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Abstract: In this paper, we propose a procedure to obtain and test multifactor models based on
statistical and financial factors. A major issue in the factor literature is to select the factors included in
the model, as well as the construction of the portfolios. We deal with this matter using a dimension-
ality reduction technique designed to work with several groups of data called Common Principal
Components. A block-bootstrap methodology is developed to assess the validity of the model and
the significance of the parameters involved. Data come from Reuters, correspond to nearly 1250 EU
companies, and span from October 2009 to October 2019. We also compare our bootstrap-based
inferential results with those obtained via classical testing proposals. Methods under assessment are
time-series regression and cross-sectional regression. The main findings indicate that the multifactor
model proposed improves the Capital Asset Pricing Model with regard to the adjusted-R2 in the
time-series regressions. Cross-section regression results reveal that Market and a factor related to
Momentum and mean of stocks’ returns have positive risk premia for the analyzed period. Finally,
we also observe that tests based on block-bootstrap statistics are more conservative with the null than
classical procedures.

Keywords: asset pricing; bootstrap; common principal component analysis; cross-sectional regres-
sion; factor models; time series

1. Introduction

Traditionally, finance theory has relied upon the risk-return relationship, i.e., the
higher the risk (usually measured through the standard deviation of returns), the higher
the return. This concept is at the core of the Capital Asset Pricing Model (CAPM) (see
Sharpe [1], Lintner [2], Mossin [3]), where the expected profitability of the i-th stock, E(Ri),
is represented as follows:

E(Ri) = r f + βi(E(rm)− r f ),

where r f is the risk-free rate, E(rm)− r f is the Market Risk Premium, and βi the sensitivity
of expected excess asset’s return associated with the i-th asset.

However, several authors have reported some breaches in this theory. For example,
less volatile stocks seem to have higher returns (see Frazzini and Pedersen [4]), while
Lintner [2] and Miller and Scholes [5] obtained certain inconsistencies when testing the
model with NYSE stocks. Academia has pointed to the existence of several other factors
that, beyond volatility, affect the returns of assets (basically, investors obtain a reward for
bearing risks different from volatility). Some of these factors, relying on financial measures,
are already considered as classical and have been tested in different Markets; see Fama
and French [6]. Other factors, that incorporate macro or industry-related measures, such as
Interest Rates levels (Viale et al. [7]), or Oil price (Ramos et al. [8]), have been less studied or
remain undiscovered. Some researchers, like Elyasiani et al. [9], Lemperiere et al. [10], have
focused on higher order statistical moments of returns and, recently, more sophisticated
models are built by combining such measures with others involving psychological factors,
like Momentum; see Carhart [11]. Momentum, specifically, has won a place by itself among
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the main factors to be considered in the asset pricing literature and has been tested even
in Emerging Markets (see, for example, Misra and Mohapatra [12]). What appears to
be clear is that multifactor models should explain the behavior of assets’ returns better
than CAPM. However, the number of proposed factors has increased dramatically in
recent years. For example, Harvey et al. [13] catalogue 316 factors and note that there are
additional ones that do not make it to their final list. Typically, these models take the form
of the following equation:

E(Ri) = αi + β′iλ.

The expected return for the i-th portfolio is linearly related to a set of factors λ. Usually
this set includes CAPM’s Market factor and other additional factors as independent vari-
ables. New debates arise today regarding which factors should be included in asset pricing
models (see Fama and French [14] and Barillas and Shanken [15] on the methodology
to choose among different models and factors and Fama and French [16] regarding the
redundancy of the value factor), whether certain factors are not working anymore and what
are the main characteristics of extreme performers, equities that experienced extreme return
levels during a specific period (for instance, see the work of Heerden and Rensburg [17],
where they first choose among different factors and then apply a logistic regression to
select shares and build portfolios).

When studying these multifactor models, two main difficulties may appear. First,
the procedures to test the significance of the factors rely on the construction of portfolios.
We use portfolios instead of stocks since the former have more stable characteristics and
are less prone to missing data than the latter and because the errors of α and β are higher
for individual stocks as their volatility is higher. However, the question on which factors
to select in order to build the portfolios remains unanswered. Firstly, there is an issue of
dimensionality: on one hand, as we increase the number of portfolios to account for the
various factors, the number of companies per portfolio decreases and this could be relevant
for analysis of Markets not as developed as the U.S. or the Euro-Zone; on the other hand,
there might also be a loss in efficiency in using too few portfolios as the model could fail to
explain the cross-section of individual assets. Secondly, as Feng et al. [18] suggest, selecting
a few portfolios based on some characteristics could bias the results in favor of these factors.
In this paper, we propose to build the portfolios using Common Principal Components
(CPC), a multivariate technique developed by Flury [19]. Unlike other dimensionality
reduction techniques, specifically the classical principal components that it extends, CPC
was designed to be applied when the available information is organized in more than one
dataset. In our case, we have several factors measured along a time period for a large
group of companies. The idea is to search for a common set of orthogonal axes that capture
a high percentage of the variability of the factors observed in all the companies. Using
CPC, we respect the individual behavior of each company, which constitutes a group on its
own, while keeping a reasonably small number of factors that explain a large part of the
variability of the stocks. At the same time, we have made an effort in interpreting each of
the CPC factors in terms of the traditional ones.

Second, traditional inferential procedures about multifactor models, like Fama and
French [20] and Fama and MacBeth [21], strongly rely on assumptions regarding the
data: uncorrelated factors over time, i.i.d. normally distributed errors over time and
independent of the factors, etc. When these hypothesis are not fulfilled, classical estimators
may be biased. The Bootstrap methodology was developed by Efron [22] as a resampling
technique to approximate the distribution of test statistics. In the Asset Pricing literature,
Cueto et al. [23] proposed to test test the validity of the model and the significance of
the parameters involved through a block-bootstrap procedure that accounts for time
dependency. Specifically, we use bootstrap techniques to assess our time-series and cross-
sectional regression models by testing, in first place, the hypothesis that the independent
terms of the time-series models that explain each of the portfolios returns are jointly
zero; thus, the models are able to explain the excess returns. In a second and third stage,
significance of the factors for each portfolio are tested, as well as that of the risk premia in
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the cross-sectional model. The methodological developments in the manuscript end here,
since the purpose of these multifactor models in finance is to explain past assets’ behaviors,
rather than forecasting.

The resampling procedure described here grows, among others, on that of Chou
and Zhou [24], who bootstrap a Wald test for the case where residuals and asset returns
are jointly i.i.d and use a block-bootstrap for a Wald-type GMM test in the non-i.i.d case.
The block bootstrap was explored by Grané and Veiga [25] in the computation of returns’
unconditional distribution, and huge differences in the estimates of minimum capital
risk requirement were reported when using conditional approaches (such as GARCH-
type models and stochastic volatility models), particularly for long positions and larger
investment horizons.

The objectives of this paper are: (1) to propose a multifactor model based on statistical
and financial factors using CPC to reduce its number of dimensions, (2) to develop non-
parametric resampling procedures that account for time dependency in order to test model
validity and involved parameter significance, and (3) to compare the results obtained via
bootstrap-based inferential procedures with those of the classical proposals.

In particular, the financial and statistical factors considered are: Market Capitalization
and Total Assets (measures of size), Price to Book ratio (measure of cheapness), Return on
Assets and Return on Equity (measures of profitability), Momentum, and four statistical
measures (mean, standard deviation, kurtosis, and skewness). The multifactor model with
four CPC-factors is able to explain 90% of the variability of the data. The first CPC-factor is
a linear combination of mean and Momentum returns; the second and third CPC-factors
are linear combinations of skewness and kurtosis returns and finally, the fourth CPC-factor
is the standard deviation of the return. Interestingly, none of them include the financial
ratios. A possible explanation is that these ratios do not add enough variability compared
to statistical factors.

The main findings are that CAPM cannot explain by itself the return of the portfolios
as β for Market is higher for portfolios with high standard deviation (CPC4) and α is higher
(and positive) for portfolios with high Momentum and mean (CPC1). For these time-series
models, R2 shows values not greater than 0.55, while despite the wide confirmation of
the Market factor in the financial literature, it is not significant in our CAPM cross-section
regression analysis, which leads us to conclude the need to control for other factors. When
we incorporate additional factors, we notice that Momentum and mean (CPC1-factor),
despite being correlated with the Market factor, and standard deviation (CPC4-factor) help
explaining the cross-section of European stocks during the period considered. Now, Market
β stabilize around 0.35, and CPC1 and CPC4 mainly capture the variability that the Market
factor could not explain by itself in CAPM. For these models, we observed a substantial
improvement in adjusted-R2, with a median value of 0.671. Apart from the calculation of
βs and αs, which seem to be quite robust despite the relaxation of the assumptions of the
model, GRS p-value is much higher for the bootstrap (which also occurs in CAPM). Finally,
in the cross-section regression, two factors present risk premia different from zero, which
are Market and the factor based on mean and Momentum (CPC1-factor). These findings
lead us to conclude that the multifactor model based on CPC-factors is a good model with
regard to the adjusted-R2, able to explain excess returns, although in the analyzed time
period only one of the CPC-factors presents positive risk premia.

