

MASTER’S IN INDUSTRIAL ENGINEERING

AND SMART INDUSTRY

MASTER’S THESIS

FORECASTING ELECTRICITY PRICES WITH
NEURAL ODE

Author: Sanz Muñoz, Jaime

Director: Muñoz San Roque, Antonio

Co-Director: Malpica Morales, Antonio

Madrid

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Forecasting electricity prices with Neural ODE

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2022/23 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido

tomada de otros documentos está debidamente referenciada.

Fdo.: Jaime Sanz Muñoz Fecha: 20/08/2023

Autorizada la entrega del proyecto

Fdo.: Antonio Muñoz San Roque Fecha: ……/ ……/ ……

 Fdo.: Antonio Malpica Morales Fecha: ……/ ……/ ……

23 08 2023

MÁSTER EN TECNOLOGÍAS INDUSTRIALES E

INDUSTRIA CONECTADA

TRABAJO FIN DE MÁSTER

PREDICCIÓN DE PRECIOS DE LA ELECTRICIDAD

CON NEURAL ODE

Autor: Sanz Muñoz, Jaime

Director: Muñoz San Roque, Antonio

Co-Director: Malpica Morales, Antonio

Madrid

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

FORECASTING ELECTRICITY PRICES WITH NEURAL ODE

Author: Sanz Muñoz, Jaime

Supervisors: Muñoz San Roque, Antonio

 Malpica Morales, Antonio

Collaborating Entity: ICAI – Universidad Pontificia Comillas

ABSTRACT

This master’s thesis develops and evaluates neural Ordinary Differential Equations (ODEs)

for short-term electricity price forecasting (EPF) in the 2019 Spanish day-ahead market. The

neural ODEs are implemented in PyTorch and compared against benchmark models

including SARIMA, Facebook Prophet, MLP, LSTM and CNN-LSTM. The univariate

neural ODE achieved the lowest average error, outperforming statistical and machine

learning (ML) methods. However, the multivariate Prophet provided the best performance,

making the most of the exogenous variables. While computationally expensive, neural ODEs

show promising results.

Keywords: Forecasting; Electricity price; ODE; Day-ahead market

1. Introduction

EPF plays a critical role in the effective functioning and stability of energy markets. Having

accurate price forecasts enables utility companies to optimize generation schedules, traders

to maximize profits and consumers to plan usage [1]. Nevertheless, electricity prices show

substantial volatility due to fluctuations in demand, supply, and other exogenous factors like

the weather, making accurate EPF challenging.

Over the years, a variety of statistical and ML techniques have been applied to EPF,

including autoregressive integrated moving average (ARIMA) models, support vector

machines (SVM) and artificial neural networks [2][3]. As these methods evolved, the hybrid

approach was introduced, combining strengths of both worlds to offer a robust way to deal

with the increasing price volatility. Recently, a new class of deep learning model called

neural ODEs has shown promising results for learning complex continuous-time dynamics

[4].

This paper provides the first in-depth implementation of neural ODEs for day-ahead EPF,

more specifically in the Spanish electricity market. Both univariate and multivariate

approaches are developed. The univariate only uses historical price data, whereas the

multivariate approach includes three additional exogenous variables: the P48 power demand

and wind production (obtained from the system operator OMIE), and the day of the week.

The primary objectives of this master’s thesis start with conducting an extensive review of

the current research and state-of-the-art methods in EPF, as new data and algorithms are

rapidly emerging in this evolving field. Moreover, a series of benchmark models including

the statistical, probabilistic and ML models will be implemented to provide a baseline for

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

the posterior analysis of results. The neural ODE will then be implemented in PyTorch, and

its results will be assessed against the benchmark models using the appropriate error metrics.

Finally, the results will be summarized in this academic paper, describing the strengths and

weaknesses of neural ODE for EPF. Overall, the outcomes will provide valuable insights for

all the market agents and EPF community.

2. Benchmark models

This study uses hourly electricity price data from the day-ahead market of Spain in a period

spanning from mid-2018 to late-2019. A consistent dataset division has been selected for the

benchmark models, using the previous year of observations as training period, three months

as validation set and the following three months for the test set, which will span from August

2019 to October 2019. The five benchmark models that have been developed, for both

univariate and multivariate approaches, are described subsequently.

The seasonal ARIMA (SARIMA) model has been selected for its ability to capture seasonal

electricity price cycles, focusing for this study on the regular, daily and weekly seasonalities.

Implemented in R, the Box-Cox methodology is followed to find and test the best

combination of hyperparameters. The model is trained on the preceding 13 weeks of data,

with the resulting training residuals analyzed.

Characterized by its flexibility, robustness and computational efficiency, the probabilistic

Prophet model has been included in this study. This model has been developed by Facebook

to mitigate the frequent lack of resilience of forecasting methods [5]. The Prophet model

uses the preceding 6 weeks of data to forecast the following 24-hourly electricity prices.

The Multilayer Perceptron (MLP) models are a feedforward artificial neural networks that

can capture complex nonlinear relationships in data through traditional backpropagation and

stochastic gradient descent. The model takes the prior 168 prior hourly prices (as in the

previous week) as input and predicts the following 24 hours.

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network

(RNN), which have proven to be very effective in modelling sequential data, given their

ability to remember long-term data. They have also been trained using the preceding week

of data.

Finally, hybrid models such as the Convolutional Neural Network-LSTM (CNN-LSTM)

model, combine the strengths of both techniques, bringing together their abilities to capture

temporal and spatial characteristics in the data. Before passing the input data to the LSTM

model, a 1D convolutional layer extracts features and patterns, using a sequence of learnable

filters, This is especially well-suited for the multivariate approach, as there may be hidden

interconnections or recurring patterns that may not be immediately apparent.

The evaluation of the models’ performance has been carried out by following the standard

mean absolute error (MAE) on the test set forecasts.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

3. Neural ODE

Five years ago, in 2018, Ricky T. Q. Chen and his colleagues published the paper introducing

this new family of deep neural network models, neural ODEs. Essentially, they are a

continuous version of the RNN models, where the hidden state at a given time is modeled as

a function of time, instead of a sequence of discrete time steps [4]. By combining the

flexibility of deep neural networks with the mathematical properties of ODEs, Chen and his

colleagues demonstrated that this new model could accurately model complex, dynamic

systems, outperforming traditional approaches in certain scenarios. Ever since, neural ODEs

have been implemented in other fields, achieving state-of-the-art performance in areas like

irregular time series and robotics control [6]. However, their application to EPF has been

limited and the main goal of this master’s thesis is to implement it for the first time on the

Spanish day-ahead electricity market.

The innovative idea behind a neural ODE is to avoid the traditional backpropagation.

Differentiating through the operations of the forward pass is straightforward, but incurs a

high memory cost and introduces additional numerical error [4]. Nevertheless, the ODE

solver is represented as a black box and calculates the solution of the initial value problem

(IVP), computing the gradients using the so-called adjoint sensitivity method. This approach

computes the gradients by solving a second, augmented ODE backwards in time, and is

applicable to all ODE solvers.

The neural network takes as input the initial condition, i.e., the input at the first time-step,

and evolves it over time according to the learned ODE behind the dynamics. The time-steps

will correspond to each day of the input week, serving the last one as the out-of-sample

prediction. The neural ODE is trained with 5 time-steps, which correspond to the preceding

week’s price trajectory. Then, the out-of-sample forecast is performed at the sixth time-step.

The ODE solver, and adaptive dopri5 (Dormand-Prince Runge-Kutta of fifth order),

computes an arbitrary number of iterations for each day’s data, before advancing to the next

time-step for evaluation. The neural ODE validation for the out-of-the-sample forecast is as

follows:

Figure 1: Evaluation at the end of the last time-step - Out-of-the-sample prediction

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

Neural ODEs, unlike traditional ML models, require that the dimensionality of input and

output match, due to the nature of ODEs. This requirement shapes the model’s architecture,

including the number of layers and input data preprocessing. For the case of the univariate

neural ODE, the initial condition of the IVP matches the desired forecast size, 24. However,

the multivariate neural ODE computes and predicts the values for all the three variables (P48

power demand, P48 wind generation and electricity price) flattened values, i.e., 72 values.

Nevertheless, to concentrate the computational resources on the primary task of EPF, the

loss function is applied only to the last 24 values of the neural network’s last layer. The

following figure shows the output values of the ODE’s solution, having fit a rectangle in the

last 24 outputs, which represents the final price forecasts for the following day:

Figure 2: Input and output values of the multivariate neural ODE

4. Final Results

The resulting loss function values of each univariate model for every day of the week are as

follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

Day to forecast Naïve SARIMA Prophet MLP LSTM
CNN-

LSTM

Neural

ODE

Monday 8.121 4.25 4.94 5.331 5.292 5.639 3.786

Tuesday 3.935 4.49 4.27 3.941 3.961 4.679 3.460

Wednesday 3.352 4.59 3.44 4.322 3.178 3.239 3.915

Thursday 3.554 3.73 4.09 4.636 4.350 4.503 3.727

Friday 2.768 4.01 3.76 3.418 3.309 3.437 3.613

Saturday 4.665 4.56 4.84 3.909 3.908 4.057 3.381

Sunday 4.093 6.87 4.68 3.715 3.473 3.177 3.648

Average MAE 4.355 4.643 4.289 4.182 3.924 4.104 3.647

Table 1: Univariate Results

These results highlight the importance of running day-specific models in EPF. This is

because different days of the week may have different price dynamics due to external factors

like demand patterns, making it suitable to tailor models to specific days. Looking at the

average values of the loss function for the different models, the univariate neural ODE

outperforms the rest of the benchmark models. Even though the models have run on CPU,

they achieve the best results overall. It must be noted that this does not apply for all days but

generally, the neural ODE is the model that makes the most out of the electricity price time

series. The resulting loss function values of each multivariate model for every day of the

week are as follows:

Day to forecast Naïve SARIMAX Prophet MLP LSTM
CNN-

LSTM

Neural

ODE

Monday 8.121 4.51 2.45 5.213 5.756 3.804 4.358

Tuesday 3.935 4.89 2.38 3.693 5.684 3.995 4.792

Wednesday 3.352 5.11 3.28 4.076 5.601 3.547 4.090

Thursday 3.554 4.33 2.86 4.001 7.084 4.315 3.973

Friday 2.768 4.26 2.78 4.173 6.572 3.325 3.844

Saturday 4.665 5.04 2.34 3.410 5.653 4.022 3.799

Sunday 4.093 5.41 2.48 2.919 6.090 2.755 3.550

Average MAE 4.355 4.793 2.652 3.926 6.063 3.680 4.058

Table 2: Multivariate Results

These results highlight a key challenge in time-series forecasting: adding more variables

does not necessarily improve performance, being the case of the SARIMAX and LSTM. It

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

is crucial to carefully select and preprocess the variables to ensure they allow additional

valuable information. Surprisingly enough, the multivariate model with the best overall

performance is the Prophet model. With an astonishing overall electricity price MAE of

2.652 €/MWh, it has outperformed the other benchmark models.

5. Conclusions & Future Work

This study delivered a valuable vision of the potential of neural ODEs in the short-term

Spanish day-ahead EPF problem. This pioneer application brought unique challenges,

including the lack of references and comparisons with similar architectures.

A key strength of neural ODEs that has been demonstrated, is their efficiency in the use of

data. In contrast to the other benchmark models, that required large training datasets, neural

ODEs demonstrated optimal performance with a significantly smaller datasets size.

Consequently, neural ODEs arise as an important option for time-series with limited

historical data, allowing a quicker reaction to changing dynamics. This could include

scenarios related to rare events like natural disasters and new market product sales.

Surprisingly enough, the Facebook Prophet model emerged as the reference model for

multivariate EPF. It showed its strength in handling variability and uncertainty in the

electricity prices, manifesting its capability to model the holiday effects. Conversely, the

study demonstrated that adding more variables does not always enhance forecasting

performance. As is the case of the SARIMAX model, which failed to effectively leverage

the additional information provided by the exogenous variables.

Moving forward, future work includes the exploration of neural controlled differential

equations for real-world applications [7], focusing on improving their generalization

capabilities and robustness to noise. However, due to the number of computations required

for neural ODEs, the migration to GPU systems will be necessary for exploring more

complex time-series and more accurate ODE solvers.

6. References

[1] J. Lago, G. Marcjasz, B. De Schutter, and R. Weron, “Forecasting day-ahead

electricity prices: A review of state-of-the-art algorithms, best practices and an open-

access benchmark,” Appl. Energy, vol. 293, no. December 2020, p. 116983, 2021,

doi: 10.1016/j.apenergy.2021.116983.

[2] R. Weron, “Electricity price forecasting: A review of the state-of-the-art with a look

into the future,” Int. J. Forecast., vol. 30, no. 4, pp. 1030–1081, 2014, doi:

10.1016/j.ijforecast.2014.08.008.

[3] J. Lago, F. De Ridder, and B. De Schutter, “Forecasting spot electricity prices: Deep

learning approaches and empirical comparison of traditional algorithms,” Appl.

Energy, vol. 221, pp. 386–405, 2018, doi: 10.1016/j.apenergy.2018.02.069.

[4] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

differential equations,” Adv. Neural Inf. Process. Syst., vol. 2018-Decem, pp. 6571–

6583, 2018.

[5] S. J. Taylor and B. Letham, “Business Time Series Forecasting at Scale,” PeerJ Prepr.

5e3190v2, vol. 35, no. 8, pp. 48–90, 2017.

[6] E. De Brouwer, J. Simm, A. Arany, and Y. Moreau, “GRU-ODE-Bayes: Continuous

modeling of sporadically-observed time series,” Belgian/Netherlands Artif. Intell.

Conf., no. NeurIPS, pp. 364–366, 2020.

[7] P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural controlled differential equations

for irregular time series,” Adv. Neural Inf. Process. Syst., vol. 2020-Decem, no. 1,

2020.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

PREDICCIÓN DE PRECIOS DE LA ELECTRICIDAD CON NEURAL

ODE
Autor: Sanz Muñoz, Jaime

Directores: Muñoz San Roque, Antonio

 Malpica Morales, Antonio

Entidad Colaboradora: ICAI – Universidad Pontificia Comillas

RESUMEN

Este trabajo de fin de máster desarrolla y evalúa el innovador modelo neural ODE

(Ecuaciones Diferenciales Ordinarias o EDO) para la predicción a corto plazo del precio de

la electricidad en el mercado diario en España en 2019. El modelo neural ODE se

implementa en PyTorch y se compara con modelos de referencia que incluyen el SARIMA,

Facebook Prophet, MLP, LSTM y CNN-LSTM. La neural ODE univariante logró el error

promedio más bajo, superando a los métodos estadísticos y de aprendizaje automático (ML).

Sin embargo, el modelo Prophet multivariante proporcionó el mejor rendimiento,

aprovechando al máximo las variables exógenas. Aunque son computacionalmente costosas,

las neural ODE muestran resultados prometedores.

Palabras clave: Predicción; Precio de la electricidad; EDO; Mercado diario

1. Introducción

La predicción de precios a corto plazo juega un papel crítico en el funcionamiento efectivo

y estable de los mercados de energía. Los pronósticos de precios precisos permiten a las

empresas energéticas optimizar los horarios de generación, a los operadores maximizar los

beneficios y a los consumidores planificar el uso [1]. Sin embargo, los precios de la

electricidad muestran una volatilidad sustancial debido a las fluctuaciones en la demanda, la

oferta y otros factores exógenos como el clima, lo que dificulta la obtención de predicciones

precisas.

A lo largo de los años, se han aplicado diversas técnicas estadísticas y de ML para EPF,

incluyendo modelos de media móvil autorregresiva integrada (ARIMA), máquinas de

vectores de soporte (SVM) y redes neuronales artificiales [2][3]. A medida que estos

métodos evolucionaron, se introdujo el enfoque híbrido, combinando las fortalezas de ambos

mundos para ofrecer una forma robusta de lidiar con la creciente volatilidad de los precios.

Recientemente, una nueva clase de modelo de aprendizaje profundo llamado neural ODEs

ha mostrado resultados prometedores para aprender dinámicas complejas de tiempo continuo

[4].

Este artículo proporciona la primera implementación en profundidad de neural ODE para la

predicción de precios de la electricidad del mercado diario español. Se desarrollan los

enfoques univariante y multivariante. Cabe mencionar que el univariante solo utiliza datos

históricos de precios, mientras que el enfoque multivariante incluye tres variables exógenas

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

adicionales: la demanda de energía P48 y la producción eólica (obtenidos del operador del

sistema OMIE), y el día de la semana.

Los objetivos principales de este trabajo de fin de máster comienzan con la realización de

una revisión exhaustiva de la investigación actual y los estado del arte en el mundo de la

predicción de precios de la electricidad, ya que nuevos datos y algoritmos están surgiendo

rápidamente en este campo. Además, se implementará una serie de modelos de benchmark

que incluyen modelos estadísticos, probabilísticos y de ML para proporcionar una línea de

referencia para el análisis posterior de los resultados. Luego, se implementará la neural ODE

en PyTorch, y sus resultados serán evaluados utilizando la métrica de error apropiada.

Finalmente, los resultados serán resumidos en este artículo académico, describiendo las

fortalezas y debilidades del modelo para la predicción de precios de la electricidad. En

general, los resultados proporcionarán valiosos conocimientos para todos los agentes del

mercado y la comunidad de EPF.

2. Modelos de referencia

Este estudio utiliza datos de precios de electricidad por hora del mercado del día siguiente

de España en un período que abarca desde mediados de 2018 hasta finales de 2019. Se ha

seleccionado una división de datos consistente para los modelos de referencia, utilizando el

año anterior de observaciones como período de entrenamiento, tres meses como conjunto de

validación y los siguientes tres meses para el conjunto de prueba, que abarcará de agosto de

2019 a octubre de 2019. Los cinco modelos de referencia que se han desarrollado, para los

enfoques univariante y multivariante, se describen a continuación.

El modelo ARIMA estacional (SARIMA) ha sido seleccionado por su capacidad para

capturar ciclos estacionales en las series temporales, centrándose para este estudio en las

estacionalidades regular, diaria y semanal. Implementado en R, se sigue la metodología Box-

Jenkins para encontrar y probar la mejor combinación de hiperparámetros. El modelo se

entrena en las 13 semanas anteriores de datos, para predecir los siguientes 24 precios.

Finalmente, se analizan los residuos de entrenamiento resultantes.

Caracterizado por su flexibilidad, robustez y eficiencia computacional, el modelo

probabilístico Prophet ha sido incluido en este estudio. Este modelo ha sido desarrollado por

Facebook para mitigar la falta frecuente de resiliencia de los métodos de predicción [5]. El

modelo Prophet utiliza las 6 semanas anteriores de observaciones.

Los modelos de Perceptrón Multicapa (MLP) son redes neuronales artificiales que permiten

capturar relaciones no lineales complejas en los datos a través de la retropropagación

tradicional y el descenso de gradiente estocástico. El modelo toma los 168 precios horarios

anteriores (la semana anterior) como entrada y predice las siguientes 24 horas.

Las redes de Memoria a Largo Plazo (LSTM) son un tipo de Red Neural Recurrente (RNN),

que han demostrado ser muy efectivas para modelar datos secuenciales, dada su capacidad

para recordar datos a largo plazo. También han sido entrenadas utilizando los datos de la

semana anterior.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

Finalmente, los modelos híbridos como el modelo de Red Neuronal Convolucional-LSTM

(CNN-LSTM), combinan las fortalezas de ambas técnicas, reuniendo sus habilidades para

capturar características temporales y espaciales en los datos. Antes de pasar los datos de

entrada al modelo LSTM, una capa convolucional de 1D extrae características y patrones,

utilizando una secuencia de filtros aprendibles. Esta capacidad de extracción de

características es especialmente adecuada para el enfoque multivariante, donde puede haber

interconexiones ocultas o patrones recurrentes que no sean inmediatamente reconocibles.

La evaluación del rendimiento de los modelos se ha realizado siguiendo el error absoluto

medio estándar (MAE) en las predicciones del conjunto de test.

3. Neural ODE

Hace cinco años, en 2018, Ricky T. Q. Chen y sus compañeros publicaron el artículo que

introducía esta nueva familia de modelos de redes neuronales profundas, las neural ODEs.

Esencialmente, eran una versión continua de los modelos RNN, donde el estado oculto en

un momento dado se modela como una función del tiempo, en lugar de una secuencia de

pasos de tiempo discretos [4]. Al combinar la flexibilidad de las redes neuronales profundas

con las propiedades matemáticas de las EDOs, Chen y sus compañeros demostraron que este

nuevo método podía modelar con precisión sistemas complejos y dinámicos, superando en

rendimiento a los enfoques tradicionales en ciertos escenarios. Desde entonces, las neural

ODEs se han implementado en otros campos, logrando un rendimiento óptimo en áreas como

series temporales irregulares y control de robótica [6]. Sin embargo, su aplicación a EPF ha

sido limitada y el objetivo principal de este trabajos de fin de máster es implementarlo por

primera vez en el mercado eléctrico diario español.

La idea innovadora detrás de una neural ODE es evitar la retropropagación tradicional.

Diferenciar a través de las operaciones del ‘forward-pass’ es sencillo, pero incurre en un alto

costo de memoria e introduce un error numérico adicional [4]. Sin embargo, el solver de

EDO se representa como una caja negra y calcula la solución del problema de valor inicial

(IVP), calculando los gradientes utilizando el llamado método de adjoint sensitivity. Este

enfoque calcula los gradientes resolviendo una segunda EDO aumentada hacia atrás en el

tiempo, y es aplicable a todos los solvers de EDO.

La red neuronal toma como entrada la condición inicial, es decir, la entrada en el primer paso

de tiempo, y la desarrolla con el tiempo de acuerdo a la EDO aprendida detrás de la dinámica.

Los pasos de tiempo corresponderán a cada día de la semana de entrada, sirviendo el último

como la predicción de test. La neural ODE se entrena con 5 pasos de tiempo, que

corresponden a la trayectoria de precios de la semana anterior. Después, la predicción fuera

de la muestra se realiza en el sexto paso de tiempo.

