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Abstract— Uncertainties associated to Distributed Energy 

Resources (DER) generation and demand are introduced into 

Hosting Capacity evaluation by performing a Monte Carlo 

based OPF analysis with curtailment minimisation as objective 

function. This approach obtains curtailment distributions, from 

which risk analysis is performed to provide information for 

investors with the aim of incentivising investment in DERs. 

These are beneficial for the grid as they provide flexibility and 

reliability. 
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I. INTRODUCTION  

Hosting Capacity (HC) is defined as the ability of a system 
to host generation without the grid reaching a critical 
operating point. HC is typically used in the field of renewable 
generation integration. If generation exceeds the HC it implies 
that at least one electrical variable of the grid (voltage, flow 
through a line, etc.) exceeds a limit for a certain time. 

In recent years, developed countries have set various 
environmental goals. For example, the state of California is 
aiming for 60% of energy to be produced by renewables by 
2030 [1], and Europe has set the goal of increasing energy 
efficiency while increasing the integration of renewable 
energy sources [2]. These initiatives have caused investment 
in DER to grow considerably in recent years. According to [3], 
Distributed Photovoltaic (DPV) will grow at a rate of 6.1% 
per year from 2020 to 2050, causing a paradigm shift in the 
electricity system. The increased penetration of DER can 
cause problems in the distribution grid such as overvoltages at 
nodes, overcurrents on lines, reverse flows and problems with 
power quality due to connected electronic equipment [4]. 

Traditionally, the power grid worked as follows: power 
was generated at generation plants and transported to 
customers (most of whom were located on the distribution 
network) via the transport and distribution networks. 
Distribution system operators (DSOs), when planning 
investments in the network, had only to take a pattern of 
demand growth and plan equipment reinforcements. 
However, the upward trend in DER installation coupled with 
changes in consumption patterns, complicates the planning of 
the distribution network using the traditional methodology. 

To avoid blind investments in grid reinforcement, DSOs 
adopted the HC term, which was first introduced in 2004 by 
Bollen et al, [5]. The first and actual approach to determine 
HC value is static. Points of maximum generation and 
minimum consumption are taken, then the cases are simulated 
using a power flow (PF) until a certain installed capacity 
exceeds network operational limits. This value becomes the 
HC of the distribution network. This method has been valid 
until the interest in DER investment exploded. Without 
question, this value is typically very conservative and highly 
unlikely as it combines an instant of minimum demand 

(typically at night) with an instant of maximum generation (in 
case of midday PV generation). 

The approach to increase the HC of the distribution grid is 
named Dynamic Hosting Capacity (DHC). This new 
methodology is stochastic and can consider uncertainties of 
production, consumption and DER locations when 
determining the HC of the grid. In addition, with inverter 
control schemes, an increase in HC can be obtained by 
reducing for short periods of time the power injected by DERs 
into the grid, this is also known as curtailment. This new 
methodology increases the HC.  

The project objective is to implement a DHC algorithm 
that reframes the HC problem and determines the new HC of 
distribution systems using a DHC approach. 

II. STATE OF THE ART 

This section will describe the developments to date in 

the Hosting Capacity environment. First, the criteria that are 

commonly used to determine HC will be described, then the 

most common techniques that can be used to increase HC 

will be discussed. Thirdly, the existing methodologies that 

are being used to determine HC will be explained. Then, the 

active control techniques will be described. Finally, the last 

section of this chapter shows a briefing of a market report, 

which analyses the existing DERMS products, the players in 

the market and those who are addressing Hosting Capacity. 

A. Hosting Capacity crieria. 

The results obtained from the HC will depend on the 
criteria previously established. These criteria are the technical 
limits of the distribution network. The implementation of 
DER in the distribution network can cause the technical limits 
of the distribution network to be reached; these limits are used 
in the algorithms to determine the HC level that the 
distribution network can accommodate without it reaching 
critical operating points. The most studied limits according to 
[6], [7] are: thermal limits, voltage limits, limits associated 
with the protections and, finally, limits associated to the 
quality of service. 

Out of all the criteria, the frequency of occurance is not the 
same; in most of the studies carried out, over voltages and over 
currents are the two most frequently reached limits [5], [6], 
[8]. 

B. Hosting Capacity Enhancement Techniques 

The techniques to increase the Hosting Capacity try to 
avoid reaching the limits of the system. In [6], methods that 
try to avoid reaching the upper limit of voltages in the nodes 
are studied, on the other hand, in [5], besides from 
commenting on the methods to regulate the voltages, it also 
introduces methods to mitigate harmonics and comments on 
reinforcements as a method to increase the HC. The last two 
techniques will not be discussed, the first one because 
harmonics do not usually cause problems and the second one 
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because this work aims to find ways to increase the HC 
without resorting to wire solutions, and therefore, grid 
reinforcements will not be considered further. 