The remainder of this paper is organized as follows. Section 2 contains a description
of the data and methodology; specifically, in Section 2.1, we present and describe our
data, while, in Section 2.2, we explain the methodology used to construct the portfolios
and to test the validity the multifactor model, that is, time-series and cross-sectional
classical methodologies and the block-bootstrap procedure. Section 3 contains the results
of the analysis and the comparison of the application of classical and bootstrap inferential
procedures to the data, while the final conclusions are discussed in Section 4.
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2. Materials and Methods
2.1. Data and Factors
2.1.1. Data Description

We start with 2393 European companies that were selected from all EU countries. As
is usual in the literature on factor models, we excluded Financials as they usually have high
leverage ratios, affecting several financial ratios. The database comprises monthly data
from Oct-2009 to Oct-2019 and includes prices and several financial ratios, such as Market
capitalization, Price to Book and Price to Earnings ratios, number of shares outstanding,
Return on Assets and Return on Equity, number of shares traded, and Total Assets. We
apply several filters to the Data: first, we delete all companies with less than 30 months of
complete data (which leads to 1305 remaining companies); second, we apply a transaction
filter, and companies having no transactions for a whole semester were excluded; third,
companies with no Market Cap info for more than 2 consecutive years were excluded;
finally, companies with non-positive Equity at the end of any year were excluded. We end
up with a final set of 1230 companies, after all these filters were passed. Next, monthly
returns were computed for all the companies, the Risk Free Rate (r f ) and Market (rm) were
estimated, respectively, by means of the 2 year German Bond yield and the STOXX 60.
Monthly returns were computed as the quotient between the natural logarithms of the
market price and the market price in the previous month.

In Table 1, we show some summary statistics by year. In particular, we give informa-
tion on the number of companies, the number of months, and summary statistics on prices
by year. Figure 1 contains a graphical description of the data.

Table 1. Summary statistics of the data by year.

Year Companies Months Mean SD Min Median Max

2009 1230 3 34.70 455.92 0.05 7.61 18,043.85
2010 1230 12 33.76 363.74 0.03 8.15 15,513.50
2011 1230 12 29.23 176.98 0.03 8.57 6515.83
2012 1230 12 26.55 132.78 0.02 7.82 4486.71
2013 1230 12 28.28 116.58 0.03 9.01 3430.00
2014 1230 12 31.64 127.10 0.01 10.95 3800.00
2015 1230 12 35.24 138.22 0.01 12.16 4000.00
2016 1230 12 37.46 166.02 0.01 12.29 5999.00
2017 1230 12 45.42 194.01 0.01 14.95 5999.99
2018 1230 12 47.43 211.38 0.01 14.70 6600.00
2019 1230 10 46.17 241.41 0.01 13.34 9200.00

Figure 1. Summary statistics of the data by year.

It can be observed that average price experiences a descend until 2012 (from 34.70
in 2009 to 26.55 in 2012) and then increases, reaching its maximum value of 47.43 in 2018.
This behavior is related to the 2008 Global Financial Crisis and can be seen more clearly in
Figure 1. In terms of standard deviation, we can observe a similar pattern, although the
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slope in the decrease is more abrupt than for the mean values.

2.1.2. Factors under Study

Cueto et al. [23] introduce three new factors based on statistical measurements on
stock prices. Here, we consider such factors calculated on stocks’ returns together with
a Momentum variable, which is equal to the 12-month logarithmic return of prices, Mar-
ket Capitalization and Total Assets (measures of size), Price to Book ratio (measure of
cheapness), Return on Assets, and Return on Equity (measures of profitability). For all the
financial ratios, we take the value appearing 6 months in advance except for Total Assets,
which corresponds to the increment of this measure over the previous 12 months. This
way, we incorporate all the factors included in the 5-factor model by Fama and French [16].

Regarding the statistical measures for all the stocks in the sample, we applied a rolling
window taking into account the previous 12 observations. These measures are:

• Mean of returns for each year and company:

x̄ =
1
n

n

∑
i=1

(xi − x̄).

• Standard Deviation (SD) of returns for each year and company:

s =

√
1

n− 1

n

∑
i=1

(xi − x̄)2.

• Excess Kurtosis (Kurt) of returns for each year and company:

Kurt =
1
n ∑n

i=1(xi − x̄)4

s4 − 3,

which compares the fatness of the distribution tails with respect to those of a normally
distributed random variable. Positive values indicate heavier tails than those of
the gaussian distribution, whereas negative values indicate thinner tails than the
gaussian one.

• Skewness (Skew) of returns for each year and company:

Skew =
1
n ∑n

i=1(xi − x̄)3

s3 ,

which measures the asymmetry of the distribution. It takes positive values for posi-
tively skewed distributions, that is, when the right tail is longer than the left one, and
it takes negative values when the contrary happens. It is roughly zero when both tails
are similar (symmetrical distribution).

As can be seen in Table 2, Market is positively correlated with Momentum, mean,
skewness, and Total Assets, while it is negatively correlated with the remaining factors.
This could be useful for investors willing to invest in uncorrelated portfolios (uncorrelated
in terms of factors, not assets). Notice further that correlations are mainly low, except
for Momentum and mean, which are highly correlated. Such an issue might lead to
multicolineality in models considering both factors and, hence, to greater standard errors
and larger confidence intervals for the model coefficients.
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Table 2. Correlations among the factors.

Market Momentum Mean SD Kurt Skew Market Cap P/B ROA ROE Total Assets

Market 1.000 0.042 0.025 −0.002 −0.001 0.010 −0.006 −0.005 −0.016 −0.005 0.001
Momentum 0.042 1.000 0.959 −0.066 −0.062 0.231 0.008 0.049 0.049 0.199 0.022

Mean 0.025 0.959 1.000 −0.070 −0.062 0.243 0.009 0.054 0.059 0.207 0.023
SD −0.002 −0.066 −0.070 1.000 0.200 0.036 −0.117 0.010 −0.020 −0.115 −0.009

Kurt −0.001 −0.062 −0.062 0.200 1.000 0.068 −0.059 0.003 −0.011 −0.029 −0.009
Skew 0.010 0.231 0.243 0.036 0.068 1.000 −0.088 0.008 −0.014 0.012 −0.003

Market Cap −0.006 0.008 0.009 −0.117 −0.059 −0.088 1.000 0.001 0.081 0.047 0.010
P/B −0.005 0.049 0.054 0.010 0.003 0.008 0.001 1.000 0.015 0.065 0.008
ROA −0.016 0.049 0.059 −0.020 −0.011 −0.014 0.081 0.015 1.000 0.187 0.197
ROE −0.005 0.199 0.207 −0.115 −0.029 0.012 0.047 0.065 0.187 1.000 0.051

Total Assets 0.001 0.022 0.023 −0.009 −0.009 −0.003 0.010 0.008 0.197 0.051 1.000

2.2. Methodology
2.2.1. Common Principal Components

Before analyzing whether certain factors manage to explain the expected return of a
set of portfolios, we must first form the portfolios. In order to do so, we use the Common
Principal Components technique, introduced by Flury [19], as a generalization of principal
components to the case of several groups. The basic assumption in the CPC-model is
that the principal component transformation is identical in all the considered groups,
while the variances associated with the components may vary between groups. This
transformation can be viewed as a rotation yielding variables that are “as uncorrelated as
possible” simultaneously in several groups. This distribution-free property justifies the
application of the CPC-model to non-normal data. The CPC-model can be also justified
from the principle of parsimony, since the number of parameters to be estimated is less
than in other usual multivariate methods, which leads to more stable estimations (in the
sense of low standard errors). Thus, the underlying idea of CPC-model is to represent
in the same common orthogonal axes several groups of individuals/objects (of possibly
different sample sizes) for which the same number of variables/measurements have been
observed. In our case, it seems reasonable to consider a model in which the same factors
occur in different, but related companies. Thus, we can take as variables the ten factors
under consideration and groups correspond to the 1230 companies. That is, each group is
formed by a particular company and its dataset is composed by the observations of the
factors for this particular company along the time period under consideration.