El solver de ODE implementado, el dopri5 adaptativo (Dormand-Prince Runge-Kutta de

orden 5), calcula un número arbitrario de iteraciones para los datos de cada día, antes de

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

avanzar al siguiente paso de tiempo para la evaluación. La validación de la neural ODE para

la predicción de test es la siguiente:

Figura 1: Evaluación al final del último paso de tiempo - Predicción de test

Las neural ODE, a diferencia de los modelos de ML tradicionales, requieren que la

dimensionalidad de la entrada y la salida coincidan, debido a la naturaleza de las EDOs. Este

requisito da forma a la arquitectura del modelo, incluyendo el número de capas y el

preprocesamiento de datos de entrada. Para el caso de la neural ODE univariante, la

condición inicial del IVP coincide con el tamaño de la predicción deseada, 24. Sin embargo,

la neural ODE multivariante calcula y predice los valores para las tres variables (demanda

de energía P48, generación de viento P48 y precio de la electricidad). Estos valores se

introducen de manera aplanada, dando un total de 72 valores. Sin embargo, para concentrar

los recursos computacionales en la tarea principal de predicción de precios de la electricidad,

la función de pérdida se aplica solo a los últimos 24 valores de la última capa de la red

neuronal. La siguiente figura muestra los valores de salida de la solución de la EDO,

habiendo ajustado un rectángulo en las últimas 24 salidas, que representan las predicciones

finales de precios para el día siguiente:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

Figura 2: Valores de entrada y salida de la neural ODE multivariante

4. Resultados finales

Los valores resultantes de la función de pérdida de cada modelo univariante para cada día

de la semana son los siguientes:

Día a predecir Naïve SARIMA Prophet MLP LSTM
CNN-

LSTM

Neural

ODE

Lunes 8.121 4.25 4.94 5.331 5.292 5.639 3.786

Martes 3.935 4.49 4.27 3.941 3.961 4.679 3.460

Miércoles 3.352 4.59 3.44 4.322 3.178 3.239 3.915

Jueves 3.554 3.73 4.09 4.636 4.350 4.503 3.727

Viernes 2.768 4.01 3.76 3.418 3.309 3.437 3.613

Sábado 4.665 4.56 4.84 3.909 3.908 4.057 3.381

Domingo 4.093 6.87 4.68 3.715 3.473 3.177 3.648

MAE promedio 4.355 4.643 4.289 4.182 3.924 4.104 3.647

Tabla 11: Resultados univariantes

Estos resultados resaltan la importancia de entrenar modelos específicos para cada día de la

semana. Esto se debe a que pueden tener diferentes dinámicas de precios debido a factores

externos como patrones de demanda, lo que hace adecuado personalizar los modelos para

días específicos. Al mirar los valores promedio de la función de pérdida para los diferentes

modelos, la neural ODE univariante supera al resto de los modelos de referencia. A pesar de

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

que los modelos se han ejecutado en la CPU, logran los mejores resultados en general. Cabe

destacar que esto no se aplica a todos los días, pero en general, la neural ODE es el modelo

que más aprovecha la serie temporal de precios de la electricidad, cuando es la única que se

considera en el estudio. Los valores resultantes de la función de pérdida de cada modelo

multivariante para cada día de la semana son los siguientes:

Día a predecir Naïve SARIMAX Prophet MLP LSTM
CNN-

LSTM

Neural

ODE

Lunes 8.121 4.51 2.45 5.213 5.756 3.804 4.358

Martes 3.935 4.89 2.38 3.693 5.684 3.995 4.792

Miércoles 3.352 5.11 3.28 4.076 5.601 3.547 4.090

Jueves 3.554 4.33 2.86 4.001 7.084 4.315 3.973

Viernes 2.768 4.26 2.78 4.173 6.572 3.325 3.844

Sábado 4.665 5.04 2.34 3.410 5.653 4.022 3.799

Domingo 4.093 5.41 2.48 2.919 6.090 2.755 3.550

MAE promedio 4.355 4.793 2.652 3.926 6.063 3.680 4.058

Tabla 2: Resultados multivariantes

Estos resultados destacan un hecho clave en la predicción de series temporales: agregar más

variables no mejora necesariamente el rendimiento, siendo el caso de los modelos SARIMA

y LSTM. Es crucial seleccionar y preprocesar cuidadosamente las variables para asegurar

que proporcionen información adicional valiosa. Sorprendentemente, el modelo

multivariante con el mejor rendimiento global es el Prophet. Con un asombroso MAE global

de precios de la electricidad de 2.652 €/MWh, ha superado al resto de modelos de referencia.

5. Conclusiones y Trabajo a Futuro

Este estudio proporcionó una valiosa visión del potencial de las neural ODEs en el problema

de la predicción de precios de la electricidad en el mercado diario en España. Esta aplicación

pionera ha traído desafíos únicos, incluyendo la falta de referencias y comparaciones con

arquitecturas similares.

Una de las principales fortalezas que se ha demostrado de las neural ODE es su eficiencia

en el uso de los datos. A diferencia de los otros modelos de referencia, que requerían grandes

conjuntos de datos de entrenamiento, las neural ODE demostraron un rendimiento óptimo

con un tamaño de conjuntos de datos significativamente menor. En consecuencia, las neural

ODE surgen como una opción importante para series temporales con datos históricos

limitados, permitiendo una reacción más rápida a las dinámicas cambiantes. Esto podría

incluir escenarios relacionados con eventos raros como desastres naturales y ventas de

nuevos productos de mercado.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

Sorprendentemente, el modelo Prophet de Facebook ha emergido como el modelo de

referencia para la predicción de precios multivariante. Ha demostrado tener un gran potencial

para manejar la variabilidad e incertidumbre en los precios de la electricidad, manifestando

su capacidad para modelar los efectos de los días festivos. Por el contrario, el estudio ha

probado que añadir más variables no siempre mejora el rendimiento de la predicción. Como

es el caso del modelo SARIMAX, que no pudo aprovechar eficazmente la información

adicional proporcionada por las variables exógenas.

Mirando hacia el futuro, el trabajo a futuro incluye la exploración de ecuaciones

diferenciales controladas por redes neuronales para aplicaciones del mundo real [7],

enfocándose en mejorar sus capacidades de generalización y robustez al ruido. Sin embargo,

debido a la cantidad de cálculos requeridos para las neural ODE, la migración a sistemas

GPU será necesaria para explorar series temporales más complejas y solvers de ODE más

precisos.

6. Referencias

[1] J. Lago, G. Marcjasz, B. De Schutter, and R. Weron, “Forecasting day-ahead

electricity prices: A review of state-of-the-art algorithms, best practices and an open-

access benchmark,” Appl. Energy, vol. 293, no. December 2020, p. 116983, 2021,

doi: 10.1016/j.apenergy.2021.116983.

[2] J. Lago, F. De Ridder, and B. De Schutter, “Forecasting spot electricity prices: Deep

learning approaches and empirical comparison of traditional algorithms,” Appl.

Energy, vol. 221, pp. 386–405, 2018, doi: 10.1016/j.apenergy.2018.02.069.

[3] R. Weron, “Electricity price forecasting: A review of the state-of-the-art with a look

into the future,” Int. J. Forecast., vol. 30, no. 4, pp. 1030–1081, 2014, doi:

10.1016/j.ijforecast.2014.08.008.

[4] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary

differential equations,” Adv. Neural Inf. Process. Syst., vol. 2018-Decem, pp. 6571–

6583, 2018.

[5] S. J. Taylor and B. Letham, “Business Time Series Forecasting at Scale,” PeerJ Prepr.

5e3190v2, vol. 35, no. 8, pp. 48–90, 2017.

[6] E. De Brouwer, J. Simm, A. Arany, and Y. Moreau, “GRU-ODE-Bayes: Continuous

modeling of sporadically-observed time series,” Belgian/Netherlands Artif. Intell.

Conf., no. NeurIPS, pp. 364–366, 2020.

[7] P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural controlled differential equations

for irregular time series,” Adv. Neural Inf. Process. Syst., vol. 2020-Decem, no. 1,

2020.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

Acknowledgements

In every life achievement, it is key to have a solid team behind. Therefore, in this crucial

point of my life, as I finish the university stage, I feel compelled to express my gratitude

towards everyone who made this master’s thesis delivery possible.

First of all, I want to express my acknowledgements to my family. Their constant support in

the tough moments have sometimes been taken for granted. On every late night, every stress

and accomplishment, they have been there for me. For that, I am very grateful.

I want to thank my friends as well, who have supported me along the way. They remind me

the importance of finding balance between life and work, and to always enjoy the journey,

no matter the difficulty of the path. For that, I am very grateful.

I want to thank my directors. They have shown much patience and assertiveness, guiding me

in this path throughout the year with their useful insights. From the moment they selected

me to develop this project, they have demonstrated faith in my abilities and motivated me.

For that, I am very grateful.

Finally, I want to thank my university. Although the student path has been bumpy, I will

always remember it with affection. Moreover, it has equipped me with the necessary tools

for my future career. I feel this master’s thesis is not only an academic achievement, but also

a launching pad towards future professional opportunities. And for that, I am very grateful

too.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

PROJECT INDEX

I

INDEX

Chapter 1. Introduction ... 7

1.1. Abstract ... 7

1.2. Day-Ahead electricity market.. 9

1.3. Time-series forecasting and EPF ... 11

1.4. Time-series description ... 14

1.5. Exogenous variables .. 20

Chapter 2. Benchmark models .. 24

2.1. State of the art.. 24

2.2. SARIMA model .. 29

2.3. Prophet model.. 32

2.4. Machine Learning methods ... 35

2.4.1. MLP model ... 36

2.4.2. LSTM model ... 37

2.4.3. CNN-LSTM model .. 40

2.5. Neural network optimization ... 43

2.5.1. Training strategy .. 43

2.5.2. Data normalization ... 45

2.5.3. Activation function.. 46

2.5.4. Learning rate schedule ... 47

2.5.5. Early stopping .. 49

2.5.6. Optimizer .. 50

Chapter 3. Neural ODE ... 52

3.1. Introduction ... 52

3.2. Implementation .. 58

3.3. Training Strategy ... 65

3.3.1. Univariate ... 65

3.3.2. Multivariate .. 70

Chapter 4. Analysis of Results... 73

4.1. SARIMA model .. 73

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

PROJECT INDEX

II

4.2. Prophet model.. 87

4.3. Machine Learning methods ... 90

4.3.1. MLP model ... 91

4.3.2. LSTM model ... 95

4.3.3. CNN-LSTM model .. 98

4.4. Neural ODE model .. 101

4.5. Summary ... 108

4.5.1. Univariate scenario .. 109

4.5.2. Multivariate scenario ... 110

Chapter 5. Conclusions and Future work .. 113

5.1. Conclusions ... 113

5.2. Future work ... 115

Chapter 6. Bibliography .. 117

Chapter 7. Annex ... 121

7.1. Univariate Neural ODE code .. 121

7.2. Multivariate Neural ODE code .. 125

7.3. Alignment with SDGs ... 128

7.3.1. SDG 7 ... 128

7.3.2. SDG 9 ... 130

7.3.3. SDG 13 ... 131

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

TABLE INDEX

III

Figure Index

Figure 1: Evolution of the energy generation in Spain (REE, 2020) 15

Figure 2: Average daily price 2018-2019 .. 16

Figure 3: Electricity demand on 2019-10-01 ... 16

Figure 4: Average daily demand 2018-2019 ... 17

Figure 5: Renewable energy mix in Spain in 2019 ... 18

Figure 6: Average daily wind production .. 19

Figure 7: Autocorrelations between variables ... 23

Figure 8: Architecture of an MLP model .. 36

Figure 9: LSTM neuron configuration .. 38

Figure 10: Hidden states in RNNs (Kidger et al., 2020) ... 40

Figure 11: CNN-LSTM model architecture (Hamad et al., 2020) 42

Figure 12: Training-validation-test split .. 45

Figure 13: ReLU activation function ... 47

Figure 14: Learning Rate Schedule ... 48

Figure 15: Early Stopping on the LSTM model .. 50

Figure 16: SDG optimizer (Ruder, 2016) .. 51

Figure 17: Evaluation locations in a residual network and ODE network 53

Figure 18: Euler's method .. 54

Figure 19: Forward and backpropagation of a neural ODE .. 55

Figure 20: Univariate Neural ODE solver procedure .. 65

Figure 21: Evaluation at the end of the first time-step .. 66

Figure 22: Evaluation at the end of the second time-step.. 67

Figure 23: Evaluation at the end of the last time-step - Out-of-the-sample prediction 68

Figure 24: Evolution of the number of evaluation points during training 69

Figure 25: Multivariate Neural ODE solver procedure ... 71

Figure 26: Training period for hyperparameter tuning (without outliers) 75

Figure 27: Training period for hyperparameter tuning (without outliers) 76

Figure 28: Mean/sd scatterplot .. 77

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

TABLE INDEX

IV

Figure 29: Autocorrelation plots after the daily seasonality differentiation 78

Figure 30: Autocorrelation plots after regular, daily and weekly differencing 79

Figure 31: KPSS test after regular, daily, and weekly differencing 79

Figure 32: Significance of the univariate SARIMA hyperparameters 84

Figure 33: Significance of the multivariate SARIMA hyperparameters 84

Figure 34: Generic univariate model residuals .. 85

Figure 35: Generic multivariate model residuals .. 86

Figure 36: Ljung-Box test on the univariate residuals .. 86

Figure 37: Ljung-Box test on the multivariate residuals ... 86

Figure 38: Univariate MLP forecasts .. 93

Figure 39: Training of the first univariate neural ODE window 102

Figure 40: Input values of the multivariate neural ODE ... 103

Figure 41: Output of the multivariate neural ODE .. 104

Figure 42: Neural ODE Training ... 104

Figure 43: Neural ODE Evaluation ... 105

Figure 44: Evolution of the number of function evaluations... 105

Figure 45: SDG 7 ... 128

Figure 46: SDG 9 ... 130

Figure 47: SDG 13 ... 131

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

TABLE INDEX

V

Table Index

Table 1: Training-Validation-Test dataset division for the SARIMA(X) model 74

Table 2: KPSS test on the original data ... 77

Table 3: Univariate Autoregressive Hyperparameters .. 80

Table 4: Univariate Integrated Hyperparameters .. 80

Table 5: Univariate Moving Average Hyperparameters ... 81

Table 6: SARIMA(X) Results ... 83

Table 7: Training-Validation-Test dataset division for the Prophet model 88

Table 8: Prophet Results .. 89

Table 9: Training-Validation-Test dataset division for ML methods 91

Table 10: Univariate MLP model architecture .. 91

Table 11: Multivariate MLP model architecture ... 93

Table 12: MLP Results .. 94

Table 13: Univariate LSTM model architecture.. 95

Table 14: Multivariate LSTM model architecture ... 96

Table 15: LSTM Results ... 97

Table 16: CNN-LSTM univariate architecture .. 99

Table 17: CNN-LSTM multivariate architecture .. 100

Table 18: CNN-LSTM Results .. 100

Table 19: Univariate neural ODE architecture .. 102

Table 20: Multivariate neural ODE architecture ... 103

Table 21: Neural ODE Results .. 107

Table 22: Summary of training strategies ... 108

Table 23: Univariate Results ... 109

Table 24: Multivariate Results .. 111

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

6

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

7

Chapter 1. INTRODUCTION

1.1. ABSTRACT

Accurate electricity price forecasting (EPF) plays a fundamental role in the decision-making

process within the context of a liberalized electricity market landscape. It can be challenging

due to the complex and constantly changing nature of the electricity market. Factors such as

natural disasters, economic conditions and government policies can all impact electricity

prices and make accurate forecasting difficult. Moreover, the disruptive introduction of

renewable energies in the energy mix equation has made EPF more difficult to predict than

ever. Consequently, in the last years we have seen a more volatile price related to several

spikes that has presented at certain times, a negative value.

Over the last years, traditional statistical approaches, which assume linear dependencies

between electricity related variables, have been the prevailing techniques for EPF. However,

they have been quickly outperformed by a new generation of frameworks namely machine-

aided models. Machine Learning methods have become increasingly popular for EPF due to

their ability to capture complex relationships and patterns in data.

In this context neural ordinary differential equations (ODEs) have emerged as a promising

techniques for handling time-dependent data and capturing intricate underlying dynamics.

Following a Machine Learning (ML) architecture, they are capable of modeling complex

dynamics systems. Essentially, they are a continuous version of the traditional neural

networks, where the hidden state at a given time is modeled as a function of time, instead of

a sequence of discrete time-steps.

While research on neural ODEs is still in early stages and has not yet consolidated as a

widely known ML framework, there are several studies emphasizing its relevance to many

scientific realms. To the best if our knowledge, the implementation of a neural ODE in the

context of EPF has not yet been studied and constitute the motivation of the thesis.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

8

In this master’s thesis, neural ODEs will be developed and implemented in Python, more

specifically, in PyTorch, using the torchdiffeq library, implemented by Ricky Chen and his

colleagues. The library will be imported to implement all the necessary features of the

process. Following the selected error evaluation metrics, it will be compared against various

benchmark models, previously developed.

It is worth noting that, as best practices in the EPF field, researchers must be able to easily

test their models with shared materials because if not, it would not be possible to properly

compare their results (Lago et al., 2021). Previous research indicates that each researcher

usually uses a different dataset, with different parameters tuned and different error evaluation

procedures, not allowing the models to be properly reproduced. To overcome this limitation,

we develop most of the benchmark models and the neural ODEs using the Python

programming language, as a common framework.

This master’s thesis aims to explore and evaluate neural ODEs for EPF. The primary

objectives start conducting an extensive review of the current research and state-of-the-art

methods in EPF, as new data and algorithms are rapidly emerging in this evolving field.

Moreover, a series of benchmark models including the statistical, probabilistic and ML

models will be implemented to provide a baseline for the posterior analysis of results. The

neural ODE will then be implemented in PyTorch to forecast the Spanish electricity prices.

Its results will be assessed against the benchmark models using the appropriate error metrics,

to understand how they perform against stablished methods. Finally, the results will be

summarized in an academic paper, describing the strengths and weaknesses of neural ODE

for EPF. Overall, the outcomes will provide valuable insights for all the market agents and

EPF community.

Therefore, this study is organized in seven chapters. Chapter 1 provides background on the

Spanish electricity market, time-series forecasting techniques and the relevance of EPF.

Chapter 2 details the benchmark models implemented, including seasonal ARIMA

(SARIMA), Prophet, Multi-Layer Preceptron (MLP), Long-Short Term Memory (LSTM)

and a hybrid Convolutional neural network - LSTM (CNN-LSTM). Chapter 3 explains the

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

9

theory and implementation of the neural ODEs. The training strategy for both univariate

and multivariate approaches have been also outlined. Chapter 4 analyzes and compares the

results of the neural ODEs against the benchmark models. Chapter 5 revisits the key

findings and contributions of the thesis, acknowledging limitations and proposing future

work. Chapter 6 contains the referenced bibliography that was used. Finally, Chapter 7

represents the Annex, including code samples for the univariate and multivariate neural

ODE models and the alignment of the project with the Sustainable Development Goals

(SDGs).

1.2. DAY-AHEAD ELECTRICITY MARKET

Energy is one of the most fundamental resources that sustain global economy. Its acquisition,

production and use are key elements that influence politics, infrastructure development and

the quality of life. Spain, with a varied and complex electricity-power systems, is no

exception to this pattern. In this context, OMIE is the ‘Nominated Electricity Market

Operator’ (NEMO) for the Iberian Peninsula. It actively participates in the coupling of the

wholesale electricity markets in the EU, together with all the designated NEMOs in each

member state.

Europe has established a regulatory framework for the European electricity sector until 2030

based on cross-border marginal energy markets. Under this regulation, OMIE manages the

day-ahead and intraday wholesale electricity market (intraday and continuous intraday

auctions) for Spain and Portugal. Approximately a 77% of all the energy resources in Spain

are allocated through fixed contracts. This leaves the remaining 23% to be dealt with in the

day-ahead electricity markets.

The Spanish day-ahead electricity market is a wholesale economic mechanism that allows

the transaction between producers and consumers. This market is defined by a series of

characteristics that are focused on the efficiency and transparency, which guarantees that all

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

10

market players can operate on equal terms. The hourly price of electricity energy is

determined through a daily bidding process where producers offer the energy they can

generate, and consumers bid to acquire it, for each hour of the next day.

The day-ahead market, also known as the Single Day-ahead Coupling (SDAC), as an integral

part of the electricity production market, aims to carry out electricity transactions through

the submission of bids for the sale and purchase of electricity by market agents for the

twenty-four hours of the following day. Every day of the year at 12:00 CET, the day-ahead

market session takes place in which electricity prices and energies across Europe are set for

the 24 hours of the following day. The price and volume of energy in each hour are

established by the cross between supply and demand, following the model agreed and

approved by all European markets.

The intraday markets take place on the same day the energy is going to be sold and therefore,

used. They are managed by the system operator and though the prices of these markets are

related, there can be important differences between them. This system focuses on supply

optimization, balancing supply, and demand, to guarantee that the demand is satisfied in the

most efficient way. The way the market works is very dynamic and is subject to persistent

fluctuations such as the weather, the state of the transmission grid and consumer demand.

The rise of renewables is changing the structure of the energy market, diversifying supply,

and demand. As a result of this, the competition in the market may intensify, with

implications for energy prices and the strategies used by producers and consumers.

This project will focus on EPF in the day-ahead market. Overall, predicting electricity prices

in the day-ahead market can have a variety of uses, depending on who is making the

predictions and what they are being used for. The ability to accurately predict electricity

prices in the day-ahead market offers various benefits for different stakeholders, including

electricity producers, consumers, traders, and regulators.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

11

1.3. TIME-SERIES FORECASTING AND EPF

The disruptive introduction of renewable energies in the energy mix equation has made EPF

more challenging than ever, due to the complex and constantly changing nature of the

electricity market.

There is a large spectrum of factors affecting the price such as the power supply and demand

relationship, power generation costs and market structure. While some of these factors can

be considered to some extent, there are exogenous market effects that may be difficult to

predict. These unforeseeable factor encompass weather conditions, transmissions problems

in the power system, causing a high volatility in the price and a certain degree of risk for the

agents (Lago et al., 2021).

Because of this, short-term predictions are key in the energy market. The system operator,

Red Eléctrica de España (REE), implements advanced forecasting techniques to anticipate

supply and demand for the following day. These forecasts include estimations for the clients’

consumption, the different energy technologies generation and the weather conditions. By

using these forecasts, the different agents (producers and consumers) plan and optimize their

operations. In this regard, short-term forecasts are crucial to maintain a reliable and efficient

energy supply.

For the electricity producers, accurate EPF is key for an effective planning. They can

optimize their operations by knowing when it will be most profitable to generate electricity.

Thus, they can understand which energy source is most economically viable at any given

time.

Consumers can also benefit from accurate EPF. Each year, as the price rises, it is becoming

a general concern. Consequently, strategizing on when to use the washing machine or other

high-power appliances is now common and is changing people’s habits in terms of energy

usage.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

12

Traders, as their work is focused on maximizing their returns in the energy market, they rely

heavily on accurate forecasts. The day-ahead market is not the only one, but it is where most

of the energy is traded, leaving aside fixed or bilateral contracts. Therefore, it is crucial to

make well informed strategic decisions for their buy and sell plan. After the day-ahead

window closes, the leftover power gets to be traded in the intraday markets. As the energy

delivery deadline approaches, the intraday environment tends to become turbulent and

unpredictable. Here, traders depend on accurate EPF to respond to changing conditions.

Regulators, with the task of monitoring and maintaining the integrity and continuity of the

electricity market, can use EPF for assessing the market behavior. The forecasts can

represent a valuable input to motivate regulatory decisions to ensure a balanced and

competitive market.

EPF is also beneficial for the system operator itself as, through better predictions, the power

system dispatch could be executed effectively, and the safe and reliable operation of the

electricity system would be ensured.

Not surprisingly, short-term predictions are not infallible and are subject to uncertainty. The

inherent challenges in EPF have been exacerbated by the significant roll-out of renewable

energy generation within the electricity-power system. These renewable-based generation

rely on intermittent energy sources. For instance, wind and solar energy production, which

represent roughly a 30% of the total production, can vary significantly from one day to

another due to changes in the weather conditions.

However, the continuous improvement in the forecasting techniques, along with a broader

interconnection between the grids, has facilitated the management of uncertainties and

improving the stability and efficiency of the energy system. Looking into the future, it is

evident that the Spanish day-ahead electricity market will keep evolving. The efforts to

reduce the greenhouse effect, along with the advancements in renewable technologies will

reshape the way the electricity is produced and consumed.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

13

To accurately predict electricity prices, researchers and industry professionals are constantly

developing advanced forecasting techniques. Broadly, these techniques can be divided into

three categories: statistical methods, ML methods, and hybrid methods.

Statistical methods, which form the basis of traditional forecasting, involve using historical

data to detect recurring patterns or trends. These methods are adept at capturing linear

dependencies in the data. Techniques in this category include autoregressive integrated

moving average (ARIMA) models, exponential smoothing, and regression-based

approaches. However, these models tend to make assumptions about the data (such as

stationarity) and might struggle to capture non-linear relationships and complex interactions

between variables, which are often present in electricity price data.

ML methods, on the other hand, have gained popularity for EPF due to their flexibility and

ability to capture complex relationships in the data. These methods leverage algorithms that

learn from data, enabling them to discern intricate patterns that traditional methods may

miss. Techniques in this category include neural networks, support vector machines, random

forests, and gradient boosting machines, among others. These methods, unlike their

statistical counterparts, can learn and adapt to non-linear relationships and high-dimensional

interactions, which are characteristic of electricity price data.

Hybrid methods represent a blend of statistical and ML approaches, aiming to combine the

strengths of both. These methods typically involve the use of ML techniques to model the

non-linear components and statistical methods to capture the linear trends in the data. By

integrating these two approaches, hybrid methods can often outperform either method used

in isolation.