C. Existing Methodologies for determining Hosting 

Capacity 

The system capacity can be broken down into three 

regions [6]. The three regions are depicted in Fig 1, and are 

denoted as A, B and C. Fig 1 assesses the probability of an 

electricity variable reaching its limits as a function of the 

level of installed capacity. In region A, the probability of 

exceeding any operational limit is zero for all installed 

capacity levels. Region B comprises those installed capacity 

values where there is a risk associated with exceeding 

network limits, the higher the installed capacity, the higher 

the risk. Finally, region C is where the system limits for the 

level of installed capacity will always be exceeded. 

Continuing, there are two points of interest. These are 

indicated in Fig 1 as HC minimum (Minimum Hosting 

Capacity) and HC maximum (Maximum Hosting Capacity), 

the first is the boundary between region A and B, while the 

second is the boundary between region B and C. 

 
Fig 1: Hosting Capacity Regions 

The traditional method to determine the HC tries to find 

the value of the minimum HC, as this way of assessing the 

HC is becoming obsolete, now the region B has taken more 

interest. The existing mathematical methods for estimating 

the HC in region B are classified as follows [6], [9]: 

1. Optimization problem: Optimization problems tend 

to converge towards the maximum HC, as the 

objective function is usually focused on maximising 

the installed capacity. Three types of optimisation 

problems are distinguished in [6]: 

a. Robust optimization: Probabilistic 

distributions of generation and 

consumption are not needed, only their 

limits. Decisions are made assuming a 

worst-case scenario within the previously 

defined uncertainty interval. 

b. Stochastic Optimization: Uncertainties are 

modelled as random variables with their 

probability functions. Scenarios of these 

variables need to be generated, which are 

then solved simultaneously. 

c. Distributionally Robust Optimization 

(DRO): It assumes that probability 

functions are impossible to achieve, but it 

does consider generation and consumption 

predictions as values within a confidence 

interval. 

2. Analytical Method: Analytical methods are 

deterministic problems and do not consider the 

uncertainties associated with generation, 

consumption and location of DER installations. 

3. Monte-Carlo: Generates multiple scenarios to model 

uncertainties and performs a load flow to each 

scenario to determine the HC. 

When estimating the HC of a network, [10] defines 3 

variables with uncertainty which are: the location of DER 

installations, the variation in demand, uncertainty in 

generation. For computational simplicity, DHC methods do 

not consider the uncertainty associated with at least one of the 

variables. 

The methodology can be summarised by dividing the 

mathematical methods into two groups, deterministic and 

probabilistic. The first group uses those mathematical models 

to determine the HC that do not consider the uncertainties of 

the variables, the second group will consider the uncertainties 

and their results will be probabilistic distributions. 

D. Active Control of the Distribution Network 

In a distribution network with high DER penetration, 

voltages at the nodes are often one of the biggest problems 

that the DSOs encounter [11], [12]. One of the ways to 

increase the HC of the network without the need to invest in 

reinforcements is the asset management in the distribution 

network. This involves modifying the operating point of the 

equipment connected to the network so that the network does 

not go outside its operating limits. The most commonly used 

techniques to control the grid and simultaneously increase 

HC are the modification of the taps of an On-Load Tap 

Changers (OLTC) transformer at the substation of the feeder, 

and the control of active and reactive power using the 

inverters of DER installations.  

1) OLTC Transformer Control 

Distribution networks are operated radially and the OLTC 

is located at the MV/LV substation from the feeder. The 

OLTC allows the transformer tap to be changed while the 

transformer is under load, this feature enables the system 

operator to control the voltages at the feeder in real time. The 

control techniques (according to [12], [13]) of an OLTC are 

as follows: 

1. Transformer secondary voltage control: This 

method modifies the OLTC taps to keep the 

secondary voltage as close as possible to a 

predefined point. 

2. Control of the voltages at the furthest points from 

the transformer: To carry out this control it is 

necessary to have measuring equipment installed at 

the furthest point from the feeder and a 

telecommunications system to transmit the status of 

the node to the transformer, the OLTC will change 

the tap to maintain the voltages at the end of the 

feeder within acceptable limits. This method would 

be effective if there were no DER connected, since 

as the networks are radial, the voltage at the furthest 

point from the substation will always be the 

smallest. However, with DER installations this does 
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not need be the case and tap changing can lead to 

overvoltages at other points in the network. 

3. Voltage control at all nodes: OLTC shall modify its 

taps so that all network node voltages are at 

acceptable operating points. 

4. Temporal control: This method consists of changing 

the tap in function of time, allowing less 

conservative values (closer to the lower and upper 

boundaries) to be adopted in low demand scenarios 

and more conservative scenarios in high demand 

scenarios. 