As in classical principal component analysis, the goal is to determine a number of
uncorrelated linear combinations of the variables that maximize their variance for each
company. In this case, however, despite the fact that the linear combinations will be
the same for all companies, the associated variances to each component may change
among them, which results in a reduction of the number of parameters to estimate when
maximizing the variance explained by the model.

In the setup of the problem, we have f variables x1, . . . , x f (factors) observed on p com-
panies along time periods of size (n1, . . . , np). Given S1, . . . , Sp, the variance-covariance
matrices of the f variables for each company, we would like to find an orthogonal matrix
U and p diagonal matrices Λ1, . . . , Λp such that:

S` = U Λ` U′, ` = 1, . . . , p,

where matrix U if formed by the common eigenvectors of S1, . . . , Sp and diagonal matrix
Λ` contains the eigenvalues of each S` in descending order.

Note that this model may not exist since, given two positive definite symmetric
matrices, their eigenvectors are equal if and only if these matrices fulfill the commutative
property. So, in general, matrices S` will not have the same eigenvectors, unless they fulfill
the commutative property.

Nevertheless, this problem is solved numerically, and the idea is to find a matrix U
and p matrices Λ`, such that each U Λ` U′ is as similar as possible to S`. Thus, the CPC-
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model can be viewed as a rotation yielding variables that are “as uncorrelated as possible”
simultaneously in p groups.

To determine how similar they are, Flury and Gaustchi [26] propose a numerical algorithm
that minimizes the following discrepancy measure of “simultaneous diagonalizability”:

F(U) =
p

∏
`=1

[
det(diag(U′ S` U))

det(U′ S` U)

]n`

, (1)

which naturally arises in the context of maximum likelihood estimation in principal com-
ponent analysis of several groups under the assumption of multivariate normality; see
Flury [27].

Proposition 1. Let S1, . . . , Sp be positive definite symmetric matrices of dimension f × f . Then,
Expression (1) satisfies that F(U) ≥ 1 and F(U) = 1 if S` = UΛ`U′, for ` = 1, . . . , p.

The second part of Proposition 1 is straightforward, while the upper bound for F(U) fol-
lows from Hadamard’s inequality, that we present in Lemma 3 after two preliminary results.

Lemma 1 (Inequality between geometric and arithmetic means). For any x1, . . . , xn > 0,
we have (

n

∏
i=1

xi

)1/n

≤ 1
n

n

∑
i=1

xi.

Proof. After the convexity of function φ(x) = − log(x) in R+ and Jensen’s inequality,

φ

(
1
n

n

∑
i=1

xi

)
≤ 1

n

n

∑
i=1

φ(xi)

− log

(
1
n

n

∑
i=1

xi

)
≤ − 1

n

n

∑
i=1

log(xi) = − log

(
n

∏
i=1

xi

)1/n

(
n

∏
i=1

xi

)1/n

≤ 1
n

n

∑
i=1

xi.

Lemma 2. For any f × f matrix of correlations R, we have det(R) ≤ 1.

Proof. Let λ1, . . . , λ f be the eigenvalues of R. Applying the inequality between the geo-
metric and arithmetic means given in Lemma 1, we have that

(det(R))1/ f =

(
f

∏
i=1

λi

)1/ f

≤ 1
f

f

∑
i=1

λi =
1
f

tr(R) = 1.

Lemma 3 (Hadamard’s inequality). For any f × f positive definite symmetric matrix S, we
have det(S) ≤ ∏

f
i=1 sii, where (s11, . . . , s f f ) = diag(S).
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Proof. Let S be an f × f positive definite symmetric matrix and D = diag(S), then
R = D−1/2 S D−1/2 is an f × f matrix of correlations, from where we can obtain S and
compute its determinant as follows:

det(S) = det(D) det(R) =
f

∏
i=1

sii det(R) ≤
f

∏
i=1

sii,

since after Lemma 2, det(R) ≤ 1.

Preliminary Setup of the Algorithm to Compute the CPC-Model

Flury and Gaustchi [26] propose an algorithm to solve a system of equations that leads
to the minimizer of function F(·) in (1) among f × f orthogonal matrices and for any given
f × f positive definite symmetric matrices S1, . . . , Sp.

In first place, observe that the denominator in (1) is constant since

det(U′ S` U) = det(U)det(S`)det(U) = det(S`).

As a consequence, any minimizer of F(U) would also be a minimizer of its numerator,
which we will denote by G(U). Taking logarithms, we have that

log G(U) =
p

∑
`=1

n` log(det(diag(U′S`U))).

The diagonal elements of U′S`U are (U′S`U)ii = u′iS`ui, where ui is the i-th column
of U. Using this notation, we have that

log G(U) =
p

∑
`=1

n`

f

∑
i=1

log(u′iS`ui).

Next, the extreme values of log G(U) are computed, with the restriction that U is an
orthogonal matrix:

Φ = log G(U)−
f

∑
i=1

µi(u′iui − 1)−
f

∑
i=1

f

∑
j=1

µiju′iuj, (2)

where µi, µij, 1 ≤ i, j ≤ p, i 6= j are Lagrange multipliers. It can be assumed that µij = µji
since u′iuj = u′jui. Differentiating (2) with respect to uk, we have that

∂Φ
∂uk

=
p

∑
`=1

n`2u′kS`/λ`k − µk2u′k −
f

∑
i=1,i 6=k

µiku′i = 0,

where λ`k is the k-th eigenvalue of S`. Post-multiplying the previous expression by uj,
j 6= k, we have that:

p

∑
`=1

n`u
′
kS`uj/λ`k = µjk.

Analogously, differentiating (2) with respect to uj and post-multiplying the resulting
expression by uk, k 6= j, one obtains that

p

∑
`=1

n`u
′
jS`uk/λ`j = µkj.
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Subtracting both expressions leads to the following system of equations:

p

∑
`=1

n`

(
u′kS`uj

λ`k
−

u′jS`uk

λ`j

)
= 0,

whose solutions are the columns of matrix U, from which it is possible to obtain matrices
Λ`. Finally, the system of equations is efficiently solved by means of the aforementioned
algorithm of Flury and Gaustchi [26], which is a generalization of the well-known Jacobi
method for computing eigenvectors and eigenvalues of a single symmetric matrix.

The CPC algorithm is implemented in the R package multigroup, designed to study
multigroup data, where the same set of variables are measured on different groups of
individuals. Within this package, we specifically use the function FCPCA to perform the
CPC calculation.

2.2.2. Portfolio Construction

In order to build the portfolios in the more rational manner, we first take the proposed
financial and statistical measures and standardize them to zero mean and unit variance.
We recall that these measures are: Market Capitalization and Total Assets (measures of
size), Price to Book ratio (measure of cheapness), Return on Assets and Return on Equity
(measures of profitability), Momentum, and the statistical measures already mentioned.

Then, we seek for a common pattern in all companies attending to all measures or
factors. Thus, we compute the CPC-model with the aim of obtaining a few uncorrelated
components that explain as much as possible the ten measures included in the analysis for
all companies. We selected the first four principal components since the average percentage
of variability explained by them was 90%. Additionally, to check the robustness of the
CPC loadings, we estimated them by a bagging procedure [28]. Specifically, we selected
groups of 100 companies (without replacement) for which we calculated the CPC-model.
After repeating this procedure 5 times, we present the results and compare them with the
CPC-model computed with all the data in Table 3.

Table 3. Loadings computed with all the data vs. loadings computed by bagging.

Dim 1 Dim 1
(Bagging) Dim 2 Dim 2

(Bagging) Dim 3 Dim 3
(Bagging) Dim 4 Dim 4

(Bagging)

Momentum 70.92 70.77 −0.06 2.15 −4.92 −5.61 2.12 2.32
Mean 70.12 69.82 0.60 2.76 −4.08 −4.62 1.93 2.14

SD −3.31 −3.78 4.66 4.60 −7.11 −6.04 99.58 99.52
Kurt −4.40 −7.29 72.27 72.81 −68.46 −67.39 −8.42 −7.81
Skew 4.30 3.02 68.95 68.02 72.26 72.95 2.08 1.27

Market Cap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01
P/B 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
ROA 0.25 0.32 −0.05 −0.11 −0.08 −0.04 −0.65 −0.85
ROE 2.23 2.33 −0.04 0.08 −0.27 −0.21 −0.69 −1.06

Total Assets 0.02 0.01 −0.03 0.00 −0.04 −0.06 −0.05 −0.10

Regarding the bagging results of Table 3, the CPC-loadings changed signs in some
iterations and exchanged CPC2 for CPC3 in others (the percentage of variability explained
by these two components is very similar–around 22%). Such exchange in some of the
components is a well-known problem and is related to the Flury-Gautschi algorithm
used to solve (1) [27]. We proceeded to change signs accordingly in order to present
consistent results.
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Observing the CPC-loadings, we see that the first CPC is a linear combination of mean
and Momentum returns, the second and third CPCs are linear combinations of skewness
and kurtosis returns and, finally, the fourth CPC is the standard deviation return. In what
follows, we call these components CPC1 to CPC4. Interestingly, none of these CPCs include
the financial ratios.

