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Abstract—This paper is about optimising the use of 
intelligent algorithms in decision-making in real processes faced 
by electricity distribution companies. In particular, the use of 
algorithms that base their learning on an image dataset is a 
major revolution in iterative, resource-intensive tasks. Finally, 
on a technical level, the YOLOv5 algorithm network has been 
used, which can be accessed for free and allows datasets to be 
trained quickly and with great results. The final objective of the 
document, apart from making known this kind of algorithms 
and the neural networks behind them, is to optimise the 
parameters of accuracy, training time and memory of the GPU 
used in the training process and validation of the algorithm, for 
this, various techniques were analysed individually, such as the 
use of Data Augmentation or Transfer Learning, to classify the 
efficiencies obtained and, based on the analysis of the 
techniques, build a trained and validated algorithm in an 
optimised way and analyse the final results once it was fed with 
images of different categories. 

Keywords—Deep Learning, Electricity Distribution Network, 
Convolutional Neural Networks (CNN), Object Detection, 
YOLOv5, Optimisation, Data Augmentation, Transfer Learning. 

I. INTRODUCTION  
Nowadays, many industries need to adapt to the new 

changes generated mainly by the development of technology 
in order to survive. Innovation is the order of the day and the 
opportunity that technological progress is offering cannot be 
missed. Firstly, the penetration of Artificial Intelligence (AI) 
in practically all sectors is a reality and many are already 
putting their resources to work in this area. And, secondly, the 
aforementioned technological progress is reflected in many 
fields where the performance of certain tasks required large 
resources on the part of the company, but which have now 
managed to develop alternatives that make it viable to 
optimise a large part of these resources and obtain a great 
benefit as a result of innovation. 

A. Technological Background 
It is worth noting that Artificial Intelligence is spread 

across many sectors with different applications over these 
sectors, but that the aim is almost always to improve the 
processes and tasks being carried out. In recent years, there 
has been an attempt to clearly define the scope of AI and the 
fields in which it is present, however, a consensus is far from 
being reached due to the rapid technological development that 
is taking place. Even so, there are many who agree that AI has 
five major applications, which would cover practically all the 
projects that are currently being developed: 

- Voice Recognition 
- Machine Learning 

- Computer Vision 
- Natural Language Processing 

- Autonomous Robots 

The common denominator between these applications is 
the use of intelligent algorithms that have different objectives, 
varying in the type of data they are fed with and the training 
techniques. The use of these algorithms is, in most cases, 
aimed at making decisions to estimate the future behaviour of 
a system or process. In this document, the focus will be on the 
object recognition process, which is the basis of the solution 
proposed in Chapter III. In doing so, it is necessary to 
highlight the fundamental role of Neural Networks in 
acquiring sufficient knowledge to detect an object in an image, 
but also to classify it. Perhaps it is this scope of the algorithm 
that makes it necessary, in terms of efficiency, to use 
Convolutional Neural Networks (CNN), which use a series of 
layers to obtain better results, at the expense of more complex 
techniques that will be detailed in Chapter II. These CNNs 
would fall within the field of Deep Learning, reaching a more 
extensive level of detail and learning more complex 
characteristics of the dataset.  

As for Deep Learning, it could be said that this concept 
would be within the field of Machine Learning, but with 
nuances that make Deep Learning applications more complex. 
it is worth noting that the main difference between Machine 
and Deep Learning algorithms is perhaps that in the Machine 
Learning, valuable information about the characteristics of the 
input data is required for the model to work correctly, whereas 
in the latter, the Deep Learning model learns these 
characteristics and patterns by itself that are used in decision 
making, which is why Deep Learning models are said to have 
more complex applications, in addition to having neural 
networks and models that have required much more attention 
at the time of design. 

B. Objectives 
During the project, a series of intermediate objectives had 

to be met to get closer to the final objective of recognising 
objects and locating them automatically in an image of a pre-
installation of a distribution network link. To this end, three 
key objectives were defined which allowed a logical order to 
be followed in the execution of the project: 

- Preparation of the dataset and choice of the algorithm 
used for the recognition of existing objects in an 
image. 

- Training of the algorithm with the prepared dataset 
and elaboration of different analyses after 
modification of some parameters of the algorithm and 
training process. 

- Construction of an optimised model using the 
accessible parameters and hyperparameters of the 
YOLOv5 neural network. 

II. STATE OF THE ART 
In this chapter, the current technological status of the most 

important concepts on which this project is based will be 
discussed. Firstly, it will detail the current level of Deep 
Learning and the applications and techniques that make it so 
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decisive in this type of projects. Next, and closely related to 
Deep Learning, it will be discussed why object detection 
requires the use of this type of learning and what are the main 
drivers that have led to the current state of technology that 
allows us to believe in solutions based on these techniques. 
Also, different algorithms that base their architecture on these 
networks will be discussed and, for the first time, the object 
detection algorithm designed by Ultralytics based on the 
YOLOv5 network will be introduced. Finally, the level of 
implementation of these technologies in the electricity sector 
will be detailed and, more specifically, in electricity 
distribution where there are several projects that are based on 
image capture and use these types of algorithms to make 
decisions related to the maintenance and inspection of 
electrical assets. 

A. Deep Learning 
Deep Learning is the type of artificial intelligence that is 

leading the revolution in algorithms. These algorithms, which 
are based on deep neural networks and not on conventional 
neural networks, do not require a human to define the 
characteristics of the input data, but rather the model itself 
learns by its own and can detect patterns and defects and using 
them to acquire sufficient accuracy to make decisions in the 
future. The great need for this type of algorithms is that they 
require a large amount of input data compared to other types 
of algorithms DataScientest [1], and they also require a greater 
computational capacity, due to the architecture of the neural 
networks on which they are based. However, nowadays the 
increase in databases is a reality and the technology can store 
it and making it accessible, which makes the problem 
mitigable over time. In terms of computational load, leading 
companies such as Google, Facebook and IBM are building 
quantum computers that are so powerful that they cannot even 
be simulated by conventional computers DW [2]. 

