], since it assumes that perfect in-
formation is available about the conditional independence relationships present
in the data. This is useful for illustrating the behavior and main properties of
the algorithm; however, in real scenarios this is unrealistic, and statistical tests
must be performed on the data in order to determine which variable pairs, with
respect to different node subsets, are conditionally independent.

3.1 Significance level and statistical test

The criteria for removing edges is related to the ordered Markov property and
Equation (1). In particular, from multivariate Gaussian analysis we know that
for i ∈ V and j < i,

βji|1,...,i−1 = 0 ⇐⇒ ρji|1,...,i−1 = 0,

where ρji|1,...,i−1 denotes the partial correlation coefficient between Xi and Xj

with respect toX1, . . . , Xi−1. In the PC algorithm, at iteration l, the null hypoth-
esis H0 : ρji|C = 0 is tested against the alternative hypothesis H1 : ρji|C 6= 0,
where C is a subset of the neighbors of i (excluding j) in the current estimator
of the skeleton such that |C| = l.

The significance level at which H0 will be tested, which we will denote in
the remainder as α, is typically smaller or equal than 0.05, and serves to control
the type I error. The other parameter of importance is the statistical test itself.
The usual choice for this is a Gaussian test based on the Fisher’s Z transform of
the partial correlation coeficient [2,6], which is asymptotically normal. However,
there are other choices available in the literature that could be considered and
can be found in standard implementations of the algorithm. For example, the
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bnlearn R package [13] provides the standard Student’s t test for the untrans-
formed partial correlation coeficient, and the χ2 test and a test based on the
shrinkage James-Stein estimator, for the mutual information [4].

3.2 Evaluating the quality of the learned structure

When performing structure discovery in graphical models, there are several ways
of evaluating the results obtained by an algorithm. As a starting point, one could
use standard error rates, such as the true positive and false positive rates. These
rates simply take into account the original acyclic digraph G = (V,E), and the
estimated one Ĝ, with edge set Ê. Then, E with Ê are compared element-wise.
This is a common approach in Bayesian networks.

We have preferred however to use the Structural Hamming Distance (SHD)
[17]. This measure is motivated as follows. In Bayesian networks, there is not a
unique correspondence between the model and the acyclic digraph that repre-
sents it. That is, if we denote as M(G) the set of multivariate Gaussian distri-
butions whose conditional independence model is compatible (in the sense of the
pairwise Markov property and Equation (1)) with the acyclic digraph G, then we
may have two distinct acyclic digraphs G1 and G2 such that M(G1) =M(G2).
In such case, G1 and G2 are said to be Markov equivalent.

The SHD measure between two acyclic digraph structures G1 and G2 takes
into account this issue of non unique correspondence. In particular, it counts
the number of operations that have to be performed in order to transform the
Markov equivalence class of one graph into the other. Thus, given two acyclic
digraphs that are distinct but Markov equivalent, their true positive and false
positive rates could be nonzero, while their SHD is guaranteed to be zero.

4 Black-box Bayesian optimization

Denote the SHD objective function as f(θ), which depends of the parameters in
the PC algorithm, θ = (α, T ), that are going to be optimized, α, the significance
level, and T , the independence test. We can view f(θ) as a black-box objective
function with noisy evaluations yi = f(θ) + εi, with εi being a, typically, Gaus-
sian noise term. With BO the number of evaluations of f needed to solve the
optimization problem are drastically reduced. Let the observed data until step
t − 1 of the algorithm be Dt−1 = {(θi, yi)}t−1i=1. At iteration t of BO, a proba-
bilistic model p(f(θ) | Dt−1), typically a Gaussian process (GP) [12], is fitted to
the data collected so far. The uncertainty about f provided by the probabilistic
model is then used to generate an acquisition function at(θ), whose value at each
input location indicates the expected utility of evaluating f there. Therefore, at
iteration t, θt is chosen as the one that maximizes the acquisition function. The
described process is repeated until enough data about the objective has been
collected. When this is the case, the GP predictive mean for f(·) can be opti-
mized to find the solution of the optimization problem, or we can provide as a
solution the best observation made so far.
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The key for BO success is that evaluating the acquisition function is very
cheap compared to the evaluation of the actual objective, because it only depends
on the GP predictive distribution for the objective at any candidate point. The
GP predictive distribution for f(θt), the candidate location for next iteration,
is given by a Gaussian distribution characterized by a mean µ and a variance σ2

with values
µ = kT∗ (K + σ2

nI)−1y ,

σ2 = k(θt,θt)− kT∗ (K + σ2
nI)−1k∗ .

