
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE
TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

HOW TO LIFT AND VERIFY CONTROL DIFFERENTIAL
EQUATIONS FROM MACHINE CODE OF

CYBER-PHYSICAL SYSTEMS

Autor

Javier Jarauta Gastelu

Director

Kirill Levchenko

Madrid

May 2022

GRADO EN INGENIERÍA EN TECNOLOGÍAS DE
TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

HOW TO LIFT AND VERIFY CONTROL DIFFERENTIAL
EQUATIONS FROM MACHINE CODE OF

CYBER-PHYSICAL SYSTEMS

Autor

Javier Jarauta Gastelu

Director

Kirill Levchenko

Madrid

May 2022

Acknowledgements y Agradecimientos

En un principio, quiero agradecer a mi familia, especialmente a mis padres y a mi
hermano, por haberme dado la oportunidad de llegar a este punto. Sin ellos, ni el proyecto,
ni el intercambio, ni mi educación habrían sido posibles. Ellos me han apoyado a lo largo
de este camino de altibajos y les estaré siempre agradecidos por haberme traido hasta
aquí. Al fin y al cabo, la espinita de la ciberseguridad no ha salido de la nada.

Second, I would like to express my deepest gratitude to Kirill Levchenko, Maxwell
Bland, and Tzu-Bin Yan. Their support over the past year in the laboratory and ev-
erything they have taught me made this research possible. I would like to mention Max
especially, as he made this project happen. The patience to explain core concepts and the
push to get it done, made this project a success, much better than I could even envision.

Third, I would like to thank the support from ICAI, Rafael Palacios, Gregorio López,
Álvaro López and all of the teachers, who have provided feedback and helped throughout
the research and my engineering degree. A special mention to the team at the University
of Illinois to make my exchange program happen.

Por último, quería agradecer a mis amigos, desde el colegio hasta la universidad,
pasando por el conservatorio, por todo el apoyo y la ayuda que me han dado.

CÓMO OBTENER Y VERIFICAR LAS ECUACIONES DIFE-
RENCIALES DE CONTROL DESDE EL CÓDIGO MÁQUINA
DE SISTEMAS CIBER-FÍSICOS

Autor: Jarauta Gastelu, Javier
Director: Levchenko, Kirill
Entidad Colaboradora: University of Illinois at Urbana-Champaign - Security and Privacy
Research at Illinois (S&PR@I)

RESUMEN DEL PROYECTO
En este proyecto, se ha desarrollado una herramienta, que hemos denominado “InteGreat”,
que obtiene las ecuaciones de control de dispositivos embebidos. Mediante técnicas de in-
geniería inversa y ejecución simbólica, se realiza la lectura de la memoria del dispositivo,
y se ejecuta una inferencia de las ecuaciones de control de dicho dispositivo hasta un
lenguaje de programación de alto nivel como Python. De esta manera, se representan de
manera simple los cálculos y ecuaciones que gobiernan los bucles de control del dispositi-
vo ciber-físico en cuestión, por lo que se podrán identificar vulnerabilidades y errores de
programación con el objetivo de mejorar la ciberseguridad y calidad funcional del mismo.

Palabras clave: sistemas embebidos, sistemas ciber-físicos, ciberseguridad, ecuaciones
de control, ejecución simbólica, decompilación, desensamblado, angr, Ghidra, radare2.

1 Introducción

Durante años, se han realizado numerosos intentos con mayor o menor éxito, para la
obtención de las ecuaciones de control que gobiernan a los sistemas complejos. Desde
los primeros pasos, cuando Poincaré trabajó en 1899 en el movimiento de cuerpos
celestes, ha habido un gran progreso en las diferentes técnicas y metodologías. [1] El
estudio de las interacciones complejas de sistemas se denomina la teoría de sistemas
dinámicos, y tuvo su gran expansión a partir del año 1970. [2]

A su vez, los dispositivos embebidos y ciber-físicos, es decir, aquellos que incorpo-
ran tanto componentes de Hardware como de Software han tenido un crecimiento
exponencial desde la aparición de los primeros en el año 1968. Se estima que en la
actualidad existen más de 10.000 millones de dispositivos, promovidos por un abara-
tamiento de la tecnología y la reducción de tamaño de los componentes electrónicos,
siendo una de sus principales realidades, los dispositivos IoT, así como los sistemas
de ayuda a la movilidad y navegación en vehículos terrestres y aéreos. [3]

Sin embargo, a pesar de que el crecimiento de ambas tecnologías se ha potenciado
enormemente en años recientes, no existen técnicas concretas ni una metodología

formalizada que permitan realizar la verificación de la seguridad y correcta im-
plementación de dichos dispositivos. La herramienta InteGreat objeto del presente
proyecto pretende conseguir una mayor facilidad para dicha verificación y análisis,
e implantar una metodología formal del proceso de análisis. [4]

2 Definición del proyecto
En este proyecto se busca diseñar y desarrollar una herramienta, que permita un
análisis sencillo a alto nivel de sistemas ciber-físicos que posean al menos, un bucle
de control. El objeto del proyecto incluye el desarrollo de la herramienta semi-
automática, y el planteamiento inicial para su transformación en una herramienta
automática, que será objeto de posteriores estudios de investigación. Para ello, se ha
realizado la investigación y el desarrollo en dos ejes principales. En primer lugar, se
ha trabajado en la obtención de las ecuaciones de control mediante técnicas de inge-
niería inversa (decompilación y desensamblado) y ejecución simbólica. Y el segundo
eje de investigación ha consistido en la correcta verificación y utilidad de dichas
ecuaciones. De esta manera, se presenta un paquete completo, multi-arquitectura y
multi-plataforma que realiza dicho análisis y presenta al usuario con un paquete que
ejecuta el análisis de dispositivos embebidos.
La herramienta ha sido verificada y probada con tres dispositivos distintos, aunque
uno de ellos no ha sido posible completarlo. En un principio, el primer dispositivo
de análisis ha sido un quadricóptero, a través del cual se ha realizado una prueba
de concepto y se ha verificado la obtención de las ecuaciones de control. En segundo
lugar, se ha realizado el análisis de un PLC de control. Este dispositivo ha sido
verificado y las ecuaciones de control han sido obtenidas en Python al igual que
el quadricóptero. La ventaja de su análisis es que ha permitido la simulación de
un ciberataque ya realizado, con resultados satisfactorios. Y finalmente, el último
dispositivo, del cual se ha hecho un análisis parcial es un radar de automoción, el
cual presenta una arquitectura completamente distinta a los anteriores. Sin embargo,
no ha sido posible la obtención de las ecuaciones de control.

3 Descripción de la herramienta
La herramienta InteGreat presenta dos flujos principales de ejecución y una sección
de análisis, dependiendo de la complejidad del sistema a evaluar y las necesidades
específicas de arquitectura. De esta manera, se pueden identificar las siguientes
estructuras en el flujo de datos y análisis.

(a) Flujo de ejecución manual
En el flujo manual es necesario realizar una previa investigación mediante un
decompilador como Ghidra o radare2 para poder obtener tanto el bucle de
control como el punto de entrada en la aplicación (aunque esto último es fácil-
mente reconocido por cualquiera de las dos herramientas). Así, el análisis sigue
el esquema presentado en la Figura 1.
Como se observa en dicho flujo, este presenta las siguientes herramientas por
orden: ghidra, pseudo-C, Jupyter Notebook, angr y Python. Así, este se inicia
con un fichero binario, es decir la lectura de la memoria directamente des-
de el dispositivo ciber-físico. Prosigue con el desensamblado y decompilación

Figura 1: Flujo del programa manual

mediante la herramienta desarrollada por la NSA (National Security Agency)
denominada Ghidra que realiza una inferencia de código pseudo-C. Este se
utiliza para obtener información básica del sistema binario como dirección de
memoria de entrada y otros parámetros como nombres de funciones. Posterior-
mente se utilizó Jupyter Notebook y Python para obtener tanto, registros de
entrada y salida de las funciones como sus parámetros y el tamaño esperado de
la variable (8/16/32 bits). A continuación se realiza la ejecución simbólica me-
diante angr, y finalmente se crea un fichero en Python que permite la ejecución
y el análisis de las ecuaciones de control.

(b) Flujo de ejecución automático
En el caso del flujo automático, este es similar al manual, pero se simplifica al
utilizar herramientas de decompilación automáticas. El orden de herramientas
es: radare2/r2ghidra, angr y Python. Estas herramientas trasladan la parte
manual que se realiza en Ghidra a otros decompiladores en línea de comandos,
en este caso radare. Aún así, cabe destacar que cierto análisis manual siempre
es necesario. Este flujo simplificado se observa en la Figura 2.

Figura 2: Flujo del programa automático

Como se observa en este flujo secundario, el análisis es mucho más sencillo de
cara al usuario, y presenta un funcionamiento bastante similar, aunque, existen
diferencias. En vez del uso de Ghidra, se utiliza el decompilador y desensambla-
dor de este a través de radare2 que permite la ejecución en línea de comandos.
Posteriormente, y utilizando la integración de angr y claripy se ejecuta simbó-
licamente el archivo binario y finalmente se guardan las ecuaciones obtenidas
en un fichero Python.

(c) Análisis de accesibilidad
Para la demostración de la utilidad de la herramienta, se ha realizado un análisis
de accesibilidad utilizando para ello DaDRA. Para este análisis de accesibilidad,
se utilizan las ecuaciones obtenidas del quadricóptero, y se realizan una serie
de gráficos para demostrar la técnica. Aún así, el análisis de accesibilidad es
reducido debido a las limitaciones de tiempo y de la herramienta.

4 Resultados

Los resultados de la aplicación de la herramienta InteGreat, han sido altamente
satisfactorios, habiendo obtenido en los dos principales casos analizados, es decir
el quadricóptero y el PLC, resultados muy positivos en cuanto a las ecuaciones
obtenidas. Estas han permitido un análisis a fondo de la ciberseguridad y calidad
del sistema de control de dichos dispositivos. La metodología así como la herramienta
InteGreat desarrollada, abren un camino nuevo de análisis y verificación de todo tipo
de dispositivos ciber-físicos cuya masiva implantación, van a transformar nuestra
sociedad en los próximos años, y es crítico que se realice tras un profundo análisis
de riesgos y vulnerabilidades de los mismos, que es el objetivo final de InteGreat.

5 Conclusiones
Con los resultados del proyecto, se concluye que la inferencia de las ecuaciones de
control desde la memoria del dispositivo ciber-físico hasta un lenguaje de alto nivel
como Python, es posible y viable. Todo ello, se ha podido implementar mediante
la herramienta InteGreat, habiendo evidenciado la simulación de un ciberataque en
un dispositivo PLC y la correcta implementación de los filtros en el quadricóptero.
Hay una serie de cuestiones que se tienen que mejorar, como la automatización o
la obtención más fácilmente de parámetros de ejecución. Aún así, la herramienta
cumple con su función y permite analizar correctamente un dispositivo ciber-físico.

6 Referencias

[1] Chutinan, A., & Krogh, B. (2003). Computational techniques for hybrid system
verification. IEEE Transactions on Automatic Control, 48(1), 64–75. https:
//doi.org/10.1109/tac.2002.806655

[2] Strogatz, S. H. (2001). Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity) (1.a
ed.). Westview Pr (Short Disc).

[3] Moore, S. (2021, 13 abril). Cyber-Physical Systems Must be Part of Your Se-
curity Strategy. Gartner. Recuperado 5 de junio de 2022, de https://www.ga
rtner.com/smarterwithgartner/develop-a-security-strategy-for-cyb
er-physical-systems

[4] INCIBE-CERT. (2021, 13 abril). Introducción a los sistemas embebidos. INCIBE-
CERT - Blog. Recuperado 5 de junio de 2022, de https://www.incibe-cer
t.es/blog/introduccion-los-sistemas-embebidos

https://doi.org/10.1109/tac.2002.806655
https://doi.org/10.1109/tac.2002.806655
https://www.gartner.com/smarterwithgartner/develop-a-security-strategy-for-cyber-physical-systems
https://www.gartner.com/smarterwithgartner/develop-a-security-strategy-for-cyber-physical-systems
https://www.gartner.com/smarterwithgartner/develop-a-security-strategy-for-cyber-physical-systems
https://www.incibe-cert.es/blog/introduccion-los-sistemas-embebidos
https://www.incibe-cert.es/blog/introduccion-los-sistemas-embebidos

HOW TO LIFT AND VERIFY CONTROL DIFFERENTIAL EQUA-
TIONS FROM THE MACHINE CODE OF CYBER-PHYSICAL
SYSTEMS

Author: Jarauta Gastelu, Javier
Supervisor: Levchenko, Kirill
Collaborating Entity: University of Illinois at Urbana-Champaign - Security and Privacy
Research at Illinois (SPR@I)

ABSTRACT
In this project, a tool called “InteGreat” was developed to obtain the control equations of
embedded systems. Through the use of reverse engineering and symbolic execution, the
memory of the device is read and the inference of the control equations of that device up
to a high-level programming language like Python is performed. By means of this tool,
the equations and calculations that govern the control loops of the cyber-physical device
are presented in an easy way. With this tool, it will be easy to identify vulnerabilities and
programming errors with the objective of improving device cybersecurity and functional
quality.

Keywords: embedded systems, cyber-physical systems, cybersecurity, control equations,
symbolic execution, decompilation, disassembly, angr, Ghidra, radare2.

1 Introduction

Over the years, numerous attempts have been made with more or less success to
obtain the control equations that govern complex systems. From the first steps,
when Poincaré worked on 1899 on the movement of celestial bodies, there has been
great progress in different techniques and methodologies [1]. The study of complex
interactions within systems is called dynamical systems theory and had its great
expansion from 1970 [2].
Meanwhile, embedded and cyber-physical systems, that is, those that combine both
hardware and software, have had an exponential development since the first systems
appeared in 1968. Some of the latest estimates believe that there are more than
10,000 million devices. Growth is facilitated by a reduction in the cost of technology
and the reduction in size. Some examples of these devices are IoT systems, traffic
management systems, and navigation in maritime and land transportation [3].
However, even though both technologies have expanded greatly in recent years,
there are no concrete techniques or formal methodologies that allow verification and

security analysis of the implementation of those devices. The tool being developed,
InteGreat, aims to achieve an easier methodology for this verification and analysis
and implement a formal methodology of the analysis process [4].

2 Project definition
In this project, the objective is to design and develop a tool that could be easily
analyzed on high-level cyber-physical systems that have a control loop. The ob-
jective of the project includes the development of the semi-automatic tool and the
initial approach to develop it into a fully automatic tool, which will be part of fu-
ture research. To achieve this goal, research and development focused on two main
objectives. First, we lift the control equations using reverse engineering techniques
(decompilation and disassembly) and symbolic execution. Second, correct verifica-
tion and use of the lifted equations. With both steps, a complete multi-architecture,
multi-platform package is presented, which provides the user with packages that per-
form embedded system analysis.
The tool has been verified and executed with three different devices; however, the
analysis of the latest was not fully completed. The device that was first analyzed
was a drone through which an initial proof-of-concept and equation lifting were
performed. Second, a control PLC device was analyzed. This device was verified,
and the control equations were lifted to Python, just like the drone. The advantage
of its analysis is that a cyberattack was simulated with adequate results. And finally,
a partial analysis was done on an automotive radar system. However, the equation
lifting was not completed with the radar.

3 Description of the tool
The tool Integreat has two main execution workflows and an analysis section, de-
pending on the complexity of the system to evaluate and the specific requirements
of the architecture. The following structures are then possible to identify in the
data analysis.

(a) Manual workflow
In the manual analysis, it is necessary to perform some previous investigation
using ghidra or radare, to obtain both the control loop and the entry point
(this is easily recognizable by the tools). The analysis then follows the flow
presented in Figure 1.

Figure 1: Manual program workflow

As can be seen, this workflow presents the following tools in order: ghidra,
pseudo-C, Jupyter Notebook, angr, and Python. The workflow starts with a
binary file, that is, the cyber-physical device’s memory. It then continues with
the disassembly and decompilation through Ghidra, developed by the NSA

(National Security Agency). Ghidra performs an inference of the binary file into
pseudo-C code. This is used to obtain basic information from the system, such
as entry address, and others like function parameters and signatures. Later,
input and output registers, function parameters, and register size (8/16/32
bits) are obtained using Jupyter Notebook and Python. After that, symbolic
execution is performed on the file with angr, and finally the program outputs a
Python file that allows for the execution and analysis of the control equations.

(b) Automatic workflow
In the case of the automatic workflow, it is similar to that of the manual
workflow, but it is easier due to the use of automatic decompilation tools.
The order of the tools is: radare2/r2ghidra, angr, and Python. These tools
partially transform the manual analysis done in Ghidra to other command-line
decompilers. However, it is worth noting that there is always some manual
component that is necessary. This simplified workflow is presented in Figure 2

Figure 2: Automatic program workflow

As observed, the analysis is much simpler in terms of user usability; however,
the workflow is similar to that of the manual steps. Instead of using Ghidra, the
workflow uses its decompiler and disassembler through radare2, which allows
command-line execution. Later, using the integration between angr and claripy,
the program executes the binary file and saves the control equations in a Python
file.

(c) Reachability analysis
To demonstrate the usefulness of the tool, a reachability analysis is performed
using DaDRA. This reachability analysis uses the equations obtained from the
Drone, and a series of graphs are built to demonstrate the technique. However,
the scope of the reachability analysis is limited due to time and tool constraints.

4 Results
The results of the InteGreat tool are satisfactory, having obtained really positive
results in the two main devices analyzed in terms of the lifted equations. These
have allowed deep cybersecurity and system quality analysis. The methodology and
InteGreat tool open a new path for the analysis and verification of a large number
of cyber-physical systems whose massive expansion will transform the society in the
next few years. Then it is critical to perform a deep vulnerability and risk analysis
of those, which is the end goal of InteGreat.

5 Conclusions
Once the project is done, it is possible to conclude that inference of the control
equations from the cyber-physical device’s memory to a high-level programming

language like Python is possible and viable. All of this was possible to combine by
means of InteGreat, having evidenced the simulation of a cyberattack on a PLC
device and the correct implementation of the filtering functions in a drone.
There are several technical problems that must be improved upon, such as automa-
tion or the easier acquisition of execution parameters. However, the tool performs
its duty correctly and allows for the analysis of a cyber-physical system.

6 References

[1] Chutinan, A., & Krogh, B. (2003). Computational techniques for hybrid sys-
tem verification. IEEE Transactions on Automatic Control, 48(1), 64–75.
https://doi.org/10.1109/tac.2002.806655

[2] Strogatz, S. H. (2000). Nonlinear Dynamics And Chaos: With Applications To
Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity) (1st
ed.). Westview Press.

[3] Moore, S. (2021, April 13). Cyber-Physical Systems Must be Part of Your
Security Strategy. Gartner. Retrieved June 5, 2022, from https://www.gart
ner.com/smarterwithgartner/develop-a-security-strategy-for-cyber
-physical-systems

[4] INCIBE-CERT. (2021, April 13). Introduction to Embedded Systems. INCIBE-
CERT - Blog. Retrieved June 5, 2022, from https://www.incibe-cert.es/e
n/blog/introduction-embedded-systems

https://doi.org/10.1109/tac.2002.806655
https://www.gartner.com/smarterwithgartner/develop-a-security-strategy-for-cyber-physical-systems
https://www.gartner.com/smarterwithgartner/develop-a-security-strategy-for-cyber-physical-systems
https://www.gartner.com/smarterwithgartner/develop-a-security-strategy-for-cyber-physical-systems
https://www.incibe-cert.es/en/blog/introduction-embedded-systems
https://www.incibe-cert.es/en/blog/introduction-embedded-systems

Contents

1 Introduction 1
1.1 Embedded Systems . 2

1.1.1 Desirable Characteristics . 3
1.1.2 Components . 3
1.1.3 Classification . 6

1.2 Cyber-Physical Systems . 7
1.2.1 History and Development . 7
1.2.2 Verification . 8
1.2.3 Future Development . 9

1.3 Dynamical Systems . 9
1.3.1 History . 9
1.3.2 Types of Dynamical Systems . 9
1.3.3 Dynamical Systems Theory and Control Theory 10

1.4 System Representation and Abstractions 11
1.4.1 Continuous and Discrete Systems 11
1.4.2 Finite State Machines . 11
1.4.3 Automata Models . 12
1.4.4 Domain Specific Languages (DSL) 14

2 Tools and Techniques 17
2.1 Reverse Engineering . 17

2.1.1 Decompilers and Disassemblers . 18
2.2 Symbolic Execution . 21

2.2.1 History . 22
2.2.2 Execution Tools . 22

2.3 PLC Binary Analysis . 23
2.3.1 PLC Architecture and Characteristics 24
2.3.2 Proportional Integral Derivative (PID) Controller 25
2.3.3 ICSREF PLC Analysis Tool . 25

2.4 Reachability Analysis . 26
2.4.1 DaDRA . 27
2.4.2 JuliaReach . 27

2.5 Radar Simulation . 28
2.5.1 MATLAB . 28
2.5.2 NXP Premium RadarSDK . 29

xi

2.6 Parallel Execution . 30
2.6.1 tmux . 31
2.6.2 keep . 31

2.7 Memory read . 32
2.7.1 Arduino . 32
2.7.2 Arduino libraries . 32

2.8 Other tools . 32
2.8.1 Python . 33
2.8.2 Jupyter Notebook . 33
2.8.3 IPython . 34
2.8.4 MPLAB X IDE . 34
2.8.5 Git . 35
2.8.6 Visual Studio Code . 36
2.8.7 Servers and Physical Devices . 36

3 State of the Art 37
3.1 Previous Work . 37

3.1.1 Dissasemblers and Decompilers . 38
3.1.2 Hybrid System Verification . 38
3.1.3 Function Matching . 39
3.1.4 Reachability Analysis . 39

3.2 Improvements and Novelties that the Project Introduces 39

4 Project Definition 41
4.1 Motivation . 41
4.2 Objectives . 42
4.3 Methodology . 42
4.4 Plan . 43

5 Development and Research 45
5.1 Analyzed Devices . 45

5.1.1 Drone - Quadcopter . 45
5.1.2 WAGO PLC . 47
5.1.3 Continental Radar System . 48
5.1.4 Other Devices . 49

5.2 Used Techniques . 52
5.2.1 General Technique and Methodology 52
5.2.2 Specifics for the Drone Analysis . 52
5.2.3 Specifics for the PLC Analysis . 54
5.2.4 Specifics for the Automotive Radar Analysis 55

5.3 Research Results and Conclusions . 56

6 Developed Tool - InteGreat 57
6.1 Structure . 57

6.1.1 Common Steps between Workflows 57

6.1.2 Manual Workflow . 58
6.1.3 Automatic Workflow . 60

6.2 Usage and execution . 60
6.2.1 Virtual Machine Execution . 60
6.2.2 Ghidra . 61
6.2.3 radare2 . 63
6.2.4 angr . 64

6.3 Characteristics . 65
6.4 Limitations . 66

7 Results 67
7.1 Initial Results . 67

7.1.1 Initial Function Analysis . 67
7.1.2 Lifted Control Equations . 69

7.2 Verification and Correctness . 72
7.2.1 Drone . 72
7.2.2 PLC . 73

7.3 Reachability . 75

8 Conclusions and Future Developments 77
8.1 Conclusions . 77
8.2 Future Work . 78

Bibliography 81

A Code and Execution Examples 87
A.1 Function Helper . 87
A.2 Drone Top-Level . 92
A.3 PLC Differential Equations Output . 94
A.4 Drone Differential Equations Output . 105

B Installation Guide 113
B.1 Installation . 113

B.1.1 virtualenvwrapper . 113
B.1.2 Jupyter Notebook . 114
B.1.3 Ghidra . 114
B.1.4 radare2 . 115
B.1.5 angr . 116
B.1.6 DaDRA . 116
B.1.7 ICSREF . 116

C Sustainable Development Goals 119

List of Figures

1.1 General overview of an embedded system 4
1.2 Description of an embedded system (logical level) 5
1.3 Description of an embedded system (physical level) 6
1.4 Classes of automata (non-exhaustive) . 12
1.5 Example of an automaton state diagram 13
1.6 Example of a finite-state machine (Morse machine) 14
1.7 Coq logo . 15

2.1 Ghidra logo . 19
2.2 Radare2 logo . 20
2.3 R2ghidra and r2pipe logos . 20
2.4 Angr logo . 22
2.5 DaDRA logo . 27
2.6 JuliaReach logo . 27
2.7 MATLAB logo . 29
2.8 NXP logo . 29
2.9 Premium RadarSDK Processing Chain . 30
2.10 Tmux logo . 31
2.11 Keep logo . 31
2.12 Arduino logo . 32
2.13 Python logo . 33
2.14 Jupyter Notebook logo . 33
2.15 IPython logo . 34
2.16 MPLAB X IDE logo . 34
2.17 Git logo . 35
2.18 GitHub logo . 35
2.19 Visual Studio Code logo . 36

4.1 Gantt chart of the project plan . 44

5.1 Image of a Pluto drone . 46
5.2 Image of a WAGO PLC . 47
5.3 Image of a Continental ARS4-B (Note that it is a Tesla Inc. branded part) 48
5.4 Keurig K-Elite coffee maker (model not exact) 49
5.5 Debugging port interface pinout . 50
5.6 Mithubishi Automotive Radar (front & side) 51

xv

5.7 Main radar board with markings . 55

6.1 Manual workflow . 57
6.2 Automatic workflow . 58
6.3 Screenshot of Ghidra welcome screen . 61
6.4 Screenshot of the Ghidra main development screen 62
6.5 Screenshot of a radare2 decompilation example 63

7.1 Quaternion updates from the original binaries 73
7.2 Quaternion updates from the lifted equations 73
7.3 ICSREF’s attack, reactor pressure is shown in kPa 74
7.4 ICSREF’s attack simulated with the lifted equations 74
7.5 Reachability analysis with DaDra . 75

C.1 United Nations Sustainable Development Goals 119
C.2 Sustainable Development Goals categories 120

List of Tables

1.1 Early history of dynamics [14] . 10

2.1 Excerpt of architectures supported by radare2 20
2.2 Automation Platforms of ICS Vendors [27] 24
2.3 Inputs and Outputs for PID_FIXCYCLE . 26
2.4 Excerpt of Python packages used in the project 33

6.1 Basic commands for radare2 and r2ghidra 64

xvii

Listings

1.1 Backus-Naur Form example . 15
6.1 Example code for angr symbolic execution 64
7.1 Extract of func_call_addr.txt for the Drone binary 67
7.2 Extract of func_return.txt . 68
7.3 Extract of func_param.txt . 69
7.4 Extract of TE.pro, a WAGO programming file 69
7.5 Result of the Drone differential equation lifting 71
A.1 Code of the function helper tool. 87
A.2 Code of drone_toplevel.py . 92
A.3 Result of the PLC differential equation lifting 94
A.4 Result of the Drone differential equation lifting 105
B.1 Virtualenvwrapper installation for Python2/3 113
B.2 Virtualenvwrapper environment creation & switch 113
B.3 Jupyter notebook installation . 114
B.4 IPython installation . 114
B.5 Ghidra installation . 114
B.6 Ghidra_bridge installation . 115
B.7 Ghidra_bridge script installation . 115
B.8 Radare2 installation . 115
B.9 R2pipe installation . 115
B.10 R2ghidra installation . 115
B.11 Angr installation . 116
B.12 DaDRA installation . 116
B.13 ICSREF dependency installation . 116
B.14 ICSREF download . 116
B.15 ICSREF wheelhouse dependency installation 117
B.16 ICSREF bash alias creation . 117

xix

Chapter 1

Introduction

In recent years, there has been exponential growth in the number of connected devices
on the Internet. According to some of the latest estimates, the number of connected
appliances in 2022 is more than 26 billion [1]. However, of all these devices, more than
half are devices for the Internet of Things or IoT, and most, if not all, are embedded
systems. Small devices that usually serve a single purpose with low resource usage. The
number of integrated systems is over 10,000 million and continues to grow at a rate of
more than 15% year-on-year [2].

In this area, embedded controllers are increasingly being used to create new remotely
controlled cyber-physical systems, as Gartner explains [3]. Examples of these new devices
include connected home appliances, city sensorization (traffic management), smart vehi-
cles, and avionics, to name a few. Robustness and failure tolerance are expected from
these devices, without sacrificing performance or ease of use. Furthermore, the new re-
quired security standards, such as ISO/IEC 62443 and ISO/IEC 27001 [4] in industrial
control systems, where embedded systems are widely used, depend on these systems to
meet minimum certification requisites and security practices.

A large number of these devices may seem innocent at first, like smart connected
lights, thermostats, refrigerators, or even some non-life-supporting medical devices. All
of these are expected to perform adequately and without problems. After all, some are
simple and should not need more than a few thousand lines of code. But when they start
to fail due to vulnerabilities, attacks, or other unexpected problems, the true scale of the
security problem arises. What is a house without lights? What if the refrigerator, the
single appliance that keeps humans safe by maintaining edible food, no longer works? The
scale of the problem is increasing exponentially as more devices are being connected, or
even non-connected devices depend on complex kernels to function and may not be fault
tolerant.

With this evolution of cyber-physical devices, there is a growing need for tools that can
successfully and rapidly analyze these devices for correctness and vulnerabilities. As some

1

CHAPTER 1. INTRODUCTION

studies show, the cost of verification and certification in the aviation industry and other
safety-critical industries is more than 50%. And testing until money runs out is neither
efficient nor scalable in any industrial process [5]. This is where InteGreat provides insight
into the development and implementation of embedded systems and produces a versatile
multi-architecture tool for software and modeling analysis. InteGreat intends to create
a framework that supplies an easy-to-use tool for the verification of embedded/cyber-
physical systems.

With an aim to lift the control equations of embedded and cyber-physical systems to
a high-level language like Python by means of disassembly, decompilation and symbolic
execution, InteGreat is set to improve on the integration between low-level bit analysis,
and high-level verification languages and schemes.

This thesis project was completed at the University of Illinois Urbana-Champaign with
the help of Kirill Levchenko and especially Maxwell Bland. Furthermore, this thesis is
only part of the larger InteGreat tool that is being developed for a future paper submission
to a conference, in conjunction with other members of the laboratory.

This first chapter presents the basic core concepts of this thesis. The development of
embedded and cyber-physical systems, their history, and desirable characteristics. It also
includes the theory that supports system verification, dynamical systems. And finally, we
have techniques for system representation and abstraction such as continuous systems,
state machines, hybrid automata models, and domain-specific languages.

1.1 Embedded Systems

An embedded system is defined as a tightly integrated device that contains hardware
and software components that perform a single function. Although the concept of an
embedded system is as old as electronics itself and could be applied to some of the first
electromechanic devices, the modern embedded system dates back to the early 1960s. The
Apollo Guidance Computer (AGC) is considered by many to be the first true modern
conception of an embedded system. Developed by the MIT Instrumentation Laboratory,
it used keys and actuators as a human interface and was the cornerstone of the whole
guidance system in the Apollo missions.

In subsequent years, during the next decade, the appearance of integrated microchips
truly revolutionized the concept of an embedded system. These devices, invented almost
simultaneously by Gary Boone of Texas Instruments, Federico Faggin of Intel, and the
U.S. Navy, provided tightly integrated packages with a 4-bit design CPU (Central Process-
ing Unit), ROM (Read-Only Memory), and RAM (Random Access Memory) in a single
package. The new integrated microchips opened new possibilities in terms of architecture,
integration, and efficiency. Some of the later developments include Texas Instrument’s
TMS1000, the Intel 8080 and the Motorola 6800 [6].

2

1.1. Embedded Systems

1.1.1 Desirable Characteristics

The desirable characteristics and features of an embedded system are the following:

• Reliability: The ability of a process or device to execute its function without failure
as long as it is requested. In this case, an embedded system is expected to perform
reliably without unnecessary attention.

• Efficiency: The device should be efficient in both its computation cycle and in its
overall power consumption. The use of different architectures, such as RISC (Re-
duced Instruction Set Computer) or CISC (Complex Set Instruction), clock speeds,
interconnecting interfaces and devices, and others may directly impact the device’s
performance. Furthermore, code efficiency is vital in terms of reducing clocks-per-
instruction, especially on real-time embedded systems, which need rapid information
performance.

• Stability: It refers to the characteristic of a system that is constrained within
the bounds of the expected performance. This means that as long as no external
unexpected event occurs, the device should operate under the expected constraints
[7].

• Maintainability: Is the ability of a system to be repaired and restored to service
when maintenance is performed using specified skill levels and prescribed procedures
and resources. In terms of an embedded system, the expectation is that the device
will work correctly immediately and without delay after maintenance [8].

• Low cost: In any context, and especially in these devices, the cost of components
and operation should be low. Embedded devices must be low-power, inexpensive,
and easily replaceable.

1.1.2 Components

It is possible to abstract an embedded system as the following structure (Figure 1.1):

• System inputs: They comprise most of the time of sensor data or actuator in-
formation. They could also include signals from other devices and/or machines.
Examples may be pressure / temperature information, motor status, and gyroscope
information.

• System outputs: The system’s actions or calculated values to be used in the
program or by other devices. They could be instructions to an actuator such as a
boiler, or packaged information through a Bus communication interface.

• Software components: The code that processes the inputs and obtains an output.

3

CHAPTER 1. INTRODUCTION

• Hardware components: Hardware that allows for the execution of the software.
It may include status interfaces, such as LEDs or debug/information ports.

 

Embedded System
Software Hardware

System
Inputs

System
Outputs

Figure 1.1: General overview of an embedded system

Logical Level

Conceptually, an embedded system has the following data / information flow graph (Fig-
ure 1.2):

• Internal data flow: There is an internal data flow across the microprocessor
with all other internal and bridging components such as Analog-to-Digital (ADC)
/ Digital-to-Analog (DAC), User Interfaces, Diagnostic Ports, Software, Memory,
and in some cases FPGA (Field-Programmable Gate Arrays)/ASIC (Application
Specific Integrated Circuits) cards.