2) Reactive Power Control 

Reactive power control is based on using the inverter to 

inject or consume reactive power so that the grid voltages are 

within acceptable ranges. There are two popular reactive 

power controls [11], [12]. The first one is based on 

controlling the reactive power consumed using the Constant 

Power Factor Mode (CPFM), which is a function of the net 

active power injected. The second control determines the 

reactive power that the equipment will consume or inject as a 

function of the voltage at the node, this is known as Volt-Var 

Operation Mode (VVOM).  

The operation of the VVOM control is shown in Fig 2, 

which represents the power being injected or consumed on 

the vertical axis and the voltages on the horizontal axis. As 

can be seen, when the voltage is below 0.92 p.u., the inverter 

injects the maximum reactive power. If the voltage is within 

an acceptable range (0.94-1.06 p.u.) the inverter will not 

consume or inject reactive power, once the voltage exceeds 

1.06 p.u. it will start to consume reactive power, the 

consumption will increase linearly from zero to the maximum 

reactive power as a function of the voltage at the node. 

 
Fig 2: Active and Reactive Power Control in function of node 

Voltages. 

3) Active Power Control 

Inverters also allow to control the active power that can 

be fed into the grid, active power control in distribution 

networks tends to be more efficient than reactive power 

control due to the X/R ratio. Despite being more efficient, the 

disadvantage is that it reduces the income of the owners of 

the DER installations proportionally to the power curtailed. 

This method makes it possible to increase HC. However, the 

system operator and DER owners must come to an agreement 

to see how much active power can be curtailed, as too much 

active power curtailment can cause investors to reconsider 

investing in DER facilities. The most common control 

architectures are as follows: 

1. Fixed maximum power: This control strategy is 

presented in [14], on it, the equipment can only 

inject up to 70% of its nominal power, when the 

installation is generating more than this, the active 

power will be curtailed. 

2. Volt-Watt Operation Mode (VWOM): This 

operating mode controls the active power injected as 

a function of the voltage at the node. The operation 

of this control scheme is shown in Fig 2, the active 

power is identified by the blue curve. If the reactive 

control is ignored, the voltage-dependent active 

power control is based on starting to curtail active 

power injections once the voltage exceeds a certain 

value. 

3. Volt-Var-Watt Operation Mode (VVWOM): 

Combines the VWOM and VVOM control schemes, 

the operation is shown in Fig 2, the objective of 

combining these two schemes is to reduce 

curtailment. To do this, first the reactive power is 

controlled until it reaches its maximum, when it is 

no longer possible to consume more reactive power 

and the voltage exceeds a certain value, the active 

power injected will start to be reduced until the 

voltage returns to within the operating threshold. 

III. MODEL DESCRIPTION 

To introduce the uncertainties associated with generation 
and demand into the model, a Monte Carlo based OPF 
approach has been implemented. For it, in each of the 
scenarios created, an OPF will be run with curtailment 
minimisation as objective function. 

Since the historical data contains hourly and monthly 
information, it is desired to take advantage of this to transfer 
this information into the output data. To achieve this, as shown 
in Fig 3, three variables are generated, m, h and MC, where: 

• m = stands for the month group that will be 

evaluated, in our case the analysis will be carried 

out monthly. 

• h = stands for the hour group to be evaluated, for 

example, in [10] a clustering analysis is made to 

group the hours into homogeneous groups, on 

this model, the analysis will be carried out in an 

hourly basis. 

• MC = stands for the number of samples that we 

want to obtain for each hour, this value is up to 

the user, the higher the value, the higher the 

computational burden and the longer it will take 

to run the algorithm.  

The goal of the algorithm is to get MC samples for every 

hour and for every month of the year, the number of total runs 

will be obtained following equation ( 1 ). In this case, m will 

be equal to 12, h will equal 24 and MC will take the value of 

60, resulting in 17,280 runs. 

𝑚 × ℎ × 𝑀𝐶 = 𝑛° 𝑜𝑓 𝑟𝑢𝑛𝑠 
( 1 ) 

 

For every run the algorithm does the following process: 

firstly, the technology to be installed, the capacity and the 

location of the plant will be specified. Second, random 

samples from the input variables are selected, these are load 

and generation values. These values come from historical 

data. The objective function of the OPF is active power 

curtailment minimisation. Moreover, the OPF has a VWOM 
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control which manages the voltages at the nodes by doing 

active power curtailment. Finally, for every run a curtailment 

value will be obtained. Once all the runs have been completed, 

a distribution of curtailment values will be obtained. 

 

 
Fig 3: Model Flowchart 

A. Model Output 

In each of the Monte Carlo simulations a curtailment 

value will be obtained. 

The sum of all curtailment values will form a distribution, 

as long as curtailment occurs in any scenario, otherwise there 

will be no distribution and there will be no curtailment risk. 

Assuming that there is curtailment after running the 

simulations, three values will be obtained from the 

curtailment distribution, the Risk Value, the Conditonal 

Curtailment at Risk (CCaR) and the Curtailed Energy 

Percentage. 