A noteworthy advancement in the field of time-series forecasting is the development of

neural ODEs. Neural ODEs are an extension of traditional neural networks, falling under the

umbrella of ML. They represent a continuous-time model where the hidden state at any given

time is modelled as a function of time, as opposed to the sequential discrete time-steps that

conventional feedforward neural networks represent. This approach offers several

advantages, including the ability to model complex dynamic systems and the flexibility to

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

14

handle irregularly sampled data. The introduction of neural ODEs represents a significant

step forward in the field of time-series forecasting, enabling the potential for enhanced

performance across several forecasting applications. Notably, the application of neural

ODEs in EPF, an area that remains unexplored, holds considerable promise, which is

precisely the scope of our study.

In conclusion, the evolution of forecasting techniques from traditional statistical models to

ML methods and, more recently, to hybrid approaches and continuous-time models like

neural ODEs, shows the relentless pursuit of more accurate and robust forecasting methods.

As the energy markets continue to evolve and grow more complex, these advanced

techniques will play an increasingly important role in understanding and accurately

predicting electricity prices.

1.4. TIME-SERIES DESCRIPTION

This case study focuses on the years 2018 and 2019 as they represent a crucial turning point

for the renewable energy sector in Spain. This period was selected, due to the relative

stability observed in the time-series data, providing a solid foundation for a more reliable

and feasible forecast. These years were marked by a significant spike in new power capacity

installations, particularly in solar and wind energy, influenced by a blend of political,

economic, and technological shifts. This was part of Spain's broader commitment to the

decarbonization goals in line with European Union's mandate to mitigate climate change and

promote a sustainable and resilient economy.

In Spain, there has been an evolution towards green energy, driven by multiple factors, such

as government policies, economy considerations and environmental concerns. Specially

between years 2018 and 2019, a significant increase in the wind and installed power:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

15

Figure 1: Evolution of the energy generation in Spain (REE, 2020)

Despite the progressive introduction of renewable energies within the Spanish electricity

power system in 2018, Spain experienced relatively high electricity prices. This price

increase was primarily driven by the escalation of international fossil fuel prices, particularly

natural gas, and carbon. The country also faced a series of extreme weather conditions,

including droughts and heatwaves, which significantly impacted hydroelectric generation

and increased electricity demand. The average daily electricity price is represented in Figure

2:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

16

Figure 2: Average daily price 2018-2019

Given that household and office consumption accounts for approximately a 25% of the

Spanish electricity demand, intraday fluctuations arise in the electricity demand profile.

These fluctuations are directly related to the Spanish consumer’s behavior, which is

commented below. A closer look at the data reveals that demand typically rises during the

early morning and late evening:

Figure 3: Electricity demand on 2019-10-01

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

17

Early in the morning, the price increases as people wake up and begin to use a variety of

electrical appliances. Also, the factories and the rest of the heavy electricity consumers

initiate their day. As the day progresses, a new spike in the electricity demand is observed.

This is the time when people return home and activate their heating or AC (depending on

the season). This leads to a surge in the electricity usage. This pattern is commonly observed

in many countries and is called bimodal demand pattern. Interestingly, the overall demand

pattern was characterized by peaks during the winter and summer months, due to heating

and cooling requirements respectively.

Figure 4: Average daily demand 2018-2019

In 2019, electricity prices experienced a moderate decline, largely due to falling international

fossil fuel prices. Moreover, the increased penetration of renewable energies, particularly

solar and wind, started to affect the market's price structure, helped by Spain’s geographical

location.

Focusing first on the PV technology, in 2019 there was almost a 19,8% increase in the

installed capacity with respect to 2018, achieving a generation record of 8.841 GWh. It is

worth noting that in 2019, the cost of PV technology had decreased by 80% with respect to

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

18

the previous decade and that the government had promoted solar energy by providing

incentives for the installation of PV panels.

Simultaneously, the contribution of wind energy to the Spanish electricity system increased,

highlighting the growing confidence in and feasibility of this renewable source. According

to data from REE, Spain's national grid operator, wind energy contributed significantly to

meeting this demand, with a proportion record in the energy mix.

In 2019, the peninsular wind generation stood at 53.094 GWh, 8,5% higher than in the

previous year. It is the most relevant renewable energy source in Spain, as it represented

55,2% of the total production of green energy:

Figure 5: Renewable energy mix in Spain in 2019

Spain is now one of the leading countries in wind generation globally, thanks to onshore and

offshore wind farms. This increase in renewable energy production, specially by wind

generation, has led to a decrease in electricity prices, due to the low marginal cost of wind

power.

One characteristic feature of wind generation data is its volatility, as it's highly dependent

on weather conditions. This variability poses challenges to the management of power

systems, yet it also presents opportunities for developing advanced forecasting

methodologies to enhance accuracy and reliability of supply-demand balancing. The average

daily wind generation are represented in Figure 6:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

19

Figure 6: Average daily wind production

As it can be seen, both generation levels and the associated volatility exhibit fluctuations

throughout the year, showing peak values in the first months on the year and lower values

during the summer season.

The example of fluctuating wind production clearly demonstrates that the transition towards

an electricity system with a high share of renewable technologies present some challenges.

The characteristic intermittency of renewable sources, presents grid management issues,

leading to mandatory investments in energy storage and grid infrastructure.

In the meantime, the available power capacity of fossil-fuel technologies has suffered an

important decrease due to the shut-down of coal power plants, which eventually was the

backbone of Spain’s electricity generation. Ambitious goals have been set by the

government, targeting the closure of coal mines, leading to a 69,4% reduction in their

respective generation (REE, 2020).

Hydroelectric production would have been much greater, had it rained as the previous year.

2019 was a especially dry year, leading to a 27,6% decrease in hydraulic generation,

achieving only 24.709 GWh. The base energy in the energy mix, was substituted by the

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

20

combined cycle power plants, which experienced a 93,7% increase with respect to 2018,

making up a 20,7% contribution to the peninsular energy mix.

Overall, the evolution of the energy generation in Spain has moved towards a greener energy

mix. This transition, supported by the government, represents a global trend towards clean

energy. Spain, benefiting from its geographic location, is a front-runner in renewable energy

generation.

It is important to continue investing in renewables, improving their efficiency, developing

infrastructure to facilitate their integration into the power grid, and ensuring a sustainable

and resilient future for the energy sector in Spain. Nevertheless, it is equally important to

invest in robust forecasting models, as they are crucial in accurately predicting the resulting

effect of the green energy integration on electricity prices. These elements are key to provide

accurate forecasts and establishing strategies for Spain’s path to decarbonization.

1.5. EXOGENOUS VARIABLES

The following variables have been included on the multivariate approach, showing

significant relevance for the day-ahead market and, therefore, for the electricity price

formation.

In the context of the electricity market, the Hourly Operative Energy Program (P48) plays a

fundamental role. It is the operative plan that establishes the programming and manages the

energy sales and acquisitions in the Spanish electricity peninsular market. P48 represents the

planification of the electric system in real time, as it incorporates all the assignations and

redepositions of the program, applied by the System Operator (OS) until its publications,

which occurs 15 minutes before the beginning of every hour.

Moreover, P48 includes the adjustments of the Daily Functioning Base Program (PDBF) and

the results of the different sessions of the intraday market. It adjusts itself to reflect any

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

21

changes in the market conditions, such as downtime cases or problems communicated by the

programmed units. Therefore, P48 reflects a real time picture of the energy supply and

demand of the electric system.

In this context, the first exogenous variable is the P48_demand (demand) is composed of

the real-time energy requirements of the whole electric system. Essentially, it is the hourly

energy consumption expectations based on the adjustments made to the PDBF. Fluctuations

in the expected demand can derive from changes in consumer behavior, industrial

operations, or unexpected events. Nevertheless, thanks to a close monitoring, the system

remains resilient and adaptive to the upcoming volatility in the time-series.

The second explanatory variable is the P48_wind_generation (wind). As explained before,

the wind energy has already become a primary source of energy in Spain, with more than

half of the production coming from the wind generators. Unlike traditional power sources,

wind is highly dependent on the weather conditions and therefore, far more volatile, and

unpredictable. However, this hourly value represents accurately the programmed wind

energy. It must be noted that, although the model has been adjusted with these P48 variables

for the sake of simplicity, the use of these variables’ forecasts as an additional input is widely

extended.

Although the day_of_the_week variable has not been included in the correlation matrix, it

will be taken into account for the benchmark models, as both the probabilistic and ML

models will exploit it considering non-linearities. This discrete variable has been included

and will assign each day of the week a different number from 0 (Monday) to 6 (Sunday),

adding 7 in the cases where that day was a national holiday. For this study, the national

holidays that have been considered are as follows:

- 2018-01-01: Año nuevo

- 2018-01-06: Epifanía del Señor

- 2018-03-30: Viernes Santo

- 2018-05-01: Día del Trabajador

- 2018-08-15: Asunción de la Virgen

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

22

- 2018-10-12: Día de la Hispanidad

- 2018-11-01: Todos los Santos

- 2018-12-06: Día de la Constitución Española

- 2018-12-08: La Inmaculada Concepción

- 2018-12-25: Navidad

- 2019-01-01: Año nuevo

- 2019-01-07: Epifanía del Señor (Moved)

- 2019-04-19: Viernes Santo

- 2019-05-01: Día del Trabajador

- 2019-08-15: Asunción de la Virgen

- 2019-10-12: Día de la Hispanidad

- 2019-11-01: Todos los Santos

- 2019-12-06: Día de la Constitución Española

- 2019-12-09: La Inmaculada Concepción (Moved)

- 2019-12-25: Navidad

Having introduced these main exogenous variables, their autocorrelations for the training

period, from July 2018 to July 2019 are plotted on Figure 7. A key aspect of correlations is

determining whether a variable is significant. Typically, two variables are significantly

correlated if their correlation value is over 0.3, of course in absolute value. However, this is

a general guideline, and the threshold can vary depending on the context. These

autocorrelations provide a look into the relationships between the output variable (electricity

price) and the predictor variables:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

INTRODUCTION

23

Figure 7: Autocorrelations between variables

As it can be seen on Figure 7, the correlation between the electricity price and the P48

demand had a value of 0.45, -0,52 with the wind production. According to the typical

threshold, the P48 demand and wind production would be significant for this study.

It is interesting to see the sign of the correlation values. For the case of the P48 demand, the

positive correlation makes sense intuitively, as increased demand leads to an increase in the

price. Conversely, the correlation between the price and the P48 wind production is negative.

This was also expectable as the wind production takes out of the energy equation the more

expensive and contaminating energy sources. Therefore, in conclusion, the variables are

significant enough for the models to gain more perspective and context on the electricity

price time-series, which will allow for more accurate forecasts.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

24

Chapter 2. BENCHMARK MODELS

The subsection delves into each of the benchmark models included for this study. Guided by

an extensive review of the current state-of-the-art for EPF, a selection of the most significant

methods will determine a reference baseline for the neural ODE results.

Ranging from traditional statistical methods to modern ML techniques, the selection

provides a comprehensive understanding of how these models can be implemented for

forecasting electricity prices. Each of them represents a unique approach to time-series

forecasting, reflecting the current state-of-the-art in the EPF landscape.

2.1. STATE OF THE ART

The day-ahead EPF problem has been deeply researched for over the last 20 years due to its

importance for the different agents in the electricity market. However, the task remains

challenging because of the fluctuations associated with the nature of the electricity and the

demand-supply dynamics. The complete review of the state-of-the-art models developed by

Weron, (2014) indicates five main families, including multi-agent, fundamental, reduced-

form, statistical and computer intelligence models. Nevertheless, the most recent review

reveals that the evolution of EPF algorithms could be grouped by three main categories:

statistical, ML, and hybrid techniques (Lago et al., 2021).

Initially, around the early 2000s, the backbone of the EPF algorithms was the statistical

method, especially autoregressive models. The essence of this approach is the development

of mathematical models, capable of identifying patterns or trends in the historical time-series

data. The models do no longer represent an advantage in the task of EPF (Weron, 2014).

Moreover, being the electricity price stochastic process, typically heavy-tailed, skewed, and

heteroskedastic, new statistical methods have been developed to tackle it. Nevertheless,

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

25

statistical methods still provide robust and reliable historical data analysis and are an

essential tool for EPF.

Statistical methods range from simple linear regressions such as the Lasso Estimated

Autoregressive models (LEAR) to more complex models, such as the Autoregressive

Integrated Moving Average (ARIMA) or the Generalized Autoregressive Conditional

Heteroskedasticity (GARCH). The latter model represents an attempt to capture the dynamic

time-series volatility as a function of previous time periods (Cruz et al., 2011). However, it

is not an attractive model for short-term EPF by itself and should be coupled with other

models to be effective (Weron, 2014). Actually, a study showed that an ARIMA-GARCH

model outperformed a generic ARIMA model, whenever the electricity time-series showed

high volatility and price spikes (Garcia et al., 2005).

Other methods have been developed such as the exponential smoothing. Cruz et al., (2011)

used a double exponential smoothing as a benchmark model, outperforming the naïve and

ARIMA models for the hourly day-ahead prices of the Spanish market. However, neural

network models proved to be better. This study offered the insight of using the predicted

values of the operator’s wind generation forecasts, which has resulted in better accuracy.

Given the strong seasonal patterns in the electricity time-series, it has been convenient to

include them in the ARIMA models, resulting in a seasonal ARIMA or SARIMA. From the

early 2000s, there has been some EPF applications for this kind of method. One of them was

developed by Contreras et al., (2003), as they modelled three seasonalities separately on lags

24, 48 and 168h, outperforming the general model for all hours.

Recent advancements have been developed to include a larger number of input features and

regularization techniques, currently positioning LEAR as one of the most relevant statistical

algorithms. It must be noted that it could be hybrid since Lasso is known to be an ML

technique by some authors, but the underlying model is statistical (Lago et al., 2021).

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

26

More focused on the probabilistic approach, the Prophet model arises as a flexible and easily

interpretable approach for forecasting. Based on an additive model, it accommodates trends,

seasonality, and holiday effects in the time-series. Developed by Facebook, it allows non-

experts to address business forecasting problems without needing to dominate Data Science

knowledge (Taylor & Letham, 2017). This model will later be explained in detail as it has

been included in the list of benchmark models.

Progressing into the era of big data, ML techniques took over in the EPF environment. As

described in the review developed by (Weron, 2014), these models were generally composed

by artificial neural networks, fuzzy systems, Support Vector Machines (SVMs) and

evolutionary computation. From the early studies, where neural networks had only one

output node to more complex models with additional hidden layers, this model has clearly

seen a strong evolution. In this context, González et al., (2005) successfully implemented a

hybrid MLP input-output hidden Markov model for the Spanish EPF, providing accurate

results and dynamic information about the market.

Where feed-forward networks are characteristic for being static, the Recurrent Neural

Networks (RNN) arose to become more dynamic systems. As it will be explained later, on

subsection 2.4.2. RNNs have been designed to work with sequential data and can maintain

information from previous steps, which can provide information for the current and future

time-steps. Nevertheless, they suffer from a problem called vanishing gradient, which can

cause a slow learning curve for the early layers. To solve this issue, a study developed by

Lin et al., (1996) proposed the solution of a nonlinear autoregressive models with exogenous

inputs (NARX) model. However, it has been outperformed by other recent RNN models such

as the Long Short-Term Memory neural networks (LSTM), which was implemented in

various studies such as the one from Jiang & Hu, (2018).

A posterior seminal review by Lago et al. (2018) illustrated how ML methods like the ones

commented above and more, such as the k-Nearest Neighbors (kNN), SVMs, Extreme

Learning Machines (ELM), Random Forests (RF), Gradient Boosting Machines (GBM)

outperformed traditional statistical techniques for the European electricity market. These

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

27

models provided capabilities to work with complex and nonlinear time-series like the

electricity price.

As explained by Lago et al., (2021), the late trend of published studies of ML methods avoid

comparing against well-established benchmark models and their results are very simplistic.

Nevertheless, the models keep evolving and adding features for modelling the increasingly

complex patterns of the electricity price time-series. Wang et al., (2017) proposed a deep

neural network using denoising autoencoders (SDA) for EPF. The authors developed an

extended SDA called RS-SDA, which incorporates random sample consensus (RANSAC)

to filter the outliers in the training data and stochastic neighbor embedding (SNE) to

automatically determine the number of hidden units. This implementation proved to be one

of the first studies to successfully use GPU-based frameworks for EPF.

In 2019, Y. Chen et al., (2019) proposed a bidirectional recurrent neural network architecture

(RNN) called BRIM for the French EPF. It interestingly incorporates the concept of market

integration, as it includes price data from an interconnected market (EXAA in Austria) to

the French EPEX data, which is disclosed afterwards. This allows the model to consider past

and future data and learn the relationships between them, and ultimately provide better

results than the proposed unidirectional benchmark models.

Both classical and ML approaches seek to approximate the electricity price following a loss

function, which measures the difference between the actual and the predicted price values.

This error metric is progressively updated, adjusting the model hyperparameters in order to

minimize the error incurred. The differences between the classical and ML lies in the

respective update mechanism; in how they minimize the error in the next iteration. The ML

models show an advantage over classical methods as they can ingest larger amounts of data,

allowing the algorithms to better capture the dependencies and analyze the most complex

patterns, providing more accuracy on the forecasts.

In recent times, the landscape of EPF has abruptly introduced hybrid models, that can

combine the interpretability of statistical methods and the predictive capabilities of

associated with the ML methods. According to Lago et al., (2021), since 2014 more than

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

28

100 articles have been written about hybrid methods, which is more than five times the

number of papers on deep learning methods.

Usually, each separate algorithm focuses on a specific pre-processing task, such as

decomposing data, feature selection and model ensembles. In many methodologies, the

hybrid approach is not confined to a single forecasting model. Instead, it comprises a

combination of multiple models, broadening the scope of the analysis and delivering a robust

forecasting mechanism.

One of the techniques for decomposing a time-series is the wavelet transformation, which

identifies and segments the signal into different frequencies. The algorithm allows the

decomposition of the price series into a high frequency component (which represents the

characteristic short-term fluctuations) and a low frequency one (which represents the long-

term patterns. This technique is not new as the study developed by Conejo et al., (2006)

already merged the wavelet transformation with the ARIMA method, outperforming the

standard one. Moreover, it still used nowadays as Chang et al., (2019) develops an LSTM

model combined with this pre-processing technique. The resulting decomposed signals were

then introduced to the model as additional input features into the model.

Naz et al., (2019) implemented the technique of Correlation Analysis to discard the most

redundant variables for extreme learning machines to avoid overfitting. These variables were

identified because of the high correlation between them. Other similar method is the so-

called Mutual Information, which measures both linear and non-linear relationships in the

data to quantify the amount of information is provided between variables. The latter

technique has been applied by Ebrahimian et al., (2018) and Keynia, (2012).

The relentless pursuit for better forecasting accuracy continues to push the boundaries of

EPF. The most recent and promising venture in this quest is the development of neural

ODEs. As a continuous-depth neural network, it provides a unique perspective of the

evolution of a system’s state. Instead of requiring a discrete sequence of hidden layers, the

derivative of the hidden state is parameterized using a neural network (R. T. Q. Chen et al.,

2018).

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

29

This master’s thesis will develop a neural ODE for the Spanish day-ahead EPF for the first

time, as it represents the main goal. Moreover, it will provide an overview of the proposed

benchmark models, for posterior results comparison.

2.2. SARIMA MODEL

Traditional algorithms make use of predefined techniques and statistical models such as

linear regression, autoregressive integrated moving average (ARIMA), and autoregressive

integrated moving average with explanatory variables (ARIMAX). The goal usually

involves analyzing data and providing insights. However, they are also used for EPF. One

of the features of these models is their transparency, as the outputs provided can easily be

traced. This traditional approach is based on simple techniques and linear processes.

Seasonal Autoregressive Integrated Moving Average (SARIMA), is a statistical model with

the ability to capture seasonal effects in the original time-series, making it suitable for time-

series forecasting problems that show seasonality. Given the nature of the time-series it was

necessary to change the approach from ARIMA to SARIMA. The Box-Cox methodology

was followed to identify the optimal SARIMA models for this short-term EPF study. Let us

first introduce the most general form of the ARIMA model is as follows (G. E. P. Box et al.,

2016):

𝜑(𝐵)𝑧𝑡 = 𝜙(𝐵)∇d𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 E 1

Where

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 E 2

Being 𝜙(𝐵) the autoregressive, 𝜑(𝐵) the generalized autoregressive and 𝜃(𝐵) the moving

average polynomials. These polynomial operators have a degree of orders p. d and q,

respectively.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

30

Nevertheless, the SARIMA model include the seasonal effects in time-series data, therefore

resulting in the following equation (Weron, 2014):

𝜑(𝐵)𝜙(𝐵𝑠)∇d∇𝐷𝑧𝑡 = 𝜃(𝐵)Θ(𝐵𝑠)𝜀𝑡 E 3

Nevertheless, and as for this case study, the SARIMA model will consider three

seasonalities: regular, daily and weekly, using the msarima function in R. To identify the

best combinations of hyperparameters of the model, the previous year of observations will

serve as a training set. Then, as explained before, three months corresponding to the period

between August and October 2019 will constitute the test set. It must be noted that the

general scheme of the description of the SARIMA model will follow the Box-Jenkins

methodology.

However, before the ARMA hyperparameters are selected, we must ensure that the

electricity price time-series is first stationary. The autocorrelation (ACF) and partial

autocorrelation (PACF) plots are a convenient way to check the stationarity of the time-

series. They will be included in the process of identifying the necessary transformations for

the time-series.

Before fitting the model, the data must meet the necessary statistical assumptions. As it can

be seen in the data, the variance could present heteroscedasticity, meaning that the variance

could not be constant enough over time. When the data show different variations, a

transformation can be useful. The square root, cube root and the logarithm compose the

family of the Box-Cox transformations (Rob J Hyndman, 2014). Named after statisticians

George Box and Sir David Cox, it includes powerful means to transform the electricity price

data into a variable that follows a normal distribution and has a stable variance. As the

studied electricity prices are positive, the equation followed to perform the potential

transformation is as follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

31

𝑦(λ) = {
𝑦λ − 1

λ
 (λ ≠ 0)

log λ (λ = 0)

 E 4

This equation is slightly preferable for theoretical analysis as it is continuous at λ=0 (G. E.

Box & Cox, 1982).

The decision of applying the Box-Cox transformation is validated with the so-called

‘guerrero’ method, which has the goal of stabilizing the variance over time. It offers a

systematic approach by using local variances to weight observations and then applying the

Box-Cox transformation. The optimal lambda is selected by minimizing the variance of the

weighted moving averages (Guerrero & Perera, 2004).

Once the variance of the data has been ensured stable, it would be time to check the

stationarity, using the KPSS test. The Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) is

based on the idea of decomposing a time-series into a deterministic trend, a random walk,

and a stationary error term. The null hypothesis of the KPSS test is that the data is stationary,

while the alternative hypothesis states that the series is non-stationary. In ARMA models,

the stationarity is a crucial assumption, implying that the data’s mean variance and

autocorrelation does not vary over time. For this case study, the electricity price time-series

has been implemented a regular, daily, and weekly seasonal differences. This decision was

validated by the autocorrelation plots, as the correlation pattern on the training data, in the

presence of a unitary root, is a very slow decay. In cases where there is a predominant

seasonality, it must be first applied, before the regular. The equation behind a seasonal

difference in a time-series y(t) is as follows:

(1 − 𝐵𝑠)𝑦(𝑡) = 𝑦(𝑡) − 𝑦(𝑡 − 𝑠) E 5

Where B is the backshift operator and s, the considered seasonal lag.

After a stationary time-series has been achieved, it is time to select the optimal

hyperparameters, based on the resulting autocorrelation plots on the training period. The

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

32

decision process is explained in detail on subsection 4.1. , where the SARIMA

implementation for this EPF study is described.

Finally, after training the model, the forecast residuals will be analyzed, through the

residuals’ autocorrelation plots and their resulting Ljung-Box serial correlation test, to

ensure the residuals’ independence. The Ljung-Box test checks whether any of a group of

autocorrelations are different from zero, instead of testing randomness at each distinct lag.