• External data flow: The flow of information between the embedded system and
the environment is done through actuators, DAC/ADC, User Interfaces, and Sensors
and Actuators.

Hardware

In terms of hardware components, an embedded system is usually composed of a micro-
processor or microcontroller (CPU), volatile (RAM) and non-volatile memory, inputs and

4

1.1. Embedded Systems

Figure 1.2: Description of an embedded system (logical level)
Source: Courtesy of INCIBE [2]

outputs (I/O) ports and interfaces, power, and in some cases it may contain a human
interface such as a screen powered by a graphical processing unit (GPU). Furthermore,
an embedded system may include other devices integrated in the package, such as Analog-
to-Digital (ADC) / Digital-to-Analog (DAC) converters, actuators, diagnostic tools and
ports, interconnecting interfaces such as keyboards, system support devices (interrupt
managers), etc. as can be observed in Figure 1.3.

Software

The software is usually organized around an operating system (OS) on which applications
are built. These applications are usually considered as firmware and, in most cases, are
not modifiable by the user. They may sometimes be upgraded through firmware/software
updates. The software, according to Jiménez et al., consists of the following components
[6]:

• System tasks: The application is divided into different tasks that perform the
device’s function. These use system resources and are executed simultaneously or

5

CHAPTER 1. INTRODUCTION

Figure 1.3: Description of an embedded system (physical level)
Source: Courtesy of INCIBE [2]

in parallel, depending on the architecture and priority. These tasks send service
requests to the kernel.

• System kernel: This component handles the service request and manages the
device’s hardware. It also controls communication between components and tasks.

• Services: Service requests are the means to process the different tasks. They are
sometimes called device drivers and have the power to create system interrupts and
poll and push information from various ports and interfaces.

1.1.3 Classification

There are multiple classifications for embedded devices according to their purpose, size,
reliability, and other factors. However, these are the main categories and classifications:

• Scale: Embedded systems can be classified according to their scale as small-scale,
medium-scale, and large-scale. This classification depends on their final application,
architecture complexity, and processing size [9].

• Time constraints: They can be embedded systems in real time or in non-real time
[9].

6

1.2. Cyber-Physical Systems

• Autonomy: Depending on whether they are autonomous or not. Autonomous
embedded systems do not need regular human input or intervention to function
correctly or obtain data other than the initial setup [10].

• Connections: They can be either connected embedded systems, which output or
receive to an on-line source regularly, or non-connected devices.

• Mobility: They can be fixed (non-movable) or mobile.

1.2 Cyber-Physical Systems

A cyber-physical system is a device that presents a combination of computation with a
physical process. The behavior of the system is made up of both the physical and the
cyber part [11].

The cyber-physical system, or CPS, concerns the intersection of the cyber and physical
parts, instead of the union. It applies to all processes that depend on both components
at the same time to work. An example of a CPS may be as simple as an actuator when a
certain humidity threshold drops below a percentage or as complex as an airplane attitude
control protection system. Therefore, the correct classification of a CPS is to consider it as
an extension of an embedded system with specific physical and computing characteristics.
In this case, instead of sending data to a port or just as data, the actual embedded system
sends and receives an input from a physical device.

1.2.1 History and Development

The development of cyber-physical systems has expanded exponentially in the last 15
years, hand in hand with embedded systems. However, the concept of CPS dates back to
the first iterations of computing and integrated systems. Most of the time, the study of
computer science and physical sciences has been developed independently. These science
studies were considered truly independent, and early researchers did not have the need
to integrate and combine both disciplines. Nevertheless, as computer systems became
more complex and processing capabilities were augmented, there was a growing need to
combine both disciplines into one, to improve both efficiency and speed. This is the stage
where the cyber-physical systems discipline started. When the cyber and physical worlds
intersected, a new set of risks appeared and, as such, new techniques and methods were
needed to be developed for the verification of cyber-physical systems.

Two techniques were fundamental for the development of Cyber-Physical Systems in
the early stages of the discipline [12]:

• Real-time scheduling theory: This theory added time constraints to computa-

7

CHAPTER 1. INTRODUCTION

tional elements. It allows for the verification of the response time of computational
processes and those that interact with both physical and computational elements.
Furthermore, it provides expected execution times and other important parameters
that can correct processes and executions [12].

• Control theory: Control theory allows us to verify and analyze whether the process
maintains the whole system within bounds, that is, keep the system within a desired
region around a specific set-point. It is a continuous-time analysis of the system and
process. It is also closely integrated with the theory of real-time scheduling, as it
can take into account execution times and delays to specify computation periodicity
[12].

Further developments of the technique created new and complex models that closely
represent the integration between physical and computational operations, and better sim-
ulate the real environment and circumstances. The creation of hybrid systems is one of
those advances that allowed for the development of CPSs. A hybrid system integrates the
findings and simulations from multiple integrated domains like thermodynamics, timings,
electrical, physical, computational, etc.

The integration of the computing and engineering disciplines, and the greater, con-
temporary focus in complete and combined systems, provides an innovative framework
for the development of Cyber-Physical Systems. This is in contrast to the decoupling of
development and implementation that has reigned in the early years of embedded system
design. This integration has driven an increase in CPS projects such as public-private
partnerships for the development of cyber-physical systems such as Europe’s ARTEMIS
[5].

1.2.2 Verification

The verification of cyber-physical systems has been approached several times; however,
fully automatic verification models have not been reached to a satisfactory degree. As
systems increase in complexity, it is progressively more difficult and costly to verify and
ensure the correctness of these systems. Moreover, the requirements by stakeholders and
users of CPS are becoming increasingly stringent, in terms of guaranteed cyber-security
and failure tolerance and resilience.

At the moment, due to the difficulty in verifying such systems, the current trend
is to shift to a better design paradigm that can reduce the probability of errors and
vulnerabilities in CPS from the design stage. It is necessary to assume that errors and
security concerns are inevitable in any system designed, even if the best cyber-security
paradigms are used and great care is taken on building safe devices.

8

1.3. Dynamical Systems

1.2.3 Future Development

In terms of the future of cyber-physical systems, it is destined to become one of the
most studied areas of research. As it stands right now, the increase in year-over-year
deployment of CPS is exponential, and the future of cyber-physical devices is set to
grow even further. The progressive computerization of new physical elements, such as
commodities and appliances, and the modernization of industrial processes are set to
become the driving gear for the development of new connected cyber-physical systems.
In general, in this development, the verification of the implementation and cybersecurity
analysis of these devices should be of importance and quality should take precedence over
quantity.

1.3 Dynamical Systems

The study of complex systems and interactions is named dynamical systems. Over the
years, there have been numerous attempts at obtaining the equations that govern intricate
systems, and one of the first studies dates back as far back as 1899, when Poincaré worked
on the movement of celestial bodies [13]. Upon his work, contemporaries such as Birkoff,
Beltrami, and Strogatz developed and expanded the initial theory.

Formalizing the term dynamics, as Strogatz defines it, "it is the subject that deals
with change, with systems that evolve in time [. . .] it is dynamics that we use to analyze
the behavior." [14] Dynamics, and especially dynamical systems, have become ubiquitous
in the definition and lifting of complex systems over the past 40 years.

1.3.1 History

As mentioned earlier, the study of dynamical systems dates back to Poincaré’s analysis of
celestial bodies. However, the study of dynamics, even without having coined the term yet,
dates back to Newton’s research. Table 1.1 presents a small guide to the early history of
dynamical systems. The evolution of dynamical systems then reached the computing field
around the 1970s. In the end, an unknown computer program is a continuous/discrete
unknown system. However, several facts and limits must be considered for the concept
to be applied in the engineering and computer science fields.

1.3.2 Types of Dynamical Systems

There are two main types of dynamical system: differential equations and iterated maps
(also known as difference equations) [14].

9

CHAPTER 1. INTRODUCTION

1666 Newton Invention of calculus, explanation of planetary motion
1700s Flowering of calculus and classical mechanics
1800s Poincaré Geometric approach and techniques for the study of

dynamical systems
1920-1950 Nonlinear oscillators in physics and engineering, inven-

tion of radio, laser, radar due to the study on those
systems.

1920-1960 Birkhoff
Kolmogorov
Arnol’d
Moser

Complex behavior in Hamiltonian mechanics

1970s May Chaos in logistic map

Table 1.1: Early history of dynamics [14]

• Differential equations describe the evolution in continuous time. They can be
applied to any physical phenomenon and some continuous computer programs. They
are the most widely used in the engineering and science fields. There are two types
of differential equations:

– Ordinary differential equations: It involves only ordinary derivatives dx/dt and
d2x/dt2. The inferred equations of most embedded systems follow this pattern.

– Partial differential equations: These present partial derivatives of multiple in-
dependent variables. Because the systems analyzed are limited, even if there
are multiple variables and parameters that could be analyzed at the same time,
the capabilities of the system do not allow this realization.

• Iterated maps (difference equations) describe problems where time is discrete.
This abstraction can be applied to discrete state machines; however, its analysis can
be inferred most of the time from the continuous system.

In summary, a computer system will behave in two different ways. For short periods of
time or between time-steps, the program will behave as a linear system. However, when
looking at long periods of time, the system behavior will map to a continuous ordinary
differential equation. That is why these equations are of interest.

Overall, this behavior could also be applied to some other continuous systems, but for
the scope of this paper, the sole focus will be on computer programs and systems.

1.3.3 Dynamical Systems Theory and Control Theory

Dynamical Systems Theory provides the framework for the study of dynamical systems.
However, a generalization for the case of computer science is control theory. The objective

10

1.4. System Representation and Abstractions

of control theory is to develop an abstraction that behaves in a predictable way and drives
the system to a desired state by using the inputs.

In the case of this thesis, the abstraction that dynamical system theory provides will
be useful in developing and understanding the underlying concept of the technique. After
all, the aim is to study the dynamical system of a computer program and obtain with it
the control equations that govern such system.

1.4 System Representation and Abstractions

In this section, some other necessary concepts and abstractions necessary for the compre-
hension of the thesis will be presented.

1.4.1 Continuous and Discrete Systems

Building on the previous work in this chapter, the definition of both concepts is the
following:

• Continuous systems: It is one in which the state variables change continuously
over time. For example, the pressure of a chemical process.

• Discrete systems: It is one in which the state variables change at a discrete set
of points in time. Whether with the same � every time or variable � time.

Most physical processes are continuous, even if the sampling is done at certain points
in time. On the other hand, due to the architecture of computers and processors, most if
not all cyber processes are discrete, since they process instructions every � time.

The domain that studies the conversion between discrete and continuous systems is
signal analysis and processing, and it is necessary for the interaction between the physical
and computational world.

1.4.2 Finite State Machines

State machines are mathematical abstractions that represent algorithms and computer
programs. There are two main elements in a finite state machine.

• State: This is the status of a system waiting to perform a transition to another
state or perform an action. They are the basic element of any state machine, and at

11

CHAPTER 1. INTRODUCTION

least one is necessary for a finite-state machine to exist. Some state machines may
perform multiple actions in a single state.

• Inputs: They are the variables that determine the transitions between the states
and the actions of a state machine. These are necessary for a system to take any
action. They can be internal or external.

• Transitions: They are the change from one state to another. They may be influ-
enced by any of the system’s inputs, and there may be multiple transitions available
from one state to multiple others and vice versa.

An easy and interactive way to represent state machines is through UML (Unified
Modeling Language) representations. These representations are basic in the design of any
model. In the case of this thesis project, ICSREF provides a concept similar to that of
state machines, which will be explored later.

1.4.3 Automata Models

Automata theory is a branch of computer science established around the 1980s, when
mathematicians started developing machines that closely resemble human and real-world
devices. It could be argued that it is an evolution of Dynamical Systems 1.3. The
development of this theory created the concept of an automaton, which is "an abstract
model of a machine that performs computations on an input by moving through a series
of states or configurations" [15].

Automata theory

Combinational logic

Finite-state machine

Pushdown automaton

Turing Machine

Figure 1.4: Classes of automata (non-exhaustive)
Source: Courtesy of Wikimedia Commons - Original [16]

12

1.4. System Representation and Abstractions

At each state of the computation, a transition function determines the next state
based on input and configurations. The most well-known automata is a Turing machine.
The difference, however, between automatas/Turing Machines and finite-state machines
is that the scalability of the automata concept and definition is easily abstractable to
complex dynamical systems, while the finite-state machine is limited by the amount of
finite states. In a computer program, except for the simplest ones, it is impossible to
represent all of the states with input options, whereas automata models and, for that
matter, Turing machines can correctly represent such abstraction.

< X, 0 >

< b, 1 >

< a, 1 >
< a, 0 >

< b, 0 >< X, 0 >

q2 q1

Figure 1.5: Example of an automaton state diagram
Source: Courtesy of Stanford University [15]

As mentioned above, automata models are related to dynamical systems because both
try to represent complex systems; however, automata models map discrete systems in
contrast to dynamical systems. The main elements of an automata are the following:

• Inputs: Set of symbols chosen from a finite set of input signals. A set of symbols
is {x1, x2, x3, ..., xk} where k is the number of inputs. It is a finite set I

• Outputs: Set of symbols selected from a finite set Z. Set Z is {y1, y2, y3, ..., ym}
where m is the number of outputs.

• States: It is a finite set Q.

• State transition function: Determines the conditions for state transitions and
maps the input values to the output states, per state. It performs the action I ! Z

Although the above elements are a generalization of a finite-state machine, the formal
definition of a finite-state machine is the following 5-tuple [15]:

• Q = finite set of states

• I = finite set of inputs

• Z = finite set of outputs

• � = mapping of I ⇥ Q into Q called the state transition function, i.e. I ⇥ Q ! Q

13

CHAPTER 1. INTRODUCTION

Figure 1.6: Example of a finite-state machine (Morse machine)
Source: Courtesy of mathertel.de [17]

• W = mapping W of I ⇥ Q onto Z, called the output function

• A = set of accept states where F is a subset of Q

The representation of an automaton or a finite-state machine is usually done through
a graph-like schema. An example of such a representation is presented in Figure 1.6.

In general, representation is easy and universal. UML has specific guidelines for state
machine representation with defined rules and verification schemes.

1.4.4 Domain Specific Languages (DSL)

Programming languages can be classified into two distinct groups: general-purpose pro-
gramming languages and domain-specific languages. General-purpose programming lan-
guages are those like C, Java, or Python, and they can be used to represent and write
programs in a wide range of applications and areas. These languages provide versatility,
scalability, and ease of use.

However, that generality can sometimes be counterproductive. It is worth noting that
not all general-purpose languages are programming languages. In this case, UML (Unified
Modeling Language) is a general-purpose language, but it is not a programming language.
The broader the language, the less optimized it is for a specific domain. This includes
the ease of representing expressiveness in a particular domain. Here, Domain-Specific
Languages or DSLs shine [18].

14

1.4. System Representation and Abstractions

A Domain Specific Language is a type of programming language tailored to one spe-
cific function or modeling. In this case, it could be the representation of an embedded
system, or it could be the modeling of the functioning of a PLC. All DSLs provide specific
constructors and unique structures for the domain. With this, they provide ease of use
and expressiveness; however, they are more complex in terms of know-how and present a
steeper learning curve.

The development of a DSL is time- and resource-consuming. It requires the expertise
of numerous programmers and may not be feasible for every single application. There
needs to be a strong feasibility analysis to determine whether a DSL is suitable for the
application and a set schedule and phase differentiation. Without these elements, the
development of a DSL may not provide any gains compared to the use of general-purpose
object-oriented languages [19].

History

Some of the first DSLs date back to the 1950s. BNF (Backus-Naur Form) was developed
to provide a description language for programming applications and programs. It is used
to describe the syntax of programming languages and other protocols. This method of
language description is widely used when a technical description is necessary and there
needs to be unequivocal definitions [20].

An example of a Backus-Naur form can be seen in
1 <whi le loop> : := whi l e (<condi t ion>) <statement>
2 <assignment statement> : := <var i ab l e > = <expres s ion>
3 <statement l i s t > : := <statement> | <statement l i s t > <statement>
4 <unsigned in t ege r > : := <d i g i t > | <unsigned in t ege r ><d i g i t >

Listing 1.1: Backus-Naur Form example

Coq Programming Language

Figure 1.7: Coq logo

One of the domain-specific languages that could be useful for this project is Coq.1
Coq is a DSL or, as the developers call it, "computer tool that allows the verification of

1https://coq.inria.fr/

15

https://coq.inria.fr/

CHAPTER 1. INTRODUCTION

theorem proofs." It uses the Calculus of Inductive Construction as a backbone theory to
develop the tool. Some of the applications of this language include the certification of
programming languages, the formalization of mathematical theorems, and the verification
of C programs.

Although the Coq language will not be used at this point in the development of the
project, future iterations will be able to lift the abstractions to Coq.

16

Chapter 2

Tools and Techniques

This chapter will explain and introduce the main tools and technologies used for this
Final Undergraduate Project. The main focus is given to reverse engineering tools and
symbolic execution, since these tools comprise most of the final research thesis. However,
emphasis on other really useful simulation tools and libraries is given at the end of the
chapter.

2.1 Reverse Engineering

Reverse engineering is a technique that examines current systems and tries to infer,
through deductive reasoning, its inner workings and construction. As M.G. Rekoff defined
it, it is "the process of developing a set of specifications for a complex hardware system
by an orderly examination of specimens of that system" [21]. The technique of reverse
engineering can be applied to a variety of fields, such as computer engineering, chemical
engineering, mechanical engineering, etc., and is not limited to engineering fields only.

The origins of reverse engineering date back to hardware analysis, that is, deciphering
the inner workings of hardware devices. However, while the techniques for hardware
inference are similar to those used for software analysis, the aim of reversing is different.
The traditional hardware reversing objective is to replicate the system. However, in terms
of software reverse engineering, the aim most of the time is to "gain a sufficient design-level
understanding to aid maintenance, strengthen enhancement, or support replacement" [22].

In the case of this thesis, reverse engineering will be used to infer the equations that
govern these cyber-physical systems. There are multiple techniques to achieve the goal
of inferring control equations, but the main tools are decompilers and code interpreters.
The main focus will be on the former.

17

CHAPTER 2. TOOLS AND TECHNIQUES

2.1.1 Decompilers and Disassemblers

The aim of a decompiler is to reverse engineer the bits read from an executable file and
translate those bits into a higher-level programming language. In theory, the decompiled
file should be able to be compiled again to exactly the same program, or at least with the
same functionality; however, due to current limitations, no decompiler is able to correctly
lift the code perfectly.

Decompilers are limited tools in their performance, but in most cases they also include
disassembler functionality. A disassembler is a tool that, like decompilers, is able to
lift executable files into assembly instructions. The steps for any decompilation are the
following [23]:

1 Decode the binary-file format.

2 Decode the machine instructions into assembly code for that machine. Extra smarts
are needed to handle indirect transfers of control such as indirect calls and indexed
jumps. If the targets of these are not all known, the decompilation will be incomplete
for that procedure. Alternatively, human intervention may be required.

3 Perform semantic analysis to recover some low-level data types such as long vari-
ables, and to simplify the decoded instructions based on their semantics.

4 Store the information in a suitable intermediate representation If a suitable inter-
mediate language is used, the next 2 steps can be used with any assembly language
to generate any procedural HLL code.

5 Perform data flow analysis to remove low-level aspects of the intermediate represen-
tation that do not exist in HLLs, e.g. registers, condition codes, stack references.

6 Perform control flow analysis to recover the control structures available in each
procedure (i.e. loops, conditionals and their nesting level)

7 Perform type analysis to recover HLL (High Level Language) data types such as
arrays and structures. Recovery of classes requires extra analysis. Note: this is one
of the hardest steps and may need human intervention.

8 Generate HLL code from the transformed intermediate code.

Ghidra

Ghidra1 is a free open-source decompiler and disassembler tool developed by the NSA
(National Security Agency) of the United States. It is considered a Software Reverse
Engineering (SRE) Framework. The tool, released in 2019, is built using Java and C++.

1https://github.com/NationalSecurityAgency/ghidra

18

https://github.com/NationalSecurityAgency/ghidra

2.1. Reverse Engineering

Figure 2.1: Ghidra logo

This tool has become one of the most important decompiling tools in recent years, to
the detriment of other paid options such as IDA Pro or JEB decompiler. The advantage
of Ghidra over other tools is first its open-source license. This allows the community to
rapidly develop patches and new functionality. Furthermore, there are numerous plug-ins
and add-on scripts to the program that help in the task of decompiling programs. The
Ghidra community in GitHub is growing and there are more than 4,000 forks and 180
contributors to the main branch of the program.

Ghidra presents the following features: disassembly, assembly, decompilation, graph-
ing, and scripting. All of these options provide the user with a complete suite for reverse
engineering and code analysis. Furthermore, as mentioned above, Ghidra plug-ins extend
the capabilities of this software tool. These plug-ins can be developed in both Java and
Python (through a translation layer Jython). Some of the most important plugins for
Ghidra are: ghidra_bridge, LazyGhidra, ipyghidra, pcode-emulator, and more. In this
thesis, the focus will be given mainly to ghidra_bridge and ipyghidra.

• Ghidra_Bridge:2 Ghidra plug-in that allows the integration of the Ghidra console
with Python commands. It expands on the limited capabilities that Jython provides,
and adds a Python 3 interface. In the development of this thesis, the capabilities that
ghidra_bridge provides were useful in the achievement of manual binary analysis.

• Ghidra IPython:3 ipyghidra is a small extension for Ghidra and IPython that
builds on previous work. It adds console functionality to ghidra_bridge function-
alities, and adds another API to access both internal data for the objects and de-
compiled functions and objects. For that extra information, it uses Ghidra’s JSON
information.

radare2

Radare24 is a command-line tool, similar to Ghidra, but focuses on command-line execu-
tion and disassembly. This tool uses an advanced disassembler framework to function and
present the lifted assembly code. Its main functions are: analyzing data, disassembling,

2https://github.com/justfoxing/ghidra_bridge
3https://github.com/fmagin/ipyghidra
4https://rada.re/n/radare2.html

19

https://github.com/justfoxing/ghidra_bridge
https://github.com/fmagin/ipyghidra
https://rada.re/n/radare2.html

CHAPTER 2. TOOLS AND TECHNIQUES

Figure 2.2: Radare2 logo

binary patching, data comparison, searching, replacing, and visualizing. Radare2 is a
complete refactor of radare1, and provides with extra functionality and stability.

Radare2 supports multiple architectures and language dissasemblers that can be found
in 2.1.

i386 x86-64 ARM MIPS PowerPC SPARC
RISC-V SH m68k m680x AVR XAP

S390 XCore CR16 HPPA ARC Blackfin
Z80 H8/300 V810 V850 CRIS XAP
PIC LM32 8051 6502 i4004 i8080

Propeller Tricore CHIP-8 LH5801 T8200 GameBoy
SNES SPC700 MSP430 Xtensa NIOS II Java
Dalvik WebAssembly MSIL EBC TMS320 Hexagon

Brainfuck Malbolge whitespace DCPU16 LANAI MCORE
mcs96 RSP SuperH-4 VAX KVX Am29000

Table 2.1: Excerpt of architectures supported by radare2

The advantages of using radare2 over Ghidra are faster execution and integration
with multiple languages. Although Ghidra provides a user-friendly interface, its API
connection to other languages and tools is limited, and radare2 improves on that matter.
Furthermore, the integration with other tools allows for a more automatic execution, and
as such, it is used in the automatic workflow.

Radare2 presents an additional advantage, which is its integrated command-line man-
agement and utilities. This allows for the tool to integrate decompilers such as Ghidra’s
to improve on its functionality. The most important ones used for the project are the
following:

Executable file

r2piper2ghidra

Figure 2.3: R2ghidra and r2pipe logos

• r2pm:5 Package manager, allows easy installation of other packages that improve
the capabilities of radare2.

5https://github.com/radareorg/radare2-pm

20

https://github.com/radareorg/radare2-pm

2.2. Symbolic Execution

• r2pipe:6 API to connect to other languages. It is basically compatible with any
programming language that uses pipes to connect to radare2’s disassembled output.
In this project, it is used to connect it to angr on some occasions for 2.2.

• r2ghidra:7 Radare2’s integration of the Ghidra decompiler tools. This is the back-
bone of the project, as it uses the decompiler to lift the code and eventually present
it to the user. Its integration provides a framework to build upon. A Ghidra in-
stallation is not necessary for this package, as only the compilers, built in C++ are
used.

2.2 Symbolic Execution

Symbolic execution is a technique that analyzes a computer program to determine both
the inputs and outputs of that program, and tries to find the relationship between program
execution and memory/variable access [24]. The aim of symbolic execution is to be able
to debug programs in a similar fashion to static analysis, but provide abstraction and
generalize testing for multiple cases and "branches" [25].

Symbolic execution tries to find all execution paths. In this case, each symbolic execu-
tion path represents numerous execution paths. In order to execute those paths, instead
of directly reading memory or register values, it substitutes those values for variables that
can then be used for further analysis. For example, if there is an assembly instruction
to read register r1 and copy it to register r2, a symbolic execution tool like angr would
assign a variable name and size (float 32, int 16...) to r1, and the same variable name and
size to r2. With this assignment, we would then continue computing further calculations
and values.

With this substitution, and other useful techniques, the program is able to run through
multiple machine states and infer both constrained and unconstrained variables, depend-
ing on the number of if/else statements, while-loops, for-loops, etc. In the case of this
thesis, if it is known that in the control loop there are 3 if clauses, the final execution
will indicate that there are 3 unconstrained variables.

Overall, symbolic execution is a really powerful tool, not only for debugging, but
also for vulnerability search, simulations, system verification, and virtualization of cyber-
physical systems.

6https://rada.re/n/r2pipe.html
7https://github.com/radareorg/r2ghidra

21

https://rada.re/n/r2pipe.html
https://github.com/radareorg/r2ghidra

CHAPTER 2. TOOLS AND TECHNIQUES

2.2.1 History

The concept of symbolic execution dates back to the 1970s, when a team from the
Stamford Research Institute formally defined SELECT, a program whose objective is to
". . . provide simplified symbolic values for program variables at the output of a path. . . "
[26]. Other early work on symbolic execution includes IBM’s EFFIGY and L. Clarke’s
test generation and symbolic execution techniques at MIT.

In subsequent years, as computers evolved following Moore’s law, symbolic execution, a
computationally intensive task, became more popular in terms of debugging and analysis.
This evolution in computational power made symbolic execution possible, as the time for
a complete or at least partial analysis was subsequently reduced. Some of the tools that
popularized this technique are z3, rosette, and angr.

2.2.2 Execution Tools

For the symbolic execution in this project, there are numerous tools that can be used.
However, angr was chosen because it is an open-source community-backed project against
other proprietary solutions.

angr

Figure 2.4: Angr logo

angr8 is an open source binary analysis tool that performs symbolic execution on bina-
ries. It is built on Python and integrates both static and dynamic symbolic ("concolic")
analysis. The advantage of using angr is its support for multiple architectures, built on
Python, and ease of use. Furthermore, the interfaces that angr provides creates a frame-
work for correctly lifting the control equations. Angr supports more than double of the
languages and architectures of other solutions, and those programming languages include:
x86, x86-64, ARM, AARCH64, MIPS, MIPS64, PPC, PPC64, and Java. Angr’s interface
is through command-line execution, and it provides a fast and reliable way of performing
binary analysis and program inferring.

8https://angr.io

22

https://angr.io

2.3. PLC Binary Analysis

Apart from symbolic execution, some of the features that angr provides are: control-
flow graph recovery, disassembly and lifting to intermediate languages, and decompilation
to AIS (angr intermediate language). Furthermore, angr provides extensibility for analy-
sis, architectures, platforms, and more.

Claripy

Claripy9 is an abstracted constraint-solving wrapper, integrated in angr. It is similar to
Z3, and provides a theory solver. Claripy uses ASTs to interact with the different elements
in the constraint solver. These ASTs abstract away the differences between mathematical
constructs that Claripy supports. In this case ASTs are per se the variables that substitute
memory and register writes/reads. There are three ASTs that Claripy supports:

• BV: Corresponds to a Bitvector. It can be symbolic or concrete (with a value).

• FP: Corresponds to a Floating-Point number. Just like BV, it can be symbolic or
concrete.

• Bool: Corresponds to a Boolean operator. Its usage is similar to that of BV and
FP.

With these three ASTs, which most of the time are not necessary to directly interact with,
symbolic execution can be performed to analyze binaries and programs.

2.3 PLC Binary Analysis

One of the cyber-physical devices used for this thesis is a PLC device, built on the WAGO
PLC programming language. Symbolic execution techniques were performed on this de-
vice, and control differential equations were lifted, without previously knowing information
about the PLC itself.

A PLC or Programmable Logic Controller is an industrial computer adapted for the
control of a manufacturing process. Its main characteristics are high reliability, process
fault diagnosis, and strong physical properties. These devices are ubiquitous in the in-
dustry world and follow specific design guidelines and constraints.

9https://github.com/angr/claripy

23

https://github.com/angr/claripy

CHAPTER 2. TOOLS AND TECHNIQUES

2.3.1 PLC Architecture and Characteristics

One of the attacks of this thesis was carried out on a CODESYS10 platform-based PLC,
running binary files created with WAGO11. CODESYS is a hardware-independent IEC
61131 platform for industrial control systems (ICS). The decision to analyze these devices
is due in part to the fact that CODESYS is widely used in industry, and partly because
the aim was to simulate 2.3.3’s attack with the lifted differential equations. CODESYS
is used by 250 manufacturers and has a significant market share in the field of industrial
control platforms, as can be seen in Table 2.2

Company Development Platform CODESYS-based?
Rockwell Automation Studio 5000 Logix Designer No

Siemens STEP7 No
ABB Automation Builder Yes

Schneider Electric SoMachine Yes
Bosch Rexroth Indralogic Yes

Wago Kontakttechnik WAGO-I/O-PRO Yes
Eaton Industries XSOFT-CODESYS Yes

Beckhoff Automation TwinCAT Yes
Lenze Automation PLC Designer Yes

Owen CODESYS Yes
Omron CX-One No
SEL acSELerator Yes

ifm electronic CODESYS Yes
STW Technic CODESYS Yes

Berghof Automation CODESYS Yes

Table 2.2: Automation Platforms of ICS Vendors [27]

Tennessee Eastman Chemical Process

The target process is based on the Tennessee Eastman (TE) chemical progress which is
based on a model presented from [28]. The version of the analysis is modified to meet the
requirements of the ICSREF paper, [27], because the attack will be used to validate the
lifting system. The TE process is a realistic simulation of a chemical process, released
to the academic community as a reference process [29], which uses pressure output and
conditions to model attacks on an Industrial Control System.

10https://www.codesys.com
11https://www.wago.com/global/automation-technology/discover-software/codesys-2

24

https://www.codesys.com
https://www.wago.com/global/automation-technology/discover-software/codesys-2

2.3. PLC Binary Analysis

2.3.2 Proportional Integral Derivative (PID) Controller

For this project, it was not feasible to analyze a random binary, so it was decided that
an analysis would be performed only in the PID_FIXCYCLE function. The PID_FIXCYCLE
function can be used to control a Proportional Integral Derivative (PID) controller, widely
used in industrial systems.

A Proportional–Integral–Derivative controller is a control loop mechanism that em-
ploys feedback in applications that require continuously modulated control. A PID con-
troller is governed by Equation 2.1 (parallel form) [30].

u(t) = Kpe(t) +Ki

Z t

0

e(⌧) d ⌧ +Kd
d e(t)

d t
(2.1)

In Equation 2.1, the terms Kp, Ki, and Kd represent the non-negative coefficients
of the proportional, integral, and derivative. However, there is a standard form that is
widely used in industry (Equation 2.2) where instead of PID coefficients, Ti and Td are
used. These represent the integral and derivative time, respectively. In this form of the
equation the parameters have actual physical properties rather than being parameters.
The sum of both terms is actually a single new error that is compensated for by the
architecture of the algorithm. In this case, the representation is clearer.

u(t) = Kp(e(t) +
1

Ti

Z t

0

e(⌧) d ⌧ + Td
d

d t
e(t)) (2.2)

The PID controller continuously calculates an error value e(t) as the difference between
a set-point and a measured variable. It then applies a correction based on the calculations
set by the equations. In this case, the focus will be on PID_FIXCYCLE, which, as mentioned,
represents a PID controller for which the cycle time can be set manually. [31]

In terms of the output and input of this function, they are presented in Table 2.3

These inputs and outputs will be inferred and can be used independently to control
the lifted behavior of PID_FIXCYCLE. The input values are determinants for the correct
execution and simulation of the attack presented in ICSREF.

2.3.3 ICSREF PLC Analysis Tool

ICSREF [27] or Industrial Control Systems Reverse Engineering Framework, "automates
the reverse engineering process for ICS binaries and can provide information on the phys-
ical characteristics of a system captured in the ICS binaries controlling it, without any

25

CHAPTER 2. TOOLS AND TECHNIQUES

Scope Name Type Description

Input

ACTUAL REAL Actual value, process variable
SET_POINT REAL Desired value, set point

KP REAL Proportionality const. P
TN REAL Reset time I in sec
TV REAL Rate time, derivative time D in sec

Y_MANUAL REAL Y is set to this value as long as MANUAL =
TRUE

Y_OFFSET REAL Offset for manipulated variable
Y_MIN REAL Minimum value for manipulated variable
Y_MAX REAL Maximum value for manipulated variable
MANUAL BOOL TRUE: Manual: Y is not influenced by con-

troller | FALSE: Controller determines Y
RESET BOOL TRUE: Sets Y output to Y_OFFSET and

reset integral part
CYCLE REAL Time in s between two calls

Output
Y REAL Manipulated variable, set value

LIMITS_ACTIVE BOOL TRUE: Set value would exceed limits
Y_MIN, Y_MAX

OVERFLOW BOOL Overflow in integral part

Table 2.3: Inputs and Outputs for PID_FIXCYCLE

prior knowledge of the system." This tool allows for the analysis of PLC binaries, ob-
taining function signatures, memory inputs and values, and correctly analyzing register
values. It is also capable of creating function call maps and presenting the information
through an API.