(2)

where y = (y1, . . . , yt−1)t is a vector with the objective values observed so far;
σ2
n is the variance of the additive Gaussian noise; k∗ is a vector with the prior

covariances between f(θt) and each yi; K is a matrix with the prior covariances
among each yi; and k(θt,θt) is the prior variance at the candidate location θt.
The covariance function k(·, ·) is pre-specified; for further details about GPs and
example of covariance functions we refer the reader to [12]. Four steps of the BO
process are illustrated graphically in Fig. 1 for a toy minimization problem.

In BO methods the acquisition function balances between exploration and ex-
ploitation in an automatic way. A typical choice for this function is the information-
theoretic method Predictive Entropy Search (PES) [5]. In PES, we are interested
in maximizing information about the location of the optimum value, θ∗, whose
posterior distribution is p(θ∗|Dt−1). This can be done through the negative dif-
ferential entropy measure of p(θ∗|Dt−1). Through several operations, an approx-
imation to PES is given by

a(θ) = H[p(y|Dt−1,θ)]− Ep(θ∗|Dt−1)[H[p(y|Dt−1,θ,θ
∗)]] ,

where p(y|Dt−1,θ,θ
∗) is the posterior predictive distribution of y given Dt−1 and

the minimizer θ∗ of f , and H[·] is the differential entropy. The first term of the
previous equation can be analytically solved as it is the entropy of the predictive
distribution and the second term is approximated by Expectation Propagation
[10]. We can see an example of the PES acquisition function in Fig. 1.

5 Numerical experiments

Since we will consider networks of different node size p, we will use in our ex-
perimental setting as the validation measure a normalized version of SHD with
respect to the maximum edge number p(p − 1)/2. The significance level α will
be represented for the BO algorithm as a real variable whose range lies in the
decimal logarithmic space [−5,−1]. The statistical test will be represented using
a categorical variable whose value indicates one of the above mentioned four
tests. Namely, two test based on the partial correlation coefficient: a Gaussian
test based on the Fisher’s Z transform and the Student’s T test; and two test
based on the mutual information: the χ2 test, and a test based on the shrinkage
James-Stein estimator. As outlined before, this problem is specially suitable for
BO, since we do not have access to gradients, the objective evaluations may be
expensive and they may be contaminated with noise.
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Fig. 1. An example of BO on a toy 1D noiseless problem, where a function (shown
in red, dotted) sampled from a GP prior is optimized. The top figures show the GP
(mean and standard deviation) estimation of the objective f(·) in blue. The acquisition
function PES is shown in the bottom figures in yellow. The acquisition is high where
the GP predicts a low objective and where the uncertainty is high. From left to right,
iterations (t) of BO are executed and the points (black) suggested by the acquisition
function are evaluated in the objective, we show in red the new point for every iteration.
In a small number of iterations, the GP is able to almost exactly approximate the
objective.

We have employed Spearmint (https://github.com/HIPS/Spearmint) for
BO and the pc.stable function from the bnlearn R package [13] for the PC al-
gorithm execution. We have run BO with the PES acquisition function over a set
of Gaussian Bayesian networks generated following the simulation methodology
of [6]. That is, the absent edges in the acyclic digraph G are sampled by using in-
dependent Bernoulli random variables with probability of success d = n/(p− 1),
where p is the vertex number of G and n is the average neighbor size. The prob-
ability d can be thought of as an indicator of the density of the network: smaller
d values mean sparser networks. The node size p is obtained from a grid of val-
ues {25, 50, 75, 100}, while the average neighbor size is n ∈ {2, 8}. Finally, we
consider different sample sizes N ∈ {25, 50, 75, 100}. Therefore, we have a total
of 32 different network learning scenarios, that are representative of those that
can be found in [6]. We create 40 different replicas of the experiment and report
average results across them, in order to provide more robust results. In each of
these replicas, the nonzero regression coefficients in Equation (1) are sampled
from a uniform distribution on [0.1, 1], following [6].