This is why it is often referred to as a ‘portmanteau’ test (NIST. U.S. Commerce Department,

2003). The Ljung-Box test is a statistical test, whose null hypothesis is that the data is random

and the alternative hypothesis is that it is not. The equation behind the it is as follows:

𝑄𝐿𝐵 = 𝑛(𝑛 + 2) ∑
𝜌2(𝑗)

𝑛 − 𝑗

ℎ

𝑗=1
 E 6

Where n is the sample size, 𝜌𝑗 is the autocorrelation at lag j, and h is the number of lags

being tested. Once the residuals have been analyzed, the proper conclusions will be

developed.

2.3. PROPHET MODEL

This study includes the recent model developed by Facebook in 2017: Prophet. It is as recent

as the award-winning neural ODE paper, and due to its characteristics, it has been selected

as a benchmark model. Facebook realized that forecasting methods that are entirely

automated can sometimes lack resilience and they are frequently not capable enough to

integrate useful assumptions or heuristics. Moreover, the ability of providing accurate

forecasts is quite rare is can only be seen in people with substantial experience (Taylor &

Letham, 2017).

Prophet was optimized for the business problems that were encountered at Facebook, which

involved data with strong seasonality, missing a sensible number of observations and that

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

33

followed non-linear trends. In essence, Prophet could be described as a generalized additive

regression model (GAM) that makes use of four components of the form:

𝑦𝑡 = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀𝑡 E 7

where g(t) describes a linear growth trend, s(t) describes the seasonal patterns, h(t) captures

the holiday effects and 𝜀𝑡 is a white noise error term.

The main essence of the model is to fit the time-series trajectory, unlike other benchmark

models that explicitly account for the temporal dependencies of the data. This formulation

provides a number of practical advantages (Taylor & Letham, 2017):

- Flexibility: Seasonality can be easily introduced to the model, in a very accessible

way to the user. No matter the knowledge of the user, its configuration makes it easy

to extend the model and add new components.

- Robustness: The model work accurately even on non-regularly spaced observations.

Therefore, traditional descriptive analysis tasks can be omitted.

- Speed: Prophet is highly computational efficient, which allows it to fit the data very

fast.

The Prophet components start with the linear trend, g(t). This trend captures the non-periodic

fluctuations in the time-series. Depending on the specific use case, it can be either linear or

logistic. In the linear case, it is a piecewise linear function of time. However, for the logistic

trend, it models a logistic growth that saturates at a certain capacity. The equations behind

g(t) are as follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

34

𝐿𝑖𝑛𝑒𝑎𝑟: 𝑔(𝑡) = (𝑘 + 𝑎(𝑡)⊺𝛿)𝑡 + (𝑚 + 𝑎(𝑡)⊺𝛾)

E 8

Where before k is the growth rate, δ has the rate adjustments, m is the offset

parameter, and γj is set to −sjδj to make the function continuous.

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐: 𝑔(𝑡) =
𝐶

1 + exp (−𝑘(𝑡 − 𝑚))

With C the carrying capacity, k the growth rate, and m an offset parameter.

E 9

The choice between a linear or logistic (logarithmic) trend in the Prophet model validated

by the nature of the data. As there is no evident or predictable carrying capacity for the

electricity prices, a linear trend can be a more appropriate choice. Moreover, the time-series

does not provide a clear saturation point.

Prophet’s target time-series involve business, which very often show strong seasonalities.

The seasonality is broken down into a Fourier series with periodic effects. Like the

following:

𝑠(𝑡) = ∑ (𝑎𝑛 ∗ cos (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛 ∗ sin (

2𝜋𝑛𝑡

𝑃
))𝑁

𝑛=1 E10

Being P the period of the data, which for this study is 24. Fitting these seasonality component

means estimating the 2N parameter β = [a1, b1, … , an, bn], which is done by constructing a

matrix of seasonality vectors for each t in the historical data (Taylor & Letham, 2017).

Moreover, the holidays h(t), will represent the predictable effects of theses specific events.

For each holiday, Prophet creates a window around the date and models the effect using a

piecewise linear function.

Finally, an error 𝜀(𝑡) represents a white noise term, assumed to be normally distributed with

mean 0.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

35

Prophet leverages a Monte Carlo simulation approach to fit the data. By running multiple

simulations with sampled parameters, Prophet generates forecasts, along with their

uncertainty intervals. This represents a major advantage of Prophet, as its Bayesian

framework allows it to produce full probability distributions over future outcomes.

2.4. MACHINE LEARNING METHODS

On the other hand, ML methods are based on more complex techniques and nonlinear

processes. Some of the most notable developments involve the use of LSTM networks, a

type of recurrent neural network (RNN) that can effectively model long-term dependencies

and capture temporal patterns in data. LSTMs have been widely used for time-series

forecasting, natural language processing and other tasks that involve sequential data. Other

ML forecasting techniques include gradient boosting, random forests, and support vector

machines (SVMs).

The EPF community is also developing hybrid models, which consist of a combination of

multiple ML methods to improve accuracy, as they allow for the benefits of multiple

methods to be combined into a single model. For example, a hybrid method could consist of

an MLP model to capture complex patterns and a statistical method to analyze the temporal

dependencies of the data, both long and short-term. For this thesis, a combination of a

convolutional neural network and an LSTM model will be developed. The synergy between

these methods is known for providing a flexible and adaptive way of learning patterns,

especially in data with significant noise.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

36

As EPF best practices indicate, the best loss function depends on every model and forecast

configuration. However, the most consistent one has proven to be the MAE. Therefore, the

loss function used is MAE of the test set, as implemented in PyTorch's nn.L1Loss.

2.4.1. MLP MODEL

In response to the electricity price time-series complexity, this study implements an MLP

model in PyTorch, a type of artificial neural network which is very well suited for the task,

as it can model complex and non-linear relationships. Multi-layer Perceptron neural

networks are composed of fully connected neurons. The MLP architecture is shown below:

Figure 8: Architecture of an MLP model

The process of training an MLP model implies finding the appropriate weights for each

neuron in the net, and the way to achieve it is by backpropagation. In the training process,

the multilayer perceptron receives an input vector and given the current set of weights and

biases, it provides an output through the layers until the final layer. Once the output has been

calculated, it is then compared with the actual values and the loss is obtained. The

backpropagation algorithm will adjust the weights in the direction of a lower loss function

value. Consequently, after a certain number of iterations, the model can capture the

nonlinearities of the time-series and can generalize to provide accurate forecasts with unseen

data. The equation that represents the calculation performed in each neuron is as follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

37

𝑧 = 𝑓(𝑏 + 𝑥 ∗ 𝑤) = 𝑓 (𝑏 + ∑ 𝑥𝑖 ∗ 𝑤𝑖

𝑛

𝑖+1

) E 11

The nonlinearity is introduced in the model by the activation function 𝑓(), which comes

right after the neuron calculation. It is critical for the ability of modelling complex

relationships in the data. As it will later be explained, the selected activation function is

ReLU, due to its computational efficiency.

2.4.2. LSTM MODEL

Although MLPs represent a suitable option for the task of forecasting, they struggle with

temporal or spatial data, where it is important to capture the relationships across different

points in time or space. For this matter, this study includes neural networks with LSTM

cells.

LSTM networks are a type of Recurrent Neural Network (RNN), which have proven to be

very effective in modelling sequential data, given their ability to remember long-term data.

In order to process sequences of inputs, traditional recurrent neural networks use their

internal state, which constitutes its memory. This allows the models to remember and

consider patterns in past data. However, the vanishing gradient problem difficulties this

process of remembering, as in each iteration the internal states are modified and can lose

understanding the past dependencies.

LSTMs were designed to tackle this problem, by having four gates interacting to obtain the

final cell state. The net can use its gate units to decide when to keep or override information

in the memory cell, decide when to access it and how to prevent other cells from being

perturbed by it (Hochreiter & Schmidhuber, 1997).

In Figure 9, the four gates of the LSTM cell are represented:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

38

Figure 9: LSTM neuron configuration

At the top of the diagram, the horizontal line represents the main carrier of the information

down the entire chain of sequential neurons, which determines the cell state. From below,

these four gates can optionally interact with the cell state.

The first gate is the forget gate. Looking at the current input of the cell state, it determines

whether to forget pertinent information. In other words, the LSTM cell understands the

information that will not be needed in the following cell.

Afterwards, the input gate updates the cell state with new information from the current input.

It is composed by two parts: the sigmoid layer and the hyperbolic tangent layer. The sigmoid

layer is responsible for deciding which values to update, while the tanh layer develops a

vector of candidate values that could be added to the cell state.

Finally, the output gate determines the value of the following hidden state by controlling

which pieces of information of the current state to output. While in the MLP model, the

backpropagation optimizes the weight and bias of each neuron, in the case of LSTM neural

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

39

networks, it involves learning the weights for these gate layers. The forward propagation

process of an LSTM cell is described by the following formulas:

• Forget gate

𝑓𝑡 = 𝜎𝑔 ∗ (𝑊𝑓 ∗ 𝑥𝑡 + 𝑈𝑓 ∗ 𝐻𝑡−1 + 𝑏𝑓)

E 12

• Input gate

𝑖𝑡 = 𝜎𝑔 ∗ (𝑊𝑖 ∗ 𝑥𝑡 + 𝑈𝑖 ∗ 𝐻𝑡−1 + 𝑏𝑖) E 13

➢ Cell input activation vector

𝑐̃𝑡 = 𝜎𝑐 ∗ (𝑊𝑐 ∗ 𝑥𝑡 + 𝑈𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐) E 14

• Output gate

𝑜𝑡 = 𝜎𝑔 ∗ (𝑊𝑜 ∗ 𝑥𝑡 + 𝑈𝑜 ∗ 𝐻𝑡−1 + 𝑏𝑜) E 15

• Cell state

𝑐𝑡 = 𝑓𝑡 ⨀ 𝑐𝑡−1 + 𝑖𝑡 ⨀ 𝑐̃𝑡 E 16

 Hidden state

 ℎ_𝑡 = 𝑜𝑡 ⨀ 𝜎𝑐(𝑐𝑡−1) E 17

being 𝑐0 = 0 and ℎ0 = 0 are the initial values and ⨀ represents the element-wise product.

𝑥_𝑡 is the input vector of the LSTM cell. 𝑓_𝑡 is the forget gate’s activation vector. 𝑖_𝑡 is the

input gate’s activation vector. 𝑜_𝑡 is the output’s gate activation vector. ℎ𝑡 is the hidden state

of the LSTM cell. 𝑐̃𝑡 is the cell input activation vector. 𝑐𝑡 is the cell state vector. 𝑊, 𝑈 and

𝑏 are the corresponding weights and bias matrices. 𝜎𝑔 represents the sigmoid function. 𝜎𝑐

represents the hyperbolic tangent function. 𝜎ℎ represents the sigmoid function.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

40

The hidden states are discretely updated in each time-step, not allowing a continuous

trajectory as the neural ODE, which will later be explained. The way LSTMs work with

hidden states is represented as follows (Kidger et al., 2020).:

Figure 10: Hidden states in RNNs (Kidger et al., 2020)

As we can see, the hidden state is computed at each time-step in the sequence. This discrete

process allows the LSTM to maintain a certain temporal continuity, which allows the model

to remember patterns from the past. Afterwards, it will be explained how in Neural ODEs,

the hidden states are seen as continuous trajectories.

On the one hand, the need of updating more parameters implies the ability of LSTM models

to model more complex temporal dependencies. However, they can then be very

computationally intensive and prone to overfitting, especially on small or noisy data.

Therefore, as in the rest of the neural network models, certain strategies will be implemented

to avoid this problem, such as dropout, early stopping and careful hyperparameter tuning.

2.4.3. CNN-LSTM MODEL

The last DL benchmark model will constitute a hybrid model, consisting of a 1D

Convolutional layer preceding an LSTM model, which combines the strengths of both

convolutional and recurrent neural networks.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

41

These effective models have been widely used in the field of ML. Combining both, a hybrid

CNN-LSTM model is defined, which brings together their abilities to capture temporal and

spatial characteristics in the data, in this case, the electricity price time-series. The idea is to

provide an additional feature that can help extract information from the data.

A convolution is a mathematical operation performed by a sequence of learnable filters, also

known as kernels, which slide through the input data from left to right. The electricity price

elements passing through the filter are multiplied elementwise with the corresponding filter

parameters and the results are added up. This scanning process allows the model to find

matching patterns.

For the univariate case, the output of a convolution is another univariate series that

underwent a filtering process (Ismail Fawaz et al., 2019). Thus, applying filters, results in a

multivariate time-series whose dimensions are equal to the number of filters used (in this

case 64). In each new epoch of the training, the filter’s parameters are updated and become

more able at recognizing patterns and structures in the data. Moreover, each filter is focused

on detecting a different type of feature.

The convolution approach has been the same in both univariate and multivariate approaches:

using a 1D convolution. In the context of time-series forecasting, it is common to treat the

exogenous variables as how additional color channels in image data. Unlike images, the

filters exhibit only one dimension (time), instead of two dimensions (width and height)

(Ismail Fawaz et al., 2019). This way, a 1D convolution is typically used, with multiple input

channels, instead of a 2D convolution. This is because these variables do not have a spatial

relationship that a 2D convolution would exploit. The model architecture would result as

follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

42

Figure 11: CNN-LSTM model architecture (Hamad et al., 2020)

Although the other benchmark models have performed better being implemented in the

PyTorch library, this model has proven to work better using the TensorFlow libraries. The

model definition is as follows:

Model definition

CNN_LSTM_model = tf.keras.models.Sequential([

 tf.keras.layers.Conv1D(filters=64, kernel_size=3,

 strides=1,

 padding='causal',

 input_shape=[window_size, 4]),

 tf.keras.layers.LSTM(500, return_sequences=True),

 tf.keras.layers.LSTM(500, return_sequences=True),

 tf.keras.layers.LSTM(500),

 tf.keras.layers.Dense(24),

])

CNN_LSTM_model.summary()

At the beginning of the model lies the convolutional layer. The parameters use 64 filters or

kernels, each specialized in a certain type of feature of the input sequence. Each kernel is set

to 3, as it performs the convolution in sequences of 3 input elements. The stride is set to 1,

which results in convolutional computations spaced 1 input unit. This allows the model to

capture all potential features from the data without skipping any prices. The padding is set

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

43

to causal, so that the model is restricted from looking into future data. This is especially

important for time-series data as the test set data is unknown. This padding parameter also

ensures that the output size is the same as in the input.

After the convolutional layer, the data passes on to the three LSTM layers, which will focus

on its temporal dependencies. Each LSTM layer is composed by 500 neurons, which will

allow the model to learn the complex features of the electricity price time-series.

The final Dense layer is responsible for mapping the LSTM outputs to the final forecasts,

corresponding to the following day’s hourly prices. This way, although the number of

neurons in the hidden layers are arbitrary, the input and output layers will have a number of

neurons that will correspond to the size of the input and output window, respectively.

2.5. NEURAL NETWORK OPTIMIZATION

The goal is to obtain the most accurate model, i.e., the one that can provide the lowest value

for the loss function, in this case, the MAE. This can only be achieved through continuous

adjustment over the parameters. In what follows, we will discuss certain parameters that

have been navigated to yield the lowest loss difference between the forecasted prices and the

actual values.

2.5.1. TRAINING STRATEGY

The objective is to accurately forecast the following 24 hours of prices. So, in this aspect,

the output size is fixed. As the neural ODE will train with the prior week of data, this

parameter will also apply for the DL methods, as the goal of the project is to compare the

performance of these models. Choosing the previous 168 observations for the price as input

to forecast the following 24 hours, allows the model to exploit relevant historical information

while also maintaining resilience to adapt to possible changes in trends or seasonality

patterns over time.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

44

The training data will span from March 1st, 2018, to April 30th, 2019, which constitutes about

70% of the total data. This set allows the model to learn the underlying patterns and

structures of the electricity price time-series. It must be noted that there is a trade-off about

the size of the training set. The larger it is, the more information is going to provide.

However, as the market is continuously growing and adapting to the new times, it does not

make the most sense to use huge amounts of training data. As the patterns change with every

modification in the configuration of the Spanish energy sources, the evolution of the cost of

fossil fuels, etc., it is important to assign more importance to the recent data, consequently

not using a huge total dataset. Thus, the selected size of the training data has been assigned

to 14 months.

On each epoch in the training set, the model learns the dynamics of the data. However, that

does not mean that it will therefore automatically perform better in the test set. Therefore, a

validation set is included as a check for overfitting, which will be used to select the resulting

hyperparameters of the neural networks. After an arbitrary number of training epochs, the

model will validate its efficacy on the validation set. Once the training has finished, the

model with the lowest validation error is selected for the final test set. Spanning from May

1st, 2019, to July 31st, 2019, the validation set constitutes 3 months to allow the model to

fine-tune its parameters to improve accuracy on future unseen data.

Finally, the test set, which spans from August 1st, 2019, to October 31st, 2019, will be used

to evaluate the model’s ability to generalize unseen data and provide a forecast for each test

window’s following 24-hourly prices. It must be noted that the models will be tested within

the same period for comparing their accuracy.

This sequential methodology in the dataset split represents a robust way to ensure that the

model has enough data to adapt to the new patterns in the price time-series. It must be noted

that, although it is appropriate in other ML problems, shuffling the data would destroy the

temporal structure. The training-validation-test split would be described in Figure 12:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

45

Figure 12: Training-validation-test split

As the neural ODE has proven computationally slow on CPU, it has been appropriate to

develop a model for each day of the week. Consequently, except for the statistical

(SARIMA) and probabilistic (Prophet) methods, the benchmark models and the neural

ODEs will be developed for every day of the week, meaning that there will be seven models

per method.

2.5.2. DATA NORMALIZATION

Data normalization is an important preprocessing technique, as it helps neural networks to

converge faster and avoid getting stuck in local minima during the training process. It is used

to ensure that the time-series falls withing the same scale without losing the data patterns

and structure.

Data normalization is key for the learning mechanism of neural networks. They rely on

gradient-based algorithms, such as Stochastic Gradient Descent (SGD), that allow the model

to update its parameters. If the data has not been normalized the loss function contour may

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

46

become much more challenging. This could lead to a back-and-forth oscillation that will

make the model converge slower or not converge at all.

For this project, both standardization and Minmax scaling of the dataset were tried, providing

the latter, better results. It must be noted that the scaler is fit with only the training data, so

that the validation and test set serve as unseen data that will help obtain the optimal

parameters.

Moreover, scaling from 0 to 1 can mitigate the effect of outliers in the electricity price time-

series, contributing to a more robust and accurate model. It also provides a more circular loss

function contour, allowing the model to find the global minimum more efficiently.

2.5.3. ACTIVATION FUNCTION

Activation functions fundamentally influence the networks’ ability to adapt to complex

patterns. The most common ones include ReLU (Rectified Linear Unit), sigmoid, and tanh

(hyperbolic tangent). They are placed after a hidden layer so that they can transform the

weighted sum of the inputs before passing it to the following layer.

The resulting output value helps in thresholding, i.e., deciding on whether to activate a

certain neuron. This is especially crucial to allow neural networks to filter and select the

most significant patterns in the data and avoid the influence of noise.

For this study, a ReLU activation function has been implemented as it provided the best

results. The ReLU function can be described as max (0, 𝑥), it is represented in Figure 13:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

47

Figure 13: ReLU activation function

2.5.4. LEARNING RATE SCHEDULE

The algorithm responsible for the numerical optimization of the weights during

backpropagation is called Gradient Descent, which follows this rule:

𝑤𝑖 = 𝑤𝑖 − 𝛼
𝑑𝑦

𝑤𝑖
 E 18

The weights wi in the neural network are updated considering the differentiation with respect

to the objective, which represents the slope of the loss function. They must be adjusted so

that the value of the loss function is minimized.

The step size of the weights update is determined by the learning rate 𝛼. Using a higher

learning rate will update the weights more drastically and lead to a faster training, although

the value of the loss function may oscillate and not find the minimum. On the other hand,

using a lower learning rate will lead to a slower training but finding the global minimum will

be more likely. Therefore, it is crucial to find the best learning rate for our EPF study.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

48

Although considering a fixed learning rate is a valid option, there is a better way of

optimizing this parameter called Learning Rate Schedule. The idea behind it is to start

assigning a high learning rate at the beginning, when the weights have just started to be

optimized and are not yet capable of capturing the patterns of the series. Progressively, as

the model keeps training on each new epoch, a lower learning rate is assigned. Hence, faster

learning can be forced at the beginning to help the optimizer to converge and find a more

accurate minimum of the loss function.

The Learning Rate will generally start at 0.1 and decrease linearly over the total number of

epochs, which largely depends on the model. This type of learning rate schedule is known

as a linear learning rate decay. At the start of the training process, i.e., on epoch 1, the high

value of the learning rate 𝛼 = 0.1 allows the model to take larger steps and advance faster

towards convergence in the minimum of the loss function contour.

By the end of the training, the model needs a smaller value for converging, as it is

approaching the minimum. The small value of the learning rate 𝛼 = 0.01 helps to make fine-

tuned adjustments to the parameters. In Figure 14 the resulting learning rate schedule is

represented:

Figure 14: Learning Rate Schedule

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

49

2.5.5. EARLY STOPPING

Selecting the number of epochs for training a model is a significant challenge. Choosing a

high number of epochs can ensure finding the best set of parameters, but it would surely lead

to problems with overfitting and wasted computation. Early Stopping is an optimization

technique used to reduce overfitting, which considers the validation error during training.

As the model trains on each new epoch, the training error decreases. This happens as well

on the validation set, up to a certain point, where increasing epochs not only does no longer

improve the forecasts accuracy, but the validation error starts increasing. It is at this point

that the model should stop training and avoid overfitting.

In this aspect, early stopping allows the model to stop training once an arbitrary number of

epochs have passed, after the model has found a minimum in the validation error function.

However, it could also be implemented that the Early Stopping acts when the rate of change

of the validation error is below a certain threshold.

Represented below, is the case of the univariate LSTM training and validation process. As

it can be seen, the model stops when an arbitrary number of epochs have passed without

outperforming the validation error:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

50

Figure 15: Early Stopping on the LSTM model

2.5.6. OPTIMIZER

The optimizers are responsible for updating the model’s parameters during backpropagation

to improve accuracy. The ultimate goal is to find the global minimum of the loss function

contour, i.e., the minimum MAE between the forecasts and the actual values.

The most common optimizer is the SDG, which can iteratively identify the direction that

decreases the most the loss function and update the parameters accordingly. This direction

is provided by the negative of the gradient of the function.

SGD is different from the traditional Gradient Descent algorithm, as it does not compute the

gradients on the whole dataset, but on a small batch of randomly chosen observations. Thus,

making the model faster and more efficient with large datasets.

However, SGD has its limitations. The stochastic nature of the model often leads to

significant variances in the parameters’ updates. Therefore, converging may not be as fast

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BENCHMARK MODELS

51

and could ultimately oscillate around the minimum without reaching it. For this matter, this

study includes an SGD optimizer with momentum.

This characteristic allows the model to better navigate through the steep contours, i.e., where

the slopes are much different than in other directions. It helps accelerate convergence and

dampen oscillations by adding a fraction 𝛾 of the past time-step to the current vector (Ruder,

2016). The equation behind the performance of the SGD with momentum is as follows:

𝜃 = 𝜃 − 𝜐𝑡 E 19

𝜐𝑡 = 𝛾 ∗ 𝜐𝑡−1 + 𝜂 ∗ 𝛻𝜃 ∗ 𝐽(𝜃) E 20

The momentum parameter will have a value around 0.9, as it is commonly set. In Figure 16,

it is represented how the optimizer works with and without momentum:

Figure 16: SDG optimizer (Ruder, 2016)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

52

Chapter 3. NEURAL ODE

3.1. INTRODUCTION

Five years ago, in 2018, Ricky T. Q. Chen and his colleagues published the paper introducing

a new family of deep neural network model, so-called neural ODEs. It received the best-

paper award in NeurIPS in 2018. The main idea behind it is that instead of specifying a

discrete sequence of hidden layers, the derivative of the hidden state is parameterized using

a neural network. The output of the network is computed using a black-box differential

equation solver.

Neural ODEs are a type of ML model that can learn complex dynamics of data. They are an

extension of traditional neural networks, which are used to approximate complex functions

by composing simpler functions together. Essentially, they are a continuous version of the

RNN models, where the hidden state at a given time is modeled as a function of time, instead

of a sequence of discrete time-steps. In a neural ODE model, it is assumed that the learned

function governs the dynamics of an ODE, which represents the evolution of an observable

over time.