Portfolio Setup with the CPC Model

Next, we get the representation of each company in the CPC model (multiplying the
loadings by the standardized variables), compute percentiles for each of them and assign
to portfolios accordingly, as follows [6].

• Stocks with low CPC1 are included in portfolios 1-b-c-d, while stocks with high CPC1
are included in portfolios 2-b-c-d.

• Stocks with low CPC2 are included in portfolios a-1-c-d, while stocks with high CPC2
are included in portfolios a-2-c-d.

• Stocks with low CPC3 are included in portfolios a-b-1-d, while stocks with high CPC3
are included in portfolios a-b-2-d.

• Stocks with low CPC4 are included in portfolios a-b-c-1, while stocks with high CPC4
are included in portfolios a-b-c-2.

In Table 4, we summarize the resulting portfolios, which are updated monthly based
on the previous month measurements. For each portfolio, we calculate the average monthly
returns. Additionally, each factor is computed as the excess return of the higher portfolio in
each category minus the return of the lower portfolio. All returns are calculated for equally-
weighted portfolios at t + 1. Figure 2 contains the cumulative returns of the portfolios.

Table 4. Description of portfolios.

Portfolio Number Portfolio Description
Portfolio Composition

CPC1 CPC2 CPC3 CPC4

1 1-1-1-1 Low Low Low Low
2 1-1-1-2 Low Low Low High
3 1-1-2-1 Low Low High Low
4 1-1-2-2 Low Low High High
5 1-2-1-1 Low High Low Low
6 1-2-1-2 Low High Low High
7 1-2-2-1 Low High High Low
8 1-2-2-2 Low High High High
9 2-1-1-1 High Low Low Low

10 2-1-1-2 High Low Low High
11 2-1-2-1 High Low High Low
12 2-1-2-2 High Low High High
13 2-2-1-1 High High Low Low
14 2-2-1-2 High High Low High
15 2-2-2-1 High High High Low
16 2-2-2-2 High High High High

As we commented before, it is interesting that none of the CPCs include financial
measures, which might occur because these ratios do not add enough variability compared
to statistical factors. However, in a way, statistical measures could be also capturing some
of the financial characteristics of the stocks as we see in Table 5, which includes average
factors for each of the portfolios considered and standard deviation, kurtosis, and skewness
of the returns. We notice, for example, that portfolios with high CPC1 present in average
higher PB ratio, higher ROA and ROE, lower kurtosis, and positive skew. Portfolios with
high CPC4 show in average lower PB ratio, lower ROA and ROE, lower kurtosis, and
higher skew.
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The best portfolios are those with high mean and Momentum (CPC1), except for
portfolio 2-2-1-2, while the three portfolios with the poorest performances are 1-1-2-2,
1-2-2-2, and 1-1-1-2. They share the feature of having low mean and Momentum (CPC1)
and high standard deviation (CPC4).

Table 5. Characteristics of portfolios.

Portfolio Portfolio Portfolio Composition (Mean Values)

Number Description Market
Cap

Total
Assets PB ROA ROE MOM Mean sd Kurt Skew

1 1-1-1-1 4922.44 8816.40 1.94 4.57 8.47 −0.086 −0.008 0.057 2.935 −0.555
2 1-1-1-2 2072.12 6275.54 1.64 1.80 −0.28 −0.233 −0.021 0.116 2.865 −0.580
3 1-1-2-1 4063.73 6734.97 1.88 4.48 7.93 −0.094 −0.009 0.055 2.161 0.025
4 1-1-2-2 1839.13 5504.61 1.56 1.84 −4.27 −0.233 −0.021 0.108 2.079 0.000
5 1-2-1-1 3263.27 6024.39 1.84 4.22 7.74 −0.075 −0.007 0.059 4.308 −0.189
6 1-2-1-2 1044.30 3209.33 1.46 1.37 −14.23 −0.241 −0.022 0.146 4.263 −0.227
7 1-2-2-1 2795.40 4915.16 1.75 4.05 5.53 −0.080 −0.007 0.055 2.961 0.575
8 1-2-2-2 1025.77 3036.45 1.62 1.41 −9.23 −0.208 −0.019 0.118 2.853 0.558
9 2-1-1-1 6655.51 8231.53 2.65 7.33 14.65 0.186 0.017 0.058 2.729 −0.494

10 2-1-1-2 2654.52 4986.17 2.50 5.76 11.55 0.306 0.028 0.106 2.614 −0.440
11 2-1-2-1 6033.27 7107.41 2.52 7.26 14.15 0.172 0.016 0.055 2.089 0.023
12 2-1-2-2 2570.95 4606.20 2.42 5.76 10.76 0.284 0.026 0.099 1.999 0.068
13 2-2-1-1 2946.72 3876.48 2.33 6.85 12.89 0.169 0.016 0.060 4.068 0.222
14 2-2-1-2 1218.32 2307.18 2.29 5.23 10.51 0.369 0.034 0.140 4.121 0.502
15 2-2-2-1 3016.33 3701.31 2.32 7.13 13.15 0.172 0.016 0.056 2.943 0.600
16 2-2-2-2 1031.39 2519.19 2.15 6.31 8.45 0.333 0.031 0.111 2.877 0.672

Figure 2. Portfolios’ cumulative returns.

2.2.3. Classical Methodologies

Once we have defined the N portfolios that we are about to analyze, we perform a
time-series regression for each of them:

Ri
t − r f = αi + β′i ft + εi

t, t = 1, 2, . . . , T.
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We use the GRS test by Gibbons et al. [29] to assess the ability of a model to explain
excess returns. The null hypothesis of this test is H0 : α1 = . . . = αN = 0, and assuming
that εs are normally distributed, the test statistic is given by:

T − N − K
N

[1 + f
′
Σ−1

f f ]−1α̂′Σ−1α̂ ∼ FN,T−N−K, (3)

where K is the number of factors, Σ f is the factors’ covariance matrix, and Σ the residual
covariance matrix. The purpose of the test, whose statistic takes also into account the
sampling error of estimates in βi, is to determine if the αi are jointly zero assuming that the
distribution of returns and factors is multivariate normal. As suggested by Fama [30], the
GRS test is against an unspecified alternative, both for portfolios and factors. On the one
hand, the model may pass the test for a set of portfolios, but fail for another. On the other
hand, we do not specify additional factors that could produce a violation of the model
(however, we get some intuition on which factors should be included or excluded from the
model by observing the number of portfolios whose coefficients are significantly different
from zero).

Then, we run a cross-sectional regression to estimate the vector of risk premia λ with
the model obtained taking expectations in the time-series regression equation:

E(Ri − r f ) = α̂i + β̂′iλ, for i = 1, . . . , N,

where the estimates for β̂i are those obtained in the TS regression at the first step. In con-
clusion λ̂ represents the slope coefficients in the cross-sectional regression which is run
without intercept, while α̂ are the residuals in the cross-sectional regression. If the estimated
βs are important determinants of average returns, then the risk premium, λi, should be
statistically significant. We have used the covariance of the residuals of the TS regression
to calculate the standard error of λi to take into account the correlation across assets. Addi-
tionally, the error terms for λi must include the error of estimating β [31] for the so-called
Shanken correction, although the difference may be very small in practice. Finally, we use
t-statistics to test the significance of each of the λi.

2.2.4. Resampling Techniques: Bootstrap

As in Reference [23], we follow a block-bootstrapping pairs scheme to preserve the
time correlation of the data, and take B bootstrap samples of block size b = 2 months. We
describe briefly the procedure and refer to the original paper for further details.

• Step 1 Estimate benchmark regression models, one for each portfolio. For each
portfolio, save α, β, their corresponding t-statistics, residuals, risk factors’ estimates,
and GRS statistic.

• Step 2 Produce a set of simulation runs equal for each portfolio in order to preserve
returns’ cross-correlations.