B. Risk Analysis 

The aim is to provide a series of values in the output that 

study the risk involved in the operation that the investor 

wishes to carry out. 

The conditional value at risk (CVaR) has been chosen as 

the parameter for measuring investment risk. This parameter 

is widely used in financial environments, specifically in the 

evaluation of the risk associated with investments in financial 

assets, usually portfolios, stocks, indices... However, it can be 

studied in other areas, as demonstrated in [15], [16]. In 

summary, the objective of the parameter is to evaluate risk 

scenarios to see if the losses in the event that these scenarios 

occur outweigh the gains. 

As can be seen in Fig 4, the VaR returns a value of losses 

associated with a probability of this situation occurring, 

whereas the CVaR is more towards the tail of the distribution, 

being this the value of the mean of the area of the distribution 

that lies in the probability interval 1- α. 

 
Fig 4: Conditional Value at Risk graphic representation, 

Source:[15] 

1) Risk Value 

Risk value in this project is determined as the percentage 

of hours that curtailment will occur. This is calculated 

following equation ( 2 ). 

𝑅𝑖𝑠𝑘 𝑉𝑎𝑙𝑢𝑒 =
ℎ𝑜𝑢𝑟𝑠 𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ℎ𝑜𝑢𝑟𝑠
× 100 

( 2 ) 

 

The aim of this result is to return the value of 1-α from 

Fig 4, this will give the investor information about how much 

curtailment time should be expected. 

2) Conditional Curtailment at Risk 

Conditional Value at Risk (CVaR) will be renamed, 

giving birth to the term Conditional Curtailment at Risk 

(CCaR). To calculate the CCaR value it is first necessary to 

know the value 1-α from Fig 4, which is the Risk Value. Once 

this value is established, the CCaR is determined by 

averaging the area enclosed inside the 1-α area, as equation ( 

3 ) suggests: 

𝐶𝐶𝑎𝑅 =
∑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑

∑ 𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 ℎ𝑜𝑢𝑟𝑠
 

( 3 ) 

 

This value reports the average curtailed power when the 

DER installation undergoes curtailment. 

3) Curtailed Energy Percentage 

The percentage of energy that has not been supplied is 

returned. This value has the aim of enabling the possibility of 



5 

 

extrapolating this percentage to the annual production 

analysis, so that the investor, besides knowing the percentage 

of hours that will be curtailed, will also know the percentage 

of energy that it has not been able to supply allowing him to 

carry more detailed investment analysis. 

𝐶𝐸𝑃 =
∑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑

∑ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦
 

( 4 ) 

 

IV. TEST SYSTEM 

A. Grid 

The network used is presented in the Matpower manual 

[17], it is a medium voltage distribution network, with a radial 

configuration and 17 nodes used in the IEEE, [18]. The 

configuration of the distribution network is shown in Fig 5. 

The entire study of the method proposed in this project will 

be carried out on this network. 

 
Fig 5: IEEE 17 bus distribution network 

B. Input data 

1) Load data 

Starting from thirteen nodal demand profiles provided to 

Minsait by one of its clients, to generate a demand profile 

equivalent to six years and a half, from January 1st, 2016, up 

to July 31st 2022, this path was followed. 

After gathering all the demand profiles, reference [19] 

was consulted to know the average consumption of each 

month.  

Once the average consumption values are known, a 

multiplier was created for every month. As the year’s mean 

value is 270 kWh, according to [19], [20], those months with 

an average consumption of 270 kWh have a multiplier of 1. 

The multiplier is obtained dividing the average month 

consumption between the year’s mean consumption.  

Then, each of the profiles is multiplied by a random 

normal distribution with the multiplier as a mean value and 

with a standard deviation of 0.2 to reduce significantly the 

probability of having a negative value. 

Once this process is completed the resulting distribution 

will look approximately like Fig 6. Each node load will have 

its own distribution.  

With the objective of modelling load uncertainty, for each 

Monte Carlo run, a random sample will be selected, in 

function of the month and the hour of the day that is under 

evaluation in that moment. 

 
Fig 6: Artificial historical demand profile 

2) Generation data 

Meteorological historical measurements from the 

Military Base of Torrejón de Ardoz, Madrid, have been 

collected from NASA Power data access viewer web page 

[21], to estimate the amount of generation that can be injected 

into the grid under such circumstances. 

To estimate the power that a PV installation will be able 

to deliver the values of the solar irradiance (in W/m2), from 

January 1st, 2016, up to December 31st, 2021, have been 

downloaded. Once processed, the historical profile obtained 

is represented in Fig 7. 

 
Fig 7: Historical (2016-2022) Irradiance Measurements 

The same process has been carried out to obtain the 

historical measurements of the wind speed at 10 meters of 

height. The historical profile is represented in Fig 8, where 

each hour of the day has the number of samples 

corresponding to six years of measurements. 
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Fig 8: Historical (2016-2022) Measurements of Wind Speed at 10 

meters 

 The model will sample a random value for both 

meteorological conditions measurements. These 

measurements will return a generation value that will be 

proportional to the installed power. The generation values will 

be introduced into the algorithm for the OPF to run. 