By combining the flexibility of deep neural networks with the mathematical properties of

ODEs, Chen and his colleagues demonstrated that Neural ODEs could accurately model

complex, dynamic systems, outperforming traditional approaches in certain scenarios.

The award-winning paper (R. T. Q. Chen et al., 2018) compares the performances of a

ResNet (Residual Network) and a neural ODE. ResNets are a type of neural network

characteristic for their ‘shortcut connections’ (He et al., 2016), which allows the gradient to

be more rapidly backpropagated to the first layers. The idea is to mitigate the effect of

degradation, which causes the accuracy to get saturated as the network depth increases.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

53

Figure 17 shows the comparison in the residual flows between a ResNet (Residual Network)

and a neural ODE. As we can see on the left, the residual network defines a discrete sequence

of finite transformations or evaluation locations, each of which taking place in the hidden

layers. On the right, the plot represents how the ODE network defines a vector field, which

continuously transforms the state:

Figure 17: Evaluation locations in a residual network and ODE network

On the left part of Figure 17, the residual network presents a sequence of transformations to

a hidden state (ht), which will eventually form the computed output, in the output layer:

ℎ𝑡+1 = ℎ𝑡 + 𝑓(ℎ𝑡, 𝜃𝑡) E 21

These iterative updates can be seen as a Euler discretization of a continuous transformation.

This iterative scheme provides an approximate solution, through a local linear computation

in discrete steps, to compute the future states of the system’s dynamics. Euler’s methodology

is shown below:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

54

Figure 18: Euler's method

In a neural ODE, as seen on the right part of Figure 17, these evaluation locations are

continuous. The effect would resemble having many layers and smaller steps between them.

Therefore, the continuous dynamics of hidden states is parameterized using an ODE:

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓(ℎ(𝑡), 𝑡, 𝜃) E 22

The innovative idea behind a neural ODE is to avoid the traditional backpropagation.

Differentiating through the operations of the forward pass is straightforward, though it

accumulates numerical error and can be computationally expensive (R. T. Q. Chen et al.,

2018). Figure 19 represents the reverse-mode differentiation of an ODE solution, as an

augmented ODE is solved backwards in time by the adjoint sensitivity method:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

55

Figure 19: Forward and backpropagation of a neural ODE

The adjoint method allows to compute the gradients for any ODE solver, which is treated as

a black box, not needing access to the solver’s internal operations. Consequently, it scales

linearly in computation and memory with the size of the problem, in contrast with traditional

backpropagation.

One key element of a neural ODE, like most ML models, is its concept of the loss function.

It is a scalar value function, which measures the difference between the model’s predictions

and the actual values. Optimizing this loss function is an iterative process, with the goal of

being able to accurately model the dynamics of the data.

While the optimization is performed by the optimizer (subsectionParte I2.5.6.) which is used

twice in every training step – once in the forward propagation to calculate the output (price

forecasts of the following day) and during the backpropagation, to compute the gradients.

In a neural ODE, we start from an input layer, denoted by h(0) and we define the output

layer, denoted by h(T), which represents the solution to an ODE at a certain time T. More

specifically, it is the solution of an Initial Value Problem (IVP), a type of ODE where we

know the value of the solution at a specific time. In order to solve this IVP, an ODE solver

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

56

is needed. This numerical method calculates an approximation of the solution h(t) at discrete

time-steps by repeatedly evaluating the derivative of the dynamics of the data.

Training a model by computing gradients of a loss function L with respect to the parameters

θ is challenging. A possible approach would be to backpropagate through every step of the

ODE solver, but as mentioned before, it incurs high memory cost. Instead, the adjoint

sensitivity method provides a more efficient way to compute the gradients, by solving a

second, augmented ODE backwards in time, applicable to all ODE solvers. The underlying

equation is as follows:

𝐿(𝑧(𝑡1)) = 𝐿(𝑧(𝑡0) + ∫ 𝑓(𝑧(𝑡), 𝑡, 𝜃)𝑑𝑡) = 𝐿(𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝑧(𝑡0), 𝑓, 𝑡0, 𝑡1, 𝜃))
𝑡1

𝑡0

E 23

To optimize the loss function, the gradients with respect to 𝜃 are required. The first step is

to understand how the gradient of the loss depends on the hidden state z(t) at each point in

time. This quantity is called the adjoint, denoted by a(t), and is mathematically represented

as ∂L/∂z(t). Its dynamics can be thought of as the instantaneous analog of the chain rule:

𝑑𝑎(𝑡)

𝑑𝑡
= −𝑎(𝑡)𝑇 ∗

∂f(z(t), t, 𝜃)

∂ 𝑧

E 24

To calculate the adjoint, we can compute ∂L/∂z(t0) calling another time to the ODE solver.

The solver will run backwards, starting from the initial value of ∂L/∂z(t1). Nevertheless, to

solve the ODE, it requires knowing the value of z(t) along its entire trajectory. However, by

simply recomputing z(t) backwards in time together with the adjoint, starting from its final

value z(t1), the problem would be solved. Now, computing the gradients with respect to the

parameters θ requires calculating a third integral, which depends on both z(t) and a(t):

𝑑𝐿

𝑑𝜃
= − ∫ 𝑎(𝑡)𝑇 ∗

∂f(z(t), t, 𝜃)

∂𝜃

𝑡1

𝑡0

𝑑𝑡 E 25

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

57

To summarize the mathematical exposition, the paradigm shift that neural ODEs have caused

is truly transformative. Their ability to model the trajectory of a dynamic system as a solution

to an ODE allows it to provide a unique, continuous-time perspective. Through the adjoint

sensitivity method, the neural ODE performs backpropagation, computing the gradients by

solving another ODE in reverse-time.

As the paper (R. T. Q. Chen et al., 2018) demonstrates, the number of evaluations in the

backward pass is approximately half than in the forward pass. This goes to show the memory

and computational efficiency of the adjoint sensitivity method, compared with the traditional

backpropagation.

Because of this, neural ODEs are a very suitable option for dealing with complex dynamics,

such as the electricity market. Characterized by its high volatility and dependance on

external factors like the demand or the renewable generation, the non-stationary time-series

exhibit strong fluctuations. While long-term trends are important within EPF, their effect

may be negligible when dealing with accurate short-term forecasts. Thus, the model’s

flexibility and continuous time modelling capabilities make it a fitting choice to generate

short-time predictions.

Other potential opportunities involving neural ODE have been studied in recent scientific

papers. In 2020, Patrick Kidger and his colleagues combined neural ODEs with signature

methods and demonstrated its efficacy with financial time-series forecasting (Kidger et al.,

2020). Moreover, in a paper from the same year (De Brouwer et al., 2020), a variant of the

model was implemented, the GRU-ODE-Bayes. It yielded more accurate results than

standard RNNs.

Overall, although neural ODEs are a relatively new ML model, their characteristics and

promising results suggest that they could provide significant improvements over traditional

models in forecasting day-ahead electricity prices. Nonetheless, further research is needed

to fully comprehend the intricacies of the model, and other potential real-life applications.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

58

3.2. IMPLEMENTATION

The neural ODE will be developed and implemented in Python. More specifically, in the

PyTorch library. Following the selected error evaluation metrics, it will be compared against

various benchmark models, previously developed. For the case study, both univariate and

multivariate neural ODEs have been coded for forecasting electricity prices.

This master’s thesis would not have been possible without the efforts of Chen and Kidger,

who kindly developed a Python library called torchdiffeq. It provides ODE solvers

implemented in PyTorch, allowing backpropagation using the adjoint method.

Through its main interface, odeint, the algorithms solve the required IVP, which are

composed by an ODE and an initial value. The objective of an ODE solver is to find a

continuous trajectory that satisfies both:

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) 𝑦(𝑡0) = 𝑦0 E 26

In this example, a simple implementation of an IVP problem in the torchdiffeq framework

is represented:

from torchdiffeq import odeint_adjoint as odeint

odeint(func, y0, t)

where func represents the derivative of the system, y0 is the initial condition and t the 1-D

tensor containing the evaluation points and t0 is assumed to be t[0].

As it was explained, the adjoint method, implemented in torchdiffeq as odeint_adjoint, is the

real advantage in comparison with other models that use traditional backpropagation. The

difference between the two approaches is emphasized for long sequences or large batch

sizes. Specifically, the adjoint method only needs to store the final state and little additional

information, which results in a constant memory usage or O(1). Therefore, independently of

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

59

the size of the input, the amount of memory used does not vary, which makes neural ODEs

very efficient compared to other state-of-the-art methods.

One key point in the adjoint method implemented in this library is that the callable function

func, which represent the derivative of the trajectory, must be an instance of nn.Module.

nn.Module is a base class for neural networks in PyTorch and, therefore can parametrize the

ODE. It includes powerful features such as automatic differentiation and GPU acceleration.

For the sake of simplicity and code re-usability, we define a Python class, ODEFunc, to store

the neural network that parametrizes the unknown function governing the time-evolution of

the day-ahead electricity price:

class ODEFunc(nn.Module):

 def __init__(self, input_size: int, hidden_layer_neurons: int, output_size:

int):

 super(ODEFunc, self).__init__()

 self.net = nn.Sequential(

 nn.Linear(input_size, hidden_layer_neurons),

 nn.ReLU(),

 nn.Linear(hidden_layer_neurons, hidden_layer_neurons),

 nn.ReLU(),

 nn.Linear(hidden_layer_neurons, hidden_layer_neurons),

 nn.ReLU(),

 nn.Linear(hidden_layer_neurons, output_size),

)

 for m in self.net.modules():

 if isinstance(m, nn.Linear):

 nn.init.normal_(m.weight, mean=0, std=0.1)

 nn.init.constant_(m.bias, val=0)

 self.nfe = 0 # Initialize number of function evaluations

 def forward(self, t: torch.Tensor, y: torch.Tensor):

 self.nfe += 1 # Increment the counter each time the forward function is

called

 return self.net(y)

It must be noted that an identical network architecture, i.e., a feedforward 3-hidden layer

network with ReLU as the activation function, applies for both univariate and multivariate

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

60

models. Within the class constructor, the neural network is stored in the class attribute net.

Hence, self.net is composed by a series of linear transformations and activation functions:

- nn.Linear(input_size, hidden_layer_neurons): It denotes a fully connected layer,

which takes as input the state from the preceding layer and produces a linear

transformation for the following layer. This feature is characteristic of MLP models.

- nn.ReLU(): ReLU is the selected nonlinear activation function. The theory of

backpropagating through ODEs technically requires that the vector field (and thus

the activation function) be continuously differentiable, which ReLUs are not.

However, despite this theoretical point, ReLU activations are often successfully

implemented (Kidger, 2022), and so is the case.

As it has been proven, initializing the neural vector fields close to zero improves the training.

This is accomplished by initializing the weights of the linear layers with random numbers

sampled from a normal distribution with mean 0 and std 1. The biases are initialized to zero.

As it is required for all PyTorch modules, the class ends with the forward propagation

callable, which in this case consists of passing the initial system’s state y, through the neural

net, to obtain the final state.

During the training stage, the neural ODE requires a derivative for each one of the

dimensions of the state or input as the system’s state and the derivative of the state have the

same dimensions. Therefore, the output of the neural ODE must match the input size.

Most ODEs cannot be solved analytically, as they represent complex systems of high order

or non-linear. Nevertheless, thanks to numerical methods, accurate approximations can be

obtained, especially with ODE solvers. These solvers work by discretizing time and

computing the system’s state at these discretized time-steps. The ODE solvers included in

the torchdiffeq can be categorized into fixed-step and adaptive-step.

Fixed-step methods, as their name implies, use a fixed step size to calculate the solution over

time. Thus, the time vector would be discretized into a certain number of time points equally

spaced. The most straightforward and historically significant fixed step solver is the Euler’s

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

61

method. In this method, the loss is proportional to the step size, so that halving the step size

would halve the error. Although the Euler’s method is known for its simplicity, it may not

always provide the most accurate option. Especially with large step sizes or stiff ODEs,

involving a rapid rate of variable change over time.

The torchdiffeq library includes the following lists of solvers. The fixed-step solvers include:

- Euler: Euler method.

- Midpoint: Midpoint method.

- rk4: Fourth-order Runge-Kutta with 3/8 rule.

- explicit_adams: Explicit Adams-Bashforth.

- implicit_adams: Implicit Adams-Bashforth-Moulton.

Since these solvers use a constant step size, it allows the model to be simpler and therefore,

faster. However, it may miss features if step size h (depicted in Figure 18) is chosen too large

and become slower if it is chosen too small.

For this study, given the complexity of the electricity price time-series, it is a more suitable

idea to use the adaptive step solvers, as they adjust the time-step based on the estimated error

of the solution. The solver can take smaller time-steps when the trajectory varies quickly and

larger ones when they are more static and predictable. Consequently, solving an IVP problem

becomes more computationally efficient.

Thus, if the electricity price time-series is changing slowly, it will increase the step size h to

speed up computation. The following adaptive step solvers are included in the library:

- dopri8: Runge-Kutta 7(8) of Dormand-Prince-Shampine

- dopri5: Runge-Kutta 4(5) of Dormand-Prince [used by default in torchdiffeq].

- bosh3 Runge-Kutta 2(3) of Bogacki-Shampine

- fehlberg2: Fehlberg2

- adaptive_heun: Runge-Kutta 1(2)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

62

Runge-Kutta (RK) methods integrate a more complex and accurate approach as they

leverage the differential equation for computing the slope of the tangent line to the function

f (Anonymous & ICLR, 2023). They perform multiple intermediate evaluations using

Taylor’s Series expansion techniques to determine the general solution of the ODE (Goeken

& Johnson, 2000). These evaluations are then combined to a weighted sum to obtain the

final approximation at the end of the step.

Backpropagation is not numerically stable for all the solvers. Nevertheless, and as it has

proven to be the most precise, the selected adaptive step solver has been the default one:

dopri5, which is the RK of order 4(5) of the Dormand-Prince method. RK methods evaluate

the ODE func at the beginning of the step to obtain the first slope. Then, they take several

intermediate steps within the current step interval. In the case of dopri5, it involves taking

six additional steps, making a total of seven evaluations per step.

It computes the two separate solutions and by comparing them, the method can estimate the

local truncation error of the solution, to ultimately adapt the step size. If the estimated error

is below the previously specified tolerance, the fifth order solution is accepted, and the step

size h may increase for the next time-step. However, if it is higher than the tolerance, the

step is rejected, and the process is repeated with a smaller step size. As an adaptive step size

method, it demonstrates good performance at approximating trajectories with sharp

transitions, as it can vary the step size to ensure accuracy while also minimizing computation

time.

When compared with a fixed step-size RK4 (Fourth order RK method), dopri5 requires

fewer steps to achieve the same accuracy but it results in a more complex method, so it is a

trade-off. Nonetheless, it is an appropriate approach for the case study data.

Dopri5 is described by the following system of equations:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

63

𝐾1 = ℎ ∗ 𝑓(𝑡𝑘 , 𝑦𝑘) E 27

𝐾2 = ℎ ∗ 𝑓 (𝑡𝑘 +
1

5
ℎ, 𝑦𝑘 +

1

5
𝐾1) E 28

𝐾3 = ℎ ∗ 𝑓 (𝑡𝑘 +
3

10
ℎ, 𝑦𝑘 +

3

40
𝐾1 +

9

40
𝐾2) E 29

𝐾4 = ℎ ∗ 𝑓 (𝑡𝑘 +
4

5
ℎ, 𝑦𝑘 +

44

45
𝐾1 −

56

15
𝐾2 +

32

9
𝐾3) E 30

𝐾5 = ℎ ∗ 𝑓 (𝑡𝑘 +
8

9
ℎ, 𝑦𝑘 +

19372

6561
𝐾1 −

25360

2187
𝐾2 +

64448

6561
𝐾3 −

212

729
𝐾4) E 31

𝐾6 = ℎ ∗ 𝑓 (𝑡𝑘 + ℎ, 𝑦𝑘 +
9017

3168
𝐾1 −

355

33
𝐾2 −

46732

5247
𝐾3 +

49

176
𝐾4 −

5103

18656
𝐾5) E 32

𝐾7 = ℎ ∗ 𝑓 (𝑡𝑘 + ℎ, 𝑦𝑘 +
35

384
𝐾1 +

500

1113
𝐾3 +

125

192
𝐾4 −

2187

6784
𝐾5 +

11

84
𝐾6) E 33

Based on these equations, we can compute two separate estimations for the next time-step:

- Fourth-order RK solution:

𝑦𝑘+1 = 𝑦𝑘 +
35

384
𝐾1 +

500

1113
𝐾3 +

125

192
𝐾4 −

2187

6784
𝐾5 +

11

84
𝐾6

E 1

- Fifth-order RK solution:

𝑧𝑛+1 = 𝑦𝑛 +
5179

57600
𝐾1 +

7571

16695
𝐾3 +

393

640
𝐾4 −

92097

339200
𝐾5 +

187

2100
𝐾6 +

1

40
𝐾7

E 2

The two solutions are subtracted to obtain the resulting local truncation error. Then, the

optimal time-step size ℎ𝑜𝑝𝑡:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

64

𝑠 = (
𝜖 ∗ ℎ

2 ∗ |𝑧𝑘+1 − 𝑦𝑘+1|
)

1
5
 E 34

ℎ𝑜𝑝𝑡 = 𝑠 ∗ ℎ E 35

Being h the last step size and 𝜖, the desired error tolerance. The latter parameter is used to

adaptively modify the step size during computation, in order to balance the existing trade-

off between accuracy and computational cost.

Multiple function evaluations and their posterior linear combination make dopri5 suitable

in terms of the ability of handling complex ODEs and rapid change. However, more

computation resources are required as they perform seven evaluations for the one that

Euler’s method does.

Overall, dopri5 provides a good balance between accuracy and computational cost, which is

critical for this project and its limited resources. Nevertheless, the models are

computationally expensive and a migration to GPU-based environments results mandatory

to compete in the time aspect with the rest of the models.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

65

3.3. TRAINING STRATEGY

3.3.1. UNIVARIATE

The univariate model relies solely on historical electricity price data to forecast the day-

ahead prices. This training process involves iteratively optimizing the weights and biases of

the neural network to approximate the underlying function governing the dynamic laws of

an observed variable. By exploiting the numerical solution of the neural ODE, we can

effectively reconstruct the trajectory of the observed variable at hand.

The neural network takes as input the initial condition, i.e., the input at the first time-step,

and evolves it over time according to the approximated ODE. In this scenario, the initial

condition is composed by the start of a one-week period. The time-steps will correspond to

each day of the input week until the last one, which will serve as the out-of-sample

prediction. This strategy is more effective than introducing the whole preceding week’s data

to the neural ODE as it would mitigate the potential risk of model convergence issues during

the training stage.

As represented in Figure 20, the ODE is trained with 5 time-steps, which corresponds to the

preceding week’s price trajectory. Then the out-of-the-sample forecast is performed at time-

step 6, configuring the model under evaluation mode:

Figure 20: Univariate Neural ODE solver procedure

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

66

As mentioned earlier, the input data will consist of each day’s 24-hourly electricity prices.

Thus, the neural ODE is computed by the solver an arbitrary number of iterations (50, for

this study) before passing to the next time-step where another day will be evaluated.

The first time-step is done computing the forecast for the third day, given an input of the

first two days, as represented below, for the case of Monday’s neural ODE:

Figure 21: Evaluation at the end of the first time-step

On the second time-step, the neural ODE is trained with the first three days to forecast the

fourth day or time-step.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

67

Figure 22: Evaluation at the end of the second time-step

This process continues for the rest of windows so that in the final out-of-the-sample

prediction, the model is trained with the whole prior week. As it can be seen in the image,

the loss function value (MAE) for that first window out-of-the-sample forecast is 4.040:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

68

Figure 23: Evaluation at the end of the last time-step - Out-of-the-sample prediction

This way, the architecture of the model, i.e., the derivative of the trajectory, is optimized to

match the most recent patterns in the day-ahead electricity price series.

One of the main limitations of neural ODEs is that, as training processes and flow gets

increasingly complex, the number of steps required to solve the ODE increases (R. T. Q.

Chen et al., 2018) and the model becomes very computationally expensive. The following

plot represents the number of function evaluation points (NFE), computed by the solver in

the first univariate window:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

69

Figure 24: Evolution of the number of evaluation points during training

A way of determining the ‘depth’ of the Neural ODE is the number of evaluation points of

the hidden state dynamics, dependent on the initial state or input (R. T. Q. Chen et al., 2018).

As the number of epochs increases and the model is trained with more days, as it can be seen

in Figure 24, the number of evaluation points increases. It must be noted, though, that the

number of evaluations is not strictly proportional to the model size, due to the adaptive nature

of the solver. For this specific case, the ∆NFEs between the training step 3 and 4 show an

spike in the volatility of the price on training step 4, therefore requiring more function

evaluations to accurately represent the trajectory. As this model represents the training for

forecasting Fridays (Training Step 6), the corresponding week appears to have a tricky

Wednesday (Training Step 4).

Nevertheless, and though the resources have been limited and neural ODEs have taken long

to train, they have proven to be promising in terms of accuracy.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

70

3.3.2. MULTIVARIATE

In this scenario, the neural ODE will follow the evolution of the electricity price, based on

the provided historical data, including two exogenous variables: the P48 demand and the

P48 wind generation. These variables are particularly relevant for the electricity market and,

therefore, for the electricity price formation.

As mentioned earlier, one requirement of neural ODEs that distinguishes them from more

traditional ML models is the condition that the dimensionality of the input and output data

must match. This is due to the nature of ordinary differential equations. This requirement

influences key decisions such as the model’s architecture, including the number and size of

the layers and the preprocessing and data feeding into the model. This constitutes no problem

for the univariate neural ODE, as the initial condition of the IVP matches the size of the

desired forecast.

Thus, similarly to the univariate approach, the initial condition of the ODE will consist of

the flattened values of the variables, which including the exogenous variables, it has now

increased to a dimensionality of 72 (24 times 3). Nevertheless, in the multivariate approach,

to meet the latter condition, the output will also be composed of 72 values. The resulting

multivariate training strategy is represented as follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

71

Figure 25: Multivariate Neural ODE solver procedure

It could be confusing that, to forecast the following 24-hourly prices, the neural ODE has to

compute and predict the values of all the variables, 72. Nevertheless, this study provides a

creative solution to avoid this rather avoidable problem. The solution lies on the loss

function.

Deep networks are included in the supervised learning paradigm, as they must be indicated

the actual values of the expected output in the training process. This includes indicating the

loss function that will compute the difference between the actual values and the obtained

output. For this study, the main loss function is the MAE. This loss function is usually

applied to all the outputs of the last layer of the network. However, it must be noted that it

could very much not, as it is the case.

As mentioned before, the output size is fixed to 72. But the use case of the model is to

forecast the following 24 prices. Therefore, the loss function has been programmed to

compute the output of the last 24 Linear neurons of the last layer. It must be noted that,

instead of the last ones, any 24 outputs could have been selected to be revised by the loss

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

NEURAL ODE

72

function. After all, the neural ODE will learn to optimize those selected 24 outputs (of the

whole 72) to approximate optimally to the following 24 electricity prices.

This way, the neural ODE considers all the variables, although it does not provide their

forecasts, allowing the model to focus only on the electricity price time-series. As it has been

proven afterwards, having all the outputs revised by the loss function does not provide better

results on the price forecasts.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

73

Chapter 4. ANALYSIS OF RESULTS

This chapter presents the obtained results from the application of the neural ODE and the

benchmark models, which have been divided into statistical, probabilistic, and ML

categories. These models, which include the SARIMA, Prophet, MLP, LSTM and CNN-

LSTM, have been selected to establish a solid reference point for the newly developed

central model of this master’s thesis: the neural ODE.

At the end, the gathered results, applied to the Spanish day-ahead EPF for the period between

2018-2019, will be analyzed. The evaluation of the performance of the models has been

carried out by using standard metrics, such as the MAE, whose equation is represented

below:

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=1

 E 36

Where N represents the total number of data points, 𝑦𝑖 is the actual value of the i-th instance

and 𝑦̂𝑖 is the predicted value of the i-th instance.