As detailed in the paper written by Mukhamediev, et al. 
[3], the need to obtain a large dataset is directly linked to the 
use of Large Neural Networks which are used in Deep 
Learning. Fig.-II-1 shows the comparative performance of 
different types of neural networks as a function of the amount 
of input data. 

 
Fig.-II-1: Algorithm performance as a function of the amount of 

input data [3] 

It should be noted that the use of Deep Learning is not 
always the best option; in fact, as shown in Fig.-II-1, there are 
simpler neural networks that are usually attributed to Machine 
Learning projects and that do not require such deep networks 
due to the amount of input data, or because decision-making 
is simpler according to the patterns that exist in the data. Deep 
Learning is undoubtedly the present and the future, but it is 

important not to forget about other types of algorithms that can 
have the same performance with less computational load. 

B. Object Detection  
Artificial vision is a field that has come a long way in 

recent decades thanks to technological progress as one of the 
main drivers, but also thanks to certain industries that have 
focused a large part of their resources on designing models 
capable of detecting objects in practically real time. One of the 
major applications of artificial vision, with the aim of 
recognising objects, is to enable the development of 
autonomous vehicles. Therefore, this sector is obliged to 
promote this field of AI. Apart from this industry, many 
different technological companies have opted to enter this 
field and develop complex models based on Convolutional 
Neural Networks. The models that have had the greatest 
impact are detailed below, as well as the model decided to be 
used for the analyses of the project. Before presenting the 
models, object detection requires two different tasks that can 
be done simultaneously (improves the speed of the model) or 
consecutively (improves the accuracy of the model), these 
tasks are to classify the object and to locate the object in the 
image. The decision on which model to use requires 
analysing, above all, the speed, accuracy and computational 
load of the model. Based on these parameters, the choice of 
model will focus on optimising one of the parameters while 
maintaining sufficient levels in the others.  

Currently, the complete networks used for object 
recognition have been created mainly by leading technology 
companies [4], such as Google, which created the SpiNet 
network in 2019, which has the peculiarity of alternating large 
and small convolutional layers, unlike the rest, which use a 
pyramidal structure. Also, in 2018, Facebook created the 
DETR network, with the peculiarity of using Transformers, 
which are the most innovative neural networks, but this time 
applied to the recognition of objects in images. Likewise, there 
are two networks called SSD (Single Shot Detector) and 
RetinaNet, created in 2018, which use the VGG16 and ResNet 
models [4], respectively, as feature extractors and then have a 
pyramidal structure in the object classification task, each with 
its peculiarities that make them different.  

Over time, the YOLO (You Only Look Once) neural 
network has evolved into one of the most widely used 
networks in the community. Its easy integration and 
implementation make it unique in that it only needs a single 
pass to detect and locate objects. However, this comes at a 
price, as it often sacrifices some of its accuracy to achieve such 
good times. In fact, this network works practically the same 
when detecting photos or videos, due to its tremendous speed. 
Perhaps this is why the YOLO family of networks has been so 
popular with users. Possibly, the YOLOv3 network was the 
most famous and best received until mid-2020, when the 
company Ultralytics created YOLOv5 [5]. The YOLOv5 
network was made public and accessible to any user through 
Github [6], so its reception was even greater, becoming the 
first choice for many users, since, in just 10 lines of code, a 
trained model capable of detecting and recognising objects in 
images can be obtained. 

III. ANALYSIS OF THE PROCESS TO BE OPTIMISED 
As introduced above, the inspection of electrical assets and 

processes is a resource-intensive task that tends to be highly 
iterative. Specifically, the process of inspecting new supply 
connections in the electricity distribution network of the UFD 



 3 

company is a process that can be optimised with the 
implementation of intelligent algorithms that allow accurate 
decisions to be made. The main motivation for this 
improvement is to reduce the time spent by the telesupervisors 
in verifying whether an electrical pre-installation is correct 
according to current regulations. In addition, the most 
problematic cases can be filtered out to deduce possible 
recurring faults with the pre-installations.  

A. Current Process 
The linking installations that connect a customer to the 

electricity distribution network require certain steps before the 
main element, the smart meter, is connected. This meter must 
be installed once the previous steps have been completed 
without failure. The diagram below, see Fig. III-1, shows the 
diagram that is followed in installations linking to the 
distribution network. 

 
Fig. III-1: Diagram of the current process of linking facilities 

As has already been mentioned, link installations are 
responsible for connecting the electricity distribution network 
with a customer. To this end, it is necessary to provide this 
installation with protections and measuring elements to ensure 
correct operation of the installation in terms of safety for the 
customer, but also to cover the distributor against possible 
fraud and possible short circuits in an individual derivation 
affecting the distribution network. To this end, if there is no 
circuit breaker in the installation, there will always be fuses 
that allow the current to be cut off under load and at any time. 
Continuing with the current process, the electrical pre-
installation is carried out by the client, and it is the client 
himself who oversees knowing the current regulations that 
exist and which elements and electrical power should be 
chosen. Once the pre-installation has been carried out, the 
customer notifies UFD so that it can check it. The volume of 
new supply connections is too high for internal personnel to 
check all the pre-installations. Therefore, the entire inspection 
process is carried out in two parts. First, UFD subcontracts a 
company that oversees physically supervising the installations 
and, by taking images, generates reports that are 
telesupervised by UFD personnel. This is when a 
telesupervisor decides to go forward or backward. In the 
positive case, UFD would give the order to install the meter. 
The continuation of this process is outside the scope of this 
project. 

B. Optimised Process 
The current process of supply connection to the electricity 

distribution network, is going to be automated with artificial 
intelligence, but not all parts of the process can be automated. 
This project will focus on obtaining clear efficiencies in terms 
of time and resources from the inspection and telesupervision 
tasks of the scheme in Fig. III-1, for which the pre-installation 
task by the client will be guided and must be performed 
according to steps established by UFD with the objective of 
getting as many pre-installations correct the first time as 
possible. Customer guidance is achieved by ensuring that a 
series of key points are met, which translates into the capture 
of specific images that can provide sufficient value so that 

artificial intelligence, in the form of algorithms, can make 
decisions autonomously, reducing the work time of the 
telesupervisors.  