ICSREF is used to simulate an attack on the Tennessee Eastman process. They have
integrated in the binaries the attack to that specific process, and in order to prove that
InteGreat is able to correctly lift the control differential equations, an attack is done on
the same process but using the lifted equations. This is the reason why ICSREF was
useful in achieving the project objective.

ICSREF as such provided the memory values to simulate the attack and helped to
infer PID_FIXCYCLE from the TE.PRG binary file.

2.4 Reachability Analysis

Reachability analysis consists of the evaluation of all possible states reachable from an
initial set-point state given certain constraints and input parameters. In general, the goal
is to check whether a set of final states can be reached, within reasonable input parameters,
from a set of initial states [32]. Factors that may influence the reachability analysis

26

2.4. Reachability Analysis

could be additional constraints on any state, a specific requirement for reachability paths,
iterative reachability, or trying to attain states by giving preference or rewards to certain
states. Reachability problems can be applied to numerous fields, such as finite- and
infinite-state concurrent systems, physical models, hybrid systems, and more.

The study of reachability analysis dates back to the early 1970s, with the first Petri
net experiments [33]. Since then, it has been developed in recent years, especially in
computer science, where the goal is to obtain complete automata models (see Section
1.4.3). However, constraints in the amount of computational power and costs of developing
and obtaining new reachability analysis tools have hindered its development in the early
2000s.

Automata models are basic for correctly interpreting what a reachability analysis tool
aims to do. Basically, a reachability analysis works on top of a pre-existing automata
model, to compute states, transitions, and constraints in the system.

2.4.1 DaDRA

Figure 2.5: DaDRA logo

DaDRA12 is a Python library for Data-Driven Reachability Analysis. The goal of
the package is to accelerate the process of computing estimates of forward reachable sets
for nonlinear dynamical systems. This package allows for the execution of a reachability
analysis on different Python programs. In terms of usefulness, it helped to determine the
different states that the quadcopter could reach once the input parameters were locked.
This tool allows for a clear and user-friendly representation of the reachability analysis
and provides an interface to that simulation.

2.4.2 JuliaReach

Figure 2.6: JuliaReach logo

12https://github.com/jaredmejia/dadra

27

https://github.com/jaredmejia/dadra

CHAPTER 2. TOOLS AND TECHNIQUES

JuliaReach13 is an open-source reachability analysis tool that "implements reacha-
bility analysis methods for systems of ordinary differential equations (ODEs), for both
continuous and hybrid dynamical systems."

JuliaReach is not used at this stage in this project; however, it is worth mentioning
it as its capabilities are greater than that of DaDRA’s and provide extensive reachability
analysis. The aim is to integrate JuliaReach into the final binary that will be presented
later for the conference.

Nevertheless, JuliaReach currently provides support for the following types of system:

• Continuous ODEs with linear dynamics

• Continuous ODEs with non-linear dynamics

• Continuous ODEs with parametric uncertainty

• Hybrid systems with piecewise-affine dynamics

• Hybrid systems with non-linear dynamics

• Hybrid systems with clocked linear dynamics

These systems fall exactly in the expected goal for this project.

2.5 Radar Simulation

For the analysis of Continental’s Radar, it was necessary to simulate, using NXP’s RadarSDK,
the behavior of such a device in a virtual environment. Continental’s radar is based on
the NXP S32 family of chips, which are built on a 32-bit PowerPC architecture. This
simulation of that device included the use of MATLAB and NXP’s RadarSDK.

2.5.1 MATLAB

MATLAB14 is a multi-paradigm programming language and computing environment de-
veloped in the late 1970s by Mathworks Inc. The strengths of MATLAB stem from its
numeric computing features and the presence of toolboxes, such as the Signal Processing
Toolbox, with multiple applications in the signal and processing fields. For this thesis,
the following additional features were used.

13https://juliareach.github.io/
14https://www.mathworks.com/products/matlab.html

28

https://juliareach.github.io/
https://www.mathworks.com/products/matlab.html

2.5. Radar Simulation

Figure 2.7: MATLAB logo

Signal Processing Toolbox™

The signal processing toolbox for MATLAB, "provides functions and apps to manage, ana-
lyze, preprocess, and extract features from uniformly and non-uniformly sampled signals"
[34]. This toolbox provides efficient and optimized functions for signal processing, such as
FFT, refactoring, filters, frequency domain visualizations, and more. NXP’s Radar Demo
uses this library to provide fast operations while generating 3D FFTs and other processing
elements required for the example.

The advantage of using this toolbox is that it is compatible with GPU/CUDA© accel-
eration and its functions can be exported to C/C++, with MATLAB’s Coder App, which
is used by NXP’s software to obfuscate the contents of their signal processing code.

NXP RADAR Toolbox for S32R

Figure 2.8: NXP logo

NXP’s Radar Toolbox is a complementary development environment for NXP’s S32
family of chips. It offers a path of integration between advanced radar signal processing
capabilities and microcontroller capabilities, for generic software task and car bus inter-
facing. It also provides multicore architecture support and signal processing acceleration
[35].

2.5.2 NXP Premium RadarSDK

RadarSDK15 is part of the NXP Semiconductor Automotive Radar System package. It
provides capabilities to program and build tools for NXP’s automotive radars (S32R45
and S32R41 families) and tools for debugging. While access to RadarSDK is limited to

15https://www.nxp.com/design/automotive-software-and-tools/premium-radar-sdk-advance
d-radar-processing:PREMIUM-RADAR-SDK

29

https://www.nxp.com/design/automotive-software-and-tools/premium-radar-sdk-advanced-radar-processing:PREMIUM-RADAR-SDK
https://www.nxp.com/design/automotive-software-and-tools/premium-radar-sdk-advanced-radar-processing:PREMIUM-RADAR-SDK

CHAPTER 2. TOOLS AND TECHNIQUES

Figure 2.9: Premium RadarSDK Processing Chain
Source: Courtesy of NXP Semiconductors

paying customers, some of the functionality and examples are available, while following
NXP’S terms and conditions.

RadarSDK is used as the third target for the program. The advantage of using this
development environment as a target is the structure and availability of kernels for MAT-
LAB. It includes the following elements [36].

• SPTDriver

• SPTKernels

• Matlab bitexact model for SPT kernels

• RF Abstract API for NXP FE (incl SPI & CSI2 I/F)

2.6 Parallel Execution

Some other useful tools used for the development of this thesis project include these
command-line tools, that helped both in the execution and evaluation of the final tool.

30

2.6. Parallel Execution

2.6.1 tmux

Figure 2.10: Tmux logo

Tmux16 is a terminal multiplexer, that is, a program that allows multiple terminal
processes to be run at the same time. Tmux sessions persist in time, even if there is no
connection, and it is especially useful for headless machines. Tmux is easily accessible
though a terminal connection, and provides an easy interface for the development of
programs that required extended execution times. Some of the main features of tmux are:

• Session persistence: tmux sessions, unless closed, persist even if a user is not
connected. This allows for the continuation of previous work and the ability to
connect from multiple ssh sessions to the same tools and working environment.

• Session management: tmux allows to execute multiple "individual" command-
line processes at the same time without having to interrupt any one or having to
create new connections.

This tool was really useful for the execution of large binary analysis, using the Uni-
versity of Illinois S&PR@I servers. Furthermore, the ability to maintain sessions over
different computers allowed for the execution both at the laboratory and remotely.

2.6.2 keep

Figure 2.11: Keep logo

Keep17 is a simple command-line toolkit that allows saving terminal commands across
for ease of use. Commands are saved with a small description, and powerful search pat-
terns allow for the easy execution of repetitive/tedious command-line commands. Fur-
thermore, keep allows the synchronization of those commands by means of a GitHub
gist.

16https://github.com/tmux/tmux/
17https://github.com/OrkoHunter/keep

31

https://github.com/tmux/tmux/
https://github.com/OrkoHunter/keep

CHAPTER 2. TOOLS AND TECHNIQUES

2.7 Memory read

Techniques for reading memory chips, such as the one present in the coffee maker, were
necessary. Although these devices were used, actual memory acquisition was unsuccessful
due to unforeseen reasons.

2.7.1 Arduino

Figure 2.12: Arduino logo

An Arduino18 is an open-source integrated single-board computer that contains, in a
single package, a wide array of components for low-power computation. Arduino boards
are widely used in embedded systems due to their cost and capabilities.

In this thesis, an Arduino Mega 256019 was used to try to obtain memory from a
Winbond chip from the coffee maker, with no success.

2.7.2 Arduino libraries

The library used for SPI memory acquisition is SPIMemory20. It contains easy-to-use
commands and compatibility with a large amount of SPI memory vendors.

2.8 Other tools

These tools and programs are necessary for the execution of the project and helped in
achieving the goals set out at the beginning. Some of these are basic, such as programming
languages and IDEs, and some others are more task-specific and present a steep learning
curve.

18https://www.arduino.cc/
19http://store.arduino.cc/products/arduino-mega-2560-rev3
20https://www.arduino.cc/reference/en/libraries/spimemory/

32

https://www.arduino.cc/
http://store.arduino.cc/products/arduino-mega-2560-rev3
https://www.arduino.cc/reference/en/libraries/spimemory/

2.8. Other tools

2.8.1 Python

Figure 2.13: Python logo

Python21 is a high-level programming language. It is interpreted and general purpose,
and provides one of the most extensive documentations and toolkits, through add-on
libraries. Its popularity has risen over the past few years, holding the first position as the
most popular programming language in some of the latest statistics [37].

For the development of this project, Python3 and Python2 and a multitude of Python
libraries and resources were used. Some of those have already been mentioned, like angr,
DaDRA, however, an excerpt of the most important packages follows in Table 2.4.

Name Description
matplotlib Comprehensive library for creating static, animated, and interactive visu-

alizations in Python
regex String matching utility
numpy Mathematical library that provides multidimensional array objects, vari-

ous derived objects (such as masked arrays and matrices), and an assort-
ment of routines for fast operations on arrays

Table 2.4: Excerpt of Python packages used in the project

2.8.2 Jupyter Notebook

Figure 2.14: Jupyter Notebook logo

21https://www.python.org

33

https://www.python.org

CHAPTER 2. TOOLS AND TECHNIQUES

Jupyter Notebooks22, formerly a spin-off of IPython, is a web-based interactive com-
puter environment to create notebooks. The advantage of Jupyter Notebook is that it
can be integrated with different programming language kernels and provides interactive
support for a multitude of programming languages.

In this project, Jupyter notebooks were used to prototype and verify the correctness
of the inferred functions decompiled and disassembled from Ghidra and, as such, provided
an easy way to verify the initial concepts. The notebook was used to first familiarize with
the developing environment and to perform checks and verification. However, its use was
limited to the beginning of the project while prototyping a solution.

2.8.3 IPython

Figure 2.15: IPython logo

IPython is a command-line shell for interactive computing for Python that provides
a kernel for the execution of user code from Jupyter Notebook and other programs. It is
also responsible for computing the completions of the Qt console. In this project, IPython
is used in conjunction with the Jupyter Notebook, moreover some of its features are used
to communicate between the kernel and the specific functionalities needed for symbolic
execution and binary analysis [38].

2.8.4 MPLAB X IDE

Figure 2.16: MPLAB X IDE logo

MPLAB X23 is a proprietary IDE (Integrated Development Environment) released by
Microchip Technologies. It is designed to be able to program all of Microchip’s PIC-
based microprocessors. It supports 8/16/32 bit microcontrollers and supports external
programmers.

22https://jupyter.org
23https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide

34

https://jupyter.org
https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide

2.8. Other tools

This program was used in the early stages of binary analysis, in conjunction with
the PICKit 4 Programmer, to try to obtain the memory of the PIC32 coffee maker chip.
However, due to hardware locks, its use was limited and short.

MPLAB PICkit 4 In-Circuit Debugger

The PICkit 424 is a microcontroller debugger, created by Microchip Technologies, that
works in conjunction with MPLAB X. It was used to connect to the debug port of the PIC
32 through a self-made adapter to RJ11. However, its use was unsuccessful as mentioned
above.

2.8.5 Git

Figure 2.17: Git logo

Git25 is a distributed version control system. It is an open-source project that is
capable of managing small to large projects efficiently. Version control systems are focused
on the ability to control multiple files and versions concurrently and provide with the
ability to test features before deploying them through means of branches and forks.

For this project, it was used to collaborate between team members and has an easy
way to collaborate with external parties that have helped in this project.

GitHub

Figure 2.18: GitHub logo

In order to correctly implement and correctly use all of Git’s features, GitHub26 was
used for source control. GitHub is a web-based interface that deploys all of Git’s features

24https://www.microchip.com/en-us/development-tool/PG164140
25https://git-scm.com/
26https://github.com/

35

https://www.microchip.com/en-us/development-tool/PG164140
https://git-scm.com/
https://github.com/

CHAPTER 2. TOOLS AND TECHNIQUES

and provides an easy user interface. It can be synchronized between devices and team
members.

2.8.6 Visual Studio Code

Figure 2.19: Visual Studio Code logo

Visual Studio Code27 is a source code editor, built by Microsoft Corporation and
released in 2016. Most of its code is open-source under the MIT license, and according to
the 2021 Stack Overflow Developer Survey, it was the most widely used IDE [39].

The advantage of VS Code over other editors is the possibility of adding plug-ins, both
official and community-made plug-ins. This allows for the integration of the IDE with
Git version control in an easy way, TeX editor, Markdown editor, SQL Query manager,
multiple language integration, Jupyter Notebooks, etc.

The ability to provide such integration and compatibility with languages makes the
development of code and this thesis easy.

2.8.7 Servers and Physical Devices

Finally, this project needed both computing power and an environment to deploy solutions
and tests. This was possible by the use of multiple servers provided by the director of
this thesis and an additional server provided by the author hosted at Hetzner28.

The use of all of these servers was done through ssh and headless execution.

27https://code.visualstudio.com/
28https://www.hetzner.com/

36

https://code.visualstudio.com/
https://www.hetzner.com/

Chapter 3

State of the Art

This chapter introduces some of the previous work in the fields of system verification
and analysis in the computer field. Furthermore, the state-of-the-art of some of the tools
presented in Section 2 is explained in further detail, especially the concepts and theory
behind them.

As of right now, there are few or no tools that allow for the integration between
high- and low-level code. Furthermore, there has not been much work done in terms of
a security-focused tool that builds its inference and verification schemes from the ground
up, that is, from bits to high-level programming languages and domain-specific languages.
InteGreat aims to bridge that gap and be a cybersecurity and system verification-focused
tool, by combining some of the most state-of-the-art techniques, libraries, and method-
ologies.

3.1 Previous Work

Since the introduction of the first embedded systems, there has been a tremendous amount
of work on both their development and evolution. As was mentioned, embedded systems,
and for that matter, cyber-physical systems, have become omnipresent in our world. But
with the increase in popularity, there is also an increase in vulnerabilities discovered and
the need for system verification.

Work on system verification has also been growing in recent years. With more compute
power, testing through "brute force" has become cheaper as systems have become more
powerful and can be done in some specific devices. These devices typically require high
levels of safety and stability in their systems. However, as embedded systems are becoming
increasingly cheaper, there is a need to deploy novel solutions and products as quickly as
possible, and if that requires reducing testing times and cases, it is sometimes preferred.
The clear example is the number of devices that continuously have patches applied to

37

CHAPTER 3. STATE OF THE ART

their firmware or software due to vulnerabilities.

The work in dynamical systems, as explained in Section 1.3, has evolved from the
attempt to infer complex physical systems into a shift to the computational world. These
techniques, designed at first for continuous systems, can be applied to discrete state-
machine systems, by means of hybrid automata models. Some work has been done on
this domain in [13]. However, little has been done in terms of verifying systems from the
ground up to a high-level programming language. Most, if not all, verification schemes
for cyber-physical systems depend on lifting the models to C code, or at least pseudo-C.
Nevertheless, for the most part, these implementations are neither comprehensive nor
implemented in real life in practice.

The shortcomings of some of the previous work stem from the lack of microarchitecture
and low-level programming adjustments. Techniques for high-level analysis have been
developed and are well known, but there is a lack of detailed studies of lower-level code
analysis in their properties and specific characteristics. Here is a more detailed analysis
of previous work done in some of the fields concerning this thesis.

3.1.1 Dissasemblers and Decompilers

The work on decompilers has improved greatly in the last 5 years or so. Since Ghidra
was released to the public in 2019, including the decompiler and disassemble software,
its implementations have been numerous. However, the work on decompilers is still on-
going. New sleigh specifications and different architecture support, to translate binary
code into actual assembly code instructions, are becoming more precise, especially for
CISC architectures, which present variable-size instructions [40].

3.1.2 Hybrid System Verification

In terms of hybrid system verification, work has been done on system verification, using
domain-specific languages such as Coq and Coq’s proof assistant. An example of this
analysis is given in the VERIDRONE paper [41]. The purpose of this verification is
to provide safety for programming operations. In addition to the VERIDRONE article,
further analysis of the code has been carried out with the development of a new DSL as
seen in [42]. However, there is no further work in terms of low-level verification of hybrid
automata systems.

38

3.2. Improvements and Novelties that the Project Introduces

3.1.3 Function Matching

Function matching development has been extensive, especially in recent years, as seen
in [43], [44], [45]. Work on existing vulnerable function matching and function research.
These studies can be helpful in terms of integration into the program. The work on this
tool pretends to find another way to match functions and discover vulnerabilities.

3.1.4 Reachability Analysis

Reachability analysis has been extensively studied in terms of high-level code, but the
development of this analysis, taking into consideration the limitations and difficulty of
low-level code, such as assembly, has not been widely studied. As studied in [46], [47],
these provide safety verification in continuous domains but lack some considerations on
the more intricate parts of lower-level execution.

3.2 Improvements and Novelties that the Project In-
troduces

This project bridges the gap that currently exists between low-level code analysis and
high-level representation. The ability to represent, in clear Python statements, complex
programming functions provides a great tool for vulnerability and stability analysis.

Moreover, its ability to provide support for multi-architecture, multi-platform system
verification adds to the usefulness of the tool. In future iterations, the configuration
package for each architecture will be programmed using a set of .json files. With this
abstraction in mind, it is not far fetched that apart from the three studied architectures
(arm, x86, PowerPC), the system could be easily expanded to other architectures and
useful devices.

One of the limitations that the project has, the inability to produce consistent binary
analysis for control loop functions, could be a feature in the future. There is work being
done at the University of Illinois in terms of function identification and characterization for
multiple architectures. Although the work focuses on the search for library vulnerabilities,
this ID technology could prove useful for the recognition of known control loop functions,
similar to what ICSREF does with the identification of PLC functions PID_FIXCYCLE [27].

Finally, the tool provides ease of use. For programs that have identified functions, the
work for the end user is easy. However, there needs to be some understanding of binary
file disassembly and program structure, as most programs are not fully compatible with
automatic disassembly and equation lifting.

39

CHAPTER 3. STATE OF THE ART

40

Chapter 4

Project Definition

In this chapter, the motivation, objectives, and plan of the project are presented. The aim
of a fully developed system verification platform will be emphasized, even if the extent of
such a task is not achievable in the scope of this project.

4.1 Motivation

The motivation for this project comes from the search for new and novel techniques to
verify and analyze the cybersecurity of embedded systems, and more specifically cyber-
physical systems. However, this verification scheme can be expanded to other devices
that rely on continuous control loops to perform their actions. This system verification is
vital due to the increasing number of devices that, in the name of cheapness, lack system
and security verification.

Once an embedded system goes through the first stages of development, problem def-
inition, system design, coding, debugging, and testing, there is always a risk that an
already programmed and used system may have implementation error or an unknown
bug may affect its utility. These errors could even cause a catastrophic failure in device
operation. Therefore, it is necessary to verify and correctly assess that the performance
of a gadget is as expected and that no known or unknown situations may arise from its
operation. With this tool, after the lifting of differential equations, a further analysis
of state reachability, provides a study of unstable states and unexpected behavior. Fur-
ther analysis may provide cybersecurity vulnerabilities through privilege execution and
malicious firmware upload to the device with modified memory values.

With complete development of the lifting tool, it will be possible to analyze binary
code from an embedded system, obtain looping functions, lift control equations, perform
a reachability analysis, and find vulnerabilities in the code. With all this information,
new techniques can be developed to further improve the tool.

41

CHAPTER 4. PROJECT DEFINITION

4.2 Objectives

The objective of this project is the search for a multi-functional, multi-platform tool that
can provide advanced analysis for cyber-physical system binaries. The aim is to be able
to semi-automatically analyze a binary file from different architectures and to be able to
lift the control routine or loop for that device. To achieve this goal, there are four main
sections of the project that need to be completed.

1 Binary analysis and function identification. Correctly obtain and decompile
the binary file into separate functions and be able to identify the main recursive
control loops within the file. This section may be done partially manually, as the
current function identification is limited by technology and lost naming conventions
in the binaries. Furthermore, the entry points to loops and functions are sometimes
dependent on the type of function calls the program has, either dynamic or static,
and have to be manually adjusted for each case individually.

2 Symbolic execution and equation lifting. The binary files will be executed
symbolically, using angr and claripy to correctly model interactions with read and
written memory and register values. Once these operations are lifted symbolically,
they are exported to a Python file that needs minimal modification to create a class.
Then a verifier is built manually to verify the correctness.

3 Correctness of equation lifting. Verify and assess the correctness of the lifted
equations. For this step, the behavior of the equation will be compared with the
expected behavior of the code using graphs and variable simulation.

4 State reachability analysis. To finalize the acquisition of the control equations,a
reachability analysis will be done to some of the binaries studied, using tools such as
DaDRA. With these tools, the objective is to demonstrate that systems may reach
an unexpected state in which their operation is unstable and no longer reliable.
With this reachability analysis, it is possible to identify the memory and sensor
input values that can cause errors in the system, thus creating vector cyberattacks.

4.3 Methodology

In terms of work methodology, an Agile-like scheme is used; however, due to the nature
of the progress and development of the tool, some deviations were taken.

Weekly meetings were held every Monday to review progress. In these meetings, the
current situation and short-term objectives for that week were established. Furthermore,
there were no daily meetings, but due to the ability to work in the SPR@I (Security
and Privacy Research at Illinois) laboratory in the CSL (Computer Science Laboratory)

42

4.4. Plan

building, concerns and questions were practically addressed immediately with the team
and the project director.

4.4 Plan

The schedule and plan of the project are explained in this section. Furthermore, the
completion of the objectives (only the main objectives are shown) is shown in a Gantt
chart (Figure 4.1).

1 Initial assessment and project definitions

1.1 September 2021. Definition of the paper. Target selection: coffee maker and
open-source drone. Objectives of the project, tools and libraries, concepts, and
introduction. Setup of the environment and compatibility checks.

1.2 October - November 2021. Start of the device memory reading and collec-
tion. The coffee maker exploded. Drone manual analysis and initial equation
lifting.

1.3 December 2021. Final proof of concept. Reachability analysis of drone
binaries and acceptance of the results of the proof-of-concept.

2 Project development and automatization

2.1 January 2022. New objectives chosen due to the lack of resources in the
initial devices. A PLC and a guitar pedal were chosen for the development of
the research.

2.2 February – April 2022. Further automatization and independence of the
system. PLC analysis. An automotive radar system is chosen as the third
target and the memory is read from it.

2.3 May 2022. Summary of the project. Code cleaning and further automati-
zation and interface. Presentation of the paper at a workshop and a written
project.

43

CHAPTER 4. PROJECT DEFINITION

Figure 4.1: Gantt chart of the project plan

44

Chapter 5

Development and Research

This chapter will focus on the methodology, devices, techniques, and results of the re-
search, that is, how the project was built and what accomplishments or milestones were
reached.

5.1 Analyzed Devices

Three main devices were analyzed for this project. However, work was done on several
others that did not make it to the analysis, due to unexpected shortcomings or impossibil-
ities. The focus will be on presenting a description of the devices, with specifications, and
some of the problems encountered in terms of obtaining memory files. A further detailed
analysis of the binary file specifics will be presented in Section 5.2.

5.1.1 Drone - Quadcopter

The binaries analyzed belong to an open-source quadcopter project whose aim is to de-
velop and study control algorithms for a flying device. The objective of the original project
was to obtain new control methods and apply them to the development of quadcopters.
The new methods take into account the new algorithms in motion and dynamics done in
recent work [48].

One technique that was implemented in the quadcopter software that will be analyzed
in this thesis is a quaternion update function, specifically Madgwick Filter1. Madgwick
Filter is a novel way of making quaternion updates for drones and other aerial systems,
which takes into consideration bias and sensor error by adapting recursively filters in the

1https://github.com/bjohnsonfl/Madgwick_Filter

45

https://github.com/bjohnsonfl/Madgwick_Filter

CHAPTER 5. DEVELOPMENT AND RESEARCH

update functions. It uses the input of an integrated IMU (Inertial Measurement Unit)
consisting of tri-axis gyroscopes and accelerometers, and MARG sensor arrays that also
include tri-axis magnetometers [49].

The advantage of analyzing this drone binary file is that the drone binary files, the
drone code, and the original Madgwick filter are available. This allows for both extensive
reachability analysis and, most importantly, for checking that the lifted equations are
correct and correspond to the original plan.

With all this, quadcopter binaries were used to evaluate the lifting of control equations
for devices of arm architecture. As mentioned, not all binary functions will be studied, as
the project relates only to control equations. As such, the focus will only be on Madgwick
Quaternion Update.

Figure 5.1: Image of a Pluto drone
Source: Courtesy of Pluto/Drona Aviation & amazon.in [50]

Characteristics and Data

• Device: Quadcopter Pluto Drone (simulated but real binaries)

• Manufacturer: Drona Aviation

• Architecture: ARM

• Microcontroller/Microprocessor: STMicroelectronics STM32F103 (Cortex-M3)
[32-bit]

• Programming language used: C

• Analyzed binary: Madgwick Quaternion Update function on drone.bin binary
file

• Open Source Project: Certain libraries used are closed sourced

• Resource link: https://github.com/heethesh/eYSIP-2017_Control_and_Alg
orithms_development_for_Quadcopter

• Analysis scheme: Manual

46

https://github.com/heethesh/eYSIP-2017_Control_and_Algorithms_development_for_Quadcopter
https://github.com/heethesh/eYSIP-2017_Control_and_Algorithms_development_for_Quadcopter

5.1. Analyzed Devices

Problems

The advantage of this device is that the code did not have to be read from physical
memory. This allows for easy implementation and analysis of the different lifting schemes
and greatly improved the speed of binary analysis. Some problems arose in terms of
binary lifting, but these will be explained in Section 5.2.

5.1.2 WAGO PLC

The second device that was analyzed for control equation lifting is a WAGO based PLC.
The file was taken directly from the ICSREF binary example files [27]. Although some
minor modifications were necessary to open it in Ghidra for initial evaluation and analysis,
the behavior is exactly the same. However, the final version of the binary is explicitly
presented by ICSREF.

Figure 5.2: Image of a WAGO PLC
Source: Courtesy of WAGO

Characteristics and Data

• Device: WAGO PLC (simulated but real binaries)

• Manufacturer: WAGO

• Architecture: x86-32

• Programming language used: WAGO

• IDE: CODESYS

• Analyzed binary: PID_FIXCYCLE function on TE.PRG binary file

• Open/Closed Source Project (Some elements are propietary)

47

CHAPTER 5. DEVELOPMENT AND RESEARCH

• Resource link: https://github.com/momalab/ICSREF

• Analysis scheme: Automatic

5.1.3 Continental Radar System

The latest device analyzed is a Continental ARS4-B Automotive Radar. Note that al-
though this device was partially analyzed, the control equations were not lifted at the time
of writing this thesis. However, it will be done before a future release of the conference
paper.

Figure 5.3: Image of a Continental ARS4-B (Note that it is a Tesla Inc. branded part)
Source: Courtesy of SystemPlus Consulting [51]

Characteristics and Data

• Device: Continental ARS4-B Automotive Radar

• Manufacturer: Continental (ADC Automotive Distance Control Systems GmbH)

• Architecture: PowerPC

• Microcontroller/Microprocessor: NXP MPC5775/S32R274 [32-bit]

• Programming language used: C, NXP Proprietary

• IDE: NXP RadarSDK

• Analyzed binary: RSDK_offline_example.m from NXP’s Radar SDK Library for
MATLAB

• Closed Source Project

• Resource link: https://www.continental-automotive.com/en-gl/Passenger
-Cars/Autonomous-Mobility/Enablers/Radars/Long-Range-Radar/ARS441

• Analysis scheme: Partial

48

https://github.com/momalab/ICSREF
https://www.continental-automotive.com/en-gl/Passenger-Cars/Autonomous-Mobility/Enablers/Radars/Long-Range-Radar/ARS441
https://www.continental-automotive.com/en-gl/Passenger-Cars/Autonomous-Mobility/Enablers/Radars/Long-Range-Radar/ARS441

5.1. Analyzed Devices

5.1.4 Other Devices

Some other devices that were not useful for the final result were also analyzed. How-
ever, by studying these, numerous concepts were learned from their analysis and memory
acquisition.

Keurig© K-Elite Coffee Maker

The first device studied in this project, even before any work on the initial analysis of
the drone, is a Keurig semi-automatic coffee maker. This coffee machine was already
disassembled and the board and components were already detached from the body and
components of the coffee maker.

Figure 5.4: Keurig K-Elite coffee maker (model not exact)
Source: Courtesy of Keurig

The purpose of this device was to obtain the memory values and to start performing
embedded system analysis on the control loops that govern the functioning. The aim was
to obtain and simulate an attack on the boiler system, to make it exceed parameters.
There were two units available, one fully disassembled and the other functioning.

• Device: K-Elite© Coffee Maker

• Manufacturer: Keurig©

• Architecture: MIPS32

• Microcontroller/Microprocessor: Microchip PIC32MX360F512L

• Programming language used: Unknown (C possibly)

• IDE: MPLAB X

• Non-volatile memory make and model: Winbond W25Q128FV (SPI interface)

49

CHAPTER 5. DEVELOPMENT AND RESEARCH

Figure 5.5: Debugging port interface pinout
Source: Courtesy of MICROCHIP

• Analyzed binary: RSDK_offline_example.m from NXP’s Radar SDK Library for
MATLAB

• Closed Source

• Resource link: https://www.continental-automotive.com/en-gl/Passenger
-Cars/Autonomous-Mobility/Enablers/Radars/Long-Range-Radar/ARS441

• Analysis scheme: Partial

When analyzing the coffee maker, two catastrophic failures occurred that impeded
memory read operations. The first disassembled board device was in a precarious state,
and due to some unfortunate reasons, the board’s power supply short-circuited with the
metal plate, causing it to fail. It was possible to repair it through some reverse engineering
work on that board, but unfortunately another explosion of two capacitors, due to a
completely different reason, impeded the acquisition of data from that coffee maker board.

On the second unit, no disassembly was performed. A PIC Kit 4 Microchip Debugger
was used to connect to an RJ-11 style port using a self-made adapter. An example of the
pins of the debugging port is shown in Figure 5.5.

However, that debug was not completed because the microprocessor is hardware-
locked, by means of a set pin. Therefore, at that point, it was decided that the coffee
maker would not be used for the project.

Guitar Pedal

In some of the first stages of the project, a guitar pedal was used to verify the proof of
concept. The advantage of using an electronic guitar pedal is the number of repetitive

50

https://www.continental-automotive.com/en-gl/Passenger-Cars/Autonomous-Mobility/Enablers/Radars/Long-Range-Radar/ARS441
https://www.continental-automotive.com/en-gl/Passenger-Cars/Autonomous-Mobility/Enablers/Radars/Long-Range-Radar/ARS441

5.1. Analyzed Devices

control loops it presents, according to the different presets and desired sounds. Note that
this sound morphing is done with computer processing rather than analogous processes.

Although the initial decoding was promising, it was decided against because it was too
simplistic and was not really useful for consideration as a connected embedded system or
a safety-critical system.

Mitshubishi Radar System

Before analyzing the Continental ARS4-B system, a Mitsubishi-built radar system was
acquired for possible analysis. However, once the device was physically in the laboratory
and the microprocessors were analyzed, it was determined that it would be unwise to
obtain the data from it.

Figure 5.6: Mithubishi Automotive Radar (front & side)
Source: Author’s work

Mitsubishi uses its own internal microprocessors and architecture. It presents a RISC
based architecture with 84 instructions. At that stage of development, it was considered
that a disassembly layer should be built for the specific device, but the director defended
against it. It was not worth the progress on creating a new disassembler without knowing
if the actual memory of the device could be read.

• Device: Mitsubishi Automotive Radar

• Manufacturer: Mitsubishi

• Architecture: RISC Based [32-bit]

• Microcontroller/Microprocessor: Mitsubishi M32171F4VFP

• Non-volatile memory make and model: Integrated in the microcontroller

• Closed Source

• Analysis scheme: Not completed.

At this point, it was decided to proceed with three devices, the drone, the PLC, and
Continental/NXP’s Automotive Radar system.

51

CHAPTER 5. DEVELOPMENT AND RESEARCH

5.2 Used Techniques

The technique for analyzing binaries is similar in all three cases. However, there are
specific concerns for each of the devices, due to their architecture, available information,
and other factors.

5.2.1 General Technique and Methodology

The Drone and PLC were fully analyzed, consisting of a step-by-step analysis schema.
However, the Automotive Radar has not been fully analyzed, as mentioned earlier, due
to time constraints and difficulties. General techniques include the following steps:

1 Initial binary loading. The binary files were loaded into Ghidra for an initial
assessment. Disassembly and decompilation were performed with the objective of
obtaining the structure of the binary.