V. SIMULATION RESULTS ANALYSIS 

This section presents the results obtained from running 

the algorithm. Firstly, the algorithm output of a 6MW PV 

installation will be analysed. Afterwards, a comparison 

between four different HC calculation approaches will be 

made, the Curtailed Energy Curtailed, the Risk Value and the 

CCaR of these four methods will be discussed. In third place, 

the results from different installed capacities will be 

commented, these installed capacities have been simulated 

for a PV installation, a wind farm and a hybrid installation. 

Finally, as the curtailment results have been arranged to keep 

time data (month and hour), they will be broken down into an 

hourly analysis. The four algorithms to be studied are the 

following: 

1. Worst Case scenario: as mentioned in 

previously, it selects the meteorological 

measurement that maximises generation and the 

minimum load recorded from the entire 

historical database, then, the OPF is executed. 

This is the traditional Hosting Capacity 

evaluation method and the one the project aims 

to improve. 

2. The Hourly Worst Case scenario: selects the 

maximum generation at and the minimum loads 

for each hour, then it executes the OPF. 

3. The Monte-Carlo based OPF considering only 

load uncertainty: picks the maximum hourly 

generation and a random value from the load 

distribution for each Monte Carlo run. This is 

also known as DHC with load uncertainty. This 

is the first of the algorithms proposed in the 

model, it is based on the algorithm proposed in 

[10], but the demand values are sampled in an 

hourly basis. 

4. Monte Carlo based OPF considering both, load 

and generation uncertainty: picks random values 

for each hour out of the historical database. This 

is also known as DHC with generation and load 

uncertainty. This algorithm is the one to become 

the first approach towards the Onesait DERMS 

module and is the second algorithm to be 

proposed in this project. 

A. Output Results Analysis 

To determine the values of the CCaR, the Risk Value and 

the Curtailed Energy Percentage, the algorithm generates 

distributions which are represented in Fig 9 below, it shows 

the results obtained after simulating a 6 MW PV installation 

at node 9, for the DHC case considering generation and 

demand uncertainties. 

 
Fig 9: 6MW PV Installation Curtailment Distribution 

Equations ( 2 ),( 3 ) and ( 4 ) described in section III are 

applied to the simulated curtailement distributions to obtain 

the Risk Value, CCaR and Energy Curtailed Percentage 

values. Fig 9 represents the maximum available DER 

generation minus demand distribution in blue, and the 

curtailment distribution in red. 

To begin, the curtailment distribution doesn’t meet the 

positive tail of the generation minus demand distribution, this 

was expected, and demonstrates graphically the difference 

between a Power Flow and an OPF. 

The parameters obtained from this distribution analysis 

are: 

• Risk Value = 3.22% 

• CCaR = 0.41 MW 

• Curtailed Energy Percentage = 1.33% 

The Risk Value will be variable, and it will depend on the 

distribution, the more hours that there is curtailment, the 

higher the Risk Value. Contrary to the traditional way of 

carrying out a CVaR based risk analysis, the (1- α) value is 

set by curtailment output distribution, highlighted in red in 

Fig 9, and not by the user. Then, the CCaR and the Curtailed 

Energy Percentage will be determined from the entire 

curtailment distribution. 

B. Comparison between Models 

Four calculation methods have been compared, these are: 

Worst Case scenario, Hourly Worst Case scenario, DHC with 

load uncertainty, DHC with generation and load uncertainty. 

 

Having these methods defined, the results out of the 

simulation will be compared to evaluate if the performance 
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of the proposed algorithm, the results under evaluation will 

be the Curtailed Energy Percentage, the risk value and the 

CCaR. All the results have been simulated under the same 

conditions: a 6 MW PV installation located in node 9 of the 

grid. 

 

To begin, Fig 10 shows the Curtailed Energy Percentage. 

As it can be observed, if the 6 MW installation was evaluated 

using a Worst Case scenario approach, 97.06% of the energy 

produced will be expected to be curtailed. This result 

improves if an hourly Worst Case scenario is considered, the 

improvement is above 10% and results in 86.71% of the 

energy expected to be curtailed. Despite this improvement, 

the result could difficultly encourage the investor to carry on 

with his project, leaving him with the options of either 

reconsidering the size of the plant or abandoning the 

investment. When DHC methodologies are introduced, the 

results improve significantly, being the expected energy 

curtailment 4.74% in a DHC considering load uncertainty, 

and 1.33% if load and generation uncertainty are considered. 