• Step 3 Build a new series of α-free portfolio returns by using the simulated time
indices.

• Step 4 Run the time-series factor model regression on the artificially constructed
returns. Calculate α̂, β̂ and the corresponding confidence intervals. Next, generate
samples of the GRS Statistic, compute different percentiles from the bootstrapped
distribution and compare them to the original GRS statistic.
In this paper, we improve the methodology proposed in our previous work. We have
noticed that, given the construction of the GRS statistic, when we face portfolios with
heteroskedasticity, the estimation of the variance through the residual covariance
matrix may not be appropriate. Thus, we propose a new statistic, Q(α) = α̂′Σ−1α̂, for
which we will calculate the covariance matrix of αs, Σ, through a nested bootstrap.
Then, a new step appears:

• Step 5 Run the time-series factor model regression on the artificially constructed
returns. Calculate α̂, β̂ and the corresponding confidence intervals. Finally, generate
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bootstrap samples of the Q(α) statistic that makes use of the covariance matrix of the αs
which is approximated by means of a nested bootstrap and compare the bootstrapped
statistics with the original Q(α) statistic.
Concerning cross-sectional regression, we use βs and average returns from each
bootstrapped sample to determine the significance of the risk premia estimates (λs).
Given that βs are estimated, the estimates of the λs might present substantial bias
and we use a reverse bootstrap percentile interval to determine the significance of
the factors. To be consistent, we also present this type of bootstrap interval for all the
estimated parameters.

As this is a computer-intensive method, we implemented the previous procedure in R
by using the R-packages doParallel and foreach, designed to do multi-core calculations.
The main reason for using the foreach package is that it supports parallel execution, that
is, repeated operations can be executed on multiple cores of the computer or on multiple
nodes of a cluster, thus reducing the execution time.

3. Results
3.1. Time-Series Regressions

In this section, we present the results for the time-series regression of two models.
The first one is the CAPM model and the second one is a multifactor model including
Market and four factors determined by CPC1 to CPC4. The dependent variables are the
returns of the 16 portfolios.

3.1.1. Model 1: CAPM

When we analyze a 1-factor model, only taking into consideration the Market factor,
we notice that the p-value of the GRS statistic is 1.93%, thus rejecting that all αs are jointly
zero at 5% significance level. This could be an indication that other factors are missing
because the portfolios are sorted to have greater cross-section differences, but, given that
this is a well studied factor, we would like to understand if this rejection may be due to an
anomalous period of time and/or to a breach in certain assumptions of the model.

First, we split the 108 months in two periods: from 1 to 80 (first subperiod) and from
30 to 108 (second subperiod), both with approximately the same number of months. We
find that the GRS p-value for the first subperiod is 3.43%, while the p-value for the second
subperiod is 0.24%. This could indicate that the CAPM may have not behaved correctly
during the second period, while global Central Banks have been injecting huge amounts of
liquidity in the system.

Additionally, in order to confirm if the OLS hypotheses are fulfilled (normality, ho-
moscedasticity and independence), we performed several analysis following
Soumaré et al. [32]. The results are presented in Table 6, where we show the different
statistics analyzed with their p-values in parentheses and the number of portfolios for
which we reject the null at a 5% significance level for the different tests.

Table 6. Metrics for CAPM with different time periods.

Statistics (p-Value) Number of Portfolios

GRS GRS Boot. Q(α) Non-Normal Heteros. Autocorr.

Whole period 2.024 (1.93%) 2.024 (17.4%) 42.57 (29.5%) 6 4 5
Months 1–80 1.924 (3.43%) 1.924 (8.2%) 38.62 (27.5%) 3 5 4

Months 30–108 2.736 (0.24%) 2.736 (17.8%) 61.35 (30.6%) 3 1 8

A Shapiro-Wilk test was run on each set of residuals, suggesting that, in general,
if we consider both subperiods individually, the residuals of the time-series regression are
normally distributed. This changes when we consider the whole period, where 6 portfolios
have a p-value lower than 5% in the test. Generally, these are portfolios with high mean
and Momentum (CPC1) and low standard deviation (CPC4).
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Additionally, we performed a Breusch-Pagan test on the residuals of the regressions,
showing that the homoscedasticity assumption is violated for portfolios 9, 10, 11 and 13
(all of them share the characteristic of having a high mean and Momentum (CPC1) and,
generally, present low levels of the remaining CPCs). Interestingly, during the second
subperiod, we reject the homocedasticity only for portfolio 16.

In Figure 3, we show the autocorrelation charts for errors in time-series regression for
CAPM for the whole period. The charts indicate that residuals are especially correlated for
lags equal to or higher than 9. The Durbin-Watson test also suggests that errors might be
autocorrelated for 5 portfolios for lag equal 9 when considering the whole period (generally,
those with low mean and Momentum (CPC1) and high standard deviation (CPC4)), 4 for
the first subperiod and 8 for the second one (p-values lower than 5%).

Figure 3. Autocorrelation charts for errors in TS regression for CAPM for the whole period.

These three facts suggest that the bootstrap procedure developed in Reference [23]
might be useful to approximate the distribution of the GRS statistic. Applying this proce-
dure (see Table 6), we obtained a bootstrap p-value of 17.4% for the whole period, so we
cannot reject that the αs are jointly zero. Something similar happens when we consider the
first subperiod (GRS p-value of 8.2%) and the second subperiod (GRS p-value of 17.8%).
However, we do not feel comfortable with the results as the p-values of the Bootstrap
are far away from the p-values of the traditional methodology; remember that the GRS
test estimates Σ through the residual covariance matrix. We suspect that the existence of
heteroscedasticity in some of the portfolios could make this estimation inaccurate. Thus,
we propose a new statistic, Q(α) = α̂′Σ−1α̂, for which we will calculate the covariance
matrix of αs, Σ, through a nested bootstrap. The results obtained with the Q(α) statistic
reinforce the conclusions reached with the GRS bootstrap, since the p-values of this new
statistic are even higher than those of the former (between 1.6 and 3.3 times). Thus, we do
not reject that the αs are jointly zero at a 5% significance level.
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In Table 7, we present the results for the classical and the bootstrap methodologies for
Model 1. Columns “Estimates” contain the estimates for α and β for Market. The classical
t-statistics for these estimates are in columns 4 and 5. Columns 6 and 7 correspond to the
basic bootstrap confidence intervals and R2 is reported in the final column. A graphical
comparison is given in Figure 4. Regarding the estimates of the model, we find that the
coefficient for Market is always positive and statistically significant for classical methodol-
ogy and for the resampling technique. The estimate varies between 0.95 and 0.45, but it is,
in general, higher for portfolios with high standard deviation (CPC4). This confirms the
traditional relationship between expected return and β explained in the CAPM. However,
as we will see later and as different studies have suggested, this relationship does not hold
once we include new factors and review the cross-section regression. The coefficients of
determination indicate that this model explains between 19.0% and 52.6% of the variability
of portfolios’ returns. Moreover, under the classical inferential techniques, we find that α
is not statistically significant (except for portfolio 15) which is positive for portfolios with
high mean and Momentum (CPC1) and negative otherwise. The resampling technique
finds more portfolios where α is statistically significant. As we have already discussed, the
GRS test rejects, at a 5% significance level, that all pricing errors are equal to zero which
might indicate that other factors are missing.

Table 7. Results for Time-Series estimation of CAPM.

Estimates t-Statistics Bootstrap CI (2.5%, 97.5%)

Portfolio α Market α Market α Market R2

1 −0.001 0.685 −0.546 10.856 −0.007, 0.002 0.533, 0.845 0.526
2 −0.003 0.954 −0.695 9.109 −0.013, 0.002 0.746, 1.161 0.439
3 −0.004 0.543 −1.068 4.982 −0.016, −0.002 0.324, 0.736 0.190
4 −0.005 0.946 −1.235 8.853 −0.018, −0.002 0.722, 1.172 0.425
5 0.000 0.485 −0.041 7.141 −0.006, 0.004 0.317, 0.649 0.325
6 −0.003 0.823 −0.680 7.380 −0.014, 0.002 0.604, 1.024 0.339
7 −0.002 0.542 −0.905 7.948 −0.010, 0.001 0.389, 0.716 0.373
8 −0.004 0.831 −1.032 7.702 −0.016, −0.001 0.577, 1.078 0.359
9 0.004 0.632 1.655 9.304 0.003, 0.012 0.432, 0.840 0.450

10 0.005 0.865 1.398 8.898 0.003, 0.016 0.622, 1.097 0.428
11 0.004 0.619 1.647 8.967 0.003, 0.013 0.398, 0.827 0.431
12 0.003 0.852 0.960 8.613 0.000, 0.014 0.602, 1.112 0.412
13 0.004 0.532 1.936 8.128 0.004, 0.013 0.362, 0.725 0.384
14 0.000 0.657 0.128 6.932 −0.006, 0.008 0.472, 0.847 0.312
15 0.006 0.454 2.300 6.467 0.007, 0.015 0.264, 0.628 0.283
16 0.005 0.729 1.459 7.672 0.003, 0.016 0.500, 0.991 0.357

Notes. GRS: 2.024, p-value: 0.0193, p-value Boot.: 0.174, p-value Q(α): 0.295.