2 Binary analysis and function ID. The binary file is analyzed for function struc-
tures, memory structure, and main program execution.

3 Depth limit setting. It is at this point that the function to analyze is set and
the decision is made about the depth level of the analysis. It is decided whether
functions should be symbolically executed and substituted for their purpose, e.g. a
floating-point division function substituted for the division operation on claripy, or
whether the symbolic execution goes to lower levels, down to assembly code.

4 Analyzer code modification. The general analyzer code is then modified to adapt
it to the specifics of the binary file, such as the entry point or certain execution
patterns that need to be executed.

5 Equation lifting. Running the analyzer and acquisition of partial/complete lifted
equations.

6 Verification and validation. Verification of the outputted files and checks that
the files are executable and the equations are correct based on the initial expected
behavior.

5.2.2 Specifics for the Drone Analysis

Analysis Steps

For the analysis of this device, the binary was first loaded in Ghidra. After an initial
analysis of the binary file, problems with decompilation into pseudo-C were encountered.

52

5.2. Used Techniques

After determining the function mapping in terms of register inputs and outputs using
functions created by the author, it was then possible to correctly assess functions, function
trees, and function calls using Ghidra, ghidra_bridge and Jupyter Notebook.

After completing the initial analysis, it was then possible to obtain expression maps
corresponding to the inputs and outputs of Madgwick Quaternion Update by means of
Python-made execution programs. However, unlike the complete classes that the PLC
binary analyzer produces, it was necessary to minimally modify these documents to make
them executable and obtain reasonable expression maps for the binary.

After the latest adjustments in terms of expression map execution, it was then pos-
sible to perform a reachability analysis on the function using DaDRA. For simplicity,
the reachability analysis was performed only by changing one of the input values of the
gyroscope.

Problems Encountered

Madgwick Quaternion Update, and for that matter, the whole drone binary file uses
SEGGER’s floating point operations library (emFloat).2 SEGGER emFloat is a highly
optimized library component for SEGGER’s C Runtime Library. It provides highly ef-
ficient floating points operations following IEEE 754 rules, designed specifically for em-
bedded systems. The advantages for using this library in the embedded system is its
efficiency, fast operations and ability to compute in a small number of instructions float-
ing point operations. However while analyzing Madgwick Quaternion Update, numerous
problems developed from the use of this library.

The SEGGER library uses two distinct registers to represent a 32-bit value. Instead of
using the architecture’s full 32 bit registers, it uses 16 bits out of each register and operates
on those reduced vectors. While in terms of efficiency, according to their data, the library
is extremely efficient, the disassembler and decompiler have a hard time interpreting
both input and output registers. This problem required that any call to a floating-point
function be symbolically executed.

With this compromise, a decision was made that instead of lifting the equations down
to the instruction set, they will be inferred down to the floating-point operation library.
The advantage in this case of the arm architecture and the compiler used for the drone
binary is that a lot of information was not lost on compilation in terms of function names
and IDs. Therefore, Ghidra was able to easily identify the function names, and with that,
while symbolically executing it with angr, it was a matter of simulating the floating-point
operations.

Although this inconvenience is limiting in terms of the universality of the tool, it is an
2https://www.segger.com/products/development-tools/runtime-library/technology/float

ing-point-library/

53

https://www.segger.com/products/development-tools/runtime-library/technology/floating-point-library/
https://www.segger.com/products/development-tools/runtime-library/technology/floating-point-library/

CHAPTER 5. DEVELOPMENT AND RESEARCH

advantage that the inference of equations can be done for different depth levels. In this
matter, the improvements in function ID and the future database that is being developed
for that purpose in the research laboratory at the University of Illinois will be useful in
terms of future configuration parameters of the tool.

5.2.3 Specifics for the PLC Analysis

Analysis Steps

In this case, the binary analysis of the drone was similar to that of the drone. However,
there were several key differences throughout the system. The file was first imported
into Ghidra, but because the instructions in x86-32 are variable in size, Ghidra is unable
to disassemble any function. It was necessary to use radare2 and find that if a forced
decompilation was done on the last function of the binary, there is a call to the main
function from that point. Forcing the decompilation with some non-default parameters
in Ghidra, it was possible to obtain those values.

Once these were lifted, it was only necessary to port and abstract those memory values
to angr/Python. Knowing the entry point of the main control loop was really useful for
angr, as the state machine could easily be symbolically executed.

After the binaries were symbolically executed, the equations were lifted into Python.

Problems Encountered

In the PLC analysis, most of the problems came from the initial analysis. Due to the
variable instruction size of x86, Ghidra presents difficulties in disassembling instructions.
When the initial binary was loaded for the first time, Ghidra needed specific commands
to correctly discover and decompile those functions.

It was decided that the analysis should start with the latest and only function that
Ghidra could easily disassemble. In that function, subsequent calls to one function are
made, and with the aid of radare2, it was possible to determine that decompilation of that
function call, provided with the initialization function, by means of the binary structure.

Once that initialization function was performed, it was a matter of further disas-
sembling in Ghidra to obtain the main control loop, in this case PID_FIXCYCLE. The
information obtained in Ghidra was also corroborated with the decompiling function that
the ICSREF tool presents. It includes an experimental identification of PID_FIXCYCLE
that was able to determine the initial function PID_FIXCYCLE at 0x1624.

With all of this, when trying to decompile the functions in radare2, two other problems

54

5.2. Used Techniques

Figure 5.7: Main radar board with markings
Source: Author’s work

arose that required the modification of several files and especially adjustments in the ana-
lyzer (analyzer.py). For some reason, the function calls to PID_FIXCYCLE, DERIVATIVE,
and INTEGRAL did not have the correct memory address assigned to the call. It is unknown
whether it is due to the decompiler or human error. The other problem came from the
location of the last routine. Ghidra arguments that it does not exist, so it is necessary to
force it to exist, and then it is possible to execute symbolically the binary.

5.2.4 Specifics for the Automotive Radar Analysis

In the last device, the team first tried to read the binary files directly from the device
memory. The device presented what appeared like two debugging ports, although they
were not readily accessible, as there were only traces on the radar’s PCB. Both expected
ports are shown in Figure 5.7. We expected the port encircled in red would be JTAG and
the port encircled in yellow would be BDM. After a long week of analysis and trial and
error, it was determined that no standard protocol was present in any of the debugging
ports, as the traces and ground positions did not correspond to any known interface,
whether it was JTAG, BDM, or SPI. The microcontroller included in the package supports
the Freescale (NXP) BDM interface and contained what was possibly an interface, but
the layout and pin connections were not satisfactory. In the end, it was decided not to
spend more time on memory acquisition, as this project is more focused on the lifting of
the bytecode, rather than the whole memory reading process.

With this change in plans, it was decided that for the analysis of automotive radars,
it was necessary to use the complex licensing scheme for NXP’s libraries. With that,
NXP’s RadarSDK will be used, and the MATLAB development environment, along with
the Signal Processing toolboxes, will be the final test bench. Then it was necessary to
change the analysis steps and technique.

55

CHAPTER 5. DEVELOPMENT AND RESEARCH

The files are present in an example RSDK folder. They have sample data and output
several MATLAB graphs with the calculated values, instead of actual CAN bus data.
Therefore, after some exhaustive and manual analysis of binaries and data structure, it
was determined that a full compilation must be made into C code using Matlab’s Code
Generator.

5.3 Research Results and Conclusions

After exhaustive research of the three devices, some conclusions were reached.

• Manual analysis is required. Except for basic RISC-based architectures, which
keep function information and have "perfect" decompilations, some manual pro-
cessing is always necessary. Whether it is selecting the entry point of the main
function or choosing what depth level the analysis will reach, it is inevitable. Fur-
thermore, depending on the depth level, complex symbolic execution of functions
may be performed, which includes function ID and library simulation.

• There is possibility of complex binary analysis. Although computationally
intensive, the tool is expected to perform adequately on larger binaries and when
performing a full binary analysis. Some of the worries are that all functions are
correctly mapped in case symbolic execution is performed at the function level,
and that symbolic analysis gets exponentially more complex when different condi-
tions are used. Therefore, some of the more complex programs that have multiple
"branches" could easily overload execution and not work properly.

• Verification schemes. The verification schemes for this type of lifted equation
are complex but necessary. At this point, some of the best examples of system
verification are reachability analysis and graph plotting. However, there is a need
to generate better tools for verification and correctness, in order to improve the
credibility and safety of the tool.

56

Chapter 6

Developed Tool - InteGreat

In this chapter, we present InteGreat. This is the tool that has been developed for this
thesis. It is developed in Python and uses other tools presented previously in Section
2. The structure, capabilities, characteristics, and finally its usage of components and
some recommendations are described in great detail. The shortcomings and problems are
explained in Section 7. An installation guide for all tools used is presented in Annex B.

6.1 Structure

The structure of the program follows a paradigm that was briefly explained in Section
5.2.1, but will be explained in greater detail.

In general, there are two main schemes of decompilation. There is a manual version,
used by the drone binaries, and a more automatic version, used by the PLC. Decompilation
and lifting follow these patterns, as shown in Figures 6.1 and Figure 6.2, respectively.

6.1.1 Common Steps between Workflows

While those two workflows are distinct in nature, they follow similar steps. In both, it is
necessary to first perform an initial analysis in Ghidra, or radare2. This is necessary to

Figure 6.1: Manual workflow

57

CHAPTER 6. DEVELOPED TOOL - INTEGREAT

Figure 6.2: Automatic workflow

find the main function, any control loop, or any other function of interest. As mentioned,
there are limitations to symbolic execution and the number of unconstrained variables
that could be handled; therefore, it is necessary to take into account the limitations. The
necessity is for the identification and analysis of functions.

In the search for new looping functions, it would be preferable to look for the following.

• Recursive/looping functions that have arithmetical operations and depend on some
inputs and outputs.

• Program entry points.

• Function calls.

• Function maps.

All these items can be searched with Ghidra; however, there are companion programs
that were built specifically for this research that aid in looking up those characteristics,
by means of ghidra_bridge and IPython, such as A.1.

After finding this information, both the automatic and manual flows diverge.

6.1.2 Manual Workflow

The manual workflow continues with the pseudo-C analysis presented by Ghidra. This
workflow was used for drone analysis. Although not strictly necessary, some assumptions
are made for its execution. The code to analyze should have been partially decoded
by Ghidra, and there needs to be assurance that the code is partially disassembled and
decompiled. In the case of the drone binaries, it was necessary that the decompilation
be successful, as the execution of the project depended on the correct assumption on
SEGGER’s floating-point operation library.

Once the programmer is certain that the decompilation is relatively successful, the
analyzer.py program is called. The inputs to that program are:

• Firmware path. The binary file

58

6.1. Structure

• Function call file. A file with the following structure function_name and function
_call_address per each line. The function that calls the address is the one where
function_name is called.

The advantage of that binary and function calling file is that there is a set of functions
that develop this output. The code for this is presented in the Listing A.1. Note that in
line 238 the function name that will be analyzed is chosen. Furthermore, because most
of the representations and files that this program outputs are general, the analysis could
be done as far up or down the hierarchy as necessary.

After running this program through IPython and ghidra_bridge, it is a matter of
using the drone_toplevel.py executable. There are certain parameters that must be
studied for the execution to be successful. These should be changed in the analyzer and
they are as follows:

• a.enter_function. The function address that will be analyzed

• a.init_sym_regs. Fill in information about the registers used in the program.

• unconstr_stack/a.init_sym_stack. Choose the memory values for the uncon-
strained stack.

• a.init_sym_memory. System memory values initialization

• a.init_time_field. Non-zero time-filled value for the program to work

• a.init_control_state. Control state loops

• a.set_concrete_stack. Set a stack for the program to use

• mem_locs. Generate memory locks because the output of the function corresponds
to certain memory positions.

After all these values are set, a file with the lifted differential equations is presented.
With that Python file, it is possible to execute and obtain value implementations. Fur-
thermore, for the drone, an internal analyzer was specifically built for the verification of
the binaries.

The last step is to perform the reachability analysis using the analyzer files. Although
little emphasis will be placed on reachability analysis at this stage of the project, some
reachability results are shown in the next chapter.

A detailed example of this process is presented in Section 6.2, and examples of the
code will be presented in Appendix A.

59

CHAPTER 6. DEVELOPED TOOL - INTEGREAT

6.1.3 Automatic Workflow

The automatic workflow follows a different, yet similar path to that of the manual work-
flow. This workflow was tested with the PLC device and proved to be more consistent in
terms of reaching the same result in each execution run. The advantage of the workflow
is that no user-made analysis is needed except for basic function inferring, which is nec-
essary in any device analysis. The analyzer ASTA_analyzer.py , developed by Maxwell
Bland1 in collaboration with the author, handles symbolic execution and equation lifting
in one package. The analyzer works with three main parameters.

• Firmware path. The firmware path of the binary file

• Program start address. The initial program address.

• Resolved function address. The decompiled function address map

• Hooks for 3 functions that Ghidra does not decompile well (specific for the
WAGO PLC binary).

When all these values are set, it is a matter of running the plc_toplevel.py file,
with the values discovered in the last step. After that, an executable Python file with
the lifter equations is given in around 5-10 minutes, once disassembly, decompilation, and
symbolic execution are finished.

6.2 Usage and execution

The usage of this tool is not as simple as first envisioned. Some binary analysis is required
before a reasonable execution and differential equation lifting can be made. However, there
is much to improve on in the final conference presentation.

In this section, the usage of the main tools is explained. The focus will be on the tool
usage, because the execution of the tool is rather simplistic, as it is just executing Python
scripts.

6.2.1 Virtual Machine Execution

It is encouraged and recommended to run InteGreat and the entire process on a virtual
machine or a brand new installation, due to some compatibility errors that may exist.
Although a graphical interface is preferred for Ghidra analysis, which greatly helps to

1https://bland.web.illinois.edu/

60

https://bland.web.illinois.edu/

6.2. Usage and execution

Figure 6.3: Screenshot of Ghidra welcome screen

understand the binaries, it is also possible to disassemble the code on the command line
with a worse user experience.

The virtual machine should run either a Linux distribution or Mac OS X. Windows is
not supported at this time. It should also have a package manager and Python installed.
However, an installation guide is provided in Appendix B.

6.2.2 Ghidra

In order to analyze a binary file in Ghidra, follow these steps. In the example, the
binary file drone.bin is loaded due to its ease and the advantage of using ARM as an
architecture.

To load a binary file in Ghidra for initial analysis, the following steps should be taken:

1 Open Ghidra and create a new project. A new project is created in File >
New Project... as shown in Figure 6.3. Import the binary files to the project and
select both the Format, Language (ARM:LE:32:v8:default for the drone); and once
imported double-click in the file.

2 Analyze and decompile the file. A pop-up window should appear asking you to
auto-analyze the binary file. The default configuration should be fine. However, if
that pop-up window is not available, go to Analysis > Auto Analyze ’file’...,
press Analyze and wait for it to finish.

61

CHAPTER 6. DEVELOPED TOOL - INTEGREAT

Figure 6.4: Screenshot of the Ghidra main development screen

3 Start exploring in the main Ghidra screen. An example of a binary loaded
into Ghidra is shown in Figure 6.4. There are three main sections in Ghidra that
will be useful to the user. The area boxed in red shows all of the decompiled
functions, ordered by name. The section surrounded by an orange box represents
the disassembled code. There are multiple configurations and language abstractions
that can be added to that view by selecting them on the Listing button. On the
right, the section boxed in green shows the pseudo-C code decompiled by Ghidra.
In that window, some of the main functionalities are to change the signatures of the
functions, the variables, recompiling, and modifying the decompiled code.
A double click on either main screen will redirect you to the decompiled function or
the lifted assembly instructions, and vice versa.

4 Activate ghidra_bridge and analyze externally. This last step, optional if
radare2 is being used, consists of activating the script ghidra_bridge, previously
installed, to be able to access the ghidra commands and the interface from an
external programming languages. Note that the execution time will be slow for large
binaries and consultations. To activate ghidra_bridge, you should first open Window
> Script Manager, search for ghidra_bridge and select ghidra_bridge_server
_backgorund.py . Once it is up and running, access is available through the Python
console, Jupyter, etc.

Although there are specific actions that can be taken to correctly analyze a binary file,
each one is independent, and there is no generalization for any analysis in particular. In
this thesis, techniques such as last function searching, for the PLC binary, or function
simulation were used in order to infer the parameters necessary for manual execution.

62

6.2. Usage and execution

Figure 6.5: Screenshot of a radare2 decompilation example

For extended Ghidra learning, see "The Ghidra Book: The definitive guide"2. This book
teaches the basics of Ghidra, up to high-level complex analysis, and has been a really
useful tool for learning the techniques necessary.

6.2.3 radare2

The use of radare is easier than that of Ghidra. After all, it is a command-line tool that
has impressive decompilation and disassembling capabilities, integrated with r2pipe and
r2ghidra.

The most basic example was a simple decompilation. In this case, the example is
the PLC’s binary file (TE.PRG). As mentioned, due to the complexity of disassembly of
x86 language instructions, radare2 is not able to identify functions as easily as with arm.
However, a basic example of function decompilation is shown in Figure 6.5.

Some of the most important flags and commands that can be seen in Figure 6.5 are
shown in Table 6.1.

Other commands and basic compilation can be found in their GitHub repositories3 4

The use of radare2, r2ghidra, and r2pipe allowed for headless execution of the binaries.
These tools were used mainly for function recognition. As mentioned, in the PLC binary,
there were quite a few problems in terms of getting Ghidra to disassemble and decompile
the binaries. Therefore, it is necessary to generate and create new checking functions in

2https://www.ghidrabook.com/
3https://github.com/radareorg/radare2/blob/master/doc/intro.md
4https://github.com/radareorg/r2ghidra

63

https://www.ghidrabook.com/
https://github.com/radareorg/radare2/blob/master/doc/intro.md
https://github.com/radareorg/r2ghidra

CHAPTER 6. DEVELOPED TOOL - INTEGREAT

Command Category Description
0xNNNNNN Basic Go to address 0xNNNNNN

e Basic Show all program variables and settings
aa Analyze Analyze all, just like Ghidra, analyze the

binary
afl Analyze List all functions

e r2ghidra.lang = x86... r2ghidra Assign a language to the ghidra decompiler
pdgo r2ghidra Decompile current function side by side

with offsets

Table 6.1: Basic commands for radare2 and r2ghidra

the analyzer.py , that make use of these two libraries, to first, obtain function calls,
and secondly, make the function calls point to the correct address.

6.2.4 angr

In this project, angr was used to symbolically execute the binary files, and obtain the
lifted equations. Angr’s use is just like that of radare2. It is a commnand-line tool that
presents a myriad of tools for symbolic execution. Both angr and claripy need to be
imported into the project for both to work.

To perform symbolic execution, there are several main steps, but this code example
is basic to show how symbolic execution is performed. It is worth noting that variable,
memory, register, and stack symbols should be added through claripy if they are known
beforehand.

1

2 #!/ usr / bin /env python3
3 import angr #the main framework
4 import c l a r i p y #the s o l v e r eng ine
5

6 s e l f . p r o j e c t = angr . p r o j e c t . Pro j e c t (firmware , # Load the p r o j e c t
f irmware

7 load_options={
8 ’ main_opts ’ : {
9 ’ backend ’ : ’ blob ’ ,

10 ’ arch ’ : ’ i 386 ’ ,
11 ’ base_addr ’ : 0 ,
12 ’ entry_point ’ : addr
13 } ,
14 ’ auto_load_libs ’ : Fa l se
15 })
16 s e l f . entry_state = s e l f . p r o j e c t . f a c t o ry . f u l l_ i n i t_ s t a t e () # Determine the

entry s t a t e f o r the p r o j e c t
17 s e l f . sm = s e l f . p r o j e c t . f a c t o ry . simulation_manager (s e l f . entry_state) #

Create a new s imu la t i on manager with i t s entry s t a t e

64

6.3. Characteristics

18 s e l f . hook = Hook () # Hook func t i on to symbo l i c a l l y execute SEGGER’ s
f un c t i on s

19 s e l f . in i t_hooks (f u n c_ca l l_ l i s t_ f i l e) # Hook func t i on l i s t
20

21 p . hook (0xdd2 , nop , l ength=6)
22 p . hook (0 x1031 , lambda s : c a l l_ f i xup (s , 0x1031) , l ength=6)
23 p . hook (0 x10db , lambda s : c a l l_ f i xup (s , 0x10db) , l ength=6)
24

25 s = p . f a c t o ry . entry_state ()
26 sm = p . f a c t o ry . simulation_manager (s)
27 run (sm)
28

29

30 # Run un t i l the program f i nd s a l l unconstra ined v a r i a b l e s
31 de f run (sm) :
32 whi le sm . a c t i v e :
33 pr in t (sm . a c t i v e)
34 sm . s tep ()

Listing 6.1: Example code for angr symbolic execution
Courtesy of angr, Maxwell Bland

There needs to be more companion functions to perform symbolic execution. However,
with this, certain analysis and lifting can be performed, especially to familiarize yourself
with the environment.

6.3 Characteristics

Although the tool presents many capabilities, after extensive research and studies, here
are some of the main characteristics of the tool.

• Versatility and multi-architecture. With adequate disassemblers and correct
function information, the expansion of the tool and the research is limitless. As long
as there are frameworks for decompiling in different architectures, it is possible to
raise the control equations at least to a higher-level code.

• Scalability. Disassembly and decompilation is not as computationally intensive
as it used to be, but some modern and complex decompilation schemes may use
extended periods of time for large binaries. The same phenomenon occurs while
symbolically executing the binaries. However, this tool has shown that, with enough
time, the robustness of the tool is unparalleled.

• Novelty. Although a lot of previous work has been done on decompiling techniques,
in this case, it was possible to obtain actual executable files that have the same
behavior as the embedded device that was lifted. This ability is unparalleled and
generates a new paradigm of system verification and simulation.

65

CHAPTER 6. DEVELOPED TOOL - INTEGREAT

6.4 Limitations

The tool, like any complex system, has several shortcomings and limitations, which will
be improved upon in the final product.

First of all, the version presented in this thesis is limited by its capabilities. It has
been adjusted to lift the equations of both the drone and the PLC. However, as mentioned
in previous chapters, the aim is to expand on the tool and be able to analyze more
architectures, and to formally present with a multi-architecture device.

Moreover, a lot of manual analysis is needed for the verification of the equations.
After all, the loop functions are chosen manually, and the depth level is also chosen in
the same way. Therefore, when the complete tool is done, it will have some kind of
mechanism to recognize, depending on the device and function, these kinds of functions.
Loop recognition could be aided by developments in function ID schemes.

Another limitation is that the analyzer has to be made specifically for the binary, or at
least partially. While the aim is to be more universal, the constraints in the binaries did
not allow for that. The only functions that can be used for both, when or not a successful
decompilation has been performed, are the function helper tools (Listing A.1). These
tools, which include function trees and maps, function calls, and function information,
can be performed if the decompilation was successful for the most part. In this case, that
would be decompilation for RISC-based systems which present instructions of the same
size.

Finally, the tool is limited by its performance. At this point, some of the symbolic
execution takes some time; however, if the level of analysis is increased to a higher function,
the limitations of symbolic execution could start to appear at some point, especially if a
large number of functions and variables have to be hooked.

Although there are limitations and constraints, in Chapter 7, there is a more detailed
explanation of performance and execution.

66

Chapter 7

Results

This chapter provides an explanation of the main results of this research thesis. The focus
is on the accuracy and development of the actual verification and output of the files.

7.1 Initial Results

The results were overall very satisfactory. Even with difficulties early on in terms of
control equation lifting, further analysis demonstrated that the inferring was adequate
and that it is possible, in fact, to lift control equations from cyber-physical systems up to
a high-level programming language.

7.1.1 Initial Function Analysis

When using the first initial binary analysis, using the function helper, it was possible to
correctly assess all function calls and the function tree. This data were then either used
directly (for the Drone analysis), or referenced indirectly in the program constraints (for
the PLC analysis). An example of the partial function call list for the Drone is shown in
Listing 7.1.

1 __muldf3 0x080033e6
2 __muldf3 0 x080033fc
3 __muldf3 0x08003412
4 FUN_080006ac 0x080004ec
5 __aeabi_fcmpeq 0x0800338a
6 __aeabi_fcmpeq 0x080033d0
7 __aeabi_cfcmpeq 0x08001018
8 __cmpsf2 0x08001006
9 __divdf3 0x08003d36

10 FUN_08000892 0x08000740

67

CHAPTER 7. RESULTS

11 __aeabi_f2d 0x0800337a
12 __aeabi_f2d 0x080033c0
13 __truncdfsf2 0x08003382
14 __truncdfsf2 0x080033c8
15 as in 0x08003d24
16 __errno 0x080058bc
17 __errno 0x080058d4
18 __ieee754_asin 0x0800585e
19 __muldf3 0x08005c9c
20 __muldf3 0x08005cae

Listing 7.1: Extract of func_call_addr.txt for the Drone binary

As is shown, the binary file consists of the function name and all of the addresses where
that function is called. In the case of the drone binary analysis, it was really useful because
for the drone symbolic execution to work, it was necessary to hook or symbolically change
all floating-point operation functions (__aeabi) to its corresponding operation. That is,
instead of executing __aeabi_fmul in the symbolic execution, it was set that the claripy
operation “floating point" multiplication should be executed.

Apart from the output of the basic function helper func_call_addr.txt, there are
other useful files for rapid analysis. For example, some other excerpts from the function
helper are shown in Listing 7.2 (Function return registers) and Listing 7.3 (Function
input registers). Those files show, respectively, the function return register, that is, when
a function is done, the value that will be returned to its superior routine. And in the case
of 7.3, the input registers for the function are shown.

Although the results obtained in both files are correct according to the Ghidra de-
compiler and disassembler, there are certain errors that were known to the author in that
decompilation. Due to the use of the SEGGER floating-point library, it is known that
some of the input registers are combined, which means that, for example, in __aeabi_f2d,
"Extend float to double", registers r0, r1, r2, r3 are a single number which should be
combined into one register, r0 [52]. This refactoring, although not reflected in this exam-
ple, was later done through the execution by means of json structures.

1 __aeabi_dadd r1
2 __floatuns id f r1
3 __aeabi_i2d r1
4 __aeabi_f2d r1
5 __floatundidf r1
6 __aeabi_l2d r1
7 __muldf3 r1
8 FUN_080006ac r1
9 __divdf3 r1

10 FUN_08000892 r1
11 __gedf2 r0
12 __ledf2 r0
13 __nedf2 r0
14 __aeabi_cdrcmple r0
15 __aeabi_cdcmpeq r0
16 __aeabi_dcmpeq r0

68

7.1. Initial Results

17 __aeabi_dcmplt r0
18 __aeabi_dcmple r0
19 __aeabi_dcmpge r0
20 __aeabi_dcmpgt r0

Listing 7.2: Extract of func_return.txt

1 __aeabi_dadd
2 __floatuns id f r0
3 __aeabi_i2d r0
4 __aeabi_f2d r0 r1 r2 r3
5 __floatundidf r0 r1
6 __aeabi_l2d r0 r1
7 __muldf3 r0 r1
8 FUN_080006ac r0 r1 r2 r3
9 __divdf3 r0 r1

10 FUN_08000892 r0 r1 r2 r3
11 __gedf2 r0 r1 r2 r3
12 __ledf2 r0 r1 r2 r3
13 __nedf2 r0 r1 r2 r3
14 __aeabi_cdrcmple r0 r1 r2 r3
15 __aeabi_cdcmpeq r0 r1 r2 r3
16 __aeabi_dcmpeq r0 r1 r2 r3
17 __aeabi_dcmplt
18 __aeabi_dcmple r0 r1 r2 r3
19 __aeabi_dcmpge r0 r1 r2 r3
20 __aeabi_dcmpgt

Listing 7.3: Extract of func_param.txt

Overall, the output of this helper is very positive and is integrated into the analyzer
code that provides extended equation lifting capabilities.

7.1.2 Lifted Control Equations

In this section, examples of the PLC binary are shown. The advantage of analyzing in
this section the PLC is that the original programming code is available, and it is useful
to show the whole process, from binary analysis to equation lifting.

First, an excerpt of the WAGO file TE.pro that is compiled into the PLC is shown
in Listing 7.4

1 (∗ Control Loops ∗)
2 (∗ IF (Trigger_Handle .Q OR AP_plc_reset) THEN∗)
3 Trigger_Count := Trigger_Count + 1 ;
4 Reset_Count := Reset_Count + BOOL_TO_REAL(AP_plc_reset) ;
5

6 (∗ Pressure PI Loop ∗)
7 Pressure_Loop (
8 ACTUAL := SIM_xmeas07 ,
9 SET_POINT := Pressure_SetPoint ,

69

CHAPTER 7. RESULTS

10 KP := Pressure_KP ,
11 TN := Pressure_KI ,
12 TV := 0 . 0 , (∗No Der iva t ive ∗)
13 Y_MANUAL := Pressure_Manual ,
14 Y_OFFSET := ,
15 Y_MIN := Pressure_Output_Min ,
16 Y_MAX := Pressure_Output_Max ,
17 MANUAL := ,
18 RESET := AP_plc_reset ,
19 CYCLE := Cycle_Time ,
20 Y => Pressure_Output ,
21 LIMITS_ACTIVE => ,
22 OVERFLOW =>
23) ;
24

25 Pressure_Output_Fp := Pressure_Output∗SIM_Fp_Mult ;
26

27 (∗ Flow−r a t e PI Loop ∗)
28 Purge_Loop (
29 ACTUAL := SIM_xmeas10 ,
30 SET_POINT := Pressure_Output_Fp ,
31 KP := Purge_KP ,
32 TN := Purge_KI ,
33 TV := 0 . 0 , (∗No Der iva t ive ∗)
34 Y_MANUAL := Purge_Manual ,
35 Y_OFFSET := ,
36 Y_MIN := Purge_Output_Min ,
37 Y_MAX := Purge_Output_Max ,
38 MANUAL := ,
39 RESET := AP_plc_reset ,
40 CYCLE := Cycle_Time ,
41 Y => Purge_Output ,
42 LIMITS_ACTIVE => ,
43 OVERFLOW =>
44) ;

Listing 7.4: Extract of TE.pro, a WAGO programming file

In that WAGO code file, it is possible to observe two control loops. Purge_loop, which
will not be of interest for our program, as it is an “error” loop, and Pressure_loop, which
is the PID_FIXCYCLE loop analyzed later. This Pressure_loop has other code, adjusting
the derivative and integral functions, but it is not shown because its representation
is not standard UTF-8.

Once that file is compiled using the WAGO/CODESYS compiler, then it is loaded
into the PLC, as TE.PRG . That file is the one that is loaded into Ghidra/radare2 which
the analysis is done on.

Once the program is fully executed analyzing the TE.PRG file, there is an output
with the lifted control equations, as seen in the Listing 7.5. corresponding to the PLC
analysis. The complete file is present in the Listing A.3. Note that the output of the
actual program is all functions, and the comments were added later on for simplicity and

70

7.1. Initial Results

analysis.
1 de f generate_FP_integral_out_0_27_32 (FP_integral_out_0_27_32) :
2 assignment_1_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19aad_6_16
3 assignment_2_0 = assignment_1_0 + −0.0046
4 assignment_3_0 = assignment_2_0 / 0.9876000000000001
5 assignment_4_0 = 1000.0 ∗ assignment_3_0
6 assignment_5_0 = assignment_4_0 + 2000.0
7 assignment_6_0 = mem_198a8_14_32 − assignment_5_0
8 assignment_7_0 = mem_198cc_20_32 ∗ 1000 .0
9 assignment_8_0 = assignment_6_0 ∗ assignment_7_0

10 assignment_9_0 = assignment_8_0 / 1000.0
11 assignment_10_0 = FP_integral_out_0_27_32 + assignment_9_0
12 FP_integral_out_0_27_32 = assignment_10_0
13

14 de f generate_FP_pid_fixcycle_y_0_21_32 (FP_pid_fixcycle_y_0_21_32 ,
FP_derivative_t1_0_26_32 , FP_derivative_x2_0_23_32 ,
FP_integral_out_0_27_32 , FP_derivative_t2_0_25_32 ,
FP_derivative_x1_0_22_32 , FP_derivative_x3_0_24_32) :

15 assignment_1_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
16 assignment_2_0 = assignment_1_0 + −0.0046
17 assignment_3_0 = assignment_2_0 / 0.9876000000000001
18 assignment_4_0 = 1000.0 ∗ assignment_3_0
19 assignment_5_0 = assignment_4_0 + 2000.0
20 assignment_6_0 = mem_198a8_14_32 − assignment_5_0
21 [. . .]
22 assignment_46_0 = assignment_45_0 + 2000.0
23 assignment_47_0 = mem_198a8_14_32 − assignment_46_0
24 assignment_48_0 = mem_198ac_15_32 ∗ assignment_47_0
25 assignment_49_0 = assignment_41_0 − assignment_48_0
26 assignment_50_0 = assignment_40_0 + assignment_49_0
27 FP_pid_fixcycle_y_0_21_32 = assignment_50_0

Listing 7.5: Result of the Drone differential equation lifting

First of all, upon analyzing the output file, two characteristics stand out. InteGreat
is capable of lifting individual functions. As explained in Section 2.3.2, a PID PLC is
composed of a function derivative, integral and PID. The code was able to correctly
lift the three functions, with inputs from memory, that correspond to the inputs shown
on the TE.pro file in Listing 7.4. The program presents the expected behavior.

The variables named assignment_x_0 correspond to the symbolically executed vari-
ables of the binary. That is, each assignment variable is a register that is used for an
assembly operation such as mul. This is what is expected from the actual disassembly
and decompiling functions of the tool.