 

These results where expected as the worst case 

approaches don’t take into account seasonality, which means 

that, in the case of the hourly Worst Case scenario, a 

generation in July could be compared with a demand from 

March. Therefore, the results are conservative values which 

are highly unlikely to occur. On the other hand, DHC 

methodologies are considering the temporality of the 

database resulting in more likely scenarios which offer a 

more realistic forecast. 

 

Summarising, the proposed method is the most effective, 

the expected energy percentage to be curtailed has a value 

most encouraging for investors, the downside of this method 

is the computational burden, as it considers two uncertain 

variables. 

 
Fig 10: Curtailed Energy Percentage comparison between 

methods 

Moving on to the Risk Value analysis, as it can be seen in 

Fig 11, the worst case approaches don’t have a value for this 

indicator, this happens because these methods are 

deterministic and only return one value as an answer. On the 

other hand, the DHC approaches return distributions and 

from these, as shown in Fig 9, the Risk Value is calculated 

using equation ( 2 ). 

 

 
Fig 11: Risk Value comparison between methods 

Looking at Fig 11, DHC considering generation and load 

uncertainty returns a Risk Value much lower than the Risk 

Value obtained from the DHC that only considers load 

uncertainty, 3.22% against 16.14% respectively. 

 

Again, this was expected, as the DHC approach with just 

load uncertainty takes the maximum hourly generation, 

where, for example, in winter months, such generation values 

will be highly unlikely to take place. 

 

With the analysis of the CCaR happens the same thing as 

with the analysis of the Risk Value, as the worst case 

approaches are deterministic methods, there is no distribution 

to obtain the CCaR from.  

 

Fig 12 portraits the CCaR results from the simulation, in 

this case the values are very similar, still the DHC with load 

and generation uncertainty outperforms DHC with just load 

uncertainty, CCaR of 0.41 MW for the former and CCaR of 

0.57 MW for the latter. 

 
Fig 12: Conditional Curtailment at Risk comparison between 

methods 

The CCaR result from Fig 12 jointly with the Risk Value 

result from Fig 11 states the following: 

• DHC with load uncertainty approach has a Risk 

Value of 16.14% and a CCaR of 0.57 MW. This 

implies that the investor can estimate that his plant 

will suffer curtailment for 16.14% of hours and the 

mean power that will be curtailed during those hours 

will be 0.57 MW. 

• DHC with load and generation uncertainty has a 

Risk Value of 3.22% and a CCaR of 0.41 MW. This 

implies that the investor can estimate that his plant 

will undergo curtailment 3.22% of the time during a 
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year, and the mean curtailed power during that time 

would be 0.41 MW. 

These outputs can be used to develop a flexible contract 

between the DSO and the investor, the contract could be 

confectioned so that there is a compromise between the 

interests of both parties, leaving room for the DSO to operate 

the plant and not jeopardizing the financial performance of 

the investment. 

C. Installation Performance when subjected to Installed 

Capacity Increments 

This section of the analysis of the results studies how the 

indicators (Risk Value, CCaR and Curtailed Energy 

Percentage) vary depending on the installed power and the 

type of technology being installed when running the DHC 

with load and generation uncertainty algorithm. 

 

To carry out this analysis, the installed power was 

increased in steps of 0.5 MW from 2.5 to 7 MW and then two 

more simulations were carried out, one with an installed 

power of 8 MW and the other with an installed power of 15 

MW. These have been simulated for PV, wind and hybrid 

installations, which are composed by both PV and wind. 

 

Fig 13 shows how the technology that presents the least 

risk for lower installed powers is PV. Nevertheless, the 

increase in Risk Value that this technology suffers when the 

power exceeds certain thresholds is much more pronounced 

than with the rest of the technologies. This means that 

investors must be careful when designing their plants, as the 

risk of curtailment increases considerably with the power of 

the plant. On the other hand, wind power plants have a much 

more linear risk evolution than PV plants. Finally, the best 

performing technology in terms of risk value is the hybrid 

technology. It has barely risk until the 15 MW plant is 

simulated, there is a change in the risk trend from 8 MW to 

15 MW, this change in the trend may be due to the presence 

of photovoltaic installations, as the risk of these installations 

is very sensitive to the installed power, which can produce the 

same effect in hybrid installations. 

 
Fig 13: Risk Value in function of the installed power 

The study of the evolution of CCaR as a function of 

installed power is shown in Fig 14. Once again, the value of 

CCaR increases as installed power increases. As in the case 

of the Risk Value, the technology that seems to be more 

sensitive to the installed power is PV. Despite this, it presents 

the lowest values from 2.5 MW to 7 MW of installed power. 

This implies that when the photovoltaic installation is 

undergoing curtailment, on average, the power that is not 

being supplied will be lower than in the rest of the 

technologies. Talking about the CCaR of wind installations, 

these present the highest CCaR values for all installed power 

except for 15 MW, which implies that although the Risk 

Value is lower, on average, the power that is not being 

supplied will be high, for example, for an installed power of 

2. 5 MW of wind power, the CCaR value is 0.41 MW, which 

means that on average, when curtailment occurs, 16.4% of 

the power that is being generated in the plant at that moment 

will not be injected. To conclude with the CCaR, the hybrid 

installation is the one with the lowest sensitivity to the 

installed power, and its performance at low installed powers 

is close to the values of the PV installation. 