Algorithmic models, as will be seen in Chapter IV, will 
have to obtain high accuracies to consider the decisions made 
as valid, yet there may be cases where the algorithms do not 
understand or are not able to interpret the images. Therefore, 
there are cases where the algorithms are not able to decide 
whether the pre-installation is correct or not, so these types of 
conflicting cases would be manually telesupervised by UFD 
telesupervisors, who would determine whether the pre-
installation is correct according to the current regulations. Fig. 
III-2 shows the diagram of the optimised process, considering 
the possible appearance of telesupervisors in the conflictive 
cases mentioned. 

 
Fig. III-2: Diagram of the optimised process of linking facilities 

The aim of adding these algorithmic models is to try to 
automate the process as much as possible and to obtain faster 
times in the overall process. The implementation of 
algorithmic models allows efficiencies to be obtained, even 
when there is a conflicting case, as the task of inspection and 
image capture has now been transferred to the client, which 
was previously done by a specialised external company. With 
this, telesupervision by UFD can still be done as the images 
are captured and at least somehow reduce the time spent on 
the overall process. 

IV. OPTIMISITATION OF THE OBJECT DETECTION PROCESS 
WITH YOLOV5 

In this Chapter IV, an extensive analysis will be carried 
out based on a dataset of our own elaboration, on which 
techniques to follow and how to modify the accessible 
parameters and hyperparameters of the YOLOv5 algorithm, in 
order to obtain greater efficiencies in terms of accuracy, 
training time and GPU memory used. This analysis aims to 
help understand the performance of the object detection 
models and, in turn, determine which hyperparameters and 
parameters are the most crucial for this dataset.  

Finally, the analysis will be concluded with the results 
obtained that maximise object detection and will show the 
result of the algorithmic model applied to several typical 
images, with the aim of having a real idea of the solution 
proposed by the UFD company in the inspection of supply 
connections in its electricity distribution network. 

A. Dataset Preparation 
Getting a dataset with which to train the algorithm is the 

first step and, surely, the most crucial aspect to obtain a good 
result. Problems related to Deep Learning are characterised by 
the need for a huge amount of input data that they make the 
most of to extract as many representative features as possible. 
It is therefore not uncommon to see datasets consisting of 
100,000/1,000,000,000 images. However, there is no doubt 
that, as the size of the dataset increases, the model requires a 
higher computational capacity to continue to be able to run the 
models smoothly. One of the objectives is to produce a 
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balanced dataset that can be used to detect objects with 
reasonable accuracies, as well as to conduct an analysis that 
can provide clear evidence. The complete dataset that has been 
elaborated is composed of 1081 images with 9 different 
classes of objects, however, the fact of obtaining a balanced 
dataset is something complex that is beyond the scope of this 
work, as the time required to achieve it did not provide added 
value in this analysis.  

The elaboration of the dataset consisted of labelling the 
images provided by UFD of new supply connection reports 
from the last two years. Not all the images provide the 
necessary information, so prior to labelling it was necessary to 
classify the useful images. Useful images are those images 
that have more than three classes of elements to detect. 
Recovering the concept of a balanced dataset, this concept is 
achieved if all classes of elements appear in the images with 
the same frequency. Unfortunately, this is not easy to achieve, 
since, for example, the class "meter" appears very frequently 
in meter centralisation, but less frequently in single-family 
houses. The problem of having an unbalanced dataset will be 
discussed later and there will be seen very positive results 
when building a balanced dataset. The more classes there are, 
the more difficult it will be to achieve balance, but there are 
certainly techniques for balancing that will be discussed later. 
In any case, the different classes of elements that the algorithm 
must detect are shown below. 

 
Tab. IV-1: Element classes in the dataset 

B. Training of the Algorithm 
In this point, a series of analyses will be conducted in order 

to achieve the best results using different techniques and 
solutions. Throughout these analyses, hyperparameters and 
parameters of the training process will be modified, and 
secondary datasets will be elaborated to compare the results of 
the same model applied to datasets with different 
characteristics. Also, the use of Transfer Learning, which is 
widely used in Deep Learning projects, will be analysed to see 
if significant improvements can be seen in this project and, 
finally, the use of Data Augmentation for large and small 
datasets will be analysed and the results will be compared.  

The training process has several parameters that control 
whether the algorithm is working correctly and where 
improvements can be made. Specifically, the validation 
process yields three parameters that are used in this analysis, 
and in the rest also serve as a great help, which are given 
individually per class: Precision, Recall, and mAP (mean 
Average Precision). The Precision reflects the percentage of 
correctly identified positive elements out of all the elements 
identified as positive [7]; the Recall is the percentage of 
elements that the algorithm is able to identify out of all the 
available elements and the third parameter and, the mAP, 

which is the average of the AP of each class, being the area 
under the Precision/Recall curve. Fig. IV-1 shows what kind 
of relationship Precision and Recall have. It is about 
maximising the area under the curve they form. 

 
Fig. IV-1: Precision/Recall relationship 

The following is the first training result obtained with a 
dataset composed of a first batch of labelled images. It is worth 
mentioning that the images that were added this first time were 
far from being balanced, so the result shown in the Tab. IV-2 
cannot be considered as positive. 

 
Tab. IV-2: Validation parameters with 215 training images and 68 

validation images 

Following the results obtained, an attempt will be made to 
improve them in each of the following analyses with different 
very useful techniques used with this type of algorithms. 

1) Evolution of Accuracy as a function of the dataset size 
 

In this analysis, it is intended to observe the effect of 
increasing the number of images with which the algorithm is 
trained. The truth is that, as has been mentioned, this type of 
algorithm requires many images to work correctly and achieve 
positive results that can be used in real processes, so the results 
that will be seen in this analysis are very simple to predict, as 
a general improvement is expected in all the parameters of the 
validation process. The table shows the results obtained in the 
training, simply by adding images to the dataset and 
maintaining the relationship between the images used for 
training and validation. 