Figure 4. Graphical comparison of 95% Bootstrap CIs for Model 1.

3.1.2. Model 2: Market and Factors CPC1 to CPC4

When we analyze the 5-factor model, we notice that the p-value of the GRS statistic
is 0.90%, lower than in the previous model and also rejecting, at a 5% significance level,
that all αs are jointly zero. This could indicate that the model does not reflect correctly the
variability of the returns of the portfolios.

As before, we split the 108 months in two periods: from 1 to 80 (first subperiod) and
from 30 to 108 (second subperiod). We find that the GRS p-value for the first subperiod is
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5.19%, while the p-value for the second subperiod is 0.38%. This could indicate that this
model has not behaved correctly during the second subperiod, as we discussed for the
previous model. Results for GRS p-values (both for classical and resampling methodology),
Q(α) p-value and normality, heteroscedasticity and autocorrelation tests are presented in
Table 8.

Table 8. Metrics for 5-factors model with different time periods.

Statistics (p-Value) Number of Portfolios

GRS GRS Boot. Q(α) Non-Normal Heteros. Autocorr.

Whole period 2.242 (0.90%) 2.242 (17.1%) 56.59 (22.6%) 10 1 12
Months 1–80 1.806 (5.19%) 1.806 (22%) 44.92 (32.8%) 1 1 7
Months 30–108 2.625 (0.38%) 2.625 (13%) 56.19 (27.8%) 8 1 7

For this second model, the Shapiro-Wilk test run on each set of residuals suggests
that the number of non-normal portfolios is higher than in the previous model. In fact,
when we consider the whole period, 10 portfolios have a p-value lower than 5% in the test.
If we consider both subperiods individually, we can only reject the null for one portfolio
in subperiod 1 (portfolio 5), while there are 8 portfolios with this same characteristic in
subperiod 2.

We also ran a Breusch-Pagan test on the residuals of the regressions, showing that
the homoscedasticity assumption is violated for portfolio 11 during subperiod 1 and
portfolio 14 during the second subperiod and the whole period. In this model, the het-
eroscedasticity problem seems to be (at least, partially) solved.

In Figure 5, we show the autocorrelation charts for errors in time-series regression for
the 5-factor model for the whole period. According to the charts, residuals are correlated
for lag equal to 10 and beyond. The Durbin-Watson test also suggests that errors may
be autocorrelated for 12 portfolios for lag equal 10 when considering the whole period,
7 for the first subperiod and 7 for the second subperiod (p-values lower than 5%). In this
case, incorporating the CPC-factors results in an increase in the number of portfolios that
present autocorrelation.

Again, given that the three previous assumptions of the model are breached, resam-
pling might be useful to approximate the distribution of the GRS statistic. When using the
bootstrap, we cannot reject the hypothesis that all the αs are jointly zero, since we find that
17.1% of the values of the sample are higher than the GRS statistic. As in the previous case,
the results obtained with the new statistic Q(α) reinforces our decision of not rejecting the
hypothesis that all the αs are jointly zero at a 5% significance level.

In Table 9, we present the results for the estimates and t-statistics for the classical
methodology for Model 2. When we observe the coefficients (α and β) generated for the
16 portfolios, we notice that: (1) we cannot reject that each of the α are zero; (2) none of the
Market β can be considered statistically zero and the coefficients have stabilized around 0.35
(as commented before, once we control for additional factors, and specifically for a factor
linked to volatility, the Market β effect that appeared in the previous model disappears);
(3) βs for CPC1-factor and CPC4-factor seem to be significantly different from 0 as only
1 coefficient in each of them presents a t-statistic whose absolute value does not exceed 1.96;
and (4) the average adjusted-R2 increases to 63.5% (this model explains between 26.3% and
85.3% of the variation in the returns of the portfolios). CPC1-factor estimates are negative
for portfolios with low mean and Momentum (CPC1), while the contrary happens in
portfolios with high mean and Momentum (CPC1). Estimates for CPC2-factor are negative
except for portfolios 6 and 16, and, in general, they are only significant for portfolios with
low skewness and kurtosis (CPC2). Estimates for CPC3-factor are all positive except for
portfolio 6. Finally, estimates for CPC4-factor are always positive and significant for all
portfolios except for portfolio 3. Additionally, βs for CPC4-factor are higher for portfolios
with high standard deviation (CPC4).
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Figure 5. Autocorrelation charts for errors in TS regression for 5-factor model for the whole period.

Table 10 contains the results for the inference based on resampling techniques. A graph-
ical comparison is shown in Figure 6. The results of the basic bootstrap confidence in-
tervals are consistent with what we have already commented. Despite having a lower
GRS p-value than Model 1, we can conclude that this model is better as (1) resampling
techniques show that we cannot reject that αs are jointly zero; (2) the average adjusted-
R2 increases; (3) Market βs change and stabilize around 0.35; and (4) factors based on
mean and Momentum (CPC1-factor) and standard deviation (CPC4-factor) only present
1 non-significant portfolio.

Table 9. Results for Time-Series estimation of Model 2.

Estimates t-Statistics

Portfolio α Market CPC1 CPC2 CPC3 CPC4 α Market CPC1 CPC2 CPC3 CPC4 Adj-R2

1 0.001 0.436 −0.292 −0.381 0.626 0.687 0.731 6.674 −2.891 −1.503 3.029 6.199 0.688
2 0.002 0.286 −0.315 −1.601 0.497 1.607 0.693 3.819 −2.713 −5.497 2.092 12.621 0.825
3 0.000 0.290 −0.503 −1.257 0.719 0.288 −0.078 2.189 −2.453 −2.444 1.712 1.280 0.263
4 0.001 0.316 −0.547 −1.001 1.195 1.734 0.384 4.574 −5.127 −3.738 5.471 14.813 0.853
5 0.003 0.208 −0.311 −0.546 0.073 0.643 1.314 2.883 −2.791 −1.954 0.318 5.260 0.533
6 0.003 0.386 −0.592 0.358 −0.170 1.440 0.972 4.113 −4.072 0.981 −0.570 9.030 0.712
7 0.000 0.325 −0.303 −0.218 0.976 0.682 0.174 4.473 −2.690 −0.771 4.234 5.525 0.562
8 −0.001 0.306 −0.271 −0.598 1.428 1.654 −0.212 3.303 −1.896 −1.664 4.872 10.531 0.710
9 0.002 0.345 0.406 −0.879 0.625 0.832 1.129 5.021 3.821 −3.296 2.873 7.138 0.654
10 0.003 0.312 0.561 −1.874 0.442 1.368 1.225 3.784 4.404 −5.861 1.695 9.784 0.747
11 0.002 0.378 0.376 −1.018 1.040 0.659 1.084 5.254 3.376 −3.649 4.568 5.396 0.620
12 0.000 0.362 0.709 −0.871 0.948 1.670 0.195 4.622 5.854 −2.867 3.825 12.567 0.774
13 0.002 0.404 0.475 −0.025 0.478 0.640 0.885 5.457 4.150 −0.085 2.039 5.094 0.517
14 −0.001 0.259 0.370 −0.668 0.576 1.280 −0.220 2.679 2.469 −1.779 1.880 7.792 0.558
15 0.003 0.279 0.470 −0.302 0.414 0.679 1.416 3.489 3.802 −0.973 1.636 5.002 0.430
16 0.003 0.401 0.471 0.264 1.637 1.585 1.283 5.005 3.800 0.847 6.447 11.649 0.719

Notes. GRS: 2.242, p-value: 0.009, p-value Boot.: 0.171, p-value Q(α): 0.226.



Mathematics 2021, 9, 1011 18 of 22

Table 10. Results for Bootstrap estimation of Model 2.