For BO, we have used the PES acquisition function and 10 Monte Carlo
iterations for sampling the parameters of the GP. The acquisition function is
averaged across these 10 samples. We have used the Mátern covariance function

https://github.com/HIPS/Spearmint
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for k(·, ·) (Equation (2)) and the transformation described in [3] so that the GP
can deal with the categorical variable (the test type). We compare BO with a
random search (RS) strategy of the average normalized SHD error surface and
with the expert criterion (EC), taken from [6]. These authors recommend a value
of α = 0.01 and use the Fisher’s Z partial correlation test. At each iteration, BO
provides a candidate solution which corresponds to the best observation made
so far. We stop the search in BO and RS after 30 evaluations of the objective.

The average normalized SHD results obtained are shown in Fig. 2. We show
the relative difference in log-scale with respect to the best observed result. There-
fore, the lower the values obtained, the better. We show the mean and standard
deviation of this measure along the 40 replicas of the experiment, for each of
the three methods compared (BO, RS and EC). We can see that EC is easily
improved after only 10 iterations of BO and RS. Furthermore, BO outperforms
RS providing significantly better results as more evaluations are performed. Im-
portantly, the standard deviation of the results of BO are fairly small in the last
iterations. This means that BO is very robust to the different replicas of the
experiments.
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Fig. 2. Logarithmic difference with respect to the best observed average normalized
SHD obtained in 40 replicas of the 32 considered Gaussian Bayesian networks.

Since the expert criterion is outperformed, we are interested in the parameter
suggestions delivered by BO. In order to explore these results, we have generated
two histograms that summarize the suggested parameters by BO in the last
iteration, shown in Fig. 3. We observe that the most frequently recommended
test is the James-Stein shrinkage estimator of the mutual information [4], while
the most frequent recommendation for the significance level is concentrated at
values lower than 0.025.

These results are very interesting from the viewpoint of graphical models
learning. The first observation is that the optimal value obtained for the signifi-
cance level is fairly close to the one suggested in [6]. However, the SHD results are
arguably better for the BO than for the human expert. This may be explained
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Fig. 3. Histograms with the recommended parameters by BO in the last iteration.

by the second interesting result we have obtained. Namely, the shrinkage James-
Stein estimator of the mutual information is suggested more times than the that
the extended Fisher’s Z partial correlation test. Therefore, in the context of
sparse, high-dimensional networks, where we may have p > N (such as in our
experimental set-up and the one in [6]), it may be better to focus on the selection
of the statistical test, rather than on carefully adjusting the significance level. In
the literature, however, it is often done the other-way-around, and more effort
is put on carefully adjusting the significance level.

6 Conclusions and future work

In this paper we have proposed the use of BO for selecting the optimal parame-
ters of PC algorithm for structure recovery in Gaussian Bayesian networks. We
have observed that, in a small number of iterations, the expert suggestion is out-
performed by the recommendations provided by a BO method. Furthermore, an
analysis of the recommendations made by the BO algorithm shows interesting
results about the relative importance of the selection of the statistical test, as
opposed to the selection of the significance level. In the literature, however, it is
often that the selection of the significance level receives more attention.

For future work, we would like to apply BO in higher dimensional settings,
where the number of nodes increases exponentially, whereas the number of sam-
ples increases linearly. This is also a typical scenario in Gaussian Bayesian net-
work real applications. We would also like to explore how different error mea-
sures, such as the true positive and false positive rates, affect the obtained results
when they are optimized using BO. Finally, we plan to extend this methodology
to consider multi-objective optimization scenarios and also several constraints,
since current BO methods are able to handle these problems too.
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6. Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs
with the PC-algorithm. Journal of Machine Learning Research 8, 613–636 (2007)

7. Lauritzen, S.L., Dawid, A.P., Larsen, B.N., Leimer, H.G.: Independence properties
of directed Markov fields. Networks 20(5), 491–505 (1990)
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