As can be seen, the tool is also able to generate multiple FP_pid_fixcycle functions
depending on the if and looping conditions that the original disassembled function had.
If the original program had several routines that depended on conditions, such as the
input pressure (in or out of bounds), or depending on whether some input variables are
set to true or false, the output file will have different FP_pid_fixcycle functions. The
output of InteGreat is readily executable from Python, even if some minor modifications

71

CHAPTER 7. RESULTS

have to be made to the file.

The other advantage of this output, as mentioned, is that it also specifies if the variable
being simulated is a memory value with mem_, an internal variable with assignment_, or
if it comes from another output of a function, in which case it will keep its name for
similarities. This allows for a faster interpretation of the values in hand, and makes
comparing the lifted code against the disassembled code much easier.

In another example, for the drone binaries, the output is very similar to that seen in
the PLC. The result can be found in Listing A.4. In this case, an exhaustive analysis was
performed using simulation and reachability analysis.

Overall, the advantage of this methodology is the ability to execute and integrate the
functions and lifted equations into any verifier, to check for the correctness and expected
behavior.

7.2 Verification and Correctness

To verify the correctness of the lifted control equations, two distinct processes were eval-
uated, depending on the device and target.

7.2.1 Drone

For the drone analysis, it was determined that it would be adequate to simulate the same
behavior and parameters between the lifted equations and the existing code. A test setup
was set to verify the claims and prove the accuracy of the model.

First, it should be noted that a preventive verification analysis was performed for
both the Madgwick filter implementation and the drone implementation. There is
some discrepancy between the filter theory and the actual implementation of C in the
drone, as checked by the code. However, the behavior is really similar, but, as will be
explained, some slight differences are expected.

Then it was decided to plot the quaternion update function. The input of that function
is stable; that is, the drone is in a slow moving position, and the sensor values do not
have any bias. In that case, when the inputs of the inertial sensors are stable and only
the gyroscope value is changed, as could be possible in a real environment, a deviation on
the quaternion update is seen in the figures below. Both the original simulation (Figure
7.1) and the simulation of lifted equations (Figure 7.2) are represented.

As can be seen, the graphs shown are "significantly different." However, as mentioned

72

7.2. Verification and Correctness

Figure 7.1: Quaternion updates from the original binaries
Source: Author’s work and Maxwell Bland

Figure 7.2: Quaternion updates from the lifted equations
Source: Author’s work and Maxwell Bland

before, the real drone implementation is different from that of the theoretical implemen-
tation and, therefore, these deviations are expected. This is due to the fact that the drone
starts at a different initial state than the model, so there is a discrepancy between both.

Except for the first quaternion, which will be studied in future iterations of the tool
and its behavior is not clear, the representation of the other three quaternions is within
the expected error bounds. Note that the third quaternion is inverted, but that is due to
the mounting position of the sensor.

Overall, this interpretation and simulation between the lifted and real equations is
satisfactory and demonstrates how the technique could be applied for further analysis.

7.2.2 PLC

For the verification of the PLC, it was decided to simulate the ICSREF attack [27]. For
that matter, the objective is to reduce the pressure of the chemical process from around
2800 kPa to 2400 kPa. As explained in the ICSREF paper, the change in pressure from
those values would not trigger an alarm in the control system, but it would drastically
decrease the efficiency of the process.

The attack graph is in Figure 7.3. The actual attack presents a smoother graph. That
behavior is expected because the simulation is done in real life with a physical device.

73

CHAPTER 7. RESULTS

The graph clearly shows a drop in pressure from the desired value. Following the analysis,

Figure 7.3: ICSREF’s attack, reactor pressure is shown in kPa
Source: Courtesy of Anastasis Keliris, Michail Maniatakos at [27]

the pressure graph of the lifted equations is shown in Figure 7.4. The results are similar
to those of the ICSREF paper, but due to the nature of the simulation, there are some
differences.

First of all, the drop is more pronounced. That behavior is expected partially because,
by simulating a discrete system, rather than a continuous system like the original PLC,
the time steps are variable in terms of the equations. This tool was unable to correctly
simulate the time steps set in the PID_FIXCYCLE function; however, its improvement is
part of future work for PLC analysis. However, the objective of lowering the pressure
from 2800 kPa to 2400 kPa is achieved completely. The drop is actually achieved to
2450 kPa, which is slightly lower than expected, but within the limits.

Figure 7.4: ICSREF’s attack simulated with the lifted equations

Overall, the behavior is satisfactory in terms of verifying that the technique is complete

74

7.3. Reachability

and represents the real expected behavior. As mentioned in the Drone analysis, future
iterations of the tool will take into consideration more parameters for correct time-step
simulation and continuous system simulation.

With this two examples, the verification is completed. Although it is not 100% satis-
factory, it is well within the bounds and expected behavior and is considered successful.

7.3 Reachability

Finally, in terms of reachability analysis, the tool built by Jared Mejia, DaDRA, has been
really useful for that simulation. Reachability analysis was performed on the lifted drone
equations, as the PLC has limited input variables and its expected output is very large.

However, due to the nature of the drone simulation and the limitations of the tool,
it was not possible to fully plot all the necessary variables. An example of reachability
analysis is shown in Figure 7.5.

Figure 7.5: Reachability analysis with DaDra
Source: Author’s work and Maxwell Bland

Analyzing the graphs, we see a correct and expected output, as this reachability anal-
ysis has better results than the simulations explained above. As observed, the Madgwick
filter performs as expected in its lifted version, by dampening and finally eliminating
bias. For this reachability analysis, a bias value of 0.1º was added to the gyroscope. For
the first second/second and a half, the behavior of the drone is unexpected, and if left
with a non-filtered function, it could reach an instability point. However, as the behavior
is anticipated, Madgwick filters out that bias and keeps the drone in a stable position.

Once that drone is in a stable position, the alternating line seen in the reachability
graphs is only a few degrees, which represents that the function has reached the limits
of the resolution of the sensor and filtering capabilities. That behavior in a physical
device, with varying inputs, is expected. At this point, the actual utility of the tool

75

CHAPTER 7. RESULTS

is shown. InteGreat was able to demonstrate that, even if the implementation of the
filtering function present in the drone is different to that of the theory, its functioning is
as anticipated and correctly filters bias and errors.

Overall, the reachability analysis was really successful. Even if it is not the main focus
of the paper, it is a way to show the usability of this tool and how it could analyze the
software for embedded systems after being implemented in the physical device.

76

Chapter 8

Conclusions and Future Developments

In this chapter, the most important conclusions of the development of this thesis are
presented, analyzing the initial objectives and results. Moreover, some future work will
be explained for the further development of this tool, with the objective of presenting it
at a conference or workshop, as part of the work performed at the University of Illinois.

8.1 Conclusions

The general objectives of the project set forth at the beginning of the year were reached
for the most part; that is, to make a multi-architecture, multi-platform tool that is capable
of analyzing binaries and lifting them to a high-level programming language. In terms of
the goals set in Section 4.2, they were also achieved at a great level.

1 Binary analysis and function identification. This is arguably the goal that
was not reached to the expected level. While the tool disassembles and decompiles
adequately to obtain control differential equations, it is not able to perform the
initial analysis for looping functions on its own. Furthermore, some of the manual
analysis, although it was known that it was necessary, exceeds the extent that
was originally envisioned. This analysis included function entry points, hooks, and
the main program entry. However, in general, this objective could be considered
complete around 50% of the time, because most problems arise from variable-size
instruction architectures, such as x86.

2 Symbolic execution and equation lifting. This objective is achieved around
80%. The binary files are executed symbolically, and the equations are lifted to great
precision. It is possible to ensure that the correctness is maintained most of the time
per the verification schemes performed and that the results are what is expected
from the devices. However, just like in the previous objective, there is some manual

77

CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS

component that was not originally intended, because there is a necessary set-up of
function entry points and other parameters for a correct compilation of the lifted
equations. In this case, depth-level analysis of the functions is also included as an
improvement on the original goals and exceeds what was needed.

3 Correctness of equation lifting. The correctness of the equations lifted is com-
pleted, and except in error situations of the tool, it is acceptable and guaranteed.
This point is completed to 95%.

4 State reachability analysis. Although this section was only done for the drone,
the gradual improvement of the design of DaDRA and other reachability tools will
allow further and more extensive reachability analysis. Furthermore, this section
could at some point be integrated into the final tool. However, the completion
level is around 75% due to the success of correctly demonstrating that the drone’s
implementation of Madgwick works as expected and that the tool is useful for the
analysis of cyber-physical systems at a high level.

In general, the general objectives have been achieved to a great extent. However, some
complex tasks, such as automation and standalone analysis, are not yet readily available
due to technology and time constraints. Nevertheless, this improvement is part of the
future development and improvement of InteGreat.

8.2 Future Work

As explained, there are three main sections where the tool could be greatly improved in
future versions.

• Binary analysis automation. Using .json files to determine the specific charac-
teristics of each architecture decompilation, it is possible to generate and have a dif-
ferent binary decompilation scheme for each architecture/embedded system device.
A future goal could be to provide more support for other languages, without having
to manually select entry points and decompile the functions in radare2 or Ghidra.
Furthermore, advancements in function ID techniques may allow automatic binary
recognition and, especially, floating-point operation library identification, just like
the case with SEGGER’s floating-point operation libraries. With this automatic
binary identification, it is then possible to add an automatic abstraction level de-
pending on the preferences of the user.

• Automatic verification. Apart from general binary automation, a further im-
provement could be an automatic verifier that uses both real execution and the
lifted equation execution to determine if the lifting has been done correctly. With
this tool, there could be an easy way for verification and assurance; and a correctness
report could be generated for each binary decompilation.

78

8.2. Future Work

• Abstraction to Domain Specific Languages. Just as lifting is done to a high-
level programming language like Python, it could be possible, using .json files, to
lift the equation to a DSL. In this case, the versatility that this tool should provide
developers and testing personnel could increase greatly and become widely adopted.

• Vulnerability searches. By means of vulnerable function searches and reachability
analysis, it could be easy to determine unstable states in which the system would not
perform as expected. This vulnerability and stability analysis may be really useful
in safety-critical devices and embedded systems. As the number of these grows year
over year, it is possible that instead of only verifying the code, tests could be done
through control equation lifting.

• Cyber-security vulnerability searches. By simulating known vulnerable devices
and saving the behavior to a file, exploits and equation patterns could be compared
to find vulnerable devices even before having performed a detailed forensic analysis.

There are several other improvements, such as efficiency, ease of use, and user interface.
However, it is preferable to have a strong verifiable tool rather than a fancy one with less
functionality. Moreover, those improvements are integrated into the normal tool workflow
and development.

Overall, these improvements should improve the system toward a more functional and
robust solution, closer to reality and the expected usage of the tool.

79

CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS

80

Bibliography

[1] Christian Buck and Chris Winkler. The IoT story. en. publisher: Siemens Research.
Jan. 2020. url: https://new.siemens.com/global/en/company/stories/resea
rch-technologies/digitaltwin/iot-story.html (visited on 05/29/2022).

[2] INCIBE. Introduction to Embedded Systems. Aug. 2018. url: https://www.incib
e-cert.es/en/blog/introduction-embedded-systems.

[3] Moore. Cyber-Physical Systems Must be Part of Your Security Strategy. Apr. 13,
2021. url: https://www.gartner.com/smarterwithgartner/develop-a-securi
ty-strategy-for-cyber-physical-systems (visited on 06/05/2022).

[4] Sahar Bukhari and Muhammad Hasan Islam. “Security of Embedded Systems Us-
ing “ISO 27002” Standards”. In: International Journal of Scientific & Engineering
Research 7.12 (Dec. 2016). issn: 2229-5518. url: https://www.ijser.org/resea
rchpaper/Security-of-Embedded-Systems-Using-ISO-27002-Standards.pdf.

[5] Radhakisan Baheti and Helen Gill. “Cyber-physical systems”. In: The impact of
control technology 12.1 (2011), pp. 161–166.

[6] Manuel. Jiménez, Rogelio. Palomera, and Isidoro. Couvertier. Introduction to Em-
bedded Systems Using Microcontrollers and the MSP430. 1st ed. 2014. Springer New
York, 2014. isbn: 1-4614-3143-3. doi: 10.1007/978-1-4614-3143-5.

[7] A Aminifar et al. “Stability-aware analysis and design of embedded control systems”.
In: 2013, pp. 1–10. doi: 10.1109/EMSOFT.2013.6658601.

[8] Michael Tortorella. Reliability, maintainability, and supportability : best practices
for systems engineers. Includes bibliographical references and index. John Wiley &
Sons Inc., 2015. isbn: 1-119-05882-1.

[9] Jiacun Wang. Real-time embedded systems. Includes bibliographical references and
index. Wiley, 2017. isbn: 9781119420705.

[10] Clemens. Holzmann. Spatial Awareness of Autonomous Embedded Systems. eng. 1st
ed. 2009. Wiesbaden: Vieweg+Teubner Verlag, 2009. isbn: 1-283-17243-7.

[11] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to Embedded Sys-
tems, A Cyber-Physical Systems Approach. Second Edition. Accession Number:
MR3616878; Authors: 675768; 739666 Author Affiliation: 1-CA-C; Department of
Electrical Engineering and Computer Sciences (EECS), University of California;
1-CA-C; Department of Electrical Engineering and Computer Sciences (EECS),

81

https://new.siemens.com/global/en/company/stories/research-technologies/digitaltwin/iot-story.html
https://new.siemens.com/global/en/company/stories/research-technologies/digitaltwin/iot-story.html
https://www.incibe-cert.es/en/blog/introduction-embedded-systems
https://www.incibe-cert.es/en/blog/introduction-embedded-systems
https://www.gartner.com/smarterwithgartner/develop-a-security-strategy-for-cyber-physical-systems
https://www.gartner.com/smarterwithgartner/develop-a-security-strategy-for-cyber-physical-systems
https://www.ijser.org/researchpaper/Security-of-Embedded-Systems-Using-ISO-27002-Standards.pdf
https://www.ijser.org/researchpaper/Security-of-Embedded-Systems-Using-ISO-27002-Standards.pdf
https://doi.org/10.1007/978-1-4614-3143-5
https://doi.org/10.1109/EMSOFT.2013.6658601

BIBLIOGRAPHY

University of California. Copyright: ©Copyright 2022, American Mathematical
Society. Document Type: Book. Publication Type: Book Date: 20170101. Pages:
xxii+537 pp. MIT Press, 2017. isbn: 978-0-262-53381-2. url: http://www.librar
y.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.a
spx?direct=true&db=msn&AN=MR3616878&site=eds-live&scope=site%20http:
//www.ams.org/mathscinet/MRAuthorID/739666%20http://www.ams.org/mat
hscinet/MRAuthorID/675768%20http://www.ams.org/mathscinet-getitem?mr
=3616878.

[12] Raj Rajkumar. Cyber-physical systems. eng. 1st edition. The SEI series in software
engineering. Boston: Addison-Wesley, 2017. isbn: 0-13-341616-X.

[13] A Chutinan and B H Krogh. “Computational techniques for hybrid system veri-
fication”. In: IEEE Transactions on Automatic Control, Automatic Control, IEEE
Transactions on, IEEE Trans. Automat. Contr. 48 (1 Jan. 2003). Item Citation:
IEEE Transactions on Automatic Control IEEE Trans. Automat. Contr. Automatic
Control, IEEE Transactions on. 48(1):64-75 Jan, 2003 Document Subtype: IEEE
Transaction Sponsored by: IEEE Control Systems Society Date of Current Ver-
sion: 2003 AMSID: 1166525 Accession Number: edseee.1166525; Publication Type:
Academic Journal; Source: IEEE Transactions on Automatic Control, Automatic
Control, IEEE Transactions on, IEEE Trans. Automat. Contr.; Language: English;
Publication Date: 20030101; Rights: Copyright 1963-2012, IEEE; Imprint: USA:
IEEE, pp. 64–75. issn: 0018-9286. doi: 10.1109/TAC.2002.806655. url: http:
//www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost
.com/login.aspx?direct=true&db=edseee&AN=edseee.1166525&site=eds-liv
e&scope=site.

[14] Steven Strogatz. Nonlinear dynamics and chaos: with applications to physics, bi-
ology, chemistry, and engineering. eng. Repr. Studies in nonlinearity. Cambridge,
Mass: Westview Press, 2007. isbn: 9780738204536.

[15] Stanford University. Basics of Automata Theory. publisher: Stanford university.
2004. url: https://cs.stanford.edu/people/eroberts/courses/soco/projec
ts/2004-05/automata-theory/basics.html.

[16] Joaquín Aranda Almansa et al. Fundamentos de lógica matemática y computación.
Spanish. 1st ed. OCLC: 71821342. Madrid: Sanz y Torres, 2006. isbn: 9788496094741.

[17] mathertel.de. Programming Finite State Machines. Dec. 2011. url: http://www.m
athertel.de/Arduino/FiniteStateMachine.aspx.

[18] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 2010.
[19] Marjan Mernik. Formal and Practical Aspects of Domain-specific Languages. Infor-

mation Science Reference, 2013. doi: 10.4018/978-1-4666-2092-6.
[20] David Gries. The Science of Programming. New York, United States: Springer Pub-

lishing, 2012. doi: 10.1007/978-1-4612-5983-1.

82

http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=msn&AN=MR3616878&site=eds-live&scope=site%20http://www.ams.org/mathscinet/MRAuthorID/739666%20http://www.ams.org/mathscinet/MRAuthorID/675768%20http://www.ams.org/mathscinet-getitem?mr=3616878
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=msn&AN=MR3616878&site=eds-live&scope=site%20http://www.ams.org/mathscinet/MRAuthorID/739666%20http://www.ams.org/mathscinet/MRAuthorID/675768%20http://www.ams.org/mathscinet-getitem?mr=3616878
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=msn&AN=MR3616878&site=eds-live&scope=site%20http://www.ams.org/mathscinet/MRAuthorID/739666%20http://www.ams.org/mathscinet/MRAuthorID/675768%20http://www.ams.org/mathscinet-getitem?mr=3616878
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=msn&AN=MR3616878&site=eds-live&scope=site%20http://www.ams.org/mathscinet/MRAuthorID/739666%20http://www.ams.org/mathscinet/MRAuthorID/675768%20http://www.ams.org/mathscinet-getitem?mr=3616878
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=msn&AN=MR3616878&site=eds-live&scope=site%20http://www.ams.org/mathscinet/MRAuthorID/739666%20http://www.ams.org/mathscinet/MRAuthorID/675768%20http://www.ams.org/mathscinet-getitem?mr=3616878
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=msn&AN=MR3616878&site=eds-live&scope=site%20http://www.ams.org/mathscinet/MRAuthorID/739666%20http://www.ams.org/mathscinet/MRAuthorID/675768%20http://www.ams.org/mathscinet-getitem?mr=3616878
https://doi.org/10.1109/TAC.2002.806655
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.1166525&site=eds-live&scope=site
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.1166525&site=eds-live&scope=site
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.1166525&site=eds-live&scope=site
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.1166525&site=eds-live&scope=site
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html
http://www.mathertel.de/Arduino/FiniteStateMachine.aspx
http://www.mathertel.de/Arduino/FiniteStateMachine.aspx
https://doi.org/10.4018/978-1-4666-2092-6
https://doi.org/10.1007/978-1-4612-5983-1

Bibliography

[21] M.G. Rekoff. “On reverse engineering.” In: IEEE Transactions on Systems, Man,
and Cybernetics, Systems, Man and Cybernetics, IEEE Transactions on, IEEE
Trans. Syst., Man, Cybern SMC-15.2 (1985), pp. 244–252. issn: 2168-2909. url:
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go
.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/lo
gin.aspx?direct=true&db=edseee&AN=edseee.6313354&site=eds-live&scope
=site.

[22] E.J. Chikofsky and J.H. Cross. “Reverse engineering and design recovery: a taxon-
omy”. In: IEEE Software 7.1 (Jan. 1990), pp. 13–17. issn: 1937-4194. doi: 10.110
9/52.43044.

[23] Mike Van Emmerik. Program Transformation Wiki / Decompilation Process. Feb.
2005. url: http://www.program-transformation.org/Transform/Decompilati
onProcess.html.

[24] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. “Demand-driven compo-
sitional symbolic execution”. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer. 2008, pp. 367–381.

[25] Michael Hicks. Symbolic Execution for finding bugs.
[26] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT—a Formal System

for Testing and Debugging Programs by Symbolic Execution”. In: SIGPLAN Not.
10.6 (Apr. 1975), pp. 234–245. issn: 0362-1340. doi: 10.1145/390016.808445. url:
https://doi-org.proxy2.library.illinois.edu/10.1145/390016.808445.

[27] Anastasis Keliris and Michail Maniatakos. “ICSREF: A Framework for Automated
Reverse Engineering of Industrial Control Systems Binaries”. In: San Diego, CA,
2019. isbn: 1-891562-55-X. doi: 10.14722. url: https://dx.doi.org/10.14722
/ndss.2019.23271.

[28] N. Lawerence Ricker. Tennessee Eastman challenge archive. 2015. url: https :
/ / depts . washington . edu / control / LARRY / TE / download . html (visited on
05/31/2022).

[29] J.J. Downs and E.F. Vogel. “A plant-wide industrial process control problem.” In:
Computers and Chemical Engineering 17.3 (1993), pp. 245–255. issn: 00981354.
url: http://www.library.illinois.edu.proxy2.library.illinois.edu/prox
y/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.ed
u/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0027561446&site
=eds-live&scope=site.

[30] Nicolas Minorsky. “Directional stability of automatically steered bodies”. In: Journal
of the American Society for Naval Engineers 34.2 (1922), pp. 280–309.

[31] CODESYS GmbH. CODESYS Online Help - Util. publisher: Schneider Electric.
2019. url: https://product-help.schneider-electric.com/Machine%20Exp
ert/V1.1/en/Util/index.htm?#t=topics%2Fpid_fixcycle.htm%23CSH_106
(visited on 05/31/2022).

83

http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edseee&AN=edseee.6313354&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edseee&AN=edseee.6313354&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edseee&AN=edseee.6313354&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edseee&AN=edseee.6313354&site=eds-live&scope=site
https://doi.org/10.1109/52.43044
https://doi.org/10.1109/52.43044
http://www.program-transformation.org/Transform/DecompilationProcess.html
http://www.program-transformation.org/Transform/DecompilationProcess.html
https://doi.org/10.1145/390016.808445
https://doi-org.proxy2.library.illinois.edu/10.1145/390016.808445
https://doi.org/10.14722
https://dx.doi.org/10.14722/ndss.2019.23271
https://dx.doi.org/10.14722/ndss.2019.23271
https://depts.washington.edu/control/LARRY/TE/download.html
https://depts.washington.edu/control/LARRY/TE/download.html
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0027561446&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0027561446&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0027561446&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0027561446&site=eds-live&scope=site
https://product-help.schneider-electric.com/Machine%20Expert/V1.1/en/Util/index.htm?%23t=topics/pid_fixcycle.htm%23CSH_106
https://product-help.schneider-electric.com/Machine%20Expert/V1.1/en/Util/index.htm?%23t=topics/pid_fixcycle.htm%23CSH_106

BIBLIOGRAPHY

[32] Matthias Althoff, Goran Frehse, and Antoine Girard. “Set Propagation Techniques
for Reachability Analysis”. In: Annual Review of Control, Robotics, and Autonomous
Systems 4 (1 May 2021). doi: 10.1146/annurev-control-071420-081941, pp. 369–395.
issn: 2573-5144. doi: 10.1146/annurev-control-071420-081941. url: https:
//doi.org/10.1146/annurev-control-071420-081941.

[33] Richard Lipton. “The reachability problem requires exponential space”. In: Depart-
ment of Computer Science. Yale University 62 (1976).

[34] Inc. The Mathworks. Signal Processing Toolbox - Perform signal processing and
analysis. publisher: Mathworks. 2022. url: https://www.mathworks.com/produc
ts/signal.html.

[35] NXP Model-Based Design Toolbox Team (2022). NXP Support Package S32R. 2022.
url: https://www.mathworks.com/matlabcentral/fileexchange/72232-nxp_s
upport_package_s32r.

[36] Silion. RADAR SDK FOR S32R PROCESSORS. June 2017. url: https://comm
unity.nxp.com/pwmxy87654/attachments/pwmxy87654/connects/225/1/AMF-
AUT-T2723.pdf.

[37] TIOBE. TIOBE Index for May 2022. May 2022.
[38] Fernando Pérez and Brian E. Granger. “IPython: a System for Interactive Scientific

Computing”. In: Computing in Science and Engineering 9.3 (May 2007), pp. 21–29.
issn: 1521-9615. doi: 10.1109/MCSE.2007.53. url: https://ipython.org.

[39] Stack Overflow. Stack Overflow Developer Survey 2021. en. 2021. url: https://i
nsights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_m
edium=social&utm_campaign=dev-survey-2021 (visited on 06/01/2022).

[40] Ric Messier. Operating system forensics. eng. First edition. Waltham, MA: Elsevier,
2016. isbn: 0-12-801963-8.

[41] Gregory Malecha et al. “Towards foundational verification of cyber-physical sys-
tems”. In: 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS).
Vienna, Austria: IEEE, Apr. 2016, pp. 1–5. isbn: 9781509043040. doi: 10.1109
/SOSCYPS.2016.7580000. url: http://ieeexplore.ieee.org/document/758000
0/ (visited on 06/01/2022).

[42] Michael Sammler et al. “RefinedC: automating the foundational verification of C
code with refined ownership types”. en. In: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
Virtual Canada: ACM, June 2021, pp. 158–174. isbn: 9781450383912. doi: 10.114
5/3453483.3454036. url: https://dl.acm.org/doi/10.1145/3453483.3454036
(visited on 06/01/2022).

[43] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. “discovRE: Ef-
ficient Cross-Architecture Identification of Bugs in Binary Code”. en. In: 23rd An-
nual Network and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016. Internet Society, 2016, pp. 1–15. isbn: 1-
891562-41-X. doi: 10.14722/ndss.2016.23185.

84

https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1146/annurev-control-071420-081941
https://www.mathworks.com/products/signal.html
https://www.mathworks.com/products/signal.html
https://www.mathworks.com/matlabcentral/fileexchange/72232-nxp_support_package_s32r
https://www.mathworks.com/matlabcentral/fileexchange/72232-nxp_support_package_s32r
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/connects/225/1/AMF-AUT-T2723.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/connects/225/1/AMF-AUT-T2723.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/connects/225/1/AMF-AUT-T2723.pdf
https://doi.org/10.1109/MCSE.2007.53
https://ipython.org
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://doi.org/10.1109/SOSCYPS.2016.7580000
https://doi.org/10.1109/SOSCYPS.2016.7580000
http://ieeexplore.ieee.org/document/7580000/
http://ieeexplore.ieee.org/document/7580000/
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://dl.acm.org/doi/10.1145/3453483.3454036
https://doi.org/10.14722/ndss.2016.23185

Bibliography

[44] Dennis Andriesse, Asia Slowinska, and Herbert Bos. “Compiler-Agnostic Function
Detection in Binaries.” In: 2017 IEEE European Symposium on Security and Privacy
(EuroS&P), Security and Privacy (EuroS&P), 2017 IEEE European Symposium on,
EUROS-P (2017), pp. 177–189. issn: 978-1-5090-5762-7. url: http://www.libra
ry.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https:
//search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct
=true&db=edseee&AN=edseee.7961979&site=eds-live&scope=site.

[45] Y David, N Partush, and E Yahav. “Similarity of Binaries through re-Optimization”.
In: vol. Part F128414. Accession Number: edselc.2-52.0-85025120959; (Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 14 June 2017, Part F128414:79-94) Publication Type: Conference
Proceeding; Rights: Copyright 2018 Elsevier B.V., All rights reserved. Association
for Computing Machinery, 2017, pp. 79–94. isbn: 9781450349888. doi: 10.1145/3
062341.3062387. url: http://www.library.illinois.edu/proxy/go.php?url
=https://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=ed
selc.2-52.0-85025120959&site=eds-live&scope=site.

[46] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. “Flow*: An Analyzer
for Non-linear Hybrid Systems”. In: Computer Aided Verification. Ed. by David
Hutchison et al. Vol. 8044. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 258–263. isbn: 9783642397981. doi: 10.1007/978-3-642-39799-8_18. url:
http://link.springer.com/10.1007/978- 3- 642- 39799- 8_18 (visited on
06/01/2022).

[47] J.A. Agirre et al. “The VALU3S ECSEL project: Verification and validation of
automated systems safety and security”. In: Microprocessors and Microsystems 87
(2021), p. 104349. issn: 0141-9331. doi: https://doi.org/10.1016/j.micpro.20
21.104349. url: https://www.sciencedirect.com/science/article/pii/S014
1933121005068.

[48] Heethesh Vhavle, Sanam Shakya, and Pushkar Raj. eYSIP-2017 Control and Algo-
rithms Development for Quadcopter. May 2017.

[49] Sebastian Madgwick et al. “An efficient orientation filter for inertial and inertial/-
magnetic sensor arrays”. In: Report x-io and University of Bristol (UK) 25 (2010),
pp. 113–118.

[50] Drona Aviation. Pluto DIY Nano Drone Kit 1.2 - for Learning Stem & Tinker-
ing, Crash Resistant, Smartphone Controlled with Rechargeable Battery by Drona
Aviation. 2021.

[51] SYSTEMPlus Consulting. Continental ARS4-B / ARS41Continental ARS4-B /
ARS410 Long and Short Range Radar (1108647-00-D). 2020.

[52] SEGGER Microcontroller GmbH. emFloat User Guide & Reference Manual. 2021.
url: https://www.segger.com/doc/UM12008_FloatingPointLibrary.html.

[53] United Nations. Sustainable Development Goals. June 2, 2022. url: https://www
.un.org/sustainabledevelopment/.

[54] WCED .:. Sustainable Development Knowledge Platform. Aug. 4, 1987. url: http
s://sustainabledevelopment.un.org/milestones/wced.

85

http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edseee&AN=edseee.7961979&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edseee&AN=edseee.7961979&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edseee&AN=edseee.7961979&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=edseee&AN=edseee.7961979&site=eds-live&scope=site
https://doi.org/10.1145/3062341.3062387
https://doi.org/10.1145/3062341.3062387
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-85025120959&site=eds-live&scope=site
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-85025120959&site=eds-live&scope=site
http://www.library.illinois.edu/proxy/go.php?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-85025120959&site=eds-live&scope=site
https://doi.org/10.1007/978-3-642-39799-8_18
http://link.springer.com/10.1007/978-3-642-39799-8_18
https://doi.org/https://doi.org/10.1016/j.micpro.2021.104349
https://doi.org/https://doi.org/10.1016/j.micpro.2021.104349
https://www.sciencedirect.com/science/article/pii/S0141933121005068
https://www.sciencedirect.com/science/article/pii/S0141933121005068
https://www.segger.com/doc/UM12008_FloatingPointLibrary.html
https://www.un.org/sustainabledevelopment/
https://www.un.org/sustainabledevelopment/
https://sustainabledevelopment.un.org/milestones/wced
https://sustainabledevelopment.un.org/milestones/wced

BIBLIOGRAPHY

[55] Rockström, Sukhdev, and Stockholm University. Contributions to Agenda 2030.
Feb. 28, 2017. url: https://www.stockholmresilience.org/research/rese
arch- news/2017- 02- 28- contributions- to- agenda- 2030.html (visited on
06/05/2022).