Bootstrap CI (2.5%,97.5%)

Portfolio α Market CPC1 CPC2 CPC3 CPC4

1 −0.840, 0.435 0.299, 0.605 −0.528, −0.044 −0.966, 0.179 0.105, 1.153 0.376, 0.945
2 −0.851, 0.452 0.145, 0.435 −0.582, −0.085 −2.288, −1.054 −0.129, 1.333 1.188, 1.888
3 −1.288, 0.666 0.038, 0.538 −0.869, −0.165 −2.966, −0.060 −0.236, 1.505 −0.453, 0.758
4 −1.410, 0.684 0.157, 0.496 −0.762, −0.315 −1.611, −0.462 0.680, 1.619 1.403, 1.978
5 −0.343, 0.473 0.065, 0.363 −0.567, −0.071 −1.242, −0.086 −0.461, 0.659 0.279, 0.876
6 −0.161, 0.797 0.147, 0.628 −0.930, −0.242 −0.916, 1.272 −0.900, 0.427 0.881, 1.785
7 −1.271, 0.413 0.190, 0.483 −0.518, −0.074 −0.894, 0.365 0.365, 1.622 0.363, 0.894
8 −1.770, 0.425 0.119, 0.465 −0.526, −0.006 −1.532, 0.035 0.732, 1.973 1.197, 1.938
9 −0.892, 0.008 0.209, 0.494 0.149, 0.623 −1.446, −0.413 0.091, 1.232 0.483, 1.067

10 −0.912, 0.201 0.137, 0.490 0.170, 0.879 −2.840, −1.137 −0.292, 1.313 0.809, 1.694
11 −1.329, 0.008 0.213, 0.554 0.052, 0.680 −1.854, −0.372 0.445, 1.737 0.212, 0.968
12 −1.255, 0.005 0.177, 0.566 0.453, 0.980 −1.680, −0.145 0.332, 1.513 1.316, 1.931
13 −0.759, 0.008 0.216, 0.596 0.221, 0.720 −0.708, 0.548 −0.082, 1.022 0.274, 0.907
14 −1.154, 0.646 0.114, 0.424 −0.166, 0.753 −2.052, 0.300 −0.491, 2.086 0.581, 1.698
15 −0.821, 0.010 0.087, 0.458 0.260, 0.706 −1.298, 0.412 −0.343, 0.966 0.351, 0.910
16 −2.012, 0.010 0.265, 0.589 0.210, 0.751 −0.252, 0.906 0.876, 2.468 1.254, 1.916

We noticed that some of the intervals seem to be quite wide. Specifically, intervals
for portfolio 3 are all wider than their respective averages and the z-score of the width
of 3 of them is higher than 2. Those of portfolio 14 are equally wider than their means,
with the exception of the interval for Market β (in this case, the z-score of the width is
higher than 2 in only 2 of the intervals ). Additionally, in both cases, adjusted R2 is lower
than the average. The explanation for both portfolios may be, among others, the existence
of outliers that impact the width of the bootstrap intervals in the simulations; see Figure 7.

Figure 6. Graphical comparison of 95% Bootstrap CIs for Model 2.

Next, we will proceed to analyze the significance of the different risk premia for
both models.
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3.2. Cross-Sectional Regression

In this section, we present the results for the cross-section regression of the two models
under study: CAPM (Model 1) and the five-factor model, including Market and factors
CPC1 to CPC4 (Model 2).

3.2.1. Model 1: CAPM

The GRS bootstrap test for Model 1 suggests that we cannot reject that all αs are jointly
zero and further it registers an explained variability between 19% and 52.6%. Market seems
to be statistically significant in all the portfolios.

We use the βs estimated in Table 7 to examine if the factor is priced on the cross-
section of returns. We must take into account that despite the fact that we are working with
portfolios, risk premia will be estimated from the estimated coefficients, which can lead to
an important bias, especially if the model is not well specified.

Figure 7. Residuals vs. fitted values in TS regression for 5-factor model for the whole period.

Market’s risk premium is 0.0043 per month and, as a consequence, returns depend
positively on the Market. The reported t-statistic of 0.874, which in this case includes
the Shanken correction [31], suggests that this factor is not statistically significant at a 5%
significance level. The correction seems to be minor in this case, as the t-statistic for the
simple regression (Fama-Macbeth approach) is 0.8776. The basic bootstrap confidence
interval [−0.0078, 0.0015] confirms that this factor is not statistically significant during
the considered period. The statistical non-significance of the Market factor despite its
wide confirmation in the financial literature could be related to the fact that we are not
controlling for other factors, as the results from Model 2 suggest.

3.2.2. Model 2: Market and Factors CPC1 to CPC4

Again, we use the estimated βs for Model 2 (see Table 9) to examine if the different
factors are priced on the cross-section of returns and the results are reported in Table 11.
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Table 11. Results for Cross-Sectional estimation of Model 2.

t-Statistic Bootstrap

Estimate FM CS 95% CI

Market 0.0108 2.054 1.5447 0.0091, 0.0254
CPC1 0.0071 9.625 3.5836 0.0017, 0.0181
CPC2 −0.0001 −0.085 −0.0502 −0.0126, 0.0038
CPC3 −0.0012 −2.241 −1.1303 −0.0150, 0.0014
CPC4 0.0002 0.445 0.1139 −0.0120, 0.0043

The highest risk premia are those of Market, which is 0.0108, and the one associated
with the factor based on mean and Momentum (CPC1-factor), which is 0.0071. In both cases,
returns depend positively on them. The rest of the risk premia are much lower and non-
significant at 5% significance levels both for traditional methods and resampling techniques.
The reported t-statistics, which in the case of CS include the Shanken correction, suggest
that the only statistically significant factor at conventional significance levels is that based
on mean and Momentum (CPC1-factor). However, bootstrap intervals indicate that both
Market and CPC1-factor λs are significantly different from zero (at 5% level) contributing
to the model. This is consistent with the 4-factor model by Carhart [11]. Additionally, once
we control for a volatility factor (CPC4), we notice that expected returns, at least during the
period considered, do not depend on standard deviation. See Reference [33] for potential
explanations and a historical review of the volatility effect.

3.3. Comparison between Classical Methodologies and Bootstrap Methods

As we have seen, the assumptions’ violation of the residuals of the regressions, like
non-normality, heteroskedasticity, and autocorrelation, as well as, the presence of multi-
collinearity (that is, high correlation among the different factors used in the analysis), may
affect the estimates of α, βi and GRS computed through classical methodologies.

Table 12 contains a comparison between the inferential results obtained with both
methodologies. In particular, we show the number of portfolios where βi = 0. Rows
corresponding to Model 1 and Model 2 contain classical inferential results, whereas rows
Model 1b and Model 2b contain bootstrap inferential results. Indeed, looking at those
results, we notice that the p-values of the bootstrap GRS tests are always greater than those
of classical procedures, showing that the former are more conservative (we fail to reject
the null hypothesis that the α are jointly 0 more often). We also observe that the number of
portfolios where βi = 0 varies depending on the methodology used.

Table 12. Comparison of classical methodologies and bootstrap methods.

Number of Portfolios Where

Model Factors βm = 0 βCPC1 = 0 βCPC2 = 0 βCPC3 = 0 βCPC4 = 0 GRS p-Value Adj-R2

Model 1 Market 0 - - - - 0.019 0.190 to 0.526
Model 1b Market 0 - - - - 0.174

Model 2 Market & CPCs 0 1 9 6 1 0.009 0.263 to 0.853
Model 2b Market & CPCs 0 1 8 8 1 0.171

4. Conclusions

We propose a procedure to obtain and test multifactor models based on statistical
and financial factors and illustrate it on a large dataset corresponding to nearly 1250 EU
companies and spanning from October 2009 to October 2019. However, the procedure is
general enough to be extended to other factors, companies or time period.

The first methodological contribution relies on using Common Principal Components
to build the portfolios and summarize factors’ information by capturing a high percentage
of the variability of the datasets. In this paper, we considered factors like Market Capi-
talization and Total Assets (measures of size), Price to Book ratio (measure of cheapness),
Return on Assets and Return on Equity (measures of profitability), Momentum, and four
statistical measures, such as mean, standard deviation, kurtosis, and skewness. The second
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methodological contribution is the development of a block-bootstrap procedure to assess
the validity of the model and the significance of the parameters involved.

The main findings indicate that the multifactor model proposed improves the Capital
Asset Pricing Model with regard to the adjusted-R2 in the time-series regressions. Cross-
section regression results reveal that Market and a factor related to Momentum and mean of
stocks’ returns have positive risk premia for the analyzed period. Finally, we also observe
that tests based on block-bootstrap statistics are less prone to reject the validity of the model
than classical procedures.