 
Fig 14: CCaR evolution in function of the installed power 

The third and last parameter analysed is the Curtailed 

Energy Percentage, which is shown in Fig 15. The pattern is 

very similar to that of the CCaR, with the best performance 

in the overall calculation being that of the hybrid installation, 

which shows the least sensitivity to installed power, except at 

high power levels, where the slope of the hybrid installation 

is steeper than that of the wind installation. The progression 

of the indicator in PV installations also shows satisfactory 

results, again this technology is very sensitive to the installed 

power, however, up to 7 MW installed, the Curtailed Energy 

Percentage does not exceed 5%, which implies that with an 

installation of 7 MW, over the course of a year, the energy 

not supplied will be less than 5%. The correlation of this 

indicator with the CCaR in a wind farm is very high, the 

Curtailed Energy Percentage is the highest in all cases with 

the exception of 15 MW. In installations of this type, it would 

be appropriate to install less power, for example, if a 

threshold of 5% is established, the wind installation would 

have to be 5.5 MW. 

 
Fig 15 Energy Percentage Curtailed in function of the installed 

power 
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In summary, as mentioned above, all three indicators 

increase with installed power. The points to be drawn from 

the analysis are as follows: 

• For lower plant installed power, based on the 

indicators alone, the best choice is photovoltaics. 

• In the overall calculation, the best choice is a hybrid 

installation, however, the investment costs would 

have to be studied to see if it is profitable or not. 

• Wind installations in the area where the simulations 

have been carried out are again, in view of the 

indicators, the worst choice among the three options 

presented. 

D. Curtailment Time Analysis 

One of the strengths of the proposed methodology is that 

hourly discrimination is retained, this may also be an output 

of the algorithm which aims to give more information to the 

investor so that it can assess the investment more accurately. 

The need to return these results to the investor arises from the 

variation in the price of energy over time, since curtailment 

impact during peak hours is not the same as curtailment 

impact during flat or off-peak hours. 

 

The analysis is the same as in the previous section, the 

algorithm will obtain the result of the three indicators, the 

Risk Value, the CCaR and the Curtailed Energy Percentage, 

for each hour. 

 

After the simulation of the 6 MW PV plant, the results are 

shown in Fig 16 and Fig 17. As it is a photovoltaic plant, it 

makes sense that the curtailment takes place in the 

intermediate hours of the day, in this case, from 9:00 to 16:00. 

 
Fig 16: Risk Value and Curtailed Energy Percentage hourly 

evolution 

 

 
Fig 17: CCaR hourly evolution 

Analysing the patterns from Fig 16 and Fig 17, a 6 MW 

installation is estimated to suffer curtailment approximately 

eight hours of the day. The hour with the highest risk of 

curtailment is 11:00, where the Risk Value takes a value close 

31%, at this hour also coincides with the CCaR and Energy 

Percentage Curtailed values taking the highest values of the 

whole day, 0.57 MW and 12.67% respectively. The next most 

curtailment-prone hours are 10:00 and 14:00. 

Temporal analysis is another tool to facilitate the study of 

investments in distributed generation in the distribution 

network, it can simplify the work in the design phases of the 

DER installation as well as in the economic projections that 

are made to value an investment.    

VI. CONCLUSIONS  

It has been demonstrated that by including the 

uncertainties associated with generation and demand in the 

algorithm, and performing a Monte Carlo based OPF analysis 

to model them, the Hosting Capacity increases considerably. 

Concretely, the energy curtailed improved in more than 95% 

with respect to the Worst Case Scenario when running the 

DHC algorithm considering generation and demand 

uncertainties. Achieving the goal of improving the 

conservative model has been achieved. 

 

Furthermore, another observation made after comparing 

the performance of the different methodologies is that the 

DHC with uncertainty in demand and generation, performs 

better than the DHC with uncertainty in demand; thus, the 

results obtained with the latter methodology are acceptable, 

as it improves the results obtained with the Worst Case 

Approach by 92%.  

 

Although the results are better when considering 

generation and demand uncertainty. When to make a flexible 

contract, it would be beneficial to see the results of both DHC 

methodologies to elaborate it, with the objective of giving 

more flexibility to the DSO operation by establishing looser 

contract terms, such as something intermediate between the 

result considering only demand uncertainty and the result 

considering demand and generation. 

 

To determine the size of the DER installation, Risk 

Analysis, CCaR and Curtailed Energy Percentage are the 

three parameters to analyse. Moreover, there is a possibility 

to analyse graphically the design of the plant by watching the 

probability distributions produced by the algorithm. 