In this equation, we compute the absolute difference between the actual and predicted values

of each data point, to then obtain the average value. The result is a non-negative number,

where lower values indicate better model performance, i.e., lower forecast error.

4.1. SARIMA MODEL

For this study, a SARIMA model will be implemented for both univariate and multivariate

approaches. The statistical approach follows a training strategy that allows obtaining the

optimal parameters for the test phase. A training period, spanning from July 2018 to July

2019 is implemented to fine-tune the model. This includes obtaining the optimal

hyperparameter combination (autoregressive, integrated and moving average) for the three

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

74

main seasonalities involved in the time-series: regular, daily, and weekly. Also, it will serve

as a cross-validation test for obtaining the optimal window size to forecast the following 24-

hourly electricity prices. Finally, a test set, spanning from August 1st to October 31st, 2019,

was selected, to avoid important outliers in November 2019. It must be noted that the input

windows will be separated by 24 hours, having a window per test day, therefore composing

a total of 92 windows.

The training strategy followed by the SARIMA(X) model is described on Table 9:

Training set Test set

Start End Start End

July 1st,

2018

July 31st,

2019

August 1st,

2019

October

31st, 2019

Table 1: Training-Validation-Test dataset division for the SARIMA(X) model

As part of the exploratory analysis, the autocorrelation plots of the training price time-series

are represented in Figure 26:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

75

Figure 26: Training period for hyperparameter tuning (without outliers)

As it can be seen, the time-series shows significant outliers. Eliminating them, ensures that

the model is trained on high quality data, which accurately represent the dynamics of

electricity prices. Outliers can have a disproportionate impact on the model, causing it to

overfit and leading to a poor generalization performance. Moreover, by removing these

extreme values, the integrity of the multivariate relationships is maintained. For this study,

all training electricity price observations whose value differed at least 3,5 standard deviations

from the mean were considered outliers. To maintain the structure of the time-series, they

have adopted the average value of that day, without considering the original outlier value.

Therefore, the average price is calculated with the remaining 23 hourly prices. The resulting

training period for hyperparameter tuning will be as follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

76

Figure 27: Training period for hyperparameter tuning (without outliers)

Once the outliers have been removed, it is convenient to ensure that the variance of the data

is stable, remaining constant over time. Thus, the mean/sd scatterplot will decide, jointly

with the obtained value of lambda, whether the Box-Cox transformation must be applied to

the data. The mean/sd scatterplot represents the logarithm of the standard deviation with

respect to the logarithm of the moving average, i.e., the relation between the variance and

the mean. The obtained lambda parameter indicates the kind of transformation that should

be applied to the data in order to stabilize the variance:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

77

Figure 28: Mean/sd scatterplot

In our study, the training time-series shows a λ = 0.8993, meaning that the need for any

transformation is dubious. Also, the low R-squared value suggests that there is little linear

relationship between the log-transformed moving average and the log-transformed standard

deviation of the time-series. Therefore, the time-series will be treated as is, with no

transformations applied.

The following step in the SARIMA process is to ensure the stationarity of the time-series.

Performing the KPSS test on our original training data, the following results are obtained:

Table 2: KPSS test on the original data

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

78

As the obtained KPSS p-value is 0.01, but as the test indicates, this value could be even

smaller. Therefore, the null hypothesis cannot be rejected, meaning that the data is not

stationary and must be differentiated. It must be noted that for seasonal time-series, a

seasonal differencing must first be applied. Then, once the autocorrelations have been

stabilized, the regular differencing would follow, if needed. As the autocorrelation plots

show strong daily seasonality, the data will first suffer a differentiation at lag 24, resulting

in the following autocorrelation plots:

Figure 29: Autocorrelation plots after the daily seasonality differentiation

Once the daily seasonality has been performed, the time-series continues to show seasonal

patterns. As expected, as the first lags exceed the significance interval, a regular

differencing will be applied. Nevertheless, and as shown in Figure 29, the time-series has a

significant seasonality on lag 168, which corresponds to the weekly seasonality. Therefore,

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

79

both weekly and regular differencing will be applied. The resulting autocorrelation plots

are shown on Figure 30:

Figure 30: Autocorrelation plots after regular, daily and weekly differencing

Although the data continues to show some seasonality, the data can be now considered

stationary. After performing a new KPSS test on the three-times differentiated time-series,

the following results are obtained:

Figure 31: KPSS test after regular, daily, and weekly differencing

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

80

The obtained KPSS p-value is 0.1 (or greater), meaning that the null hypothesis cannot be

rejected. It can be concluded that the series is stationary enough to proceed with the

hyperparameter selection.

The identification of the optimal SARMA hyperparameters of the series include the

autoregressive (AR) term (p), the order of the moving average (MA) term (q) and the

corresponding P and Q of the regular, daily and weekly seasonalities.

To identify the rest of the regular and seasonal parameters, as their integrated parameter has

been fixed to 1, the autocorrelation plots from Figure 30 will be analyzed. The autoregressive

parameter p is identified by looking at the decay on the ACF. For an AR(p) process, the ACF

decays after lag p. However, and as Figure 30 shows, the decay is produced in the PACF

plot. Therefore, we are treating with moving average processes. This way, the preliminary

selected univariate autoregressive hyperparameters are:

𝑝 𝑃24 𝑃168

0 0 0

Table 3: Univariate Autoregressive Hyperparameters

In order to achieve a stationary time-series and obtain uncorrelated training residuals, a

regular, daily and weekly differences were applied to the original time-series. Therefore, the

resulting integrated hyperparameters are:

𝑑 𝐷24 𝐷168

1 1 1

Table 4: Univariate Integrated Hyperparameters

Similarly, to identify the moving average term q, the same procedure is followed but on the

ACF plot. As the decay is exponential, the order of the hyperparameter q will be set to 1. It

must be noted that the decay is produced visibly on both daily and weekly seasonalities (lags

24 and 168). When analyzing the autocorrelation plot with more detail, a slight moving

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

81

average behavior is also identified on the regular component. Consequently, the selected

univariate moving average hyperparameters will be as follows:

𝑞 𝑄24 𝑄168

1 1 1

Table 5: Univariate Moving Average Hyperparameters

Once the combination of hyperparameters has been identified on the training period, i.e., the

year prior to the test set, it is time to test them on the test rolling windows. It must be noted

that the training data also served as a cross-validation test to identify the best window size,

which resulted in 13 weeks prior to the posterior 24-hourly electricity price forecasts.

Therefore, just to remind the reader, for every day to forecast (out of the 92 test days), a

different SARIMA model will be fitted with the same hyperparameters. The first input

window will correspond to the 13 prior weeks to the first test set day, August 1st, 2019.

For the multivariate approach, the same strategy for hyperparameter selection has been

applied. Nevertheless, the best candidate combination on the training data proved to be a

simpler model, as ignoring the slight moving average of the regular component leaded to

better results. The final hyperparameters of the multivariate SARIMA models and their

resulting equations are indicated on equations E 37 and E 38, based on the notation found

on the study developed by Weron, (2014):

- Univariate SARIMA: (0, 1, 1) (1), (0, 1, 1) (24), (0, 1, 1) (168)

(1 − 𝐵) (1 − 𝐵24
) (1 − 𝐵168

) 𝑦(𝑡) = (1 − 𝜃1𝐵) (1 − 𝜃24𝐵24
) (1 − 𝜃168𝐵168

) 𝜀(𝑡) E 37

- Multivariate SARIMA: (0, 1, 0) (1), (0, 1, 1) (24), (0, 1, 1) (168), (0, 0, 0) (X(1)),

(0, 0, 0) (X(2)), (0, 0, 0) (X(3))

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

82

(1 − 𝐵)(1 − 𝐵24)(1 − 𝐵168)𝑦(𝑡) = (1 − 𝜃24𝐵24)(1 − 𝜃168𝐵168)𝜀(𝑡) + ∑ 𝜓𝑖(𝐵)𝑋𝑖(𝑡)

3

𝑖=1

 E 38

Where:

- B is the backshift or lag operator

- yt is the original time-series

- 𝐶 is the constant term

- 𝜃1 is the regular MA term

- 𝜃24 is the daily seasonality MA term

- 𝜃168 is the weekly seasonality MA term

- 𝜖𝑡 is the error term

- 𝑋(1) is the P48 power demand

- 𝑋(2) is the P48 wind generation

- 𝑋(3) is the day of the week

- 𝜓𝑖(𝐵) is a shorthand notation for 𝜓𝑖(𝐵) = 𝜓0
𝑖 + 𝜓1

𝑖 𝐵 + 𝜓2
𝑖 𝐵2 + 𝜓3

𝑖 𝐵3 with 𝜓𝑗
𝑖𝑠

being the corresponding coefficients

For the SARIMA implementation, the R framework has been used. This was convenient as

the msarima function is only implemented in this coding language and is a must for

modelling more than one seasonality, which is our case. This example of the multivariate

implementation is reflected below, as this line of code is responsible for training a model per

input window:

 # Model

 model <- msarima(y[i:(i + window_size - 1)], xreg=exogenous_window,

orders=list(ar=c(0,0,0),i=c(1,1,1),ma=c(0,1,1)), lags=c(1,24,168), h=24, holdout

= TRUE, silent = FALSE, initial = 'backcasting')

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

83

Being the window size, the preceding 13 weeks of data, the model accounts for regular, daily

and weekly seasonalities with a combination of hyperparameters composed by the ar, i and

ma tuples. The xreg parameter includes the exogenous variables.

After having selected the hyperparameters for both approaches, it is time for training a

different model per input window and computing the corresponding 24-hourly forecasts. The

MAE results from both univariate and multivariate test models are gathered in Table 6:

Day to forecast Naïve SARIMA SARIMAX

Monday 8.12 4.25 4.51

Tuesday 3.93 4.49 4.89

Wednesday 3.35 4.59 5.11

Thursday 3.55 3.73 4.33

Friday 2.76 4.01 4.26

Saturday 4.66 4.56 5.04

Sunday 4.09 6.87 5.41

Table 6: SARIMA(X) Results

These results show the difficulty behind EPF. Even the 2019 electricity price time-series,

when the renewables were just starting to infiltrate the energy market, show complex

patterns that the ARIMA models fail to capture. Once the forecasts for the test set have been

obtained, it is time to check the significance of the model coefficients and analyze the

training residuals. Performing the coeftest function, the significance of the coefficients is

checked. Plotted on Figure 32 are the univariate coefficients in the last test window, which

show are significant, i.e., their p-value is much lower than 0.05, which means that they are

contributing to the model:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

84

Figure 32: Significance of the univariate SARIMA hyperparameters

The same happens with the multivariate approach. It must be noted that, although in other

models, the correlation between the exogenous and the output variables have not proven

useful, the SARIMA statistical model is able to find strong linear correlations:

Figure 33: Significance of the multivariate SARIMA hyperparameters

The p-values of the orders of the model reveal that, although the moving average

hyperparameters are significant, the exogenous variables are providing noise. This is

understandable due to the relatively low correlation between them and the output variable.

While the obtained MAE values are very competitive, once the out-of-sample forecasts have

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

85

been obtained, it is time to check their resulting residuals. Looking at the autocorrelation

plots on Figure 34, there are certain seasonal patterns that have not been accurately:

Figure 34: Generic univariate model residuals

As it can be seen, there are some marginal lags that overpass the significance thresholds,

indicating that this model residuals may not fully capture the temporal dependencies,

specially the initial lags. This is because they do not strictly resemble white noise, meaning

that the residuals are not completely independent and distributed with a mean of zero and

constant variance. However, due to the complexity and volatility of the time-series, these

residuals are considered acceptable.

When performing the residuals analysis on the multivariate approach, it can be seen that

these residuals show similar properties as in the univariate approach. The multivariate

residuals are as follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

86

Figure 35: Generic multivariate model residuals

Even though the residuals seem uncorrelated visually, a posterior Ljung-Box statistical test

is crucial to ensure the residuals’ independence. As explained before, the Ljung-Box test

checks whether any of a group of autocorrelations are different from zero, instead of testing

randomness at each distinct lag. After performing the test on univariate generic models, we

obtain the following p-values:

Figure 36: Ljung-Box test on the univariate residuals

And as for the multivariate residuals, Figure 26 shows the result of the serial correlation test:

Figure 37: Ljung-Box test on the multivariate residuals

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

87

The Ljung-Box tests p-values show that neither of the approaches fail to reject the null

hypothesis of no autocorrelation, as they are way above 0.05. This suggests that the residuals

of the model are independently distributed with no autocorrelation structure.

In conclusion, although the models have shown poor results, the residuals are uncorrelated,

demonstrating that the models have not captured all the information in the data. As the

models are very simple, there is little room for considering overfitting. The most plausible

explanation at this point is that the exogenous variables provided noise, degrading the true

variable, the electricity price. This is validated with the high p-value of the exogenous

variables on Figure 33. It must be noted that the statistical methods, which include the

SARIMA model, are known for not performing on high frequency data, which is our case.

The underlying volatility of the electricity price time-series adds non-linearities which makes

it difficult to predict (Lago et al., 2018).

4.2. PROPHET MODEL

As it was explained, Facebook Prophet has been included in the list of benchmark models

for its capability to effectively handle datasets with complex seasonal patterns and holiday

effects. The following results demonstrate its robustness.

This model has been implemented in R, for efficiently dividing the computation between the

different frameworks (VS Code, Google Colab and RStudio). Thus, the corresponding

libraries have been used. It must be noted that the dataset is reformatted to suit the

requirements of the libraries of Prophet.

The Prophet model will follow a similar strategy as in the statistical approach. As explained

later, the model does not need manually integrated parameters. Therefore, the only variable

to consider will be the input window size to forecast the following 24-hourly prices. This

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

88

parameter is obtained during the training phase, based on the preceding year of observations

from July 2018 to July 2019. Then, a different model will be developed to compute the

forecasts for the 92 days composing the test set, from August 1st to October 31st, 2019.

The training strategy followed by the Prophet model is described on Table 7:

Training set Test set

Start End Start End

July 1st,

2018

July 31st,

2019

August 1st,

2019

October

31st, 2019

Table 7: Training-Validation-Test dataset division for the Prophet model

The sliding window approach involves shifting the training windows by 24 hours and

iteratively fitting the Prophet model on each of them, followed by an evaluation of the

following 24-hour period. In this cross-validation process of selecting the optimal window

size, several options are analyzed, ranging from 1 to 11 weeks. For each window size, the

MAE is computed. This way, the window size that provided the most accurate results on the

training data was 6 weeks.

Once the optimal window size has been selected, the final model proceeds to the test part.

To forecast each day’s 24-hourly prices, a different Prophet model will be fitted and trained

with the preceding 6 weeks of data. Throughout the process, the residuals are computed and

stored for further analysis.

The following code represents the way a multivariate Prophet models per input window is

fitted. The data is first split into rolling train/test sets, as occurs in the rest of the models. As

for the size of the input window for the Prophet models, best_window is set to 6 weeks, as it

has been explained. The regressor variables will of course consist of the P48 demand, P48

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

89

wind production and the day of the week. Moreover, the holidays parameter will allow the

model to consider these effects.

 # Diving the data into training and test sets

 train_temp <- df[(i-best_window+1):i,]

 test_temp <- df[(i+1):(i+24),]

 # Initializing the Prophet model

 m <- prophet(holidays=holidays, daily.seasonality = TRUE, weekly.seasonality =

TRUE) # Enable daily and weekly seasonalities

 # Adding 'demand' and 'wind' as regressors

 m <- add_regressor(m, 'demand') # Adding demand as a regressor

 m <- add_regressor(m, 'wind') # Adding wind as a regressor

 m <- add_regressor(m, 'day_of_week') # Adding day of the week as a regressor

 # Fitting the model with the training data

 m <- fit.prophet(m, df = train_temp)

The obtained MAE results for both univariate and multivariate test models are gathered in

Table 8:

Day to forecast Naïve
Univariate

Prophet

Multivariate

Prophet

Monday 8.121 4.94 2.45

Tuesday 3.935 4.27 2.38

Wednesday 3.352 3.44 3.28

Thursday 3.554 4.09 2.86

Friday 2.768 3.76 2.78

Saturday 4.665 4.84 2.34

Sunday 4.093 4.68 2.48

Table 8: Prophet Results

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

90

The naïve model provides as forecasts the electricity prices of the preceding day. It is used

as a baseline model for the rest of the models to be compared with. As the Table 8 shows,

the univariate model is already more accurate than the naïve model, using only the past

values of the electricity price for forecasting.

As for the multivariate model, also taking as input the exogenous variables (P48 demand,

P48 wind generation and the day of the week), it is able to provide the best result of the

whole study. Apart from the demand and the wind generation, it can accurately model the

trajectory considering all the complex patterns caused by the strong seasonalities of the time-

series.

Given the superior performance of the model, considering the holiday effects of the country,

it has been decided that the day_of_the_week exogenous variable will be included in the rest

of the benchmark models.

4.3. MACHINE LEARNING METHODS

In this subsequent subsection of our EPF study, an overview of the three core ML models

will be provided, including MLP, LSTM, and CNN-LSTM. We will provide a detailed

explanation of how each model has been implemented.

It must be noted that the multivariate ML models will include three exogenous variables:

power demand, wind production and the day of the week. This discrete variable has been

included and will assign each day of the week a different number from 0 (Monday) to 6

(Sunday), adding 7 in the cases where that day was a national holiday, mentioned on

subsection 1.5.

The ML models have been trained on 14 months of historical data from March 2018 to April

2019. Right afterwards, a validation set consisting of 3 months from May to July 2019,

allowed it to optimize its parameters to perform accurately on unseen data. Finally, a test set,

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

91

spanning from August to October 2019 was selected, to avoid important outliers in

November 2019. Thus, the dataset training-validation-test set division is a commonly used

70-15-15%. It must be noted that again, the optimal input window size will be obtained

during the training phase.

The training strategy followed by the ML methods is described on Table 9:

Training set Validation set Test set

Start End Start End Start End

March 1st,

2018

April 30th,

2019

May 1st,

2019

July 31st,

2019

August 1st,

2019

October

31st, 2019

Table 9: Training-Validation-Test dataset division for ML methods

4.3.1. MLP MODEL

For this study, both univariate and multivariate MLP models have been implemented. The

univariate MLP calculates the forecast based only on past prices, basically modelling the

autocorrelation in the time-series. The multivariate model, on the other hand, leverages

additional exogenous variables in its predictions.

For the univariate approach, although a different model for every day of the week has been

trained, the most common configuration has been as follows:

Number of

linear layers

Neurons per

layer
Learning Rate Epochs Dropout

Optimizer

Momentum

4 100 0.1-0.001 1000 0.1 0.9

Table 10: Univariate MLP model architecture

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

92

This approach considers only the historical price data, i.e., the preceding 168 observations

prior to the window forecasts. On the univariate implementation in Python, the example of

the architecture definition is coded as follows:

Model definition

class MLPModel(nn.Module):

 def __init__(self, input_size, hidden_layer_neurons, output_size):

 super(MLPModel, self).__init__()

 self.mlp = nn.Sequential(

 nn.Linear(input_size, hidden_layer_neurons),

 nn.BatchNorm1d(hidden_layer_neurons),

 nn.ReLU(),

 nn.Dropout(0.1),

 nn.Linear(hidden_layer_neurons, hidden_layer_neurons),

 nn.BatchNorm1d(hidden_layer_neurons),

 nn.ReLU(),

 nn.Dropout(0.1),

 nn.Linear(hidden_layer_neurons, hidden_layer_neurons),

 nn.BatchNorm1d(hidden_layer_neurons),

 nn.ReLU(),

 nn.Dropout(0.1),

 nn.Linear(hidden_layer_neurons, hidden_layer_neurons),

 nn.BatchNorm1d(hidden_layer_neurons),

 nn.ReLU(),

 nn.Dropout(0.1),

 nn.Linear(hidden_layer_neurons, output_size),

)

 def forward(self, x):

 x = self.mlp(x)

 return x

A stack of 4 linear layers composed by 100 neurons has been configured to provide the best

results. Using the neural network optimization techniques (Data normalization, Learning

Rate Schedule, Early Stopping, etc.) allowed the model to understand the data dynamics.

This architecture specifically, was implemented on the Tuesday model. In Figure 38, the

univariate forecasts for the first test window are represented:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

93

Figure 38: Univariate MLP forecasts

On the case of the multivariate model, as the input data can be 2D, not only will it consider

the historical data of price and exogenous variables, but it will also take into account the

values of the exogenous variables for the following 24-hours to forecasts. Consequently,

these additional 24 values per variable serve as forecasts for the resulting window, as it is

commonly done for EPF. Therefore, each sample of the input data is a 1D array of length

744, which correspond to 168 electricity prices and 192 values for each exogenous variable

(‘price’, P48 power demand’, ‘P48 wind production’ and ‘day_of_the_week’). Although the

models present slight difference in architectures, the most used configuration on the

multivariate approach has been the following:

Number of

linear layers

Neurons per

layer

Learning

Rate
Epochs Dropout

Optimizer

Momentum

4 300 0.1-0.001 2000 0.1 0.95

Table 11: Multivariate MLP model architecture

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

94

Alike the univariate approach, the multivariate architecture will also be composed of 4

stacked layers. However, it includes three times more units, which makes sense as the input

has now more observations to analyze. The results show a better performance from the

multivariate approach, compared with the univariate approach. Although the exogenous

variables are not that much correlated with the output variable, the model is able to extract

information about the intrinsic pattern of the time-series. The univariate and multivariate

MAE results for the test set are represented in Table 12:

Day to forecast Naïve
Univariate

MLP

Multivariate

MLP

Monday 8.121 5.331 5.213

Tuesday 3.935 3.971 3.693

Wednesday 3.352 4.322 4.076

Thursday 3.554 4.636 4.001

Friday 2.768 3.418 3.369

Saturday 4.665 3.909 3.410

Sunday 4.093 3.715 2.919

Table 12: MLP Results

As it will happen with other models, forecasting is especially convenient on Mondays,

Saturdays, and Sundays. These are the weekdays which most differ from their preceding

day, in terms of electricity usage. In the case of Sundays, it must be noted that, although it

should be similar to Saturdays, there could be important events like, for example, football

matches, that could significantly alter the energy consumption. Consequently, their naïve

MAE is higher than in the middle weekdays. In fact, as the middle weekdays have a more

accurate naïve MAE, it provides less slack for the MLP models to outperform it.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

95

Beating the naïve model on Thursday’s forecasts is very challenging. It is the day of the

week with the poorest MLP model performances, as none of them have been able to

outperform the naïve model.

From the results of Table 12, the multivariate MLP model consistently outperforms its

univariate counterpart. Therefore, it would be always suitable to choose a multivariate

forecasting model for the case of MLP models.

4.3.2. LSTM MODEL

The LSTM model has been trained for both univariate and multivariate approaches. The

training-validation-test distribution is the same as the MLP and the CNN-LSTM models.

For implementing the latter model, as well as the LSTM, the TensorFlow framework was

chosen. While PyTorch was used for the MLP and the neural ODE, TensorFlow provided

the better results in these cases. Its extensive configuration of the model architecture, along

with a more user-friendly environment was also considered. The architecture of the

univariate LSTM model is as follows:

Number of

LSTM layers

LSTM cells

per layer

Learning

Rate
Epochs Dropout

Optimizer

Momentum

2 500 0.1-0.01 2000 0.1 0.95

Table 13: Univariate LSTM model architecture

This sequential model begins with two LSTM layers. The first one is composed by 500 units,

and for this study, it has been fixed that it returns sequences. It means that it outputs all the

hidden states, in contrast to return the hidden state of the last time-step. Thus, the following

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

96

layer is provided with more information about the dynamics of the price data. Moreover, an

additional feature has been implemented, the Reset States custom callback class. It allows to

reset the states of the model at the beginning of each epoch, which avoids overfitting.

The second layer, on the other hand, does not return sequences and it appropriately outputs

only the hidden state of the last step, which represent the final output of the LSTM block.