In this paper, we proposed Common Principal Components to obtain multifactor
models for equity returns, mainly because it can deal with several datasets and can be
applied to non-normal data. Direct extensions of this work are to explore the efficency
of these multifactor models in other equity markets, as well as in other time periods.
A further research line is to explore and adapt other multivariate dimensionality reduction
techniques, like MANOVA, although this technique requires additional hypothesis that
are hardly fulfilled in real datasets. To explore and adapt MANOVA to be used in large
datasets is beyond the scope of this paper, and we leave it for further research.

Author Contributions: This work is part of the PhD of J.M.C. who has assumed the heaviest
load of work. The work distribution was as follows: Conceptualization, J.M.C., A.G. and I.C.;
methodology, A.G. and I.C.; software J.M.C.; validation, J.M.C., A.G. and I.C.; data curation: J.M.C.;
writing—original draft preparation, J.M.C.; writing—review and editing, J.M.C., A.G. and I.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the V Regional Plan for Scientific Research and
Technological Innovation 2016–2020 of the Community of Madrid, an agreement with Universidad
Carlos III de Madrid in the action of “Excellence for University Professors”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon subscription to Thomson Reuters.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Sharpe, W.F. Capital asset prices: A theory of market equilibrium under conditions of risk. J. Financ. 1964, 19, 425–442.
2. Lintner, J. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ.

Stat. 1965, 47, 13–37. [CrossRef]
3. Mossin, J. Equilibrium in a Capital Asset Market. Econometrica 1966, 34, 758–783. [CrossRef]
4. Frazzini, A.; Pedersen, L. Betting agains beta. J. Financ. Econ. 2014, 111, 1–25. [CrossRef]
5. Miller, M.H.; Scholes, M. Rates of return in relation to risk: A reexamination of some recent findings. In Studies in the Theory of

Capital Markets; Jensen, M.C., Ed.; Praeger: New York, NY, USA, 1972; pp. 47–78.
6. Fama, E.F.; French, K.R. The cross-section of expected returns. J. Financ. 1992, 47, 427–465. [CrossRef]
7. Viale, A.M.; Kolari, J.W.; Fraser, D.R. Common risk factors in bank stocks. J. Bank. Financ. 2009, 33, 464–472.
8. Ramos, S.; Taamouti, A.; Veiga, H.; Wang, C.W. Do investors price industry risk? Evidence from the cross-section of the oil

industry. J. Energy Mark. 2017, 10, 79–108. [CrossRef]
9. Elyasiani, E.; Gambarelli, L.; Muzzioli, S. Moment risk premia and the cross-section of stock returns in the European stock market.

J. Bank. Financ. 2020, 111, 105732. [CrossRef]
10. Lemperiere, Y.; Deremble, C.; Nguyen, T.; Seager, P.; Potters, M.; Bouchaud, J. Risk Premia: Asymmetric Tail Risks and Excess

Returns. Quant. Financ. 2017, 17, 1–14.
11. Carhart, M.M. On Persistence in Mutual Fund Performance. J. Financ. 1997, 52, 57–82. [CrossRef]
12. Misra, A.; Mohapatra, S. Evidence and Sources of Momentum Profits. A Study on Indian Stock Market. Econ. Manag. Financ.

Mark. 2014, 9, 86–109.
13. Harvey, C.; Liu, Y.; Zhu, H. ... and the cross-section of expected returns. Rev. Financ. Stud. 2015, 29, 5–68. [CrossRef]
14. Fama, E.F.; French, K.R. Choosing factors. J. Financ. Econ. 2018, 128, 234–252. [CrossRef]
15. Barillas, F.; Shanken, J. Which alpha? Rev. Financ. Stud. 2017, 30, 1316–1338. [CrossRef]
16. Fama, E.F.; French, K.R. A five-factor asset pricing model. J. Financ. Econ. 2015, 116, 1–22. [CrossRef]

http://doi.org/10.2307/1924119
http://dx.doi.org/10.2307/1910098
http://dx.doi.org/10.1016/j.jfineco.2013.10.005
http://dx.doi.org/10.1111/j.1540-6261.1992.tb04398.x
http://dx.doi.org/10.21314/JEM.2017.156
http://dx.doi.org/10.1016/j.jbankfin.2019.105732
http://dx.doi.org/10.1111/j.1540-6261.1997.tb03808.x
http://dx.doi.org/10.1093/rfs/hhv059
http://dx.doi.org/10.1016/j.jfineco.2018.02.012
http://dx.doi.org/10.1093/rfs/hhw101
http://dx.doi.org/10.1016/j.jfineco.2014.10.010


Mathematics 2021, 9, 1011 22 of 22

17. Heerden, J.V.; Rensburg, P.V. Common Firm-Specific Characteristics of Extreme Performers on The Johannesburg Securities
Exchange. Econ. Manag. Financ. Mark. 2017, 12, 25–50.

18. Feng, G.; Giglio, S.; Xiu, D. Taming the Factor Zoo: A Test of New Factors. J. Financ. 2020, 75, 1327–1370. [CrossRef]
19. Flury, B.N. Common principal components in k groups. J. Am. Stat. Assoc. 1984, 79, 892–898. [CrossRef]
20. Fama, E.F.; French, K.R. Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 1993, 33, 3–56. [CrossRef]
21. Fama, E.F.; MacBeth, J.D. Risk, Return and Equilibrium: Empirical Tests. J. Political Econ. 1973, 81, 607–636. [CrossRef]
22. Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1972, 7, 1–26.
23. Cueto, J.M.; Grané, A.; Cascos, I. Models for Expected Returns with Statistical Factors. J. Risk Financ. Manag. 2020, 13, 314.

[CrossRef]
24. Chou, P.; Zhou, G. Using Bootstrap to Test Portfolio Efficiency. Ann. Econ. Financ. 2006, 1, 217–249.
25. Grané, A.; Veiga, H. Accurate minimum capital risk requirements: A comparison of several approaches. J. Bank. Financ. 2008,

32, 2482–2492. [CrossRef]
26. Flury, B.N.; Gaustchi, W. An algorithm for simultaneous orthogonal transformation of several positive definite symmetric

matrices to nearly diagonal form. SIAM J. Sci. Stat. Comput. 1986, 7, 169–184. [CrossRef]
27. Flury, B. Common Principal Components and Related Multivariate Models; John Wiley & Sons: Hoboken, NJ, USA, 1988.
28. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
29. Gibbons, M.R.; Ross, S.A.; Shanken, J. A test of the efficiency of a given portfolio. Econometrica 1989, 57, 1121–1152. [CrossRef]
30. Fama, E.F. Cross-Section Versus Time-Series Tests of Asset Pricing Models. Fama-Mill. Work. Pap. 2015. [CrossRef]
31. Shanken, J. On the estimation of beta-pricing models. Rev. Financ. Stud. 1992, 5, 1–33. [CrossRef]
32. Soumaré, I.; Aménounvé, E.J.; Diop, O.; Méité, D.; N’Sougan, Y.D. Applying the CAPM and the Fama-French models to the

BRVM stock maket. Appl. Financ. Econ. 2013, 23, 275–285. [CrossRef]
33. Blitz, D.; Falkenstein, E.; van Vliet, P. Explanations for the Volatility Effect: An Overview Based on the CAPM Assumptions.

J. Portf. Manag. 2014, 40, 61–76. [CrossRef]

http://dx.doi.org/10.1111/jofi.12883
http://dx.doi.org/10.2307/2288721
http://dx.doi.org/10.1016/0304-405X(93)90023-5
http://dx.doi.org/10.1086/260061
http://dx.doi.org/10.3390/jrfm13120314
http://dx.doi.org/10.1016/j.jbankfin.2008.05.003
http://dx.doi.org/10.1137/0907013
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.2307/1913625
http://dx.doi.org/10.2139/ssrn.2685317
http://dx.doi.org/10.1093/rfs/5.1.1
http://dx.doi.org/10.1080/09603107.2012.718062
http://dx.doi.org/10.3905/jpm.2014.40.3.061

	Introduction
	Materials and Methods
	Data and Factors
	Data Description
	Factors under Study

	Methodology
	Common Principal Components
	Portfolio Construction
	Classical Methodologies
	Resampling Techniques: Bootstrap


	Results
	Time-Series Regressions
	Model 1: CAPM
	Model 2: Market and Factors CPC1 to CPC4

	Cross-Sectional Regression
	Model 1: CAPM
	Model 2: Market and Factors CPC1 to CPC4

	Comparison between Classical Methodologies and Bootstrap Methods

	Conclusions
	References