Class Description Class in Spanish 
BUC  base BUC  base Fuse holder base buc
UTE  base UTE  base Fuse holder base ute

connection cable Connection point between the distribution 
company and the client

cable acometida

meter cable Cable prepared for installing the meter cable contador
meter Smart Meter contador

plastic envelope Plastic envelope to protect the module cpm envolvente
circuit breaker Circuit breaker or Switch interruptor 

overvoltage 
protection

Protection against permanent or instantaneous 
overvoltages

proteccion de 
sobretension 

output terminals
Output terminals for connection of external 

devices regletero

Class Images P R mAP@0.5
BUC  base 68,0% 51,1% 56,2%
UTE  base 55,5% 81,0% 72,4%

connection cable 46,4% 30,0% 23,7%
meter cable 76,5% 58,8% 61,4%

meter 75,3% 91,1% 92,4%
plastic envelope 35,1% 21,4% 28,7%
circuit breaker 66,8% 57,6% 63,6%

output terminals 73,8% 68,6% 70,0%
Total 58,6%

215/68
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Tab. IV-3: Validation parameters with 754 training images and 

216 validation images 

This analysis confirms what was expected, namely that as 
the size of the dataset increases, better results are obtained 
both in terms of precision and recall. However, this first 
analysis has enabled focusing on possible improvements and 
techniques to further improve the mAP in the following 
analyses. 

2) Effect obtained with a balanced dataset 
 

The YOLOv5 algorithm used learns from the images very 
peculiar characteristics that go beyond the scope of the 
geometry of the element itself. This algorithm learns the 
location in which each of the identifications normally appear, 
and if an element is usually identified in a specific area of the 
image, the algorithm tries to look for that element in that area, 
which sometimes results in erroneous estimates, because the 
algorithm tends to be biased by previously learned features 
that it should not use. This is somehow the concept of 
overfitting mentioned above, which makes the model very 
robust to one type of images, but as soon as they leave that 
distribution, the model fails. To observe this effect, a specific 
dataset has been constructed with only 100 images of 
Protection and Metering Boxes normalised by UFD that have 
the same elements to be identified, resulting in a fully 
balanced dataset where the number appearing in each class is 
practically the same. 

Therefore, the balanced dataset is going to focus on five 
specific classes, one of which has a lower frequency, and the 
others have the same frequency. A priori, the element with the 
lowest frequency should have a lower accuracy and the rest of 
the elements a reasonably equal accuracy. It should be noted 
that the fact of having only 100 images may have a negative 
influence, but it will be observed that the results are frankly 
positive, with slight nuances that will be discussed below. 
Tab. IV-4 shows the result obtained with this dataset. 

 
Tab. IV-4: Validation parameters with a balanced dataset 

As mentioned before, the fact of having a balanced dataset 
has a very positive influence. With only 83 training images 
and 9 validation images, the best average results have been 

achieved so far in the four classes sought. There is no point of 
comparison with the training observed with the unbalanced 
dataset in the classes "circuit breaker" and "output terminals", 
since 99.5% of mAP has been obtained, having a recall of 
100% in both classes. However, the classes "BUC base" and 
"overvoltage protection" have reduced their mAP, but to a 
lesser extent than the increase in the other two classes, but this 
result should not be seen as negative, because almost the same 
result has been achieved in the latter two classes with 83 
training images, a dataset 11 times smaller, and in only 5 
minutes, which in comparison with the 41 minutes of the last 
training with the large dataset, is a very significant 
improvement that allows evaluating a possible reduction in the 
accuracy and robustness of a model, due to a shorter training 
time.  

One of the fastest ways to increase the size of the dataset 
is to use Data Augmentation techniques, since the dataset is 
doubled or tripled with the initial images, but with 
modifications that allow the algorithm to learn from them 
other important characteristics of the elements to be detected. 
Specifically, we have chosen to use two Data Augmentation 
techniques: Cutout and Mosaic. The Cutout technique adds 
black pixels to the image, which allows the algorithm to learn 
to detect objects more robustly, because they appear with 
imperfections. The second technique used is the Mosaic 
technique, which involves grouping the images four by four 
and presenting them to the algorithm in a mosaic format. This 
effect is very interesting, as the algorithm begins to detect 
more elements than normal in the same image, which breaks 
with a possible linearity in the algorithm's learning process. In 
addition, the number of images in the validation set has been 
increased, as the images added thanks to Data Augmentation 
are only used in the training set, so using only 9 images could 
suggest that the training was not entirely valid. The results 
obtained after training with these two techniques are very 
surprising and are shown in Tab. IV-5. 

 
Tab. IV-5: Validation parameters with a balanced dataset, Cutout 

and Mosaic 

Building a large dataset can become a complex task if a 
large number of images are not available. Having said that, in 
trainings where the dataset is not very large, it is convenient 
to divide the model into submodels, each one focusing on a 
smaller number of classes (as long as they are balanced). 
Moreover, this concept of creating submodels is almost 
always very useful, due to the inner workings of the YOLOv5 
network, which works best when it looks for the same number 
of classes in all images at all times, so the submodels will be 
created according to the frequency with which the different 
classes appear. 

3) Analysis of the training by modifying the size of the 
images and the number of images per batch 

 

Class Images P R mAP@0.5
BUC  base 91,4% 90,0% 92,5%
UTE  base 81,1% 83,7% 87,7%

connection cable 77,7% 58,8% 66,9%
meter cable 79,9% 67,6% 71,7%

meter 87,5% 90,9% 94,4%
plastic envelope 76,5% 58,1% 66,6%
circuit breaker 89,7% 76,7% 79,9%