86

https://www.stockholmresilience.org/research/research-news/2017-02-28-contributions-to-agenda-2030.html
https://www.stockholmresilience.org/research/research-news/2017-02-28-contributions-to-agenda-2030.html

Appendix A

Code and Execution Examples

A.1 Function Helper

1 import ghidra_bridge
2 from b i n a s c i i import h e x l i f y
3

4 # Create the ghidra_bridge space
5 gb = ghidra_bridge . GhidraBridge (namespace=g l oba l s ())
6

7 # Importing func t i on ana lyz ing t o o l s (decompi ler opt ions ,
8 # task monitor and the decompi ler i n t e r f a c e)
9 opt ions = ghidra . app . decompi ler . DecompileOptions ()

10 monitor = ghidra . u t i l . task . ConsoleTaskMonitor ()
11 i f c = ghidra . app . decompi ler . DecompInterface ()
12 i f c . s e tOpt ions (opt ions)
13

14 # Obtaining the cur rent program func t i on s
15 fm = currentProgram . getFunctionManager ()
16 f un c t i on s = fm . getFunct ions (True)
17

18 # Create a func t i on f_ l i s t e d
19 f u n c t i o n_ l i s t = []
20

21 # Getting the program l i s t i n g
22 l i s t i n g = currentProgram . g e tL i s t i n g ()
23

24 # Dict ionary where a l l f unc t i on c a l l s are max_depth
25 f unc_ca l l s_d ic t i onary = {}
26

27

28 #−−
29 # @param f −> FunctionDB va r i ab l e
30 #−−
31 de f getFunct ionAnalys i s (f) :
32 """ Pr in t s in fo rmat ion and ana l y s i s o f a g iven func t i on
33 i n c l ud ing symbols , i n t e r n a l va r i ab l e s , Program Counter Addresses

87

APPENDIX A. CODE AND EXECUTION EXAMPLES

34 and othe r s
35 """
36 pr in t ("\n\n

−−−
")

37 pr in t (" | Function ’%s ’ @%s | " % (f . g e tS ignature () . ge tPrototypeSt r ing () ,
f . getEntryPoint ()))

38 pr in t ("−−−−−−−−−−−−−−−−−−−−−−")
39

40 # Opening the func t i on and decompi l ing i t
41 i f c . openProgram (f . getProgram ())
42 r e s = i f c . decompileFunction (f , 30 , monitor)
43 high_func = re s . getHighFunction ()
44 lsm = high_func . getLocalSymbolMap ()
45 symbols = lsm . getSymbols ()
46

47 f o r i , symbol in enumerate (symbols) :
48 pr in t ("\nSymbol {} : " . format (i +1))
49 pr in t (" name : {}" . format (symbol . name))
50 pr in t (" dataType : {}" . format (symbol . dataType))
51 hs = symbol . getHighVar iab le ()
52 i n s t an c e s = hs . g e t In s t anc e s ()
53 f o r i n s t anc e in i n s t an c e s :
54 pr in t ("\n in s tance : {}" . format (i n s t anc e))
55 pr in t (" type : {}" . format (type (i n s t anc e)))
56 pr in t (" uniqueID : {}" . format (i n s t anc e . uniqueId))
57 pr in t (" PCAddress : {}" . format (i n s t anc e . getPCAddress ()))
58 f o r desc in in s t ance . getDescendants () :
59 pr in t (" Descendant : {}" . format (desc))
60

61

62 #−−
63 # Function that r e tu rn s the f i r s t FuntionDB ob j e c t when given a name
64 #−−
65 de f getFunctionFromName (f_name) :
66 """ Returns the FunctionDB va r i ab l e f o r a g iven func t i on with the f_name
67 """
68 f o r f_ l i s t e d in f unc t i on s :
69 i f (f_name in f_ l i s t e d . ge tS ignature () . ge tPrototypeStr ing ()) :
70 pr in t ("Found a func t i on ")
71 re turn f_ l i s t e d
72

73 #return Fal se
74

75

76 #−−
77 # Function to obta in and pr in t func t i on in fo rmat ion such as input

parameters and
78 #−−
79 de f getFunctionNameandInfo (f_name) :
80 """ Pr in t s ba s i c f unc t i on in fo rmat ion given a func t i on name and a l s o

r e tu rn s the
81 ac tua l FunctionDB va r i ab l e . Dupl i cate method"""
82 f o r f_ l i s t e d in f unc t i on s :
83 i f (f_name in f_ l i s t e d . ge tS ignature () . ge tPrototypeStr ing ()) :

88

A.1. Function Helper

84

85 pr in t ("−−")
86 pr in t (" | Function : " , f_ l i s t e d . ge tS ignature () .

ge tPrototypeSt r ing () , " | ")
87 pr in t ("−−")
88

89 pr in t ("Entry po int : " , f_ l i s t e d . getEntryPoint ())
90 pr in t ("Entry v a r i a b l e s : " , f_ l i s t e d . getParameters ())
91 pr in t ("Return va r i ab l e : " , f_ l i s t e d . getReturn () .

getFormalDataType () , " Addr : " , f_ l i s t e d . getReturn ())
92

93 re turn f_ l i s t e d
94

95

96 #−−
97 # Function to i t e r a t e get thorugh
98 # F i s the func t i on that i s be ing c a l l e d
99 # ca l l i n g_ func t i on i s the fucn t i on where i t i s be ign c a l l e d

100 #−−
101 de f getFunct ionCa l l ingAddres se s (f_pcpal , f_hoja) :
102 #addr_set = f . getBody ()
103 #codeUnits = l i s t i n g . getCodeUnits (addr_set , True)
104

105 entry_point = f_hoja . getEntryPoint ()
106 r e f e r e n c e s = getReferencesTo (entry_point)
107

108 f o r x r e f in r e f e r e n c e s :
109 pr in t (f_pcpal . getBody () . getMaxAddress () , " min " , f_pcpal . getBody

() . getMinAddress ())
110 i f (f_pcpal . getBody () . conta in s (x r e f . getFromAddress ())) :
111 pr in t (f_hoja . getName () , " i s c a l l e d at : " , x r e f . getFromAddress

())
112 c a l l s _ f i l e . wr i t e (s t r (f_hoja . getName ())+"\ t0x"+s t r (x r e f .

getFromAddress ())+"\n")
113 i f (s t r (x r e f . getFromAddress ()) not in func_ca l l s_d i c t i onary) :
114 f unc_ca l l s_d ic t i onary [s t r (x r e f . getFromAddress ())] = f_hoja .

getName ()
115

116 # Uncomment t h i s s e c t i o n to p r in t in the command−l i n e func t i on
in fo rmat ion

117 """ f o r un i t in codeUnits :
118 pr in t (un i t . t oS t r i ng ())
119 i f (ca l l i ng_func in un i t . t oS t r i ng ()) :
120 pr in t (ca l l i ng_func+" i s l o ca t ed at "+ s t r (un i t . getAddress ()) +

" in " + " f . getName () ")
121 #pr in t (un i t . t oS t r i ng ())
122 #pr in t (f . getAddress ())
123 #pr in t (" Function : " , f . getName () , " has a re turn address o f : " ,

un i t . getAddress ())
124 re turn un i t . getAddress () """
125

126

127 #−−
128 # Function to wr i t e Function −> Ca l l i ng address
129 #−−

89

APPENDIX A. CODE AND EXECUTION EXAMPLES

130 de f wr i t eFunct i onCa l l s () :
131 s t r ing_wr i t e_d ic t i onary = "" # Str ing where the d i c t i ona ry

between addre s s e s and c a l l l o c a t i o n s
132

133 f o r key , va lue in func_ca l l s_d ic t i onary . i tems () :
134 s t r ing_wr i t e_d ic t i onary = st r ing_wr i t e_d ic t i onary + s t r (va lue)+"\

t0x"+s t r (key)+"\n"
135

136 #pr in t (s t r ing_wr i t e_d ic t i onary)
137

138 with open (" func_call_addr . txt " , "w") as f c :
139 f c . wr i t e (s t r ing_wr i t e_d ic t i onary)
140

141 #−−
142 # Function to wr i t e Function −> Return r e g i s t e r
143 #−−
144 de f writeFunct ionReturns (s t r i n g) :
145 with open (" func_return . txt " , "w") as f r :
146 f r . wr i t e (s t r i n g)
147

148

149 #−−
150 # Function to wr i t e Function −> Input parameters
151 #−−
152 de f writeFunct ionParameters (s t r i n g) :
153 with open ("func_param . txt " , "w") as fp :
154 fp . wr i t e (s t r i n g) # TODO acabar e s to
155

156

157 de f wr i t eFunct ionTreeL i s t (s t r i n g) :
158 with open (" func_tree_l i s t . txt " , "w") as f t l :
159 f t l . wr i t e (s t r i n g) # TODO Acabar e s to
160

161

162 #−−
163 # Def ine a func t i on to i t e r a t e and get through a l l o f the l e a f f un c t i on s
164 #−−
165 de f generateFunct ionTree (f , max_depth , depth) :
166 """ Generates a l i s t o f a l l c a l l e d f unc t i on s by one r e c u r s i v e l y
167 """
168

169 i f f not in f un c t i o n_ l i s t :
170 f u n c t i o n_ l i s t . append (f)
171

172 i f (depth == 0) :
173 re turn
174

175 ca l l ed_func = f . getCa l l edFunct ions (monitor)
176

177 i f not bool (ca l l ed_func) :
178 re turn
179

180 #pr in t (" Function " , f . getName () , " c a l l s : " , ca l l ed_func)
181 f o r func_el in ca l l ed_func :
182 getFunct ionCa l l ingAddres se s (f , func_el)

90

A.1. Function Helper

183 pr in t ("Function name : " , func_el)
184 #generateFunct ionTree (func_el , max_depth , depth −1)
185

186 re turn
187

188 #−−
189 # Generates a l l f unc t i on re turn r e g i s t e r s , omitt ing those that don ’ t
190 # return anything
191 #−−
192 de f getFunct ionsReturnReg i s te r s () :
193 """Gets and wr i t e s a l l o f the func t i on ’ s re turn r e g i s t e r s .
194

195 Obtains the re turn r e g i s t e r f o r a l l o f the program func t i on s
196 and wr i t e s them to a f i l e <func_return . txt with the f o l l ow i n g format :
197 <func t i on name> \\ t <return r e g i s t e r >."""
198 s t r i n g_wr i t e_r eg i s t e r s = ""
199 func = getF i r s tFunct i on () # Obtaining the f i r s t f unc t i on
200 whi le func i s not None :
201 i f ("None" not in s t r (func . getReturn () . g e tReg i s t e r ())) :
202 #pr in t ("None no e s ta en " , func . getReturn () . g e tReg i s t e r ())
203 s t r i n g_wr i t e_r eg i s t e r s = s t r i ng_wr i t e_r eg i s t e r s + s t r (func .

getName ())+"\ t "+s t r (func . getReturn () . g e tReg i s t e r ())+"\n"
204 func = getFunct ionAfter (func)
205

206 writeFunct ionReturns (s t r i n g_wr i t e_r eg i s t e r s)
207

208 #−−
209 # Generates a l l o f the f un c t i on s input r e g i s t e r s , omitt ing those that don ’ t
210 # ex i s t
211 #−−
212 de f getFunctionsInputParams () :
213 """Gets and wr i t e s a l l o f the fucn t i on ’ s input parameter r e g i s t e r s .
214

215 Obtains a l l o f the input parameters r e g i s t e r s f o r a l l o f the program
func t i on s

216 and r ew r i t e s them to a f i l e <func_param . txt> with the f o l l ow i n g format :
217 <func t i on name> \\ t <input r e g i s t e r s (\\ t) >. """
218 string_write_params = ""
219 func = getF i r s tFunct i on ()
220 whi le func i s not None :
221 string_write_params = string_write_params + s t r (func . getName ()) + "

\ t "
222 f o r param in func . getParameters () :
223 i f "None" not in s t r (param . g e tReg i s t e r ()) :
224 string_write_params = string_write_params + s t r (param .

g e tReg i s t e r ()) + "\ t "
225 string_write_params = string_write_params + "\n"
226 func = getFunct ionAfter (func)
227

228 writeFunct ionParameters (string_write_params)
229

230

231 #−−
232 #−−
233 # | MAIN EXECUTION |

91

APPENDIX A. CODE AND EXECUTION EXAMPLES

234 #−−
235 #−−
236

237 # Anal i z ing the func t i on s e l e c t e d
238 function_name = "MadgwickQuaternionUpdate"
239 fu = getFunctionNameandInfo (function_name)
240

241 # Generating the func t i on t r e e f o r "MadgwickQuaternionUpdate"
242 # Also gene ra t e s a d i c t i ona ry with a l l o f the func t i on c a l l s
243 pr in t ("INFO: func t i on t o o l s : g ene ra t ing the func t i on t r e e . ")
244 generateFunct ionTree (fu , 10 , 10)
245

246

247 # Writing the func t i on t r e e to a f i l e
248 wr i t eFunct i onCa l l s ()
249

250 # Writing the func t i on Parameters and Returns
251 pr in t ("INFO: func t i on t o o l s : g ene ra t ing the func t i on input parameters . ")
252 getFunctionsInputParams ()
253 pr in t ("INFO: func t i on t o o l s : g ene ra t ing the func t i on re turn r e g i s t e r s . ")
254 getFunct ionsReturnReg i s te r s ()
255

256 pr in t ("INFO: func t i on t o o l s : done . ")

Listing A.1: Code of the function helper tool.

A.2 Drone Top-Level

1 #!/ usr / bin /env python3
2 """
3 Analyzes the c on t r o l loop o f the quadcopter f irmware
4

5 argv [1] i s the f irmware path
6 """
7 import random
8 import sys
9 import angr

10 import c l a r i p y
11 import ppr int
12 import IPython
13 from ana lyze r import Analyzer
14 import os
15

16 DIR = os . path . dirname (os . path . r ea lpa th (__file__))
17

18 a = Analyzer (sys . argv [1] , DIR + " / . . / notebooks / func_call_addr . txt ")
19 a . enter_funct ion (0 x8003331)
20

21 a . init_sym_regs ({
22 " r0 " : "ax" ,
23 " r1 " : "ay" ,
24 " r2 " : "az" ,

92

A.2. Drone Top-Level

25 " r3 " : "gx" ,
26 " r4 " : "gy" ,
27 " r5 " : "my" ,
28 " r6 " : None ,
29 " r7 " : None ,
30 " r8 " : None ,
31 " r9 " : None ,
32 " r10 " : None ,
33 " r11 " : None ,
34 })
35

36 unconstr_stack = {}
37 f o r i in range(−0x84 , 0x2C , 4) :
38 unconstr_stack [i] = None
39

40 unconstr_stack [0] = "gy"
41 unconstr_stack [4] = "gz"
42 unconstr_stack [8] = "mx"
43 unconstr_stack [1 2] = "my"
44 unconstr_stack [1 6] = "mz"
45

46 a . init_sym_stack (unconstr_stack)
47

48 a . init_sym_memory (0 x2000035C] , "FPstate_beta")
49 a . init_sym_memory (0 x20000360] , "FPstate_deltat ")
50 a . init_sym_memory (0 x2000003C] , "FPstate_q0")
51 a . init_sym_memory (0 x20000040] , "FPstate_q1")
52 a . init_sym_memory (0 x20000044] , "FPstate_q2")
53 a . init_sym_memory (0 x20000048] , "FPstate_q3")
54

55 a . in i t_t ime_f i e ld (0 x20000360)
56

57 a . i n i t_cont ro l_s ta t e ([
58 0x2000003C , 0x20000040 , 0x20000044 , 0x20000048
59])
60

61 a . set_concrete_stack (0 x14 , 0x30000000)
62

63 a . run ()
64

65 unc = a . g e t_re su l t s ()
66 mem_locs = [
67 ["q0_out" , unc [−1] .mem. f l o a t [0 x2000003C]] ,
68 ["q1_out" , unc [−1] .mem. f l o a t [0 x20000040]] ,
69 ["q2_out" , unc [−1] .mem. f l o a t [0 x20000044]] ,
70 ["q3_out" , unc [−1] .mem. f l o a t [0 x20000048]] ,
71 [" theta_out" , unc [−1] .mem. f l o a t [unc [−1] . r eg s . r3]] ,
72 ["phi_out" , unc [−1] .mem. f l o a t [unc [−1] . r eg s . r3 + 4]] ,
73 [" psi_out" , unc [−1] .mem. f l o a t [unc [−1] . r eg s . r3 + 8]]
74]
75

76 a . ana lyze (mem_locs)

Listing A.2: Code of drone_toplevel.py
Courtesy of Maxwell Bland

93

APPENDIX A. CODE AND EXECUTION EXAMPLES

A.3 PLC Differential Equations Output

1

2 #!/ usr / bin /env python3
3

4 # Ve r i f i c a t i o n o f the equat ions presented f o r the an a l y s i s o f the PLC
5

6 # Input v a r i a b l e s to s imulate 1
7 mem_19aad_6_16 = 1
8 mem_198a8_14_32 = 1
9 mem_198cc_20_32 = 1

10 mem_19898_7_32 = 1
11 mem_198b0_16_32 = 1
12 mem_198ac_15_32 = 1
13

14 # Input v a r i a b l e s to s imulate 2
15 mem_19aaf_8_16 = 1
16 mem_198a4_37_32 = 1
17

18 mem_198c0_39_32 = 1
19 mem_198bc_38_32 = 1
20

21

22 # Input v a r i a b l e s to s imulate 3
23 mem_199fb_50_32 = 1
24 mem_198a4_51_32 = 1
25

26

27 # Function execut ion and v e r i f i c a t i o n
28

29 # Set t ing up memory va lue s
30

31

32 # Gen_output : FP_integral_out_0_27_32
33 # Elements to s imulate mem_19aad_6_16 , mem_198a8_14_32 , mem_198cc_20_32
34 de f generate_FP_integral_out_0_27_32 (FP_integral_out_0_27_32) :
35 assignment_1_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19aad_6_16
36 assignment_2_0 = assignment_1_0 + −0.0046
37 assignment_3_0 = assignment_2_0 / 0.9876000000000001
38 assignment_4_0 = 1000.0 ∗ assignment_3_0
39 assignment_5_0 = assignment_4_0 + 2000.0
40 assignment_6_0 = mem_198a8_14_32 − assignment_5_0
41 assignment_7_0 = mem_198cc_20_32 ∗ 1000 .0
42 assignment_8_0 = assignment_6_0 ∗ assignment_7_0
43 assignment_9_0 = assignment_8_0 / 1000.0
44 assignment_10_0 = FP_integral_out_0_27_32 + assignment_9_0
45 FP_integral_out_0_27_32 = assignment_10_0
46

47

48 #Gen_output : FP_derivative_x3_0_24_32
49 de f generate_FP_derivative_x3_0_24_32 (FP_derivative_x2_0_23_32) :
50 FP_derivative_x3_0_24_32 = FP_derivative_x2_0_23_32
51

52

94

A.3. PLC Differential Equations Output

53 #Gen_output : FP_derivative_x2_0_23_32
54 de f generate_FP_derivative_x2_0_23_32 (FP_derivative_x1_0_22_32) :
55 FP_derivative_x2_0_23_32 = FP_derivative_x1_0_22_32
56

57

58 #Gen_output : FP_derivative_x1_0_22_32
59 de f generate_FP_derivative_x1_0_22_32 () :
60 assignment_1_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
61 assignment_2_0 = assignment_1_0 + −0.0046
62 assignment_3_0 = assignment_2_0 / 0.9876000000000001
63 assignment_4_0 = 1000.0 ∗ assignment_3_0
64 assignment_5_0 = assignment_4_0 + 2000.0
65 assignment_6_0 = mem_198a8_14_32 − assignment_5_0
66 FP_derivative_x1_0_22_32 = assignment_6_0
67 re turn FP_derivative_x1_0_22_32
68

69

70 #Gen_output : FP_derivative_t2_0_25_32
71 de f generate_FP_derivative_t2_0_25_32 (FP_derivative_t1_0_26_32) :
72 FP_derivative_t2_0_25_32 = FP_derivative_t1_0_26_32
73

74

75 #Gen_output : FP_derivative_t1_0_26_32
76 de f generate_FP_derivative_t1_0_26_32 () :
77 assignment_1_0 = mem_198cc_20_32 ∗ 1000 .0
78 FP_derivative_t1_0_26_32 = assignment_1_0
79

80

81 #Gen_output : FP_pid_fixcycle_y_0_21_32
82 de f generate_FP_pid_fixcycle_y_0_21_32 (FP_pid_fixcycle_y_0_21_32 ,

FP_derivative_t1_0_26_32 , FP_derivative_x2_0_23_32 ,
FP_integral_out_0_27_32 , FP_derivative_t2_0_25_32 ,
FP_derivative_x1_0_22_32 , FP_derivative_x3_0_24_32) :

83 assignment_1_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
84 assignment_2_0 = assignment_1_0 + −0.0046
85 assignment_3_0 = assignment_2_0 / 0.9876000000000001
86 assignment_4_0 = 1000.0 ∗ assignment_3_0
87 assignment_5_0 = assignment_4_0 + 2000.0
88 assignment_6_0 = mem_198a8_14_32 − assignment_5_0
89 assignment_7_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
90 assignment_8_0 = assignment_7_0 + −0.0046
91 assignment_9_0 = assignment_8_0 / 0.9876000000000001
92 assignment_10_0 = 1000.0 ∗ assignment_9_0
93 assignment_11_0 = assignment_10_0 + 2000.0
94 assignment_12_0 = mem_198a8_14_32 − assignment_11_0
95 assignment_13_0 = mem_198cc_20_32 ∗ 1000 .0
96 assignment_14_0 = assignment_12_0 ∗ assignment_13_0
97 assignment_15_0 = assignment_14_0 / 1000 .0
98 assignment_16_0 = FP_integral_out_0_27_32 + assignment_15_0
99 assignment_17_0 = assignment_16_0 / mem_198b0_16_32

100 assignment_18_0 = assignment_6_0 + assignment_17_0
101 assignment_19_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
102 assignment_20_0 = assignment_19_0 + −0.0046
103 assignment_21_0 = assignment_20_0 / 0.9876000000000001
104 assignment_22_0 = 1000.0 ∗ assignment_21_0

95

APPENDIX A. CODE AND EXECUTION EXAMPLES

105 assignment_23_0 = assignment_22_0 + 2000.0
106 assignment_24_0 = mem_198a8_14_32 − assignment_23_0
107 assignment_25_0 = assignment_24_0 − FP_derivative_x3_0_24_32
108 assignment_26_0 = 3.0 ∗ assignment_25_0
109 assignment_27_0 = assignment_26_0 + FP_derivative_x1_0_22_32
110 assignment_28_0 = assignment_27_0 − FP_derivative_x2_0_23_32
111 assignment_29_0 = 3.0 ∗ FP_derivative_t2_0_25_32
112 assignment_30_0 = 4.0 ∗ FP_derivative_t1_0_26_32
113 assignment_31_0 = assignment_29_0 + assignment_30_0
114 assignment_32_0 = mem_198cc_20_32 ∗ 1000 .0
115 assignment_33_0 = 3.0 ∗ assignment_32_0
116 assignment_34_0 = assignment_31_0 + assignment_33_0
117 assignment_35_0 = assignment_28_0 / assignment_34_0
118 assignment_36_0 = assignment_35_0 ∗ 1000 .0
119 assignment_37_0 = assignment_36_0 ∗ 0 .0
120 assignment_38_0 = assignment_18_0 + assignment_37_0
121 assignment_39_0 = mem_198ac_15_32 ∗ assignment_38_0
122 assignment_40_0 = 0.0 + assignment_39_0
123 assignment_41_0 = FP_pid_fixcycle_y_0_21_32 − 0 .0
124 assignment_42_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
125 assignment_43_0 = assignment_42_0 + −0.0046
126 assignment_44_0 = assignment_43_0 / 0.9876000000000001
127 assignment_45_0 = 1000.0 ∗ assignment_44_0
128 assignment_46_0 = assignment_45_0 + 2000.0
129 assignment_47_0 = mem_198a8_14_32 − assignment_46_0
130 assignment_48_0 = mem_198ac_15_32 ∗ assignment_47_0
131 assignment_49_0 = assignment_41_0 − assignment_48_0
132 assignment_50_0 = assignment_40_0 + assignment_49_0
133 FP_pid_fixcycle_y_0_21_32 = assignment_50_0
134

135

136 #−−
137 #−−
138 #−−
139

140

141 #Gen_output : FP_integral_out_1_49_32
142 de f generate_FP_integral_out_1_49_32 (FP_pid_fixcycle_y_0_21_32 ,

FP_integral_out_1_49_32 , FP_derivative_t1_0_26_32 ,
FP_derivative_x2_0_23_32 , FP_integral_out_0_27_32 ,
FP_derivative_t2_0_25_32 , FP_derivative_x1_0_22_32 ,
FP_derivative_x3_0_24_32) :

143 assignment_1_0 = ((0 x0 << 32) | mem_19aaf_8_16) / mem_19898_7_32
144 assignment_2_0 = assignment_1_0 + −0.0024000000000000002
145 assignment_3_0 = assignment_2_0 / 0.9936
146 assignment_4_0 = 3.0 ∗ assignment_3_0
147 assignment_5_0 = assignment_4_0 + −0.5
148 assignment_6_0 = 0.5 ∗ assignment_5_0
149 assignment_7_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
150 assignment_8_0 = assignment_7_0 + −0.0046
151 assignment_9_0 = assignment_8_0 / 0.9876000000000001
152 assignment_10_0 = 1000.0 ∗ assignment_9_0
153 assignment_11_0 = assignment_10_0 + 2000.0
154 assignment_12_0 = −assignment_11_0
155 assignment_13_0 = mem_198a8_14_32 + assignment_12_0

96

A.3. PLC Differential Equations Output

156 assignment_14_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
157 assignment_15_0 = assignment_14_0 + −0.0046
158 assignment_16_0 = assignment_15_0 / 0.9876000000000001
159 assignment_17_0 = 1000.0 ∗ assignment_16_0
160 assignment_18_0 = assignment_17_0 + 2000.0
161 assignment_19_0 = −assignment_18_0
162 assignment_20_0 = mem_198a8_14_32 + assignment_19_0
163 assignment_21_0 = mem_198cc_20_32 ∗ 1000 .0
164 assignment_22_0 = assignment_20_0 ∗ assignment_21_0
165 assignment_23_0 = assignment_22_0 / 1000 .0
166 assignment_24_0 = FP_integral_out_0_27_32 + assignment_23_0
167 assignment_25_0 = assignment_24_0 / mem_198b0_16_32
168 assignment_26_0 = assignment_13_0 + assignment_25_0
169 assignment_27_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
170 assignment_28_0 = assignment_27_0 + −0.0046
171 assignment_29_0 = assignment_28_0 / 0.9876000000000001
172 assignment_30_0 = 1000.0 ∗ assignment_29_0
173 assignment_31_0 = assignment_30_0 + 2000.0
174 assignment_32_0 = −assignment_31_0
175 assignment_33_0 = mem_198a8_14_32 + assignment_32_0
176 assignment_34_0 = −FP_derivative_x3_0_24_32
177 assignment_35_0 = assignment_33_0 + assignment_34_0
178 assignment_36_0 = 3.0 ∗ assignment_35_0
179 assignment_37_0 = assignment_36_0 + FP_derivative_x1_0_22_32
180 assignment_38_0 = −FP_derivative_x2_0_23_32
181 assignment_39_0 = assignment_37_0 + assignment_38_0
182 assignment_40_0 = 3.0 ∗ FP_derivative_t2_0_25_32
183 assignment_41_0 = 4.0 ∗ FP_derivative_t1_0_26_32
184 assignment_42_0 = assignment_40_0 + assignment_41_0
185 assignment_43_0 = mem_198cc_20_32 ∗ 1000 .0
186 assignment_44_0 = 3.0 ∗ assignment_43_0
187 assignment_45_0 = assignment_42_0 + assignment_44_0
188 assignment_46_0 = assignment_39_0 / assignment_45_0
189 assignment_47_0 = assignment_46_0 ∗ 1000 .0
190 assignment_48_0 = assignment_47_0 ∗ 0 .0
191 assignment_49_0 = assignment_26_0 + assignment_48_0
192 assignment_50_0 = mem_198ac_15_32 ∗ assignment_49_0
193 assignment_51_0 = 0.0 + assignment_50_0
194 assignment_52_0 = FP_pid_fixcycle_y_0_21_32 + −0.0
195 assignment_53_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
196 assignment_54_0 = assignment_53_0 + −0.0046
197 assignment_55_0 = assignment_54_0 / 0.9876000000000001
198 assignment_56_0 = 1000.0 ∗ assignment_55_0
199 assignment_57_0 = assignment_56_0 + 2000.0
200 assignment_58_0 = −assignment_57_0
201 assignment_59_0 = mem_198a8_14_32 + assignment_58_0
202 assignment_60_0 = mem_198ac_15_32 ∗ assignment_59_0
203 assignment_61_0 = −assignment_60_0
204 assignment_62_0 = assignment_52_0 + assignment_61_0
205 assignment_63_0 = assignment_51_0 + assignment_62_0
206 assignment_64_0 = assignment_63_0 ∗ mem_198a4_37_32
207 assignment_65_0 = assignment_6_0 − assignment_64_0
208 assignment_66_0 = mem_198cc_20_32 ∗ 1000 .0
209 assignment_67_0 = assignment_65_0 ∗ assignment_66_0
210 assignment_68_0 = assignment_67_0 / 1000 .0

97

APPENDIX A. CODE AND EXECUTION EXAMPLES

211 assignment_69_0 = FP_integral_out_1_49_32 + assignment_68_0
212 FP_integral_out_1_49_32 = assignment_69_0
213

214

215 #Gen_output : FP_derivative_x3_1_46_32
216 de f generate_FP_derivative_x3_1_46_32 (FP_derivative_x2_1_45_32) :
217 FP_derivative_x3_1_46_32 = FP_derivative_x2_1_45_32
218

219

220 #Gen_output : FP_derivative_x2_1_45_32
221 de f generate_FP_derivative_x2_1_45_32 (FP_derivative_x1_1_44_32) :
222 FP_derivative_x2_1_45_32 = FP_derivative_x1_1_44_32
223

224

225 #Gen_output : FP_derivative_x1_1_44_32
226 de f generate_FP_derivative_x1_1_44_32 (FP_pid_fixcycle_y_0_21_32 ,

FP_derivative_t1_0_26_32 , FP_derivative_x2_0_23_32 ,
FP_integral_out_0_27_32 , FP_derivative_t2_0_25_32 ,
FP_derivative_x1_0_22_32 , FP_derivative_x3_0_24_32) :

227 assignment_1_0 = ((0 x0 << 32) | mem_19aaf_8_16) / mem_19898_7_32
228 assignment_2_0 = assignment_1_0 + −0.0024000000000000002
229 assignment_3_0 = assignment_2_0 / 0.9936
230 assignment_4_0 = 3.0 ∗ assignment_3_0
231 assignment_5_0 = assignment_4_0 + −0.5
232 assignment_6_0 = 0.5 ∗ assignment_5_0
233 assignment_7_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
234 assignment_8_0 = assignment_7_0 + −0.0046
235 assignment_9_0 = assignment_8_0 / 0.9876000000000001
236 assignment_10_0 = 1000.0 ∗ assignment_9_0
237 assignment_11_0 = assignment_10_0 + 2000.0
238 assignment_12_0 = −assignment_11_0
239 assignment_13_0 = mem_198a8_14_32 + assignment_12_0
240 assignment_14_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
241 assignment_15_0 = assignment_14_0 + −0.0046
242 assignment_16_0 = assignment_15_0 / 0.9876000000000001
243 assignment_17_0 = 1000.0 ∗ assignment_16_0
244 assignment_18_0 = assignment_17_0 + 2000.0
245 assignment_19_0 = −assignment_18_0
246 assignment_20_0 = mem_198a8_14_32 + assignment_19_0
247 assignment_21_0 = mem_198cc_20_32 ∗ 1000 .0
248 assignment_22_0 = assignment_20_0 ∗ assignment_21_0
249 assignment_23_0 = assignment_22_0 / 1000 .0
250 assignment_24_0 = FP_integral_out_0_27_32 + assignment_23_0
251 assignment_25_0 = assignment_24_0 / mem_198b0_16_32
252 assignment_26_0 = assignment_13_0 + assignment_25_0
253 assignment_27_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
254 assignment_28_0 = assignment_27_0 + −0.0046
255 assignment_29_0 = assignment_28_0 / 0.9876000000000001
256 assignment_30_0 = 1000.0 ∗ assignment_29_0
257 assignment_31_0 = assignment_30_0 + 2000.0
258 assignment_32_0 = −assignment_31_0
259 assignment_33_0 = mem_198a8_14_32 + assignment_32_0
260 assignment_34_0 = −FP_derivative_x3_0_24_32
261 assignment_35_0 = assignment_33_0 + assignment_34_0
262 assignment_36_0 = 3.0 ∗ assignment_35_0

98

A.3. PLC Differential Equations Output

263 assignment_37_0 = assignment_36_0 + FP_derivative_x1_0_22_32
264 assignment_38_0 = −FP_derivative_x2_0_23_32
265 assignment_39_0 = assignment_37_0 + assignment_38_0
266 assignment_40_0 = 3.0 ∗ FP_derivative_t2_0_25_32
267 assignment_41_0 = 4.0 ∗ FP_derivative_t1_0_26_32
268 assignment_42_0 = assignment_40_0 + assignment_41_0
269 assignment_43_0 = mem_198cc_20_32 ∗ 1000 .0
270 assignment_44_0 = 3.0 ∗ assignment_43_0
271 assignment_45_0 = assignment_42_0 + assignment_44_0
272 assignment_46_0 = assignment_39_0 / assignment_45_0
273 assignment_47_0 = assignment_46_0 ∗ 1000 .0
274 assignment_48_0 = assignment_47_0 ∗ 0 .0
275 assignment_49_0 = assignment_26_0 + assignment_48_0
276 assignment_50_0 = mem_198ac_15_32 ∗ assignment_49_0
277 assignment_51_0 = 0.0 + assignment_50_0
278 assignment_52_0 = FP_pid_fixcycle_y_0_21_32 + −0.0
279 assignment_53_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
280 assignment_54_0 = assignment_53_0 + −0.0046
281 assignment_55_0 = assignment_54_0 / 0.9876000000000001
282 assignment_56_0 = 1000.0 ∗ assignment_55_0
283 assignment_57_0 = assignment_56_0 + 2000.0
284 assignment_58_0 = −assignment_57_0
285 assignment_59_0 = mem_198a8_14_32 + assignment_58_0
286 assignment_60_0 = mem_198ac_15_32 ∗ assignment_59_0
287 assignment_61_0 = −assignment_60_0
288 assignment_62_0 = assignment_52_0 + assignment_61_0
289 assignment_63_0 = assignment_51_0 + assignment_62_0
290 assignment_64_0 = assignment_63_0 ∗ mem_198a4_37_32
291 assignment_65_0 = assignment_6_0 − assignment_64_0
292 FP_derivative_x1_1_44_32 = assignment_65_0
293

294

295 #Gen_output : FP_derivative_t2_1_47_32
296 de f generate_FP_derivative_t2_1_47_32 (FP_derivative_t1_1_48_32) :
297 FP_derivative_t2_1_47_32 = FP_derivative_t1_1_48_32
298

299

300 #Gen_output : FP_derivative_t1_1_48_32
301 de f generate_FP_derivative_t1_1_48_32 () :
302 assignment_1_0 = mem_198cc_20_32 ∗ 1000 .0
303 FP_derivative_t1_1_48_32 = assignment_1_0
304

305

306 #Gen_output : FP_pid_fixcycle_y_1_43_32
307 de f generate_FP_pid_fixcycle_y_1_43_32 (FP_pid_fixcycle_y_0_21_32 ,

FP_derivative_x2_1_45_32 , FP_pid_fixcycle_y_1_43_32 ,
FP_integral_out_1_49_32 , FP_derivative_x1_1_44_32 ,
FP_derivative_t1_0_26_32 , FP_derivative_x2_0_23_32 ,
FP_integral_out_0_27_32 , FP_derivative_t2_1_47_32 ,
FP_derivative_t2_0_25_32 , FP_derivative_x1_0_22_32 ,
FP_derivative_t1_1_48_32 , FP_derivative_x3_1_46_32 ,
FP_derivative_x3_0_24_32) :