Following the LSTM layers, a Dropout layer with a rate of 10% is added. This layer

randomly sets 10% of the input units (output of the final LSTM layer) to 0 at each epoch

during training. Thus, the model is well equipped with another tool for avoiding overfitting.

Finally, a Dense layer with 24 units provides the final forecast of the model.

On the multivariate approach, the LSTM model has two starting layers with 2000 units each.

Alike the univariate approach, the model is equipped with both return sequences and return

states terms activated. As it includes the exogenous variables (demand, wind generation and

day of the week, the model expects an input of (batch_size, 744,1), which depends on the

number of windows on the training, validation and test sets. For the consisting training

strategy and model, the inputs will be:

- X_train.shape: (60, 744, 1)

- X_validation.shape: (12, 744, 1)

- X_test.shape: (12, 744, 2)

The multivariate model architecture will be configured as follows:

Number of

LSTM layers

LSTM cells

per layer

Learning

Rate
Epochs Dropout

Optimizer

Momentum

2 800 0.01-0.001 2000 0.1 0.95

Table 14: Multivariate LSTM model architecture

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

97

For the LSTM model, the example of the multivariate model architecture is coded as follows:

Model declaration

LSTM_model = tf.keras.models.Sequential([

 tf.keras.layers.LSTM(800, return_sequences=True,

input_shape=(X_train.shape[1], X_train.shape[2])),

 tf.keras.layers.LSTM(800, return_sequences=True),

 tf.keras.layers.LSTM(800),

 tf.keras.layers.Dropout(0.1),

 tf.keras.layers.Dense(forecast_size)

])

LSTM_model.summary()

The results presented by the LSTM models demonstrate that the LSTM accurately captures

the temporal dependencies on the price time-series data, yielding more precise predictions

than the naïve and MLP models. The MAE results for both univariate and multivariate

LSTM test models are as follows:

Day to forecast Naïve
Univariate

LSTM

Multivariate

LSTM

Monday 8.121 5.292 5.756

Tuesday 3.935 3.961 5.684

Wednesday 3.352 3.178 5.601

Thursday 3.554 4.350 7.084

Friday 2.768 3.309 6.572

Saturday 4.665 3.898 5.653

Sunday 4.093 3.473 6.090

Table 15: LSTM Results

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

98

Nevertheless, the multivariate model, which included the exogenous variables, did not

perform as well as the univariate model. This shows the limitation of the LSTM cells.

Although they perform approximately three times more calculations than the linear layers,

it is very dependent on correlated variables. In this case, the variables presented a mild

correlation with the price, and consequently, they added noise to the model, making it more

challenging for the LSTM to accurately predict future prices.

In conclusion, only the univariate LSTM model exhibited improved forecasting performance

over the naïve model for specific days. This suggests that for this specific case, a simpler

univariate model may be more effective than the multivariate LSTM framework. It must be

noted that the complex LSTM cells allowed a more accurate test set univariate forecasts than

all the MLP weekdays models, constituting the best ML model for the challenging forecast

case of Wednesdays.

4.3.3. CNN-LSTM MODEL

This model, as well as the LSTM, has been coded in the TensorFlow framework. Not only

did it provide better results, but it also included a more user-friendly architecture, which

allowed access to more parameters in the convolution.

As explained on subsection 2.3.3., this model includes, for both approaches, a 1D

Convolution before the LSTM deep neural network. This allows the model to effectively

capture the temporal dependencies in the data while also considering the different variables.

The CNN-LSTM model is a sequential model that begins with a convolutional layer. This

layer uses 64 filters or kernels, which focus on detecting a certain type of feature in the input

sequence. Setting the kernel size to 3, the convolution operation is performed on sequences

of 3 input elements at a time. Moreover, setting the stride to 1 means that the convolutional

computations will be spaced one input unit, allowing the model to capture all potential

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

99

features. Finally, the padding parameter is set to causal, to prevent the model to look into

future data.

Following the convolutional layer, there are 3 LSTM layers with 500 units each. As in the

LSTM model, the first two layers have the return sequences parameter set to True. Thus, the

final layer will access all the hidden states of the LSTM cells. The univariate architecture is

gathered as follows:

Number of

CNN filters

Kernel

size

Number of

LSTM cells

Learning

Rate
Epochs Dropout

Optimizer

Momentum

64 3 3x500 0.1 2000 0.1 0.9

Table 16: CNN-LSTM univariate architecture

The input of the model is designed in a specific way to accommodate the structure of the

LSTM network, which expects a 3D array as input. The dimensions of this array are

[samples, time-steps, features].

On the multivariate approach, the samples correspond to the already scaled electricity price

observations. The time-steps are the window of consecutive data points used for computing

the forecasts. For this case study, a window size of 168 observations is used, as the preceding

week is considered for the following 24-hourly prices. Finally, the features value is 4, as the

model exploits the ‘price’, P48 power demand’, ‘P48 wind production’ and

‘day_of_the_week’ variables. The final output of the CNN-LSTM model is a 1D array with

24 values, representing the final forecasts.

The model is compiled using an SDG optimizer and a MAE loss function. During training,

the model’s weights and biases are saved as the validation loss improves and the Early

Stopping callback allows it to avoid overfitting and computation efficacy. For the CNN-

LSTM model, the example of the univariate model architecture is coded as follows:

Model definition

CNN_LSTM_model = tf.keras.models.Sequential([

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

100

 tf.keras.layers.Conv1D(filters=64, kernel_size=3,

 strides=1,

 padding='causal',

 input_shape=[window_size, 1]),

 tf.keras.layers.LSTM(500, return_sequences=True),

 tf.keras.layers.LSTM(500, return_sequences=True),

 tf.keras.layers.LSTM(500),

 tf.keras.layers.Dense(24),

])

CNN_LSTM_model.summary()

For the multivariate approach, more LSTM cells have been added, increasing the number to

800 per layer. Nevertheless, the rest of the convolution configuration remains constant:

Number of

CNN filters

Kernel

size

Number of

LSTM cells

Learning

Rate
Epochs Dropout

Optimizer

Momentum

64 3 3x800 0.1 2000 0.1 0.9

Table 17: CNN-LSTM multivariate architecture

The MAE results of the CNN-LSTM test models are gathered in Table 18:

Day to forecast Naïve
Univariate

CNN-LSTM

Multivariate

CNN-LSTM

Monday 8.121 5.639 3.804

Tuesday 3.935 4.679 3.995

Wednesday 3.352 3.239 3.547

Thursday 3.554 4.503 4.325

Friday 2.768 3.437 3.325

Saturday 4.665 4.057 4.022

Sunday 4.093 3.177 2.755

Table 18: CNN-LSTM Results

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

101

As it can be seen, the univariate model does not outperform the Naïve model on Tuesdays,

Thursdays and Fridays. This might suggest that the data patterns are relatively simple and a

complex model like CNN-LSTM model could be overfitting it or just not capturing the

patterns effectively. On the other hand, the multivariate approach provides overall

outperformance over the univariate, except for Wednesdays.

In summary, these results highlight the trade-offs in model selection and feature engineering

in time-series forecasting- While more complex models like CNN-LSTM are more capable

to capture patterns in the data, they also risk ending overfitting and not generalizing well.

Conversely, incorporating additional relevant exogenous variables can significantly improve

model performance, as the multivariate model has demonstrated.

4.4. NEURAL ODE MODEL

For the neural ODE to be computationally competitive with the rest of the models, a time-

period of 7 days prior to the out-of-the-sample forecast has been selected. As in the univariate

approach, the model considers only the historical price data, each daily time-step will be

composed of its 24-hourly prices. In the first window of training, the neural ODE is trained

with the first two days of the window. Then, it produces the forecast of the third day, as

represented below:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

102

Figure 39: Training of the first univariate neural ODE window

The architecture of the neural ODE is composed by a neural network, which approximate

the derivative of the dynamics of day-ahead electricity price time-series. This neural network

has been designed with a feedforward linear layers architecture. The univariate configuration

is as follows:

Number of

linear layers

Neurons per

layer

Learning

Rate
Epochs Dropout

4 100 0.01 2000 0.1

Table 19: Univariate neural ODE architecture

As for the multivariate model, as it takes the demand and wind generation exogenous

variables, the input and output sizes will be fixed to 72, as the exogenous variables are

concatenated with the day-ahead prices. Nevertheless, as it was explained, only 24 outputs

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

103

are needed. Therefore, the loss function of the neural network will only focus on 24 outputs

corresponding to the day-ahead prices. The multivariate neural ODE architecture is as

follows:

Number of

linear layers

Neurons per

layer

Learning

Rate
Epochs Dropout

4 200 0.01 2000 0.1

Table 20: Multivariate neural ODE architecture

It must be noted that, as in every multivariate approach, all the variables have been

appropriately scaled (using MinMaxScaler from 0 to 1), using the preceding year of data. As

it is a good practice, the data should only be scaled on past data. Thus, the problem of data

leakage is avoided. Thus, the input window, or initial condition to the IVP problem, will be

composed of the flattened three daily time-series, as represented below:

Figure 40: Input values of the multivariate neural ODE

The output of the neural ODE represents the solution of the IVP problem. The model also

provides the ‘forecast’ of the expected energy demand and wind generation, given the

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

104

dynamics of the artificially flattened time-series. The figure below shows the output values,

having fit a rectangle in the last 24 outputs, which represents the final price forecasts for the

following day:

Figure 41: Output of the multivariate neural ODE

During the fitting stage of the model, the training and evaluation processes were plotted. In

this case, only the price time-series has been plotted to check that the neural ODE was

reconstructing the day-ahead trajectories. This specific model’s training consists of 3 days

(72 hourly electricity prices), represented in Figure 42:

Figure 42: Neural ODE Training

Once the training is complete, the performance of the neural ODE is evaluated. At this point,

the time-generative feature of the neural ODE provides the predicted day-ahead price

trajectory for the out-of-sample time-steps. The evolution of the first four days’ trajectory is

as follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

105

Figure 43: Neural ODE Evaluation

In the context of the rolling window training strategy, the neural ODE performs several

training iterations for each time-step. In each iteration, the derivative of the price dynamics

is computed in adaptive-size time-steps to optimize the loss function. As commented in the

original paper, Ricky T. Q. Chen and his colleagues discussed the depth of neural ODEs and

the fact that the number of function evaluations increases throughout training, presumably

adapting to the increasing complexity of the dynamics (R. T. Q. Chen et al., 2018). To prove

it, the number of times the solver computes the gradient in each time training epoch has been

plotted:

Figure 44: Evolution of the number of function evaluations

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

106

Looking at Figure 44, not only does the number of evaluations increase with each training

window, but it also does not do it proportionally to the number of steps of the forecast

horizon. For example, the second training epoch ends with the solver computing around

300.000 evaluations. This training step is trained with three days and evaluates on the fourth.

Then, on the following training step, which includes one more time-step, the model is trained

with four days and evaluates on the sixth. Nevertheless, in the third training step, the solver

ends evaluating 600.000 times, twice as many as in the second training step which accounts

for one less time-step than the third training step.

This is due to the adaptive nature of the solver, the dopri5. It can select the time-step size

depending on the trajectory of the time-series. If the time-evolution of the electricity price is

rapidly oscillating, then it will perform more evaluations than in cases where the price

dynamics are more stable.

Neural ODE tackle the IVP problems by parametrizing the function that governs a

hypothetical ODE driving the dynamics of the observed variables. As an adaptive solver,

dopri5 continuously chooses the step, to ensure the outputs’ error do not exceed an arbitrary

tolerance. For this study, the solver will have the default tolerances of the odeint library

configured. Being the absolute tolerance atol 1e-6 and the relative tolerance rtol 1e-3.

However, although the tolerance remains constant for training, the solver adaptivity means

that the actual error and the number of function evaluations may change over time. On one

hand, the solver adjusts the step size and number of steps based on local error estimates.

Moreover, it rejects and retries steps that exceed tolerance, so more evaluations may be done

for challenging evaluations. Therefore, the evolution of the number of evaluation points

depends on the model setup.

Similarly, as in the DL methods, a model for each day of the week has been studied. The

MAE results of the neural ODE’s test models are as follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

107

Day to forecast Naïve
Univariate

Neural ODE

Multivariate

Neural ODE

Monday 8.121 3.786 4.358

Tuesday 3.935 3.460 4.792

Wednesday 3.352 3.915 4.090

Thursday 3.554 3.727 3.973

Friday 2.768 3.613 3.844

Saturday 4.665 3.381 3.799

Sunday 4.093 3.648 3.550

Table 21: Neural ODE Results

Interestingly, the multivariate approach, which includes information from the predicted

power demand and wind generation, does not generally provide better results than the

univariate models. This also happened in the multivariate LSTMs, which have not been

capable of extracting new information about the demand and wind generation and use it to

compute more accurate forecasts. In fact, the only day in which it performs better is on

Sundays.

Moreover, the neural ODE struggles beating the naïve model, which has proven to be

competitive against other methods. However, the time-series on weekends and on Mondays

seem to be stable and the model can capture the dynamics of the electricity price.

While neural ODEs are designed to run effectively on graphics processing unit (GPU), the

computations for this master’s thesis have been carried out on central processing unit (CPU),

achieving significant results. We would expect to obtain superior performance and inferior

computational time required in future work, where the model will be trained on a GPU-based

framework.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

108

4.5. SUMMARY

In the following part, the results of the different models are gathered and analyzed depending

on their training approach. A summary of the training strategies used for the three families

of models is described on Table 22:

Training

strategy per

method

Training set Validation set Test set

Start End Start End Start End

Statistical
July 1st,

2018

July 31st,

2019
-

August 1st,

2019

October

31st, 2019

Probabilistic
July 1st,

2018

July 31st,

2019
-

August 1st,

2019

October

31st, 2019

ML
March 1st,

2018

April 30th,

2019

May 1st,

2019

July 31st,

2019

August 1st,

2019

October

31st, 2019

Neural ODE - -
August 1st,

2019

October

31st, 2019

Table 22: Summary of training strategies

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

109

4.5.1. UNIVARIATE SCENARIO

The resulting MAE loss function values of each univariate model for every day of the week

are as follows:

Day to forecast Naïve SARIMA Prophet MLP LSTM
CNN-

LSTM

Neural

ODE

Monday 8.121 4.25 4.94 5.331 5.292 5.639 3.786

Tuesday 3.935 4.49 4.27 3.941 3.961 4.679 3.460

Wednesday 3.352 4.59 3.44 4.322 3.178 3.239 3.915

Thursday 3.554 3.73 4.09 4.636 4.350 4.503 3.727

Friday 2.768 4.01 3.76 3.418 3.309 3.437 3.613

Saturday 4.665 4.56 4.84 3.909 3.908 4.057 3.381

Sunday 4.093 6.87 4.68 3.715 3.473 3.177 3.648

Average MAE 4.355 4.643 4.289 4.182 3.924 4.104 3.647

Table 23: Univariate Results

These results highlight the importance of running day-specific models in day-ahead EPF.

This is because different days of the week may have different price dynamics due to external

factors like demand patterns, making it suitable to tailor models to specific days.

Looking at the average values of the loss function for the different models, the neural ODE

shows dominance. Recall that neural ODE models were run on CPU, limiting the exploration

of more complex network architectures. However, they still achieve the best overall results.

It must be noted that this does not apply for all days but generally, the neural ODE is the

model that makes the most out of the electricity price time-series.

Moreover, there is a day where the naïve model outperforms the rest, and that is on Fridays.

This suggests that the electricity prices on Fridays are particularly stable and show a strong

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

110

one-day lag correlation. In other words, the prices on Fridays are very similar to the prices

on Thursdays. This could be due to specific market dynamics, and demand and supply

factors. Also, Fridays and Thursdays are candidates of national holidays. It must be noted

that some of the holidays that have been considered in most of the multivariate models, have

been rearranged to fit on a Thursday or Friday, when the dates fell on weekends.

Apart from that, there is always a univariate model that is going to beat the naïve forecasts.

For the specific days where the neural ODE is not the most accurate solution, both LSTM

and CNN-LSTM models have shown a good performance. It is the case of Wednesdays,

Fridays and Sundays.

In conclusion, even though the models only consider historical price data they have provided

more accurate forecasts than the naïve model. Moreover, the neural ODE arises as the model

which presented more capabilities to model a single variable. This serves as an important

insight as they become extremely interesting for modelling time-series with no significant

exogenous variables or with little historical data.

4.5.2. MULTIVARIATE SCENARIO

The resulting loss function values of each univariate model for every day of the week are as

follows:

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

111

Day to forecast Naïve SARIMAX Prophet MLP LSTM
CNN-

LSTM

Neural

ODE

Monday 8.121 4.51 2.45 5.213 5.756 3.804 4.358

Tuesday 3.935 4.89 2.38 3.693 5.684 3.995 4.792

Wednesday 3.352 5.11 3.28 4.076 5.601 3.547 4.090

Thursday 3.554 4.33 2.86 4.001 7.084 4.315 3.973

Friday 2.768 4.26 2.78 4.173 6.572 3.325 3.844

Saturday 4.665 5.04 2.34 3.410 5.653 4.022 3.799

Sunday 4.093 5.41 2.48 2.919 6.090 2.755 3.550

Average MAE 4.355 4.793 2.652 3.926 6.063 3.680 4.058

Table 24: Multivariate Results

These results highlight a key challenge in time-series forecasting: adding more variables

does not necessarily improve its performance. It is crucial to carefully select and preprocess

the variables to ensure they allow additional valuable information. Surprisingly enough, the

multivariate model with the best overall performance is the Facebook Prophet model. With

an astonishing daily average MAE of 2.652 €/MWh, it has outperformed the rest of

benchmark models.

Notably, the multivariate LSTM, which although it provided very competitive results on the

univariate approach, not only was it not able to capture the underlying dynamics and patterns

of the exogenous variables, but it also introduced noise and led to worse performance.

Conversely, the LSTM architecture itself might not have been well-suited to modelling the

relationships between the variables.

Also, it is interesting to see how the statistical (SARIMAX) did not take advantage of the

information provided by the exogenous variables, which underscores how important it is to

try different models for our forecasting problem. Although the forecast residuals could be

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANALYSIS OF RESULTS

112

assumed to be uncorrelated, and the hyperparameter selection proved to be significant, the

SARIMAX model was not able to catch up with the rest of the models (except for the

LSTM).

Therefore, it has been proven that understanding the effects of seasonal patterns is the key

for providing more accurate forecasts. This premise brought the Facebook Prophet model to

the list of benchmark models, and it has certainly demonstrated it was worth it. Prophet’s

ability to successfully incorporate additional variables, is particularly beneficial when the

present distinct trends or seasonal patterns. Thus, it shows strong performance handling

uncertainty and variability in the electricity prices.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

CONCLUSIONS AND FUTURE WORK

113

Chapter 5. CONCLUSIONS AND FUTURE WORK

In this chapter, the key findings and contributions of this master’s thesis are revisited, and

the implications of the work are discussed. Also, the limitations of the current study are

acknowledged and possible directions for future research are proposed.

5.1. CONCLUSIONS

This study has provided a valuable vision of the capability of neural ODEs in the short-term

Spanish day-ahead EPF problem. It must be noted that, as this is the first case study involving

neural ODEs for EPF in general, there have been various challenges, such as the absence of

references, no possible contrast with other neural ODEs architectures, etc. Nevertheless, they

have delivered more than reasonable results, even beating some of the benchmark models

developed for the same purpose in certain scenarios.

An important aspect to highlight in the neural ODE approach is its efficiency in the use of

data. Unlike other methods, like the benchmark models, that require bigger amounts of data

for training, neural ODEs have proven to work with an optimal performance using a

considerably smaller dataset size. This characteristic is indeed valuable, showing that neural

ODEs, being less data hungry than state-of-the-art models, can generalize with the same

level of accuracy as the traditional models.

On one hand, it makes neural ODEs an important option for time-series with limited

historical data. Traditional modelling methods often rely on huge datasets to accurately

forecast future events. Not surprisingly, data augmentation has become a widespread

preprocessing technique, like the employment of generative adversarial networks for time-

series. With these data augmentation techniques, the training dataset is artificially extended

by applying transformations to the existing data, generating modified copies with the aim of

improving the model’s performance. Nevertheless, in many practical situations, there is

simply not enough historical data.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

CONCLUSIONS AND FUTURE WORK

114

On the other hand, it also allows a quicker reaction to changing dynamics, like the electricity

market. In this regard, one of the drawbacks of the benchmark models is that they were

trained mostly with 2018 data and, although the validation set was just before the test set

(August-October 2019). Therefore, it surely missed important aspects of the time-series for

the recent period prior to the forecasts.

For this project, we selected a dataset spanning the years 2018 and 2019, as this timeframe

presented a relatively stable period, when the renewable energies were beginning to

penetrate the Spanish electricity market. More recent periods, such as the COVID-19

pandemic or the current year 2023 exhibit more fluctuations and could potentially

complicate the initial application and evaluations of the model. As our primary goal was to

establish a baseline understanding how neural ODEs performed on EPF problems, we found

the 2018-2019 dataset to be more suitable.

Nevertheless, in future work we plan to extend the application of neural ODEs to more

challenging periods, including times of significant market volatility, economic recession,

and global events like the COVID-19 pandemic. By doing this, we aim to push the

boundaries of the capabilities of the model, testing its adaptability and resilience under a

broader set of circumstances.

Overall, the obtained results highlight the strengths and weaknesses associated with different

state-of-the-art models, used as a benchmark, both from univariate and multivariate

perspectives. Remarkably, the naïve model still provides a better estimation for Fridays’

prices on the univariate approach. Nevertheless, for the rest of the days and for the whole

multivariate approach, there is always a better option. Surprisingly enough, the Facebook

Prophet model, equipped with capabilities to model seasonal patterns and trends, emerges as

the reference model for multivariate EPF, showing its strength in handling variability and

uncertainty in electricity prices.

When considering the multivariate models, this study has proven that the mere addition of

variables does not always improve forecasting performance. However, it highlights the

necessity for careful variable selection and preprocessing to ensure that it will make a

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

CONCLUSIONS AND FUTURE WORK

115

valuable and meaningful input. In this context, it must be noted that the SARIMAX model

was unable to leverage the additional information provided by the exogenous variables

effectively, emphasizing the importance of exploring different methods for a forecasting

problem.

As the univariate neural ODE showed dominant performance over the rest of the models, it

could be interesting to analyze other time-series where this innovative method could

significantly improve short-term forecasts. This is the case, for example, of the sales of new

market products, where there is limited historical data available. Another case would be the

time-series related to rare events, such as natural disasters. Neural ODEs could be a valuable

tool to work with these smaller datasets.

Finally, and as it has been discussed recently, Neural ODEs are very suitable for real-world

irregularly sampled data (Kidger et al., 2020), from medical data, where the measurements

are taken depending on the patient’s condition and treatment schedule to financial data,

where trading volumes can fluctuate throughout the day.

5.2. FUTURE WORK

The exploration of Neural ODEs for time-series forecasting, particularly in EPF, has yielded

promising results. However, there is a vast potential for further research and development in

this area.

As mentioned, neural ODEs are especially suitable for irregularly sampled time-series or

with limited historical data. Extensive research is being carried out to introduce Neural

Controlled Differential Equations to real world applications. So far, with its capability of

introducing incoming data, its memory-efficient adjoint-based backpropagation, and its

state-of-the-art performance (Kidger et al., 2020), neural CDEs have proven to be flexible

and robust to handle this kind of time-series.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

CONCLUSIONS AND FUTURE WORK

116

Moreover, recent developments in the field of neural ODEs have focused on improving their

generalization capabilities, robustness to noisy data, and interpretability of the learned

representations. For example, researchers have explored the use of normalizing flows to

model complex distributions in the hidden state, as well as the integration of causal inference

techniques to better understand the relationships between inputs and outputs (Habiba &

Pearlmutter, 2020).

Another attractive feature of Neural ODEs is their compatibility with other ML architectures,

such as the benchmark models proposed in this study. This was demonstrated in previous

studies (Lago et al., 2018) as modelling non-linearity in the electricity price data is key. For

example, they can be combined with CNNs to effectively capture spatial patterns in data, or

with RNNs to better handle temporal dependencies (De Brouwer et al., 2020). These hybrid

models allow for a greater exploitation of the strengths of each approach, potentially leading

to improved predictive performance.