output terminals 83,7% 78,8% 83,1%
overvoltage 
protection

95,2% 92,3% 92,7%

Total 81,7%

754/216

Class Images P R mAP@0.5
BUC  base 100,0% 82,6% 85,4%

connection cable 100,0% 36,4% 56,2%
overvoltage 
protection

88,1% 77,8% 85,2%

circuit breaker 98,9% 100,0% 99,5%
output terminals 83,3% 100,0% 99,5%

Total 85,2%

83/9

Class Images P R mAP@0.5
BUC  base 98,8% 95,5% 97,2%

connection cable 100,0% 96,3% 99,5%
overvoltage 
protection

96,5% 98,3% 99,4%

circuit breaker 95,7% 100,0% 99,5%
output terminals 97,2% 97,1% 99,4%

Total 99,0%

207/30
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This analysis tries to show that the size of the images and 
the number of images per batch in the training allows to obtain 
efficiencies in the results. For this purpose, the large dataset 
with 754 images for training and 216 images for validation 
will be used as the base case for obtaining efficiencies. The 
results of this analysis will be compared with the results 
obtained in Tab. IV-3. Following the philosophy described 
before, avoiding that the algorithm always finds the same 
element at the same location in an image helps to achieve more 
robust models. Therefore, one way to avoid this event is to 
train the algorithm with images of different sizes so that the 
labels estimated by the algorithm have a different location in 
each iteration of the training. The YOLOv5 network has an 
accessible parameter that modifies the size of the images in 
each training iteration, so it is not trained with a constant size. 
The base training case was trained with a constant size of 
416x416 and this new training will modify the size randomly 
by ±50%. The results that have been obtained are shown in 
Tab. IV-6. 

 
Tab. IV-6: Validation parameters with variation of the size of the 

training images 

The results obtained do not show a very substantial 
improvement, barely 1%, but there is an improvement in the 
training time, because now, by having iterations where the size 
of the image is smaller, the time is reduced, although in other 
iterations the size is larger, increasing the time. The net 
balance shows that the total time is reduced by almost two 
minutes, which translates into 5.5% less. The truth is that, 
using a variable image size, the memory demand for training 
is higher, so it would have to be assessed whether it is worth 
spending computational memory for the efficiencies shown in 
terms of accuracy and time. From a practical point of view, it 
does not seem worthwhile to introduce this effect, at least in 
the large dataset, as this dataset does not have a constant 
distribution of elements in the images due to the introduction 
of images of centralisation of meters and Single Family 
Houses. 

Therefore, the modification of the image size in the same 
training is not a very differentiating technique when it comes 
to achieving improvements in either of the two datasets 
studied. However, looking for possible efficiencies in training, 
it is very common to make a trade-off between the size of the 
images and the number of images per batch with which the 
models are trained. The algorithms are trained with batches of 
images that are usually multiples of 2 and the only restriction 
is the available GPU memory of the computer. If larger 
batches are taken, larger memories will be needed as well. 
Hence, modifying the size of the images can be attractive in 
this new analysis. By reducing the size of the images, the batch 
size can be increased, for the same memory usage. In this third 
analysis, the size of the images will be kept constant in the first 

instance, since no significant improvements have been seen 
before and the number of images per batch has been increased, 
using 16, 32 and 64. The expected benefits, in this case, are 
not focused on improvements in precision, but rather on faster 
training, since the number of images processed per second is 
increased. The hypothesis is therefore that, with 64 images per 
batch, faster training should be obtained, but a priori, not much 
precision should be lost. In Tab. IV-7 shows the training 
results obtained for the three case studies. In addition, the size 
of the images was reduced, to check that the batch could be 
further increased and to see if new efficiencies could be 
obtained. 

 
Tab. IV-7: Training results as a function of the number of images 

per batch 

The suggested hypothesis is verified, as appreciable 
improvements are obtained in the time, which is reduced from 
34 minutes to 26 minutes, a reduction of 23.5%. It should be 
noted that 14.1 GB of memory was used in the fastest case, 
which is logical in this study, and that robustness was 
practically unaffected. 

Therefore, it can be concluded from this analysis that 
modifying the image size does not produce significant 
improvements, but if this modification is used to increase the 
number of images per batch to the maximum, efficiencies in 
training times can be achieved, if the maximum memory of 
the computer is not exceeded. One of the possible problems 
that could arise was a decrease in precision, but no such effect 
was observed, so the efficiencies obtained were reaffirmed. 

Finally, the effect of reducing the size of the images and 
up to what value the batch size could be increased, while 
maintaining reasonable levels of precision, was studied. The 
results are also shown in Tab. IV-7. It was decided to halve 
the size by converting the size to 208x208, but there is a 
requirement to be a multiple of 32, so this was reduced to 224. 
The time was further reduced to 17.7 minutes, using only 4.41 
GB of memory, however, the mAP was reduced to 76%, 
which translates into a drop that is beginning to be 
considerable. Analysing the memory used, the batch size was 
increased by one level to 256 images per batch and the results 
obtained improved in time (to 16.8 minutes), but the mAP 
dropped again to 74.4%, while using 7.01 GB of memory. It 
could be concluded that the reduction in time is not too 
significant compared to the loss of precision and the increase 
in memory, so a final attempt at improvement was made. In 
this case, the image size was to be increased, in order to make 
the algorithm more accurate, to 320x320 and the same number 
of images per batch was to be maintained. This was intended 
to increase memory along with precision, in exchange for 
sacrificing some of the training time. The result corroborated 
that the memory would go up, in exchange for increased time 
and precision. This result achieved a precision of 76.3% with 
a time of 17.7 minutes and an occupied memory of 8.89 GB. 
So, in the end, the best result overall is the one marked in blue, 
since it finds a clear balance between all the parameters used 
as KPIs.  

Class Images P R mAP@0.5
BUC  base 89,2% 89,8% 93,5%
UTE  base 81,6% 88,2% 90,6%

connection cable 75,6% 66,8% 70,0%
meter cable 77,2% 65,2% 70,4%

meter 90,2% 88,1% 93,1%
plastic envelope 71,7% 64,9% 64,8%
circuit breaker 87,8% 77,4% 80,3%

output terminals 79,3% 82,1% 86,7%
overvoltage 
protection 87,1% 92,3% 91,9%

Total 82,4%

754/216

Images Image Size Batch Memory (GB) mAP@0.5 Time (min)
416 16 3,8 81,7% 34,2
416 32 7,41 79,6% 29,4
416 64 14,1 81,0% 26,3
224 128 4,41 76,0% 17,7
224 256 7,01 74,4% 16,8
256 256 8,89 76,3% 17,7

754/216



 7 

4) Analysis of the use of Transfer Learning in the first 
layers 

 
The vast majority of Deep Learning projects use Transfer 

Learning techniques that consist of using models that have 
already been trained to perform other similar tasks. A typical 
example is to use a network, which has been trained to identify 
several classes, to identify other types of elements, but which 
may share characteristics. The aim of these techniques is to 
reduce training time, as they are often used in models that are 
trained on very large datasets and any time savings are 
significant. Of course, these savings do not come for free and 
it seems reasonable that these Transfer Learning techniques 
are very useful in reducing training time, but the precision of 
the model is reduced at the same time. However, this concept 
is also very useful when training requires too much GPU 
memory, as the use of "pre-trained" networks allows to reduce 
the number of tasks within the training and thus reduce 
memory consumption.  