308 assignment_1_0 = ((0 x0 << 32) | mem_19aaf_8_16) / mem_19898_7_32
309 assignment_2_0 = assignment_1_0 + −0.0024000000000000002
310 assignment_3_0 = assignment_2_0 / 0.9936

99

APPENDIX A. CODE AND EXECUTION EXAMPLES

311 assignment_4_0 = 3.0 ∗ assignment_3_0
312 assignment_5_0 = assignment_4_0 + −0.5
313 assignment_6_0 = 0.5 ∗ assignment_5_0
314 assignment_7_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
315 assignment_8_0 = assignment_7_0 + −0.0046
316 assignment_9_0 = assignment_8_0 / 0.9876000000000001
317 assignment_10_0 = 1000.0 ∗ assignment_9_0
318 assignment_11_0 = assignment_10_0 + 2000.0
319 assignment_12_0 = −assignment_11_0
320 assignment_13_0 = mem_198a8_14_32 + assignment_12_0
321 assignment_14_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
322 assignment_15_0 = assignment_14_0 + −0.0046
323 assignment_16_0 = assignment_15_0 / 0.9876000000000001
324 assignment_17_0 = 1000.0 ∗ assignment_16_0
325 assignment_18_0 = assignment_17_0 + 2000.0
326 assignment_19_0 = −assignment_18_0
327 assignment_20_0 = mem_198a8_14_32 + assignment_19_0
328 assignment_21_0 = mem_198cc_20_32 ∗ 1000 .0
329 assignment_22_0 = assignment_20_0 ∗ assignment_21_0
330 assignment_23_0 = assignment_22_0 / 1000 .0
331 assignment_24_0 = FP_integral_out_0_27_32 + assignment_23_0
332 assignment_25_0 = assignment_24_0 / mem_198b0_16_32
333 assignment_26_0 = assignment_13_0 + assignment_25_0
334 assignment_27_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
335 assignment_28_0 = assignment_27_0 + −0.0046
336 assignment_29_0 = assignment_28_0 / 0.9876000000000001
337 assignment_30_0 = 1000.0 ∗ assignment_29_0
338 assignment_31_0 = assignment_30_0 + 2000.0
339 assignment_32_0 = −assignment_31_0
340 assignment_33_0 = mem_198a8_14_32 + assignment_32_0
341 assignment_34_0 = −FP_derivative_x3_0_24_32
342 assignment_35_0 = assignment_33_0 + assignment_34_0
343 assignment_36_0 = 3.0 ∗ assignment_35_0
344 assignment_37_0 = assignment_36_0 + FP_derivative_x1_0_22_32
345 assignment_38_0 = −FP_derivative_x2_0_23_32
346 assignment_39_0 = assignment_37_0 + assignment_38_0
347 assignment_40_0 = 3.0 ∗ FP_derivative_t2_0_25_32
348 assignment_41_0 = 4.0 ∗ FP_derivative_t1_0_26_32
349 assignment_42_0 = assignment_40_0 + assignment_41_0
350 assignment_43_0 = mem_198cc_20_32 ∗ 1000 .0
351 assignment_44_0 = 3.0 ∗ assignment_43_0
352 assignment_45_0 = assignment_42_0 + assignment_44_0
353 assignment_46_0 = assignment_39_0 / assignment_45_0
354 assignment_47_0 = assignment_46_0 ∗ 1000 .0
355 assignment_48_0 = assignment_47_0 ∗ 0 .0
356 assignment_49_0 = assignment_26_0 + assignment_48_0
357 assignment_50_0 = mem_198ac_15_32 ∗ assignment_49_0
358 assignment_51_0 = 0.0 + assignment_50_0
359 assignment_52_0 = FP_pid_fixcycle_y_0_21_32 + −0.0
360 assignment_53_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
361 assignment_54_0 = assignment_53_0 + −0.0046
362 assignment_55_0 = assignment_54_0 / 0.9876000000000001
363 assignment_56_0 = 1000.0 ∗ assignment_55_0
364 assignment_57_0 = assignment_56_0 + 2000.0
365 assignment_58_0 = −assignment_57_0

100

A.3. PLC Differential Equations Output

366 assignment_59_0 = mem_198a8_14_32 + assignment_58_0
367 assignment_60_0 = mem_198ac_15_32 ∗ assignment_59_0
368 assignment_61_0 = −assignment_60_0
369 assignment_62_0 = assignment_52_0 + assignment_61_0
370 assignment_63_0 = assignment_51_0 + assignment_62_0
371 assignment_64_0 = assignment_63_0 ∗ mem_198a4_37_32
372 assignment_65_0 = assignment_6_0 − assignment_64_0
373 assignment_66_0 = ((0 x0 << 32) | mem_19aaf_8_16) / mem_19898_7_32
374 assignment_67_0 = assignment_66_0 + −0.0024000000000000002
375 assignment_68_0 = assignment_67_0 / 0.9936
376 assignment_69_0 = 3.0 ∗ assignment_68_0
377 assignment_70_0 = assignment_69_0 + −0.5
378 assignment_71_0 = 0.5 ∗ assignment_70_0
379 assignment_72_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
380 assignment_73_0 = assignment_72_0 + −0.0046
381 assignment_74_0 = assignment_73_0 / 0.9876000000000001
382 assignment_75_0 = 1000.0 ∗ assignment_74_0
383 assignment_76_0 = assignment_75_0 + 2000.0
384 assignment_77_0 = −assignment_76_0
385 assignment_78_0 = mem_198a8_14_32 + assignment_77_0
386 assignment_79_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
387 assignment_80_0 = assignment_79_0 + −0.0046
388 assignment_81_0 = assignment_80_0 / 0.9876000000000001
389 assignment_82_0 = 1000.0 ∗ assignment_81_0
390 assignment_83_0 = assignment_82_0 + 2000.0
391 assignment_84_0 = −assignment_83_0
392 assignment_85_0 = mem_198a8_14_32 + assignment_84_0
393 assignment_86_0 = mem_198cc_20_32 ∗ 1000 .0
394 assignment_87_0 = assignment_85_0 ∗ assignment_86_0
395 assignment_88_0 = assignment_87_0 / 1000 .0
396 assignment_89_0 = FP_integral_out_0_27_32 + assignment_88_0
397 assignment_90_0 = assignment_89_0 / mem_198b0_16_32
398 assignment_91_0 = assignment_78_0 + assignment_90_0
399 assignment_92_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
400 assignment_93_0 = assignment_92_0 + −0.0046
401 assignment_94_0 = assignment_93_0 / 0.9876000000000001
402 assignment_95_0 = 1000.0 ∗ assignment_94_0
403 assignment_96_0 = assignment_95_0 + 2000.0
404 assignment_97_0 = −assignment_96_0
405 assignment_98_0 = mem_198a8_14_32 + assignment_97_0
406 assignment_99_0 = −FP_derivative_x3_0_24_32
407 assignment_100_0 = assignment_98_0 + assignment_99_0
408 assignment_101_0 = 3 .0 ∗ assignment_100_0
409 assignment_102_0 = assignment_101_0 + FP_derivative_x1_0_22_32
410 assignment_103_0 = −FP_derivative_x2_0_23_32
411 assignment_104_0 = assignment_102_0 + assignment_103_0
412 assignment_105_0 = 3 .0 ∗ FP_derivative_t2_0_25_32
413 assignment_106_0 = 4 .0 ∗ FP_derivative_t1_0_26_32
414 assignment_107_0 = assignment_105_0 + assignment_106_0
415 assignment_108_0 = mem_198cc_20_32 ∗ 1000 .0
416 assignment_109_0 = 3 .0 ∗ assignment_108_0
417 assignment_110_0 = assignment_107_0 + assignment_109_0
418 assignment_111_0 = assignment_104_0 / assignment_110_0
419 assignment_112_0 = assignment_111_0 ∗ 1000 .0
420 assignment_113_0 = assignment_112_0 ∗ 0 .0

101

APPENDIX A. CODE AND EXECUTION EXAMPLES

421 assignment_114_0 = assignment_91_0 + assignment_113_0
422 assignment_115_0 = mem_198ac_15_32 ∗ assignment_114_0
423 assignment_116_0 = 0 .0 + assignment_115_0
424 assignment_117_0 = FP_pid_fixcycle_y_0_21_32 + −0.0
425 assignment_118_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
426 assignment_119_0 = assignment_118_0 + −0.0046
427 assignment_120_0 = assignment_119_0 / 0.9876000000000001
428 assignment_121_0 = 1000.0 ∗ assignment_120_0
429 assignment_122_0 = assignment_121_0 + 2000.0
430 assignment_123_0 = −assignment_122_0
431 assignment_124_0 = mem_198a8_14_32 + assignment_123_0
432 assignment_125_0 = mem_198ac_15_32 ∗ assignment_124_0
433 assignment_126_0 = −assignment_125_0
434 assignment_127_0 = assignment_117_0 + assignment_126_0
435 assignment_128_0 = assignment_116_0 + assignment_127_0
436 assignment_129_0 = assignment_128_0 ∗ mem_198a4_37_32
437 assignment_130_0 = assignment_71_0 − assignment_129_0
438 assignment_131_0 = mem_198cc_20_32 ∗ 1000 .0
439 assignment_132_0 = assignment_130_0 ∗ assignment_131_0
440 assignment_133_0 = assignment_132_0 / 1000 .0
441 assignment_134_0 = FP_integral_out_1_49_32 + assignment_133_0
442 assignment_135_0 = assignment_134_0 / mem_198c0_39_32
443 assignment_136_0 = assignment_65_0 + assignment_135_0
444 assignment_137_0 = ((0 x0 << 32) | mem_19aaf_8_16) / mem_19898_7_32
445 assignment_138_0 = assignment_137_0 + −0.0024000000000000002
446 assignment_139_0 = assignment_138_0 / 0.9936
447 assignment_140_0 = 3 .0 ∗ assignment_139_0
448 assignment_141_0 = assignment_140_0 + −0.5
449 assignment_142_0 = 0 .5 ∗ assignment_141_0
450 assignment_143_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
451 assignment_144_0 = assignment_143_0 + −0.0046
452 assignment_145_0 = assignment_144_0 / 0.9876000000000001
453 assignment_146_0 = 1000.0 ∗ assignment_145_0
454 assignment_147_0 = assignment_146_0 + 2000.0
455 assignment_148_0 = −assignment_147_0
456 assignment_149_0 = mem_198a8_14_32 + assignment_148_0
457 assignment_150_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
458 assignment_151_0 = assignment_150_0 + −0.0046
459 assignment_152_0 = assignment_151_0 / 0.9876000000000001
460 assignment_153_0 = 1000.0 ∗ assignment_152_0
461 assignment_154_0 = assignment_153_0 + 2000.0
462 assignment_155_0 = −assignment_154_0
463 assignment_156_0 = mem_198a8_14_32 + assignment_155_0
464 assignment_157_0 = mem_198cc_20_32 ∗ 1000 .0
465 assignment_158_0 = assignment_156_0 ∗ assignment_157_0
466 assignment_159_0 = assignment_158_0 / 1000 .0
467 assignment_160_0 = FP_integral_out_0_27_32 + assignment_159_0
468 assignment_161_0 = assignment_160_0 / mem_198b0_16_32
469 assignment_162_0 = assignment_149_0 + assignment_161_0
470 assignment_163_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
471 assignment_164_0 = assignment_163_0 + −0.0046
472 assignment_165_0 = assignment_164_0 / 0.9876000000000001
473 assignment_166_0 = 1000.0 ∗ assignment_165_0
474 assignment_167_0 = assignment_166_0 + 2000.0
475 assignment_168_0 = −assignment_167_0

102

A.3. PLC Differential Equations Output

476 assignment_169_0 = mem_198a8_14_32 + assignment_168_0
477 assignment_170_0 = −FP_derivative_x3_0_24_32
478 assignment_171_0 = assignment_169_0 + assignment_170_0
479 assignment_172_0 = 3 .0 ∗ assignment_171_0
480 assignment_173_0 = assignment_172_0 + FP_derivative_x1_0_22_32
481 assignment_174_0 = −FP_derivative_x2_0_23_32
482 assignment_175_0 = assignment_173_0 + assignment_174_0
483 assignment_176_0 = 3 .0 ∗ FP_derivative_t2_0_25_32
484 assignment_177_0 = 4 .0 ∗ FP_derivative_t1_0_26_32
485 assignment_178_0 = assignment_176_0 + assignment_177_0
486 assignment_179_0 = mem_198cc_20_32 ∗ 1000 .0
487 assignment_180_0 = 3 .0 ∗ assignment_179_0
488 assignment_181_0 = assignment_178_0 + assignment_180_0
489 assignment_182_0 = assignment_175_0 / assignment_181_0
490 assignment_183_0 = assignment_182_0 ∗ 1000 .0
491 assignment_184_0 = assignment_183_0 ∗ 0 .0
492 assignment_185_0 = assignment_162_0 + assignment_184_0
493 assignment_186_0 = mem_198ac_15_32 ∗ assignment_185_0
494 assignment_187_0 = 0 .0 + assignment_186_0
495 assignment_188_0 = FP_pid_fixcycle_y_0_21_32 + −0.0
496 assignment_189_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
497 assignment_190_0 = assignment_189_0 + −0.0046
498 assignment_191_0 = assignment_190_0 / 0.9876000000000001
499 assignment_192_0 = 1000.0 ∗ assignment_191_0
500 assignment_193_0 = assignment_192_0 + 2000.0
501 assignment_194_0 = −assignment_193_0
502 assignment_195_0 = mem_198a8_14_32 + assignment_194_0
503 assignment_196_0 = mem_198ac_15_32 ∗ assignment_195_0
504 assignment_197_0 = −assignment_196_0
505 assignment_198_0 = assignment_188_0 + assignment_197_0
506 assignment_199_0 = assignment_187_0 + assignment_198_0
507 assignment_200_0 = assignment_199_0 ∗ mem_198a4_37_32
508 assignment_201_0 = assignment_142_0 − assignment_200_0
509 assignment_202_0 = assignment_201_0 − FP_derivative_x3_1_46_32
510 assignment_203_0 = 3 .0 ∗ assignment_202_0
511 assignment_204_0 = assignment_203_0 + FP_derivative_x1_1_44_32
512 assignment_205_0 = assignment_204_0 − FP_derivative_x2_1_45_32
513 assignment_206_0 = 3 .0 ∗ FP_derivative_t2_1_47_32
514 assignment_207_0 = 4 .0 ∗ FP_derivative_t1_1_48_32
515 assignment_208_0 = assignment_206_0 + assignment_207_0
516 assignment_209_0 = mem_198cc_20_32 ∗ 1000 .0
517 assignment_210_0 = 3 .0 ∗ assignment_209_0
518 assignment_211_0 = assignment_208_0 + assignment_210_0
519 assignment_212_0 = assignment_205_0 / assignment_211_0
520 assignment_213_0 = assignment_212_0 ∗ 1000 .0
521 assignment_214_0 = assignment_213_0 ∗ 0 .0
522 assignment_215_0 = assignment_136_0 + assignment_214_0
523 assignment_216_0 = mem_198bc_38_32 ∗ assignment_215_0
524 assignment_217_0 = 0 .0 + assignment_216_0
525 assignment_218_0 = FP_pid_fixcycle_y_1_43_32 − 0 .0
526 assignment_219_0 = ((0 x0 << 32) | mem_19aaf_8_16) / mem_19898_7_32
527 assignment_220_0 = assignment_219_0 + −0.0024000000000000002
528 assignment_221_0 = assignment_220_0 / 0.9936
529 assignment_222_0 = 3 .0 ∗ assignment_221_0
530 assignment_223_0 = assignment_222_0 + −0.5

103

APPENDIX A. CODE AND EXECUTION EXAMPLES

531 assignment_224_0 = 0 .5 ∗ assignment_223_0
532 assignment_225_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
533 assignment_226_0 = assignment_225_0 + −0.0046
534 assignment_227_0 = assignment_226_0 / 0.9876000000000001
535 assignment_228_0 = 1000.0 ∗ assignment_227_0
536 assignment_229_0 = assignment_228_0 + 2000.0
537 assignment_230_0 = −assignment_229_0
538 assignment_231_0 = mem_198a8_14_32 + assignment_230_0
539 assignment_232_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
540 assignment_233_0 = assignment_232_0 + −0.0046
541 assignment_234_0 = assignment_233_0 / 0.9876000000000001
542 assignment_235_0 = 1000.0 ∗ assignment_234_0
543 assignment_236_0 = assignment_235_0 + 2000.0
544 assignment_237_0 = −assignment_236_0
545 assignment_238_0 = mem_198a8_14_32 + assignment_237_0
546 assignment_239_0 = mem_198cc_20_32 ∗ 1000 .0
547 assignment_240_0 = assignment_238_0 ∗ assignment_239_0
548 assignment_241_0 = assignment_240_0 / 1000 .0
549 assignment_242_0 = FP_integral_out_0_27_32 + assignment_241_0
550 assignment_243_0 = assignment_242_0 / mem_198b0_16_32
551 assignment_244_0 = assignment_231_0 + assignment_243_0
552 assignment_245_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
553 assignment_246_0 = assignment_245_0 + −0.0046
554 assignment_247_0 = assignment_246_0 / 0.9876000000000001
555 assignment_248_0 = 1000.0 ∗ assignment_247_0
556 assignment_249_0 = assignment_248_0 + 2000.0
557 assignment_250_0 = −assignment_249_0
558 assignment_251_0 = mem_198a8_14_32 + assignment_250_0
559 assignment_252_0 = −FP_derivative_x3_0_24_32
560 assignment_253_0 = assignment_251_0 + assignment_252_0
561 assignment_254_0 = 3 .0 ∗ assignment_253_0
562 assignment_255_0 = assignment_254_0 + FP_derivative_x1_0_22_32
563 assignment_256_0 = −FP_derivative_x2_0_23_32
564 assignment_257_0 = assignment_255_0 + assignment_256_0
565 assignment_258_0 = 3 .0 ∗ FP_derivative_t2_0_25_32
566 assignment_259_0 = 4 .0 ∗ FP_derivative_t1_0_26_32
567 assignment_260_0 = assignment_258_0 + assignment_259_0
568 assignment_261_0 = mem_198cc_20_32 ∗ 1000 .0
569 assignment_262_0 = 3 .0 ∗ assignment_261_0
570 assignment_263_0 = assignment_260_0 + assignment_262_0
571 assignment_264_0 = assignment_257_0 / assignment_263_0
572 assignment_265_0 = assignment_264_0 ∗ 1000 .0
573 assignment_266_0 = assignment_265_0 ∗ 0 .0
574 assignment_267_0 = assignment_244_0 + assignment_266_0
575 assignment_268_0 = mem_198ac_15_32 ∗ assignment_267_0
576 assignment_269_0 = 0 .0 + assignment_268_0
577 assignment_270_0 = FP_pid_fixcycle_y_0_21_32 + −0.0
578 assignment_271_0 = ((0 x0 << 32) | mem_19aad_6_16) / mem_19898_7_32
579 assignment_272_0 = assignment_271_0 + −0.0046
580 assignment_273_0 = assignment_272_0 / 0.9876000000000001
581 assignment_274_0 = 1000.0 ∗ assignment_273_0
582 assignment_275_0 = assignment_274_0 + 2000.0
583 assignment_276_0 = −assignment_275_0
584 assignment_277_0 = mem_198a8_14_32 + assignment_276_0
585 assignment_278_0 = mem_198ac_15_32 ∗ assignment_277_0

104

A.4. Drone Differential Equations Output

586 assignment_279_0 = −assignment_278_0
587 assignment_280_0 = assignment_270_0 + assignment_279_0
588 assignment_281_0 = assignment_269_0 + assignment_280_0
589 assignment_282_0 = assignment_281_0 ∗ mem_198a4_37_32
590 assignment_283_0 = assignment_224_0 − assignment_282_0
591 assignment_284_0 = mem_198bc_38_32 ∗ assignment_283_0
592 assignment_285_0 = assignment_218_0 − assignment_284_0
593 assignment_286_0 = assignment_217_0 + assignment_285_0
594 FP_pid_fixcycle_y_1_43_32 = assignment_286_0
595

596 #−−
597 #−−
598 #−−
599

600 #Gen_output : p r e s su r e
601 de f generate_pressure () :
602 assignment_1_0 = mem_199fb_50_32 ∗ mem_198a4_51_32
603 pre s su r e = assignment_1_0

A.4 Drone Differential Equations Output

1 #!/ usr / bin /env python3
2 import dadra
3 import math
4

5

6 de f modelRec (s ta te , FPstate_deltat_57_32 , FPreg_ax_r0_0_32
=0.1321582976668071 , FPreg_ay_r1_1_32=0.32993030595956074 ,
FPreg_az_r2_2_32=0.6754967833384182 , FPstate_beta_56_32
=0.6864729397366336 , FPreg_gx_r3_3_32=0.5257138543345415 ,
FPstack_gy_0_45_32=0.23623629042347727 , FPstack_gz_4_46_32
=0.0016262269322375733 , FPstack_mx_8_47_32=0.207115455996444 ,
FPstack_my_12_48_32=0.2141901117143904 , FPstack_mz_16_49_32
=0.5742019759212731) :

7

8 FPstate_q0_58_32 = s t a t e [0]
9 FPstate_q1_59_32 = s t a t e [1]

10 FPstate_q2_60_32 = s t a t e [2]
11 FPstate_q3_61_32 = s t a t e [3]
12

13 FP_0_sfloat_63_32 = FPreg_ax_r0_0_32 ∗ FPreg_ax_r0_0_32
14 FP_1_sfloat_64_32 = FPreg_ay_r1_1_32 ∗ FPreg_ay_r1_1_32
15 FP_2_sfloat_65_32 = FP_0_sfloat_63_32 + FP_1_sfloat_64_32
16 FP_3_sfloat_66_32 = FPreg_az_r2_2_32 ∗ FPreg_az_r2_2_32
17 FP_4_sfloat_67_32 = FP_2_sfloat_65_32 + FP_3_sfloat_66_32
18 FP_5_sfloat_68_64 = FP_4_sfloat_67_32
19 FP_8_sfloat_71_64 = (FP_5_sfloat_68_64) ∗∗ (1 . 0 / 2 . 0)
20 FP_11_sfloat_74_32 = FP_8_sfloat_71_64
21 FP_14_sfloat_77_32 = FPstack_mx_8_47_32 ∗ FPstack_mx_8_47_32
22 FP_15_sfloat_78_32 = FPstack_my_12_48_32 ∗ FPstack_my_12_48_32
23 FP_16_sfloat_79_32 = FP_14_sfloat_77_32 + FP_15_sfloat_78_32
24 FP_17_sfloat_80_32 = FPstack_mz_16_49_32 ∗ FPstack_mz_16_49_32

105

APPENDIX A. CODE AND EXECUTION EXAMPLES

25 FP_18_sfloat_81_32 = FP_16_sfloat_79_32 + FP_17_sfloat_80_32
26 FP_19_sfloat_82_64 = FP_18_sfloat_81_32
27 FP_22_sfloat_85_64 = (FP_19_sfloat_82_64) ∗∗ (1 . 0 / 2 . 0)
28 FP_25_sfloat_88_32 = FP_22_sfloat_85_64
29 FP_28_sfloat_91_64 = FPreg_gx_r3_3_32
30 FP_31_sfloat_94_64 = FP_28_sfloat_91_64 ∗ 0.017453292519943295
31 FP_34_sfloat_97_32 = FP_31_sfloat_94_64
32 FP_36_sfloat_99_64 = FPstack_gy_0_45_32
33 FP_39_sfloat_102_64 = FP_36_sfloat_99_64 ∗ 0.017453292519943295
34 FP_42_sfloat_105_32 = FP_39_sfloat_102_64
35 FP_44_sfloat_107_64 = FPstack_gz_4_46_32
36 FP_47_sfloat_110_64 = FP_44_sfloat_107_64 ∗ 0.017453292519943295
37 FP_50_sfloat_113_32 = FP_47_sfloat_110_64
38 FP_52_sfloat_115_32 = FPstate_q0_58_32 + FPstate_q0_58_32
39 FP_53_sfloat_116_32 = FPstate_q1_59_32 + FPstate_q1_59_32
40 FP_54_sfloat_117_32 = FPstate_q2_60_32 + FPstate_q2_60_32
41 FP_55_sfloat_118_32 = FPstate_q3_61_32 + FPstate_q3_61_32
42 FP_56_sfloat_119_32 = FPstate_q0_58_32 ∗ FPstate_q0_58_32
43 FP_57_sfloat_120_32 = FPstate_q0_58_32 ∗ FPstate_q1_59_32
44 FP_58_sfloat_121_32 = FPstate_q0_58_32 ∗ FPstate_q2_60_32
45 FP_59_sfloat_122_32 = FPstate_q1_59_32 ∗ FPstate_q1_59_32
46 FP_60_sfloat_123_32 = FPstate_q1_59_32 ∗ FPstate_q3_61_32
47 FP_61_sfloat_124_32 = FPstate_q2_60_32 ∗ FPstate_q2_60_32
48 FP_62_sfloat_125_32 = FPstate_q3_61_32 ∗ FPstate_q3_61_32
49 FP_63_sfloat_126_32 = 1 .0 / FP_11_sfloat_74_32
50 FP_64_sfloat_127_32 = 1 .0 / FP_25_sfloat_88_32
51 FP_65_sfloat_128_32 = FPstack_mx_8_47_32 ∗ FP_64_sfloat_127_32
52 FP_66_sfloat_129_32 = FPstack_my_12_48_32 ∗ FP_64_sfloat_127_32
53 FP_67_sfloat_130_32 = FPstack_mz_16_49_32 ∗ FP_64_sfloat_127_32
54 FP_68_sfloat_131_32 = FP_52_sfloat_115_32 ∗ FP_65_sfloat_128_32
55 FP_69_sfloat_132_32 = FP_52_sfloat_115_32 ∗ FP_66_sfloat_129_32
56 FP_70_sfloat_133_32 = FP_52_sfloat_115_32 ∗ FP_67_sfloat_130_32
57 FP_71_sfloat_134_32 = FP_53_sfloat_116_32 ∗ FP_65_sfloat_128_32
58 FP_72_sfloat_135_32 = FP_56_sfloat_119_32 ∗ FP_65_sfloat_128_32
59 FP_73_sfloat_136_32 = FPstate_q3_61_32 ∗ FP_69_sfloat_132_32
60 FP_74_sfloat_137_32 = FP_72_sfloat_135_32 − FP_73_sfloat_136_32
61 FP_75_sfloat_138_32 = FPstate_q2_60_32 ∗ FP_70_sfloat_133_32
62 FP_76_sfloat_139_32 = FP_74_sfloat_137_32 + FP_75_sfloat_138_32
63 FP_77_sfloat_140_32 = FP_59_sfloat_122_32 ∗ FP_65_sfloat_128_32
64 FP_78_sfloat_141_32 = FP_76_sfloat_139_32 + FP_77_sfloat_140_32
65 FP_79_sfloat_142_32 = FP_53_sfloat_116_32 ∗ FP_66_sfloat_129_32
66 FP_80_sfloat_143_32 = FP_79_sfloat_142_32 ∗ FPstate_q2_60_32
67 FP_81_sfloat_144_32 = FP_78_sfloat_141_32 + FP_80_sfloat_143_32
68 FP_82_sfloat_145_32 = FP_53_sfloat_116_32 ∗ FP_67_sfloat_130_32
69 FP_83_sfloat_146_32 = FP_82_sfloat_145_32 ∗ FPstate_q3_61_32
70 FP_84_sfloat_147_32 = FP_81_sfloat_144_32 + FP_83_sfloat_146_32
71 FP_85_sfloat_148_32 = FP_61_sfloat_124_32 ∗ FP_65_sfloat_128_32
72 FP_86_sfloat_149_32 = FP_84_sfloat_147_32 − FP_85_sfloat_148_32
73 FP_87_sfloat_150_32 = FP_62_sfloat_125_32 ∗ FP_65_sfloat_128_32
74 FP_88_sfloat_151_32 = FP_86_sfloat_149_32 − FP_87_sfloat_150_32
75 FP_89_sfloat_152_32 = FPstate_q3_61_32 ∗ FP_68_sfloat_131_32
76 FP_90_sfloat_153_32 = FP_56_sfloat_119_32 ∗ FP_66_sfloat_129_32
77 FP_91_sfloat_154_32 = FP_89_sfloat_152_32 + FP_90_sfloat_153_32
78 FP_92_sfloat_155_32 = FPstate_q1_59_32 ∗ FP_70_sfloat_133_32
79 FP_93_sfloat_156_32 = FP_91_sfloat_154_32 − FP_92_sfloat_155_32

106

A.4. Drone Differential Equations Output

80 FP_94_sfloat_157_32 = FPstate_q2_60_32 ∗ FP_71_sfloat_134_32
81 FP_95_sfloat_158_32 = FP_93_sfloat_156_32 + FP_94_sfloat_157_32
82 FP_96_sfloat_159_32 = FP_59_sfloat_122_32 ∗ FP_66_sfloat_129_32
83 FP_97_sfloat_160_32 = FP_95_sfloat_158_32 − FP_96_sfloat_159_32
84 FP_98_sfloat_161_32 = FP_61_sfloat_124_32 ∗ FP_66_sfloat_129_32
85 FP_99_sfloat_162_32 = FP_97_sfloat_160_32 + FP_98_sfloat_161_32
86 FP_100_sfloat_163_32 = FP_54_sfloat_117_32 ∗ FP_67_sfloat_130_32
87 FP_101_sfloat_164_32 = FP_100_sfloat_163_32 ∗ FPstate_q3_61_32
88 FP_102_sfloat_165_32 = FP_99_sfloat_162_32 + FP_101_sfloat_164_32
89 FP_103_sfloat_166_32 = FP_62_sfloat_125_32 ∗ FP_66_sfloat_129_32
90 FP_104_sfloat_167_32 = FP_102_sfloat_165_32 − FP_103_sfloat_166_32
91 FP_105_sfloat_168_32 = FP_88_sfloat_151_32 ∗ FP_88_sfloat_151_32
92 FP_106_sfloat_169_32 = FP_104_sfloat_167_32 ∗ FP_104_sfloat_167_32
93 FP_107_sfloat_170_32 = FP_105_sfloat_168_32 + FP_106_sfloat_169_32
94 FP_108_sfloat_171_64 = FP_107_sfloat_170_32
95 FP_111_sfloat_174_64 = (FP_108_sfloat_171_64) ∗∗ (1 . 0 / 2 . 0)
96 FP_114_sfloat_177_32 = FP_111_sfloat_174_64
97 FP_116_sfloat_179_32 = (−FP_68_sfloat_131_32) ∗ FPstate_q2_60_32
98 FP_117_sfloat_180_32 = FPstate_q1_59_32 ∗ FP_69_sfloat_132_32
99 FP_118_sfloat_181_32 = FP_116_sfloat_179_32 + FP_117_sfloat_180_32

100 FP_119_sfloat_182_32 = FP_56_sfloat_119_32 ∗ FP_67_sfloat_130_32
101 FP_120_sfloat_183_32 = FP_118_sfloat_181_32 + FP_119_sfloat_182_32
102 FP_121_sfloat_184_32 = FPstate_q3_61_32 ∗ FP_71_sfloat_134_32
103 FP_122_sfloat_185_32 = FP_120_sfloat_183_32 + FP_121_sfloat_184_32
104 FP_123_sfloat_186_32 = FP_59_sfloat_122_32 ∗ FP_67_sfloat_130_32
105 FP_124_sfloat_187_32 = FP_122_sfloat_185_32 − FP_123_sfloat_186_32
106 FP_125_sfloat_188_32 = FP_54_sfloat_117_32 ∗ FP_66_sfloat_129_32
107 FP_126_sfloat_189_32 = FP_125_sfloat_188_32 ∗ FPstate_q3_61_32
108 FP_127_sfloat_190_32 = FP_124_sfloat_187_32 + FP_126_sfloat_189_32
109 FP_128_sfloat_191_32 = FP_61_sfloat_124_32 ∗ FP_67_sfloat_130_32
110 FP_129_sfloat_192_32 = FP_127_sfloat_190_32 − FP_128_sfloat_191_32
111 FP_130_sfloat_193_32 = FP_62_sfloat_125_32 ∗ FP_67_sfloat_130_32
112 FP_131_sfloat_194_32 = FP_129_sfloat_192_32 + FP_130_sfloat_193_32
113 FP_132_sfloat_195_32 = FP_131_sfloat_194_32 + FP_131_sfloat_194_32
114 FP_133_sfloat_196_32 = FP_60_sfloat_123_32 + FP_60_sfloat_123_32
115 FP_134_sfloat_197_32 = FPstate_q2_60_32 ∗ FP_52_sfloat_115_32
116 FP_135_sfloat_198_32 = FP_133_sfloat_196_32 − FP_134_sfloat_197_32
117 FP_136_sfloat_199_32 = FPreg_ax_r0_0_32 ∗ FP_63_sfloat_126_32
118 FP_137_sfloat_200_32 = FP_135_sfloat_198_32 − FP_136_sfloat_199_32
119 FP_138_sfloat_201_32 = FPstate_q3_61_32 ∗ FP_54_sfloat_117_32
120 FP_139_sfloat_202_32 = FP_57_sfloat_120_32 + FP_57_sfloat_120_32
121 FP_140_sfloat_203_32 = FP_138_sfloat_201_32 + FP_139_sfloat_202_32
122 FP_141_sfloat_204_32 = FPreg_ay_r1_1_32 ∗ FP_63_sfloat_126_32
123 FP_142_sfloat_205_32 = FP_140_sfloat_203_32 − FP_141_sfloat_204_32
124 FP_143_sfloat_206_32 = FPstate_q2_60_32 ∗ FP_131_sfloat_194_32
125 FP_144_sfloat_207_32 = 0 .5 − FP_61_sfloat_124_32
126 FP_145_sfloat_208_32 = FP_144_sfloat_207_32 − FP_62_sfloat_125_32
127 FP_146_sfloat_209_32 = FP_145_sfloat_208_32 ∗ FP_114_sfloat_177_32
128 FP_147_sfloat_210_32 = FP_60_sfloat_123_32 − FP_58_sfloat_121_32
129 FP_148_sfloat_211_32 = FP_147_sfloat_210_32 ∗ FP_131_sfloat_194_32
130 FP_149_sfloat_212_32 = FP_146_sfloat_209_32 + FP_148_sfloat_211_32
131 FP_150_sfloat_213_32 = FP_149_sfloat_212_32 − FP_65_sfloat_128_32
132 FP_151_sfloat_214_32 = FPstate_q1_59_32 ∗ FP_131_sfloat_194_32
133 FP_152_sfloat_215_32 = FPstate_q1_59_32 ∗ FPstate_q2_60_32
134 FP_153_sfloat_216_32 = FPstate_q0_58_32 ∗ FPstate_q3_61_32