  

Regarding the graphic analysis, for photovoltaic 

installations, one of the indicators of over dimensioning is the 

analysis of the shape of the curtailment distribution, in the 

event that the shape of the distribution flattens out, it is an 

indicator that the installation is over dimensioned. For hybrid 

and wind turbines, the shape does not tell us as much, as they 

tend to be always convex. In these two cases looking at the 

limits of the graph will be more representative. If the 

curtailment registers are similar to the installed power on 

some occasions, it is an indicator that the installation may be 

over-dimensioned. 

 

With regard to the numerical analysis. Photovoltaic plants 

present a lower risk up to a certain installed capacity. This is 
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due to the sensitivity of the indicators to increases in installed 

power, which is why it is necessary for them to be correctly 

designed. In the case of oversizing, the investment will 

worsen, and the returns will not be as profitable. Hybrid 

plants show the best results and the best response to power 

increase, for these installations the risk of oversizing is not as 

high as in a PV installation, however, the initial investment 

would have to be assessed to see the profitability. Finally, 

wind installations are the worst performers in terms of 

Curtailed Energy Percentage and CCaR. 

 

When making decisions, it is important to look at the three 

indicators, and not to look only at one of them to assess 

whether the investment is a good one or not. 

Speaking about the hourly breakdown, it gives the 

possibility to adjust the plant dimension to minimise 

curtailment when prices are high. Time analysis is significant 

in time-of-day sensitive DER technologies, it can help in the 

design of the DER installations and in the economic analysis 

of the investment. 

 

Finally, after the analysis of the results, it has been 

concluded that the outputs of the algorithm should be used to 

develop a flexible contract that satisfies all interested parties. 

To this end, it is proposed to establish contractual limits that 

are slightly higher than those obtained after running the 

algorithm, which give the DSO room for manoeuvre if 

necessary, and which do not harm the economic performance 

of the installation. As mentioned, one of the proposals would 

be to establish the contract conditions at an intermediate point 

between the results obtained in the DHC simulation with only 

demand uncertainty and DHC considering generation and 

demand uncertainties. 

VII. FUTURE WORKS 

In view of the project carried out, the following lines of 

research are proposed, which may lead to possible future 

works. 

To begin, one of the immediate jobs would be to modify 

the inverter control, right now the control is a VWOM active 

power control, as it reduces the active power injections to 

control the voltages at the nodes. A possible improvement 

would be to introduce a VVWOM control, which combines 

active and reactive power control, and see how this control 

would improve the inverter indicators. 

 

The next proposed future work is to consider the 

evolution of the HC over time. The value of the HC is not 

static as it varies according to the demand in the network. A 

valuable contribution would be, using Artificial Intelligence 

techniques, to include in the algorithm a prediction of the 

evolution of demand in the coming years. This would provide 

investors with information on the performance of their 

installation in the following years. Which could allow them 

to consider installing more power in the present, even if the 

indicators are not so favourable, in the knowledge that in the 

future these indicators will improve. This will also allow the 

investor to negotiate a flexible contract with the DSO, 

agreeing to higher curtailment in the present in exchange for 

lower curtailment in the future, as energy demand increases. 

In addition to the above, the study of the evolution of 

weather conditions over time, using Artificial Intelligence 

techniques can also be included. Due to climate change, the 

parameters may evolve, which means that the projections 

made a priori may deviate from reality and the flexible 

contracts established between the DSO and the owner of the 

installation may not be fulfilled. 

 

Another future work is the development of flexible 

contracts, this would entail a process of studying the 

regulation in the connection zone, once the regulation has 

been studied, the flexible contract would aim to establish an 

agreement between the DSO and the owner of the DER 

installation, where the operating conditions are agreed. These 

conditions will be based on the indicators resulting from the 

algorithm. For example, assuming that the Risk Value takes 

a value of 10% and the Curtailed Energy Percentage takes a 

value of 7%, the contract could dictate that such a DER 

installation can be controlled (can undergo curtailment) by 

the DSO at zero cost until either the value (in percentage) of 

non-supplied energy reaches 7%, or the number of hours with 

curtailment reaches 10%, if these values are exceeded, the 

owner of the DER installation will have to be compensated. 

This implies that for the DER installation under review, the 

cost function will have to be modelled to represent these 

offsets in the system costs. 

 

The current algorithm is designed for a grid with no DER 

connected, elaborating a complex cost function that models 

the flexible contract of each DER installation will be 

necessary to assess the incursion of future DER technologies 

into the distribution network. Therefore, the algorithm will 

help with the creation of new DER flexible contracts by 

considering the previous flexible contracts. 
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[19] Red Eléctrica de España, “¿Cómo consumimos electricidad?,” 

https://www.ree.es/sites/default/files/interactivos/como_consumi

mos_electricidad/como-varia-mi-consumo.html. 
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