In the training using Transfer Learning, the first layers 
known as Backbone, which are in charge of learning the 
characteristics of the objects at all levels, will be frozen, the 
following layers will be kept, which are in charge of merging 
all the characteristics learned, to pass them to the prediction 
process (known as neck), and the layers in charge of carrying 
out the identification and labels of each object in the training 
(known as head). The information that the algorithm will use 
to replace the features, which the model would have to have 
learned throughout all the frozen layers, comes from the 
training of the YOLOv5 network with the COCO2017 dataset, 
well known in the object recognition industry that was created 
by Microsoft and contains more than 328,000 images with 
more than 80 classes [8]. In Tab. IV-8, the results obtained in 
the first training using Transfer Learning are shown. 

 
Tab. IV-8: Validation parameters using Transfer Learning in 

backbone layers 

Compared to the baseline training in Tab. IV-3, which had 
a mAP of 81.7% and took 26.6 minutes to complete training, 
it can be seen that the mAP obtained has been reduced by 5% 
overall, demonstrating that the first layers of an object 
recognition model are usually very even in almost any model 
with the same objective. However, the real objective was to 
save time in training, in this case it took 32.9 minutes, 
reducing it by 10.1%. Another aspect to note is the memory 
used in this training, 1.07 GB was used for the 2.09 GB used 
in the base training, reducing by 48.8%. Perhaps, this aspect 
is the most relevant, since, in very large models, a saving of 
almost 50% in GPU memory can become a good justification 
for passing this training. 

5) Analysis of the use of Data Augmentation in large 
datasets 

 
The objective of this analysis is to verify if the Data 

Augmentation techniques are effective with datasets that have 
a sufficient number of images to train the algorithm. In this 
case, with the large dataset elaborated at the beginning and 
using 754 images for training and 216 for validation, an 
average mAP of 81.7% was obtained among all the classes as 
shown in Tab. IV-3, yielding quite positive results. In the 
analysis of the use of balanced datasets, it was concluded that 
the use of Data Augmentation achieved very significant 
improvements reaching 99.0% of mAP on average across all 
classes as shown in Tab. IV-5. With these results, it was 
decided to test whether using the same Data Augmentation 
techniques, specifically Cutout and Mosaic, the training result 
could be improved for datasets where, in principle, more 
images were not required because the size of the dataset was, 
a priori, sufficient. The training was carried out and the results 
are shown in Tab. IV-9. 

 
Tab. IV-9: Validation parameters with large (unbalanced) dataset, 

Cutout and Mosaic 

The results observed have been obtained under the same 
conditions as the base training with which it is compared, the 
only difference being that the training dataset has randomly 
duplicated images with different visual effects. All classes 
have improved their mAP, reaching surprising levels. After 
this analysis, the use of Data Augmentation techniques is more 
than justified due to their great efficiency in terms of 
robustness. It is worth highlighting the increase in training 
time, as this training lasted 112 minutes, which is an increase 
of 206% with respect to the base training. 

With this last analysis the use of the Cutout and Mosaic 
techniques increases the robustness of the model by increasing 
its precision and recall, but the time it takes to train increases 
considerably to the point of assessing whether it is 
worthwhile. In the next point, the model will be trained with 
the improvements found in previous analyses in relation to the 
training time, to find the best balance between robustness, 
training time and memory of the GPU used. 

6) Summary of the results obtained from the analysis and 
Training Optimisation 

 
This section will focus on summarising the results 

obtained throughout all the analyses to have a comparison of 
the analyses and to discern which analysis yielded the best 
efficiencies. The three concepts to be compared are mAP, 
training time and GPU memory used. Furthermore, at this 
point, the aim is to achieve the best results by combining the 
concepts learned in all the previous analyses. Undoubtedly, 

Class Images P R mAP@0.5
BUC  base 87,9% 86,3% 87,8%
UTE  base 83,7% 86,5% 88,9%

connection cable 75,5% 41,2% 56,8%
meter cable 77,7% 62,1% 67,3%

meter 87,5% 88,7% 91,3%
plastic envelope 67,4% 59,5% 65,1%
circuit breaker 83,4% 70,6% 76,2%

output terminals 74,7% 74,8% 77,5%
overvoltage 
protection

92,0% 88,3% 87,6%

Total 77,6%

754/216

Class Images P R mAP@0.5
base buc 98,0% 99,1% 99,5%
base ute 96,3% 83,7% 90,2%
cable acometida 91,2% 85,2% 88,4%
cable contador 96,9% 88,5% 94,7%
contador 91,8% 96,5% 96,0%
cpm envolvente 87,4% 78,4% 81,1%
interruptor 92,5% 90,5% 95,4%
regletero 95,3% 94,7% 98,1%
proteccion 
sobretension 98,8% 100,0% 99,5%

Total 93,7%

2235/216
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the use of Data Augmentation techniques provided the best 
result in terms of precision, but the increase in training time 
was also very high, for this, variable image sizes with a larger 
batch size were used, to process more information per second. 
An attempt will be made to use as much of the GPU's memory 
as possible to reduce the training time. Throughout this point, 
the large dataset will be used, since, when Data Augmentation 
techniques were used on the small (balanced) dataset, an 
average mAP of 99.0% of all classes was achieved. Therefore, 
the aim of this analysis will be to get as close as possible to 
that value, but trying to significantly reduce the training time. 
Below is Tab. IV-10 comparing the efficiencies obtained in 
each analysis is shown below. In each " change " column, the 
percentage by which each parameter varies with respect to the 
base training is calculated, which is the one marked with the 
orange cells. 