107

APPENDIX A. CODE AND EXECUTION EXAMPLES

135 FP_154_sfloat_217_32 = FP_152_sfloat_215_32 − FP_153_sfloat_216_32
136 FP_155_sfloat_218_32 = FP_154_sfloat_217_32 ∗ FP_114_sfloat_177_32
137 FP_156_sfloat_219_32 = FPstate_q2_60_32 ∗ FPstate_q3_61_32
138 FP_157_sfloat_220_32 = FP_156_sfloat_219_32 + FP_57_sfloat_120_32
139 FP_158_sfloat_221_32 = FP_157_sfloat_220_32 ∗ FP_131_sfloat_194_32
140 FP_159_sfloat_222_32 = FP_155_sfloat_218_32 + FP_158_sfloat_221_32
141 FP_160_sfloat_223_32 = FP_159_sfloat_222_32 − FP_66_sfloat_129_32
142 FP_161_sfloat_224_32 = FPstate_q2_60_32 ∗ FP_114_sfloat_177_32
143 FP_162_sfloat_225_32 = 0 .5 − FP_59_sfloat_122_32
144 FP_163_sfloat_226_32 = FP_162_sfloat_225_32 − FP_61_sfloat_124_32
145 FP_164_sfloat_227_32 = FP_163_sfloat_226_32 ∗ FP_131_sfloat_194_32
146 FP_165_sfloat_228_32 = FP_58_sfloat_121_32 + FP_60_sfloat_123_32
147 FP_166_sfloat_229_32 = FP_165_sfloat_228_32 ∗ FP_114_sfloat_177_32
148 FP_167_sfloat_230_32 = FP_164_sfloat_227_32 + FP_166_sfloat_229_32
149 FP_168_sfloat_231_32 = FP_167_sfloat_230_32 − FP_67_sfloat_130_32
150 FP_169_sfloat_232_32 = (−FP_54_sfloat_117_32) ∗ FP_137_sfloat_200_32
151 FP_170_sfloat_233_32 = FP_53_sfloat_116_32 ∗ FP_142_sfloat_205_32
152 FP_171_sfloat_234_32 = FP_169_sfloat_232_32 + FP_170_sfloat_233_32
153 FP_172_sfloat_235_32 = FP_143_sfloat_206_32 ∗ FP_150_sfloat_213_32
154 FP_173_sfloat_236_32 = FP_171_sfloat_234_32 − FP_172_sfloat_235_32
155 FP_174_sfloat_237_32 = FPstate_q3_61_32 ∗ (−FP_114_sfloat_177_32)
156 FP_175_sfloat_238_32 = FP_174_sfloat_237_32 + FP_151_sfloat_214_32
157 FP_176_sfloat_239_32 = FP_175_sfloat_238_32 ∗ FP_160_sfloat_223_32
158 FP_177_sfloat_240_32 = FP_173_sfloat_236_32 + FP_176_sfloat_239_32
159 FP_178_sfloat_241_32 = FP_161_sfloat_224_32 ∗ FP_168_sfloat_231_32
160 FP_179_sfloat_242_32 = FP_177_sfloat_240_32 + FP_178_sfloat_241_32
161 FP_180_sfloat_243_32 = FP_59_sfloat_122_32 + FP_59_sfloat_122_32
162 FP_181_sfloat_244_32 = 1 .0 − FP_180_sfloat_243_32
163 FP_182_sfloat_245_32 = FP_61_sfloat_124_32 + FP_61_sfloat_124_32
164 FP_183_sfloat_246_32 = FP_181_sfloat_244_32 − FP_182_sfloat_245_32
165 FP_184_sfloat_247_32 = FPreg_az_r2_2_32 ∗ FP_63_sfloat_126_32
166 FP_185_sfloat_248_32 = FP_183_sfloat_246_32 − FP_184_sfloat_247_32
167 FP_186_sfloat_249_32 = FPstate_q3_61_32 ∗ FP_131_sfloat_194_32
168 FP_187_sfloat_250_32 = FPstate_q0_58_32 ∗ FP_131_sfloat_194_32
169 FP_188_sfloat_251_32 = FP_55_sfloat_118_32 ∗ FP_137_sfloat_200_32
170 FP_189_sfloat_252_32 = FP_52_sfloat_115_32 ∗ FP_142_sfloat_205_32
171 FP_190_sfloat_253_32 = FP_188_sfloat_251_32 + FP_189_sfloat_252_32
172 FP_191_sfloat_254_32 = FPstate_q1_59_32 ∗ 4 .0
173 FP_192_sfloat_255_32 = FP_191_sfloat_254_32 ∗ FP_185_sfloat_248_32
174 FP_193_sfloat_256_32 = FP_190_sfloat_253_32 − FP_192_sfloat_255_32
175 FP_194_sfloat_257_32 = FP_150_sfloat_213_32 ∗ FP_186_sfloat_249_32
176 FP_195_sfloat_258_32 = FP_193_sfloat_256_32 + FP_194_sfloat_257_32
177 FP_196_sfloat_259_32 = FP_161_sfloat_224_32 + FP_187_sfloat_250_32
178 FP_197_sfloat_260_32 = FP_196_sfloat_259_32 ∗ FP_160_sfloat_223_32
179 FP_198_sfloat_261_32 = FP_195_sfloat_258_32 + FP_197_sfloat_260_32
180 FP_199_sfloat_262_32 = FPstate_q3_61_32 ∗ FP_114_sfloat_177_32
181 FP_200_sfloat_263_32 = FPstate_q1_59_32 ∗ FP_132_sfloat_195_32
182 FP_201_sfloat_264_32 = FP_199_sfloat_262_32 − FP_200_sfloat_263_32
183 FP_202_sfloat_265_32 = FP_201_sfloat_264_32 ∗ FP_168_sfloat_231_32
184 FP_203_sfloat_266_32 = FP_198_sfloat_261_32 + FP_202_sfloat_265_32
185 FP_204_sfloat_267_32 = FP_114_sfloat_177_32 + FP_114_sfloat_177_32
186 FP_205_sfloat_268_32 = FPstate_q1_59_32 ∗ FP_114_sfloat_177_32
187 FP_206_sfloat_269_32 = (−FP_52_sfloat_115_32) ∗ FP_137_sfloat_200_32
188 FP_207_sfloat_270_32 = FP_55_sfloat_118_32 ∗ FP_142_sfloat_205_32
189 FP_208_sfloat_271_32 = FP_206_sfloat_269_32 + FP_207_sfloat_270_32

108

A.4. Drone Differential Equations Output

190 FP_209_sfloat_272_32 = FPstate_q2_60_32 ∗ 4 .0
191 FP_210_sfloat_273_32 = FP_209_sfloat_272_32 ∗ FP_185_sfloat_248_32
192 FP_211_sfloat_274_32 = FP_208_sfloat_271_32 − FP_210_sfloat_273_32
193 FP_212_sfloat_275_32 = FPstate_q2_60_32 ∗ (−FP_204_sfloat_267_32)
194 FP_213_sfloat_276_32 = FP_212_sfloat_275_32 − FP_187_sfloat_250_32
195 FP_214_sfloat_277_32 = FP_213_sfloat_276_32 ∗ FP_150_sfloat_213_32
196 FP_215_sfloat_278_32 = FP_211_sfloat_274_32 + FP_214_sfloat_277_32
197 FP_216_sfloat_279_32 = FP_186_sfloat_249_32 + FP_205_sfloat_268_32
198 FP_217_sfloat_280_32 = FP_216_sfloat_279_32 ∗ FP_160_sfloat_223_32
199 FP_218_sfloat_281_32 = FP_215_sfloat_278_32 + FP_217_sfloat_280_32
200 FP_219_sfloat_282_32 = FPstate_q0_58_32 ∗ FP_114_sfloat_177_32
201 FP_220_sfloat_283_32 = FPstate_q2_60_32 ∗ FP_132_sfloat_195_32
202 FP_221_sfloat_284_32 = FP_219_sfloat_282_32 − FP_220_sfloat_283_32
203 FP_222_sfloat_285_32 = FP_221_sfloat_284_32 ∗ FP_168_sfloat_231_32
204 FP_223_sfloat_286_32 = FP_218_sfloat_281_32 + FP_222_sfloat_285_32
205 FP_224_sfloat_287_32 = FP_53_sfloat_116_32 ∗ FP_137_sfloat_200_32
206 FP_225_sfloat_288_32 = FP_54_sfloat_117_32 ∗ FP_142_sfloat_205_32
207 FP_226_sfloat_289_32 = FP_224_sfloat_287_32 + FP_225_sfloat_288_32
208 FP_227_sfloat_290_32 = FPstate_q3_61_32 ∗ (−FP_204_sfloat_267_32)
209 FP_228_sfloat_291_32 = FP_227_sfloat_290_32 + FP_151_sfloat_214_32
210 FP_229_sfloat_292_32 = FP_228_sfloat_291_32 ∗ FP_150_sfloat_213_32
211 FP_230_sfloat_293_32 = FP_226_sfloat_289_32 + FP_229_sfloat_292_32
212 FP_231_sfloat_294_32 = FPstate_q0_58_32 ∗ (−FP_114_sfloat_177_32)
213 FP_232_sfloat_295_32 = FP_231_sfloat_294_32 + FP_143_sfloat_206_32
214 FP_233_sfloat_296_32 = FP_232_sfloat_295_32 ∗ FP_160_sfloat_223_32
215 FP_234_sfloat_297_32 = FP_230_sfloat_293_32 + FP_233_sfloat_296_32
216 FP_235_sfloat_298_32 = FP_168_sfloat_231_32 ∗ FP_205_sfloat_268_32
217 FP_236_sfloat_299_32 = FP_234_sfloat_297_32 + FP_235_sfloat_298_32
218 FP_237_sfloat_300_32 = FP_179_sfloat_242_32 ∗ FP_179_sfloat_242_32
219 FP_238_sfloat_301_32 = FP_203_sfloat_266_32 ∗ FP_203_sfloat_266_32
220 FP_239_sfloat_302_32 = FP_237_sfloat_300_32 + FP_238_sfloat_301_32
221 FP_240_sfloat_303_32 = FP_223_sfloat_286_32 ∗ FP_223_sfloat_286_32
222 FP_241_sfloat_304_32 = FP_239_sfloat_302_32 + FP_240_sfloat_303_32
223 FP_242_sfloat_305_32 = FP_236_sfloat_299_32 ∗ FP_236_sfloat_299_32
224 FP_243_sfloat_306_32 = FP_241_sfloat_304_32 + FP_242_sfloat_305_32
225 FP_244_sfloat_307_64 = FP_243_sfloat_306_32
226 FP_247_sfloat_310_64 = (FP_244_sfloat_307_64) ∗∗ (1 . 0 / 2 . 0)
227 FP_250_sfloat_313_32 = FP_247_sfloat_310_64
228 FP_252_sfloat_315_32 = 1 .0 / FP_250_sfloat_313_32
229 FP_253_sfloat_316_32 = (−FPstate_q1_59_32) ∗ FP_34_sfloat_97_32
230 FP_254_sfloat_317_32 = FPstate_q2_60_32 ∗ FP_42_sfloat_105_32
231 FP_255_sfloat_318_32 = FP_253_sfloat_316_32 − FP_254_sfloat_317_32
232 FP_256_sfloat_319_32 = FPstate_q3_61_32 ∗ FP_50_sfloat_113_32
233 FP_257_sfloat_320_32 = FP_255_sfloat_318_32 − FP_256_sfloat_319_32
234 FP_258_sfloat_321_32 = FP_257_sfloat_320_32 ∗ 0 .5
235 FP_259_sfloat_322_32 = FP_179_sfloat_242_32 ∗ FP_252_sfloat_315_32
236 FP_260_sfloat_323_32 = FP_259_sfloat_322_32 ∗ FPstate_beta_56_32
237 FP_261_sfloat_324_32 = FP_258_sfloat_321_32 − FP_260_sfloat_323_32
238 FP_262_sfloat_325_32 = FP_261_sfloat_324_32 ∗ FPstate_deltat_57_32
239 FP_263_sfloat_326_32 = FP_262_sfloat_325_32 + FPstate_q0_58_32
240 FP_264_sfloat_327_32 = FPstate_q0_58_32 ∗ FP_34_sfloat_97_32
241 FP_265_sfloat_328_32 = FPstate_q2_60_32 ∗ FP_50_sfloat_113_32
242 FP_266_sfloat_329_32 = FP_264_sfloat_327_32 + FP_265_sfloat_328_32
243 FP_267_sfloat_330_32 = FPstate_q3_61_32 ∗ FP_42_sfloat_105_32
244 FP_268_sfloat_331_32 = FP_266_sfloat_329_32 − FP_267_sfloat_330_32

109

APPENDIX A. CODE AND EXECUTION EXAMPLES

245 FP_269_sfloat_332_32 = FP_268_sfloat_331_32 ∗ 0 .5
246 FP_270_sfloat_333_32 = FP_203_sfloat_266_32 ∗ FP_252_sfloat_315_32
247 FP_271_sfloat_334_32 = FP_270_sfloat_333_32 ∗ FPstate_beta_56_32
248 FP_272_sfloat_335_32 = FP_269_sfloat_332_32 − FP_271_sfloat_334_32
249 FP_273_sfloat_336_32 = FP_272_sfloat_335_32 ∗ FPstate_deltat_57_32
250 FP_274_sfloat_337_32 = FP_273_sfloat_336_32 + FPstate_q1_59_32
251 FP_275_sfloat_338_32 = FPstate_q0_58_32 ∗ FP_42_sfloat_105_32
252 FP_276_sfloat_339_32 = FPstate_q1_59_32 ∗ FP_50_sfloat_113_32
253 FP_277_sfloat_340_32 = FP_275_sfloat_338_32 − FP_276_sfloat_339_32
254 FP_278_sfloat_341_32 = FPstate_q3_61_32 ∗ FP_34_sfloat_97_32
255 FP_279_sfloat_342_32 = FP_277_sfloat_340_32 + FP_278_sfloat_341_32
256 FP_280_sfloat_343_32 = FP_279_sfloat_342_32 ∗ 0 .5
257 FP_281_sfloat_344_32 = FP_223_sfloat_286_32 ∗ FP_252_sfloat_315_32
258 FP_282_sfloat_345_32 = FP_281_sfloat_344_32 ∗ FPstate_beta_56_32
259 FP_283_sfloat_346_32 = FP_280_sfloat_343_32 − FP_282_sfloat_345_32
260 FP_284_sfloat_347_32 = FP_283_sfloat_346_32 ∗ FPstate_deltat_57_32
261 FP_285_sfloat_348_32 = FP_284_sfloat_347_32 + FPstate_q2_60_32
262 FP_286_sfloat_349_32 = FPstate_q0_58_32 ∗ FP_50_sfloat_113_32
263 FP_287_sfloat_350_32 = FPstate_q1_59_32 ∗ FP_42_sfloat_105_32
264 FP_288_sfloat_351_32 = FP_286_sfloat_349_32 + FP_287_sfloat_350_32
265 FP_289_sfloat_352_32 = FPstate_q2_60_32 ∗ FP_34_sfloat_97_32
266 FP_290_sfloat_353_32 = FP_288_sfloat_351_32 − FP_289_sfloat_352_32
267 FP_291_sfloat_354_32 = FP_290_sfloat_353_32 ∗ 0 .5
268 FP_292_sfloat_355_32 = FP_236_sfloat_299_32 ∗ FP_252_sfloat_315_32
269 FP_293_sfloat_356_32 = FP_292_sfloat_355_32 ∗ FPstate_beta_56_32
270 FP_294_sfloat_357_32 = FP_291_sfloat_354_32 − FP_293_sfloat_356_32
271 FP_295_sfloat_358_32 = FP_294_sfloat_357_32 ∗ FPstate_deltat_57_32
272 FP_296_sfloat_359_32 = FP_295_sfloat_358_32 + FPstate_q3_61_32
273 FP_297_sfloat_360_32 = FP_263_sfloat_326_32 ∗ FP_263_sfloat_326_32
274 FP_298_sfloat_361_32 = FP_274_sfloat_337_32 ∗ FP_274_sfloat_337_32
275 FP_299_sfloat_362_32 = FP_297_sfloat_360_32 + FP_298_sfloat_361_32
276 FP_300_sfloat_363_32 = FP_285_sfloat_348_32 ∗ FP_285_sfloat_348_32
277 FP_301_sfloat_364_32 = FP_299_sfloat_362_32 + FP_300_sfloat_363_32
278 FP_302_sfloat_365_32 = FP_296_sfloat_359_32 ∗ FP_296_sfloat_359_32
279 FP_303_sfloat_366_32 = FP_301_sfloat_364_32 + FP_302_sfloat_365_32
280 FP_304_sfloat_367_64 = FP_303_sfloat_366_32
281 FP_307_sfloat_370_64 = (FP_304_sfloat_367_64) ∗∗ (1 . 0 / 2 . 0)
282 FP_310_sfloat_373_32 = FP_307_sfloat_370_64
283 FP_312_sfloat_375_32 = 1 .0 / FP_310_sfloat_373_32
284 FP_313_sfloat_376_32 = FP_263_sfloat_326_32 ∗ FP_312_sfloat_375_32
285 FP_314_sfloat_377_32 = FP_274_sfloat_337_32 ∗ FP_312_sfloat_375_32
286 FP_315_sfloat_378_32 = FP_285_sfloat_348_32 ∗ FP_312_sfloat_375_32
287 FP_316_sfloat_379_32 = FP_296_sfloat_359_32 ∗ FP_312_sfloat_375_32
288 FP_317_sfloat_380_32 = FP_314_sfloat_377_32 ∗ FP_316_sfloat_379_32
289 FP_318_sfloat_381_32 = FP_313_sfloat_376_32 ∗ FP_315_sfloat_378_32
290 FP_319_sfloat_382_32 = FP_317_sfloat_380_32 − FP_318_sfloat_381_32
291 FP_320_sfloat_383_32 = FP_319_sfloat_382_32 + FP_319_sfloat_382_32
292 FP_321_sfloat_384_64 = FP_320_sfloat_383_32
293 FP_324_sfloat_387_64 = math . a s in (FP_321_sfloat_384_64)
294 FP_327_sfloat_390_64 = FP_324_sfloat_387_64 ∗ 180 .0
295 FP_330_sfloat_393_64 = FP_327_sfloat_390_64 / 3.141592653589793
296 FP_333_sfloat_396_32 = FP_330_sfloat_393_64
297 FP_335_sfloat_398_32 = FP_313_sfloat_376_32 ∗ FP_313_sfloat_376_32
298 FP_336_sfloat_399_32 = FP_314_sfloat_377_32 ∗ FP_314_sfloat_377_32
299 FP_337_sfloat_400_32 = FP_335_sfloat_398_32 − FP_336_sfloat_399_32

110

A.4. Drone Differential Equations Output

300 FP_338_sfloat_401_32 = FP_315_sfloat_378_32 ∗ FP_315_sfloat_378_32
301 FP_339_sfloat_402_32 = FP_337_sfloat_400_32 − FP_338_sfloat_401_32
302 FP_340_sfloat_403_32 = FP_316_sfloat_379_32 ∗ FP_316_sfloat_379_32
303 FP_341_sfloat_404_32 = FP_339_sfloat_402_32 + FP_340_sfloat_403_32
304 FP_342_sfloat_405_64 = FP_341_sfloat_404_32
305 FP_345_sfloat_408_32 = FP_313_sfloat_376_32 ∗ FP_314_sfloat_377_32
306 FP_346_sfloat_409_32 = FP_315_sfloat_378_32 ∗ FP_316_sfloat_379_32
307 FP_347_sfloat_410_32 = FP_345_sfloat_408_32 + FP_346_sfloat_409_32
308 FP_348_sfloat_411_32 = FP_347_sfloat_410_32 + FP_347_sfloat_410_32
309 FP_349_sfloat_412_64 = FP_348_sfloat_411_32
310 FP_352_sfloat_415_64 = math . atan2 (FP_349_sfloat_412_64 ,

FP_342_sfloat_405_64)
311 FP_355_sfloat_418_64 = FP_352_sfloat_415_64 ∗ 180 .0
312 FP_358_sfloat_421_64 = FP_355_sfloat_418_64 / 3.141592653589793
313 FP_361_sfloat_424_32 = FP_358_sfloat_421_64
314 FP_363_sfloat_426_32 = FP_313_sfloat_376_32 ∗ FP_313_sfloat_376_32
315 FP_364_sfloat_427_32 = FP_314_sfloat_377_32 ∗ FP_314_sfloat_377_32
316 FP_365_sfloat_428_32 = FP_363_sfloat_426_32 + FP_364_sfloat_427_32
317 FP_366_sfloat_429_32 = FP_315_sfloat_378_32 ∗ FP_315_sfloat_378_32
318 FP_367_sfloat_430_32 = FP_365_sfloat_428_32 − FP_366_sfloat_429_32
319 FP_368_sfloat_431_32 = FP_316_sfloat_379_32 ∗ FP_316_sfloat_379_32
320 FP_369_sfloat_432_32 = FP_367_sfloat_430_32 − FP_368_sfloat_431_32
321 FP_370_sfloat_433_64 = FP_369_sfloat_432_32
322 FP_373_sfloat_436_32 = FP_314_sfloat_377_32 ∗ FP_315_sfloat_378_32
323 FP_374_sfloat_437_32 = FP_313_sfloat_376_32 ∗ FP_316_sfloat_379_32
324 FP_375_sfloat_438_32 = FP_373_sfloat_436_32 + FP_374_sfloat_437_32
325 FP_376_sfloat_439_32 = FP_375_sfloat_438_32 + FP_375_sfloat_438_32
326 FP_377_sfloat_440_64 = FP_376_sfloat_439_32
327 FP_380_sfloat_443_64 = math . atan2 (FP_377_sfloat_440_64 ,

FP_370_sfloat_433_64)
328 FP_383_sfloat_446_64 = FP_380_sfloat_443_64 ∗ 180 .0
329 FP_386_sfloat_449_64 = FP_383_sfloat_446_64 / 3.141592653589793
330 FP_389_sfloat_452_32 = FP_386_sfloat_449_64
331

332 re turn [
333 FP_313_sfloat_376_32 ,
334 FP_314_sfloat_377_32 ,
335 FP_315_sfloat_378_32 ,
336 FP_316_sfloat_379_32 ,
337 FP_333_sfloat_396_32 ,
338 FP_361_sfloat_424_32 ,
339 FP_389_sfloat_452_32
340]

Listing A.4: Result of the Drone differential equation lifting

111

APPENDIX A. CODE AND EXECUTION EXAMPLES

112

Appendix B

Installation Guide

Appendix B has an installation guide for the main tools used in the program. The
installation of both Python 2 and 3 will be omitted, but note that they are necessary, and
for most program installations a virtual environment is recommended.

B.1 Installation

B.1.1 virtualenvwrapper

For the installation of virtualenvwrapper it is only necessary to install it from the Python
package manager. Note that, it will need to be installed both for Python2 and Python3,
which may require the use of the command with pip3.

1 $ pip i n s t a l l v i r tua lenvwrapper

Listing B.1: Virtualenvwrapper installation for Python2/3

Once installed, to create a new environment and change between environments just exe-
cute the following commands:

1 $ mkvirtualenv env2 # Creat ion o f a new environment
2 $ workon env1 # Switch between environments

Listing B.2: Virtualenvwrapper environment creation & switch

And once the environment is set, the installation of libraries is as usual.

113

APPENDIX B. INSTALLATION GUIDE

B.1.2 Jupyter Notebook

To install Jupyter Notebook:

1 $ pip i n s t a l l notebook
Listing B.3: Jupyter notebook installation

IPython

IPython should be included with Jupyter Notebook, in case it is not included,the instal-
lation procedure is through the Python package manager:

1 $ pip3 i n s t a l l ipython
Listing B.4: IPython installation

B.1.3 Ghidra

To install Ghidra, some packages and installations must be installed beforehand:

• Java Development Kit 11: Retrieve the latest release from https://www.orac
le.com/java/technologies/javase/jdk11-archive-downloads.html. Install it
and make sure that it is added to the PATH.

After installing Java, install Ghidra by following the next steps:

• Dwonload Ghidra’s latest release from the release page https://github.com/Nat
ionalSecurityAgency/ghidra/releases.

• Extract the downloaded program into a known folder.

To run ghidra, access the extracted folder thorugh command-line and execute

1 $. / ghidraRun
Listing B.5: Ghidra installation

114

https://www.oracle.com/java/technologies/javase/jdk11-archive-downloads.html
https://www.oracle.com/java/technologies/javase/jdk11-archive-downloads.html
https://github.com/NationalSecurityAgency/ghidra/releases
https://github.com/NationalSecurityAgency/ghidra/releases

B.1. Installation

Ghidra bridge

To install ghidra_bridge:

• Install the ghidra_bridge package:

1 $ pip i n s t a l l ghidra_bridge
Listing B.6: Ghidra_bridge installation

• Install the server scripts to a directory on the Ghidra’s script path (e.g., /ghidra_
scripts), or you can add more directories in the Ghidra Script Manager by clicking
the "3 line" button left of the big red "plus" at the top of the Script Manager).

1 $ python3 −m ghidra_bridge . i n s t a l l_ s e r v e r ~/ gh id ra_sc r ip t s
Listing B.7: Ghidra_bridge script installation

B.1.4 radare2

Install radare2 from git:

1 $ g i t c l one https : // github . com/ radareorg / radare2
2 $ cd radare2
3 $ sys / i n s t a l l . sh

Listing B.8: Radare2 installation

r2pipe

Install r2pipe through the Python manager:

1 $ pip3 i n s t a l l r2p ipe
Listing B.9: R2pipe installation

r2ghidra

Install r2ghidra using the radare2 package manager:

1 $ r2pm update
2 $ r2pm −c i r2gh idra

Listing B.10: R2ghidra installation

115

APPENDIX B. INSTALLATION GUIDE

Note: make sure that in the folder /.local/share/radare2/plugins there is a sub-
folder named r2ghidra-sleigh . If not, decompress the file named r2ghidra_sleigh
-x.x.x.zip and change the resulting unzipped folder to r2ghidra-sleigh .

B.1.5 angr

install angr using the Python package manager:
1 $ pip3 i n s t a l l angr

Listing B.11: Angr installation

Note: claripy should be installed as a dependency of angr. If it is not available or missing,
please reinstall angr.

B.1.6 DaDRA

install DaDRA using the Python package manager:
1 $ pip3 i n s t a l l −−upgrade dadra

Listing B.12: DaDRA installation

B.1.7 ICSREF

ICSREF is more complicated to install. Make sure that Python 2 is used for the installa-
tion of this tool. Note: ICSREF is built on Python 2 and, as such, a virtual environment
should be used for the installation (mkvirtualenv is recommended).
The steps are as follows:

• Install the system dependencies:
1 $ sudo apt i n s t a l l g i t python−pip l i b cap s t one3 python−dev

l i b f f i −dev bui ld−e s s e n t i a l v i r tua lenvwrapper graphviz
l i bg raphv i z −dev graphviz−dev pkg−c on f i g

Listing B.13: ICSREF dependency installation

• Download ICSREF from git:
1 $ g i t c l one https : // github . com/momalab/ICSREF . g i t
2 $ cd ICSREF

Listing B.14: ICSREF download

116

B.1. Installation

“ ‘

• Install the python package dependencies from wheelhouse:

1 $ pip i n s t a l l −−no−index −−f ind−l i n k s=wheelhouse −r
requ i rements . txt

Listing B.15: ICSREF wheelhouse dependency installation

“ ‘

• Create a bash alias:

1 $ echo −e "\n# ICSREF a l i a s \ n a l i a s i c s r e f =’workon i c s r e f &&
python ‘pwd‘ / i c s r e f / i c s r e f . py ’ \ n" >> ~/. bash_al ia se s &&

source ~/. bashrc
Listing B.16: ICSREF bash alias creation

117

APPENDIX B. INSTALLATION GUIDE

118

Appendix C

Sustainable Development Goals

This chapter explains the relationship this final research thesis has with the Sustain-
able Development goals, approved by the United Nations in 2015, as part of the 20130
Sustainable Agenda [53].

Each of these goals (Figure C.1) consists of a set of objectives that must be achieved
in the next 10 years, up to 2030. Adopting these goals by governments and entities should
improve poverty in the world, protect the planet, and ensure prosperity.

Figure C.1: United Nations Sustainable Development Goals

According to the World Commission for Environment and Development of the United
Nations, “sustainable development is development that meets the needs of the present

119

APPENDIX C. SUSTAINABLE DEVELOPMENT GOALS

without compromising the ability of future generations to meet their own needs, guaran-
teeing the balance between economic growth, the environment and social wellness” [54].

The UN Sustainable Development Goals could be classified into three distinct cate-
gories, depending on their scope, economic, social, and ecological. (Figure C.2). This
classification aims to give a new dimension to the SDGs, as all in all, the social and eco-
nomic SDGs are integrated into the environment. Although their classification does not
imply preference of one over the other, it acknowledges that some of the goals are basic
and could not exist if the environmental are not followed.

Figure C.2: Sustainable Development Goals categories
Source: Courtesy of Stockholm University - Azote Images [55]

Although at first it would seem that computer applications and software development
may not have at first any SDG that matches it, upon further analysis, it is integrated into
both SDG 9 and SDG 11.

• 9 - Industry, Innovation, and Infrastructure.
This project will innovate in new techniques for the safe implementation and ver-
ification of cyber-physical systems. With this development, both industry and in-
frastructure will be safer. Apart from that, it is part of innovation in the systems
verification and security of systems fields. The widespread use of safer embedded
systems will avoid unexpected failures and the use of these systems maliciously and,
as such, more reliably industry and development.

• 11 - Sustainable Cities and Communities.
With the recent development of embedded systems in multiple areas, such as smart
cities, building sensorization, and traffic control, it is vital to have the assurance

120

that the implementation is correct. The devices are expected to avoid any harm
to people, function properly, and provide safe environments. If any of these three
characteristics is violated, the consequences for human development and life, and
even the environment, could be catastrophic. With this, the advantage of this tool
is that it provides new safeguards in the development and security of embedded
systems. Checking and ensuring that these devices do not pose harm will make
sustainable environments for human development.

All in all, even if software projects and technologies do not appear to be part of any
Sustainable Development Goal, after further analysis, it is possible to see how technology
development is both beneficial to society and how it can provide to the goals set by the
United Nations.

121

APPENDIX C. SUSTAINABLE DEVELOPMENT GOALS

122

	Introduction
	Embedded Systems
	Desirable Characteristics
	Components
	Classification

	Cyber-Physical Systems
	History and Development
	Verification
	Future Development

	Dynamical Systems
	History
	Types of Dynamical Systems
	Dynamical Systems Theory and Control Theory

	System Representation and Abstractions
	Continuous and Discrete Systems
	Finite State Machines
	Automata Models
	Domain Specific Languages (DSL)

	Tools and Techniques
	Reverse Engineering
	Decompilers and Disassemblers

	Symbolic Execution
	History
	Execution Tools

	PLC Binary Analysis
	PLC Architecture and Characteristics
	Proportional Integral Derivative (PID) Controller
	ICSREF PLC Analysis Tool

	Reachability Analysis
	DaDRA
	JuliaReach

	Radar Simulation
	MATLAB
	NXP Premium RadarSDK

	Parallel Execution
	tmux
	keep

	Memory read
	Arduino
	Arduino libraries

	Other tools
	Python
	Jupyter Notebook
	IPython
	MPLAB X IDE
	Git
	Visual Studio Code
	Servers and Physical Devices

	State of the Art
	Previous Work
	Dissasemblers and Decompilers
	Hybrid System Verification
	Function Matching
	Reachability Analysis

	Improvements and Novelties that the Project Introduces

	Project Definition
	Motivation
	Objectives
	Methodology
	Plan

	Development and Research
	Analyzed Devices
	Drone - Quadcopter
	WAGO PLC
	Continental Radar System
	Other Devices

	Used Techniques
	General Technique and Methodology
	Specifics for the Drone Analysis
	Specifics for the PLC Analysis
	Specifics for the Automotive Radar Analysis

	Research Results and Conclusions

	Developed Tool - InteGreat
	Structure
	Common Steps between Workflows
	Manual Workflow
	Automatic Workflow

	Usage and execution
	Virtual Machine Execution
	Ghidra
	radare2
	angr

	Characteristics
	Limitations

	Results
	Initial Results
	Initial Function Analysis
	Lifted Control Equations

	Verification and Correctness
	Drone
	PLC

	Reachability

	Conclusions and Future Developments
	Conclusions
	Future Work

	Bibliography
	Code and Execution Examples
	Function Helper
	Drone Top-Level
	PLC Differential Equations Output
	Drone Differential Equations Output

	Installation Guide
	Installation
	virtualenvwrapper
	Jupyter Notebook
	Ghidra
	radare2
	angr
	DaDRA
	ICSREF

	Sustainable Development Goals