 
Tab. IV-10: Summary of the efficiencies obtained in each of the 

analyses performed 

The results are not out of line with expectations because, 
as we have seen in each of the analyses, no technique was able 
to improve all the parameters at the same time. Each of the 
techniques focused on maximising one of the parameters, 
while complying with certain minimum requirements for the 
others. In Tab. IV-10, the solution that optimises the global 
process in terms of precision and training time will have to 
make use of the different techniques at the same time. In a first 
training, to maximise the precision, the Data Augmentation 
techniques will be used and the size of the validation dataset 
will be decreased, in order to use more images for training, as 
it has been learned that the number of images used for 
validation does not need to be too large, using the ratio of 95-
5% for training and validation respectively. To reduce the 
training time as much as possible, the number of images per 
batch will be increased and the size of the images will be 
increased, to try to prevent the algorithm from losing 
efficiency when trying to identify small elements. And lastly, 
the training is done using Transfer Learning in the first layers 
(backbone) to reduce the GPU memory used and the training 
time as much as possible. The results of this “optimised” 
training is shown in Tab. IV-11.  

 
Tab. IV-11: Training parameters using Data Augmentation, larger 

images and batch size and Transfer Learning 

The assumed hypothesis has been fulfilled in all 
parameters, the average mAP of all classes has fallen by 4.3% 
to 94.2%, however, improvements appear in the other two 
parameters to be analysed and that is that the training time was 
106.2 minutes, reducing by 13.5% and the GPU memory used 
was reduced to 3.72 GB saving 46.7% of the memory, when 
comparing both parameters with those used in the previous 
training without Transfer Learning.  

To conclude this section, it must be said that the 
“optimized” results are very positive and just by modifying 
the parameters and hyperparameters, it has been able to 
achieve a great result in terms of accuracy and the GPU 
memory and the training time used have been reduced 
compared to their baseline trainings. Now, after achieving 
these results, it is time to see the algorithm work with random 
images that have very different distributions, so the model 
should show its robustness.  

C. Object Detection process 
 

Once the training process has been completed, it is time to 
check that the model works with images that have not been 
used either in the training or in the validation, so they are 
completely new for the detection algorithm. In this section, the 
aim is to show the visual results offered by the algorithm and 
to check the correct operation of different trainings to verify 
the different analyses that have been carried out in the 
previous section. Likewise, we will try to explain the concept 
of robustness applied to the detection of new images and, as 
has been commented throughout the analysis of the training, 
it is possible to have a very accurate model with images that 
have a distribution of elements similar to those of training and 
validation and that have an erroneous behaviour with other 
types of images. In order to check this effect, the elements of 
the same image will be detected with the same algorithm, but 
trained with the large dataset and the balanced dataset, and the 
differences will be explained. Also, this point will try to 
present the advantages of training datasets that have a less 
uniform distribution of elements, but require more images to 
perform better. It should be remembered that the balanced 
dataset is composed of 100 images of similar distribution that 
after the use of Data Augmentation obtained 237 images in 
total and tries to identify only 5 classes (specific model), while 
the large dataset, which is not balanced, identifies 9 possible 
classes, but with many more images, namely 3043 after the 
use of Data Augmentation (robust model). In Tab. IV-12, the 
main differences between the two models are shown, so that 
they can be compared with a clear reference of the conditions 
used in their respective training. 

 
Tab. IV-12: Main differences between the robust model and the 

specific model 

As can be seen, the specific model performs better in the 
three study parameters; however, when it comes to object 
detection, it does not behave as expected. A typical problem 
in Deep Learning projects is that, after having achieved very 
good training results, the algorithm does not perform as 
expected, mainly due to the type of images it is fed with. This 

Train/Val 
(Images)

Image Size Batch Size # (%)
Change 

(%)
# (min)

Change 
(%)

# (GB)
Change 

(%)

215/78 416 16 58,6% - 11,7 - 2,07 -
754/216 416 16 81,7% - 36,6 - 2,09 -

Change in proportion 
of Train/Val

964/98 416 16 84,8% 3,79% 41,7 13,93% 2,1 0,48%

754/216 416 64 81,0% -0,86% 26,3 -28,14% 14,1 574,64%
754/216 224 128 76,0% -6,98% 17,7 -51,64% 4,41 111,00%

Data Augmentation 2235/216 416 16 93,7% 14,69% 111,8 205,46% 7,41 254,55%
Transfer Learning 754/216 416 16 77,6% -5,02% 32,9 -10,11% 1,09 -47,85%

Analysis

Differences with base training mAP Training time GPU Memory

Dataset Evolution 
(Base Training)

Image and Batch Size

Class Images P R mAP@0.5
BUC  base 98,9% 97,2% 98,9%
UTE  base 96,8% 81,7% 91,4%

connection cable 100,0% 90,9% 96,2%
meter cable 100,0% 91,6% 95,0%

meter 79,9% 95,2% 92,8%
plastic envelope 91,6% 80,9% 90,2%
circuit breaker 92,3% 88,6% 91,8%

output terminals 90,2% 89,8% 95,4%
overvoltage 
protection

99,3% 95,2% 95,8%

Total 94,2%

2943/100

# (%) Change 
(%) # (min) Change 

(%) # (GB) Change 
(%)

Robust 2943/100 9 98,4% - 122,76 - 6,98 -

Specific 207/30 5 99,2% 0,81% 14,52 -88,17% 1,72 -75,36%

Model # Classes
mAP Training time GPU MemoryTrain/Val

(Images)



 9 

is the effect that will be observed with two images that have 
not been present in the training process. Each image will be 
fed into the robust and specific models and it will be seen that, 
although the specific model performs better, the object 
detection produced by the specific model is not acceptable, 
while the robust model is able to detect all objects. Next, both 
models will be fed with the same image and the results 
obtained are shown in Fig. IV-2 and Fig. IV-3. 

 
 

Fig. IV-2: Object identification with the robust model on image 1 

 
 

Fig. IV-3: Object identification with the specific model on image 1 

It must be remembered that the models do not search for 
the same classes; the specific model only tries to identify five 
classes out of the nine identified by the robust model. 
Therefore, it is logical that, for example, the electricity meter 
is not recognised by the specific model, so we will simply 
compare the classes that are identified by both models. The 
fact is that in this image there could only be two labels that 
should coincide in both models, which are "connection cable" 
and "circuit breaker", the elements recognised in Fig. IV-2 by 
the robust model are all correct and with respect to this 
labelling, it can be seen that the specific model does not work 
correctly with the results of Fig. IV-3.  

This image has been chosen, as the distribution of the 
elements follows very closely the distribution with which the 
specific model has been trained, so that the performance of 
that model should not make too many errors. However, too 
many errors are observed in the labelling of the specific 

model, which always tries to recognise its classes that it can 
identify, in particular, the "BUC base" class, which is the fuse 
holders, which it tries to identify, as this element appeared in 
all the training images. This is the effect that was mentioned 
earlier and it is that the behaviour of the YOLOv5 network has 
this problem when the model has not been robustly trained. 
The same happens with the "circuit breaker" class, since it 
tries to identify it, but in this process, it fails when different 
objects appear, in particular, it has estimated two elements as 
"circuit breaker " and none of them is, but the big failure is 
that it has failed to label the real "circuit breaker " class that 
appears in the upper right corner. Moreover, this image has its 
peculiarity in that the class "output terminals" appears 
differently, as the object does not appear frontally, yet the 
robust model is able to identify it with reasonable confidence 
(70%), while the specific model is not able to find it. 

It is therefore observed that, even with similar 
distributions, the specific model starts to fail when objects that 
are not known appear and it tries to identify them without 
being necessary, it is here when it is seen that a robust model 
is more reliable in this aspect, although the general confidence 
of all the classes is lower.  

Another very simple test will be carried out to compare the 
performance of both models on the same image. In this case, 
it is an image that only has the class "output terminals", so 
that, a priori, the specific model will have difficulties because 
not all the classes appear and this modifies the normal 
behaviour of the model. In Fig. IV-4 and Fig. IV-5, the images 
labelled by both models are shown. 

 
Fig. IV-4: Object identification with the robust model on image 2 
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Fig. IV-5: Object identification with the specific model on image 2 

The previous hypothesis is confirmed, the robust model is 
able to detect objects in isolation as shown in Fig. IV-4 with a 
lower confidence than estimated for that class (83%), but, at 
least, it recognises that element, however, Fig. IV-5 does not 
label anything, again making errors that, from a theoretical 
point of view, should not fail, since no difficulty is seen in the 
distribution. It is thus concluded that artificial intelligence 
learns differently from human beings and this confirms one of 
the maxims of Deep Learning, which is that it is very difficult 
for an algorithmic model to improve the capacity of a human 
being in object detection tasks, which is why the real objective 
of these models is to equal the detection capacity of a human 
being.  

From the above, it can be concluded that both models are 
valid for use, but the choice of one model or the other will 
depend on the type of image to be detected. As long as the 
images have a constant distribution, it is convenient to train 
sub-models that try to detect the objects that appear with the 
same frequency, creating the necessary sub-models. However, 
if the images to be identified have a more varied casuistry, the 
development of a single, completer and more robust model 
would be justified. 

V. CONCLUSIONS  
In the optimisation of the training, very promising results 

close to 98% were obtained that can meet almost any 
requirement imposed by a company to consider the training 
valid. Obtaining a trained algorithm with 100% accuracy and 
100% recall is practically impossible, and if it were to be 
achieved, the resources used would not justify the training, as 
it has been observed that the cost required in computational 
terms increases exponentially as the algorithm approaches 
100% accuracy and recall. For this reason, a balance is sought 
which, normally, tries to achieve the current performance of a 
process (if a current process is being automated) or, 
alternatively, to establish a value that makes sense considering 
the required precision and the time that is to be spent on a new 
automated process.  

Within the process of optimising the training of the 
algorithm, it is concluded that, depending on the dataset, 
different parameters and hyperparameters of the algorithm can 
be adjusted to improve the results in terms of accuracy, 
training time and available GPU memory used. In the analyses 
conducted in Chapter 4, it is concluded that, in general, the use 
of specific techniques that improve training results focuses on 
a single parameter of the results, sacrificing part of the values 
obtained in the other parameters. Specifically, to improve the 
accuracy of the algorithm, it was observed that the most 
effective technique is the use of Data Augmentation, as it 
allows the algorithm to train with more images and, therefore, 
to extract more features from the objects to better feature 
them. However, training with more images significantly 
increased the training time, so a balance must be reached, 
considering that as better accuracies are obtained, the training 
time will increase exponentially. Also, to combat this negative 
effect of using Data Augmentation, it is concluded that 
modifying the number of images per batch and the size of the 
images helps to reduce the training time, because the training 
is able to process more information per second, however, this 
would not be possible if there was no GPU memory available 
to use, so this technique of finding a balance between the size 
of the images and the number of images per batch becomes 

more efficient when more GPU memory is available, since it 
is the computational capacity that makes the training become 
faster. Finally, trying to reduce this last negative effect, it is 
concluded that the use of Transfer Learning helps to reduce 
the computational capacity used and, therefore, the GPU 
memory used is reduced, since the first layers of the neural 
network are not trained avoiding numerical computations in 
those layers, however, the accuracy is reduced, Nevertheless, 
the accuracy is reduced, since the first layers are in charge of 
extracting the characteristics of the objects, hence, the use of 
Transfer Learning is very justified when the dataset with 
which the algorithm is going to be trained shares part of the 
characteristics learned by the model used in the Transfer 
Learning process. Analysing the conclusions, it is concluded 
that the use of the three techniques simultaneously helps to 
achieve an optimised training at a general level and that, 
depending on the requirements of the project, the techniques 
that do not achieve the objectives of the project in terms of 
accuracy, training time or GPU memory used will be 
sacrificed.  

In the end, the implementation of algorithmic models in 
decision making in iterative processes is justified and, as has 
been proven, extraordinary results are achieved that allow 
matching the results obtained by people in the same process. 
The revolution of intelligent algorithms is unstoppable and 
that the company must bet on them, in order to adapt to current 
technology and become a pioneering company. 
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