However, the computational demands of neural ODEs represent a significant challenge. The

power of neural ODEs for time-series forecasting is proportional to the amount of available

computation. For this master’s thesis, it has been a major limitation and, as a future step, the

migration to GPUs systems is mandatory. Its use allows for the exploration of more complex

and computationally expensive models. Also, it could enable the modelling of larger neural

network architectures, more sophisticated training techniques and more accurate ODE

solvers.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BIBLIOGRAPHY

117

Chapter 6. BIBLIOGRAPHY

Anonymous, & ICLR. (2023). S-SOLVER : NUMERICALLY STABLE. 5(4), 1–11.

Box, G. E., & Cox, D. R. (1982). An analysis of transformations revisited, rebutted. Journal of the

American Statistical Association, 77(377), 209–210.

https://doi.org/10.1080/01621459.1982.10477788

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis.

Forecasting and Control.

Chang, Z., Zhang, Y., & Chen, W. (2019). Electricity price prediction based on hybrid model of

adam optimized LSTM neural network and wavelet transform. Energy, 187, 115804.

https://doi.org/10.1016/j.energy.2019.07.134

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural ordinary differential

equations. Advances in Neural Information Processing Systems, 2018-Decem, 6571–6583.

Chen, Y., Wang, Y., Ma, J., & Jin, Q. (2019). BRIM: An accurate electricity spot price prediction

scheme-based bidirectional recurrent neural network and integrated market. Energies, 12(11).

https://doi.org/10.3390/en12122241

Conejo, A., Plazas, M., & Espínola, R. (2006). Day-ahead electricity price forecasting using the

wavelet analysis and MPMR models. IET Conference Publications, 20(523 CP), 1035–1042.

https://doi.org/10.1049/cp:20062176

Contreras, J., Espínola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-

day electricity prices. IEEE Transactions on Power Systems, 18(3), 1014–1020.

https://doi.org/10.1109/TPWRS.2002.804943

Cruz, A., Muñoz, A., Zamora, J. L., & Espínola, R. (2011). The effect of wind generation and

weekday on Spanish electricity spot price forecasting. Electric Power Systems Research,

81(10), 1924–1935. https://doi.org/10.1016/j.epsr.2011.06.002

De Brouwer, E., Simm, J., Arany, A., & Moreau, Y. (2020). GRU-ODE-Bayes: Continuous modeling

of sporadically-observed time series. Belgian/Netherlands Artificial Intelligence Conference,

NeurIPS, 364–366.

Ebrahimian, H., Barmayoon, S., & Mohammadi, M. (2018). The price prediction for the energy

market based on a new method. Economic Research-Ekonomska Istraživanja, 31(1), 1–25.

https://doi.org/10.1080/1331677X.2018.1429291

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BIBLIOGRAPHY

118

Garcia, R. C., Contreras, J., van Akkeren, M., & Garcia, J. B. C. (2005). A GARCH forecasting

model to predict day-ahead electricity prices. IEEE Transactions on Power Systems, 20(2),

867–874. https://doi.org/10.1109/TPWRS.2005.846044

Goeken, D., & Johnson, O. (2000). Runge-Kutta with higher order derivative approximations.

Applied Numerical Mathematics, 34(2), 207–218. https://doi.org/10.1016/S0168-

9274(99)00128-2

González, A. M., San Roque, A. M., & García-González, J. (2005). Modeling and forecasting

electricity prices with input/output hidden Markov models. IEEE Transactions on Power

Systems, 20(1), 13–24. https://doi.org/10.1109/TPWRS.2004.840412

Guerrero, V. M., & Perera, R. (2004). Variance stabilizing power transformation for time series.

Journal of Modern Applied Statistical Methods, 3(2), 357–369.

https://doi.org/10.22237/jmasm/1099267740

Habiba, M., & Pearlmutter, B. A. (2020). Neural Ordinary Differential Equation based Recurrent

Neural Network Model. 2020 31st Irish Signals and Systems Conference, ISSC 2020, 1, 1–8.

https://doi.org/10.1109/ISSC49989.2020.9180182

Hamad, R. A., Yang, L., Woo, W. L., & Wei, B. (2020). Joint learning of temporal models to handle

imbalanced data for human activity recognition. Applied Sciences (Switzerland), 10(15).

https://doi.org/10.3390/APP10155293

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019). Deep learning for

time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917–963.

https://doi.org/10.1007/s10618-019-00619-1

Jiang, L., & Hu, G. (2018). Day-Ahead Price Forecasting for Electricity Market using Long-Short

Term Memory Recurrent Neural Network. 2018 15th International Conference on Control,

Automation, Robotics and Vision, ICARCV 2018, November, 949–954.

https://doi.org/10.1109/ICARCV.2018.8581235

Keynia, F. (2012). Engineering Applications of Artificial Intelligence A new feature selection

algorithm and composite neural network for electricity price forecasting. Engineering

Applications of Artificial Intelligence, 25(8), 1687–1697.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BIBLIOGRAPHY

119

https://doi.org/10.1016/j.engappai.2011.12.001

Kidger, P. (2022). On Neural Differential Equations. http://arxiv.org/abs/2202.02435

Kidger, P., Morrill, J., Foster, J., & Lyons, T. (2020). Neural controlled differential equations for

irregular time series. Advances in Neural Information Processing Systems, 2020-Decem(1), 1–

12.

Lago, J., De Ridder, F., & De Schutter, B. (2018). Forecasting spot electricity prices: Deep learning

approaches and empirical comparison of traditional algorithms. Applied Energy, 221, 386–405.

https://doi.org/10.1016/j.apenergy.2018.02.069

Lago, J., Marcjasz, G., De Schutter, B., & Weron, R. (2021). Forecasting day-ahead electricity prices:

A review of state-of-the-art algorithms, best practices and an open-access benchmark. Applied

Energy, 293(December 2020), 116983. https://doi.org/10.1016/j.apenergy.2021.116983

Lin, T., Horne, B. G., Tino, P., & Giles, C. L. (1996). Learning long-term dependencies in NARX

recurrent neural networks. IEEE Transactions on Neural Networks, 7(6), 1329–1338.

https://doi.org/10.1109/72.548162

Naz, A., Javed, M. U., & Javaid, N. (2019). Short-Term Electric Load and Price Forecasting Using

Smart Grids. https://doi.org/10.3390/en12050866

NIST. U.S. Commerce Department, N. (2003). Ljung-Box Test. Dataplot. Statistical Engineering

Division. https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ljungbox.htm

REE. (2020). Informe Sistema Electrico Español. 100. http://www.ree.es/es/publicaciones/sistema-

electrico-español/informe-del-sistema-electrico-espanol-2012

Rob J Hyndman. (2014). Forecasting: Forecasting: Principles & Practice. September, 138.

robjhyndman.com/uwa%5Cnhttp://robjhyndman.com/papers/forecasting-age-specific-breast-

cancer-mortality-using-functional-data-models/

Ruder, S. (2016). An overview of gradient descent optimization algorithms. 1–14.

http://arxiv.org/abs/1609.04747

Taylor, S. J., & Letham, B. (2017). Business Time Series Forecasting at Scale. PeerJ Preprints

5:E3190v2, 35(8), 48–90.

Wang, L., Zhang, Z., & Chen, J. (2017). Short-Term Electricity Price Forecasting with Stacked

Denoising Autoencoders. IEEE Transactions on Power Systems, 32(4), 2673–2681.

https://doi.org/10.1109/TPWRS.2016.2628873

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the

future. International Journal of Forecasting, 30(4), 1030–1081.

https://doi.org/10.1016/j.ijforecast.2014.08.008

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

BIBLIOGRAPHY

120

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

121

Chapter 7. ANNEX

7.1. UNIVARIATE NEURAL ODE CODE

Check if CUDA is available

if torch.cuda.is_available():

 device = torch.device("cuda")

else:

 device = torch.device("cpu")

Model and optimizer definition

func = ODEFunc(input_size=24, hidden_layer_neurons=100, output_size=24)

optimizer = optim.RMSprop(func.parameters(), lr=LEARNING_RATE)

Mean Absolute Error loss function

loss_fn = nn.L1Loss()

train_spot_tensor = torch.from_numpy(train_sc).float()

train_losses = [] # For storing the loss value during training

valid_losses = [] # For storing the loss value during eval

best_eval_accuracy = []

best_train_loss = float('inf') # initialize to infinity

best_valid_loss = float('inf') # initialize to infinity

nfe_history = {} # For storing number of function evaluations during training

nfe_history_eval = {} # For storing number of function evaluations during

evaluation

for j in range(num_windows):

 nfe_history[j] = {}

 nfe_history_eval[j] = {}

 for i in range(1, TRAIN_STEPS+1):

 # Resetting the function evaluations counter at the beginning of each

step within window

 func.nfe = 0

 nfe_history[j][i] = {}

 # Train

 train_loss = 0

 func.train()

 print("="*50 + f" Window: {j+1} | Step: {i} " + "="*50)

 batch_y0 = train_spot_tensor[24*j:24*(j+1)] # y0

 batch_t = torch.from_numpy(np.arange(0, i+1, dtype=float)) # [0, ..., i]

 # Train neural ODE N_ITR times

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

122

 for itr in range(1, N_ITR+1):

 optimizer.zero_grad() # initializing gradients

 # Next time-step ODE computation

 pred_spot_sc = odeint(func=func, y0=batch_y0, t=batch_t, method =

'fehlberg2').to(device) # pred_spot shape: (i+1, 24)

 pred_spot_flat = pred_spot_sc.flatten()

 target_sc = train_spot_tensor[24*j:24*(j+i+1)]

 # Computing the training loss

 step_loss = loss_fn(pred_spot_flat, target_sc)

 step_loss.backward()

 optimizer.step()

 # Inverse scaling the forecast and actual values to compute the loss

in the original scale

 pred_spot_sc = pred_spot_flat.detach().cpu().numpy()

 pred_spot = scaler_price.inverse_transform(pred_spot_sc.reshape(-

1,1))

 pred_spot_tensor = torch.from_numpy(pred_spot)

 target_sc_numpy = target_sc.detach().cpu().numpy()

 target_sc_numpy =

scaler_price.inverse_transform(target_sc_numpy.reshape(-1,1))

 target_sc_tensor = torch.from_numpy(target_sc_numpy)

 loss = loss_fn(pred_spot_tensor, target_sc_tensor)

 train_loss += loss.item()

 nfe_history[j][i][itr] = func.nfe

 if itr % (N_ITR // 2) == 0:

 # Evaluation

 valid_loss = 0

 with torch.no_grad():

 nfe_before_eval = func.nfe

 func.eval() # eval mode

 batch_t_eval = torch.from_numpy(np.arange(0, i+1+TEST_SIZE,

dtype=float)) # [0, ..., i+TEST_SIZE]

 # After training for 50 epochs, it is time to evaluate on the

following time-step (out-of-sample forecast)

 pred_spot_eval = odeint(func, batch_y0, batch_t_eval, method

= 'fehlberg2') # pred_spot_eval shape: (i+1+TEST_SIZE, 24)

 # Inverse scaling the forecast and actual values to compute

the loss in the original scale

 pred_spot_eval_1 = pred_spot_eval.cpu().numpy()

 pred_spot_1 =

scaler_price.inverse_transform(pred_spot_eval_1.reshape(-1,1))

 pred_spot_eval_1_tensor = torch.from_numpy(pred_spot_1)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

123

 pred_spot_eval_sc = pred_spot_eval[-

TEST_SIZE:].flatten().cpu().numpy()

 pred_spot =

scaler_price.inverse_transform(pred_spot_eval_sc.reshape(-1,1))

 pred_spot_eval_tensor = torch.from_numpy(pred_spot)

 target_eval_sc =

train_spot_tensor[24*(j+i+1):24*(j+i+1+TEST_SIZE)].cpu().numpy()

 target_sc_numpy =

scaler_price.inverse_transform(target_eval_sc.reshape(-1,1))

 target_eval_tensor = torch.from_numpy(target_sc_numpy)

 # Computing the eval loss

 loss_eval = loss_fn(pred_spot_eval_tensor,

target_eval_tensor)

 valid_loss += loss_eval.item()

 nfe_after_eval = func.nfe # storing the number of function

evaluations after evaluation

 nfe_eval = nfe_after_eval - nfe_before_eval # calculating

the number of function evaluations during evaluation

 nfe_history_eval[j][i] = nfe_eval # storing the number of

function evaluations during evaluation

 print(f"Step: {i} | Iteration {itr}| Training Loss:

{loss.item()} | Validation Loss: {loss_eval.item()} | Number of func evals:

{nfe_history[j][i][itr]}")

 if itr == N_ITR and i == TRAIN_STEPS:

 best_eval_accuracy.append(valid_loss)

 # Inverse transforming before plotting Training

 fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(15, 2))

 ax0.plot(train_spot[24*j:24*(j+i+1)])

 ax0.plot(pred_spot_tensor.detach().numpy(), color="green",

alpha=.5)

 ax0.set_title("Training")

 # Inverse transforming before plotting Validation

 ax1.plot(train_spot[24*j:24*(j+i+1+TEST_SIZE)])

 ax1.plot(pred_spot_eval_1_tensor.detach().numpy(),

color="green", alpha=.5)

 ax1.set_title("Validation")

 ax1.axvline(x=24*(i+1), color="grey", ls="dashdot")

 plt.show()

 func.train() # back to training mode where backpropgation will be

perfomed (via the adjoint sensitivity method)

 # Appending the number of function evaluations to the history at the end

of each step of a window

 nfe_history[j][i]["total"] = func.nfe

 train_losses.append(best_train_loss)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

124

 valid_losses.append(best_valid_loss)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

125

7.2. MULTIVARIATE NEURAL ODE CODE

Checking if CUDA is available

if torch.cuda.is_available():

 device = torch.device("cuda")

else:

 device = torch.device("cpu")

Model and optimizer definition

func = ODEFunc(input_size=72, hidden_layer_neurons=200, output_size=72)

optimizer = optim.RMSprop(func.parameters(), lr=LEARNING_RATE)

Mean absolute error loss function

loss_fn = nn.L1Loss()

train_losses = [] # For storing the loss value during training

valid_losses = [] # For storing the loss value during eval

loss_eval_original = []

best_eval_accuracy = []

best_train_loss = float('inf') # initializing to infinity

best_valid_loss = float('inf') # initializing to infinity

nfe_history = {} # For storing number of function evaluations during training

nfe_history_eval = {} # For storing number of function evaluations during

evaluation

for j in range(train_num_windows):

 nfe_history[j] = {}

 nfe_history_eval[j] = {}

 for i in range(1, TRAIN_STEPS+1):

 # Resetting the function evaluations counter at the beginning of each

step within window

 func.nfe = 0

 nfe_history[j][i] = {}

 # Train

 train_loss = 0

 func.train()

 print("="* 50 + f" Window: {j+1} | Step: {i} " + "="*50)

 batch_y0 = train_spot_tensor[72*j:72*(j+1)] # y0

 batch_t = torch.from_numpy(np.arange(0, i+1, dtype=float)) # [0, ..., i]

 # Train neural ODE N_ITR times

 for itr in range(1, N_ITR+1):

 optimizer.zero_grad()

 # Next time-step ODE computation

 pred_data = odeint(func=func, y0=batch_y0, t=batch_t, method =

'fehlberg2').to(device) # pred_data shape: (i+1, 72)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

126

 # Computing the training loss

 loss = loss_fn(pred_data[:, -24:].flatten(),

price_tensor[j*24:(j+i+1)*24])

 loss.backward()

 optimizer.step()

 # Inverse scaling the forecast and actual values to compute the loss

in the original scale

 loss_train_original =

loss_fn(torch.tensor(inverse_transform(pred_data[:, -24:].flatten(),

scaler_price)), torch.tensor(inverse_transform(price_tensor[j*24:(j+i+1)*24],

scaler_price)))

 train_loss += loss_train_original.item()

 nfe_history[j][i][itr] = func.nfe

 if itr % (N_ITR // 2) == 0:

 # Evaluation

 valid_loss = 0

 loss_eval_original = 0

 with torch.no_grad():

 nfe_before_eval = func.nfe

 func.eval() # eval mode

 batch_t_eval = torch.from_numpy(np.arange(0, i+1+TEST_SIZE,

dtype=float)) # [0, ..., i+TEST_SIZE]

 # After training for N_ITR epochs, it is time to evaluate on

the following time-step (out-of-sample forecast)

 pred_data_eval = odeint(func, batch_y0, batch_t_eval, method

= 'fehlberg2') # pred_data_eval shape: (i+1+TEST_SIZE, 72)

 loss_eval = loss_fn(pred_data_eval[-TEST_SIZE:, -

24:].flatten(), price_tensor[24*(j+i+1):24*(j+i+1+TEST_SIZE)])

 valid_loss += loss_eval.item()

 # Inverse scaling the forecast and actual values to compute

the loss in the original scale

 loss_eval_transformed =

loss_fn(torch.from_numpy(inverse_transform(pred_data_eval[-TEST_SIZE:, -

24:].flatten(), scaler_price)),

torch.tensor(inverse_transform(price_tensor[24*(j+i+1):24*(j+i+1+TEST_SIZE)],

scaler_price)))

 nfe_after_eval = func.nfe # storing the number of function

evaluations after evaluation

 nfe_eval = nfe_after_eval - nfe_before_eval # calculating

the number of function evaluations during evaluation

 nfe_history_eval[j][i] = nfe_eval # storing the number of

function evaluations during evaluation

 # Computing the eval loss

 loss_eval_original += loss_eval_transformed.item()

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

127

 print(f"Step: {i} | Iteration {itr}| Training Loss:

{loss_train_original.item()} | Validation Loss: {loss_eval_transformed.item()} |

Number of func evals: {nfe_history[j][i][itr]}")

 if itr == 30 and i == TRAIN_STEPS:

 best_eval_accuracy.append(loss_eval_original)

 fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(15, 2))

 # Inverse transforming before plotting Training

 ax0.plot(inverse_transform(price_tensor[j*24:(j+i+1)*24],

scaler_price))

 ax0.plot(inverse_transform(pred_data[:, -

24:].flatten().detach(), scaler_price), color="green", alpha=.5)

 ax0.set_title("Training")

 # Inverse transforming before plotting Validation

 ax1.plot(inverse_transform(price_tensor[24*j:24*(j+i+1+TEST_S

IZE)], scaler_price))

 ax1.plot(inverse_transform(pred_data_eval[:, -

24:].flatten().detach(), scaler_price), color="green", alpha=.5)

 ax1.set_title("Validation")

 ax1.axvline(x=24*(i+1), color="grey", ls="dashdot")

 plt.show()

 func.train() # back to training mode where backpropgation will be

perfomed (via the adjoint sensitivity method)

 train_losses.append(best_train_loss)

 valid_losses.append(best_valid_loss)

 # Appending the number of function evaluations to the history at the end

of each step of a window

 nfe_history[j][i]["total"] = func.nfe

 train_losses.append(best_train_loss)

 valid_losses.append(best_valid_loss)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

128

7.3. ALIGNMENT WITH SDGS

7.3.1. SDG 7

This project aligns with the seventh Sustainable Development Goal (SDG) by helping

develop a more sustainable market and a more affordable electricity price.

Figure 45: SDG 7

Although technology is continuously improving and the energy mix is greener than ever,

there is still much work to be done to improve access to affordable and clean energy. To

combat this issue, countries have accelerated their transitions to an affordable, reliable, and

sustainable energy system by adopting clean energy technologies and infrastructure.

In a world increasingly committed to caring for the environment, it is essential to create

models that better predict resources to help make decisions about the energy mix. With more

accurate predictions, utility companies, which are very dependent on electricity prices, can

obtain an optimal production schedule. This would result in lower energy costs as the risk

of facing unexpected conditions that would cause a disruption in price forecasts decreases.

Moreover, energy demand is increasing every year. In 2021, there was a 6% increase due to

strong economic growth, combined with the effects of global warming, which produced

hotter summers and colder winters.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

129

The first target of SDG7 is "to ensure universal access to affordable, reliable, and modern

services by 2030." There are still 789 million people worldwide lacking access to electricity.

Without it, women and girls in sub-Saharan Africa must spend hours fetching water, and

people cannot maintain competitive businesses to make a living. In 2020, during the Covid-

19 pandemic, there were problems with vaccine distribution in Africa as some clinics in

smaller cities could not store them due to a lack of necessary energy. Energy services are

crucial for preventing disease and fighting pandemics, providing power to healthcare

facilities, supplying clean water for essential hygiene, and enabling communications and IT

services that connect people while maintaining social distancing. Lack of access to energy

resources is a significant impediment to tackling the pandemic and the next health crisis to

come.

The second target of SDG7 is "to increase substantially the share of renewable energy in the

global energy mix by 2030." Earth Overshoot Day marks the date when humanity has used

all the biological resources that Earth can regenerate during the entire year. In 2022, it landed

on the 28th of July, meaning resources were demanded almost twice as fast as they should

have been to be sustainable. Furthermore, government financial assistance for developing

countries in renewable energy has decreased for the second consecutive year, and this

impressive progress has slowed. Current predictions indicate that by 2030, the number will

have decreased to 679 million.

The third target of SDG7 is "by 2030, double the global rate of improvement in energy

efficiency." In Spain, household energy bills have increased by 70%, and energy poverty is

on the rise, affecting 4.5 million people. A significant part of the solution lies in energy

efficiency. It is crucial to address this issue, as much energy is lost due to inadequate building

climatization. Apart from relying on greener energies, governments should promote

investment in clean energy infrastructure and technology.

In conclusion, through better EPF, there would be a non-negligible cost reduction in market

operation, and energy would become more accessible to people. This project also aligns with

other SDGs, such as SDG9 (Industry, Innovation, and Infrastructure) and SDG13 (Climate

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

130

Action), by promoting innovative forecasting methods, reducing carbon emissions, and

encouraging a more sustainable energy infrastructure.

7.3.2. SDG 9

This project supports SDG9 by promoting innovation for a more sustainable industry.

Figure 46: SDG 9

 By studying the development of a potentially more accurate, efficient, and reliable energy

forecasting model such as Neural ODE, this project will drive technological progress in the

energy sector. As energy companies adopt these advanced models, they will be better

equipped to optimize their operations, reduce inefficiencies, and invest in clean energy

infrastructure.

The adoption of innovative forecasting methods can lead to the development of smarter

energy grids and more efficient energy management systems. This, in turn, can improve the

overall stability and reliability of the energy network, benefitting both consumers and

businesses. Furthermore, the project's alignment with SDG9 has the potential to create new

job opportunities in the energy sector, particularly in research, development, and

implementation of recent forecasting technologies.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

131

By contributing to the advancement of the energy sector, this project supports the

development of resilient infrastructure, promotes inclusive and sustainable industrialization,

and fosters innovation, which are the main objectives of SDG9.

7.3.3. SDG 13

This project also aligns with SDG13 by encouraging a more sustainable energy

infrastructure and reducing carbon emissions.

Figure 47: SDG 13

With more accurate electricity price forecasts, utility companies can better plan their

production schedules and more efficiently allocate resources to renewable energy sources.

By promoting the use of cleaner energy, the project supports efforts to mitigate climate

change and reduce greenhouse gas emissions.

Accurate forecasting can also help identify and prioritize investment opportunities in

renewable energy and energy efficiency measures. This can lead to a decrease in the reliance

on fossil fuels, which is a significant contributor to climate change. By providing the tools

to optimize energy production and consumption, this project can indirectly contribute to the

implementation of climate change mitigation measures and the development of more

sustainable energy policies.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

132

Moreover, the project supports the global efforts to meet the targets set by the Paris

Agreement, which aims to limit global warming to well below 2°C above pre-industrial

levels and to pursue efforts to limit the temperature increase to 1.5°C. By reducing emissions

and fostering renewable energy adoption, the project contributes to the overall goal of

building a low-carbon future.

To summarize, the project is not only aligned with SDG7, but it also supports SDG9 and

SDG13 by promoting innovative technologies and contributing to climate action. More

accurate electricity price forecasts can lead to a more sustainable and efficient energy

infrastructure, helping to reduce climate change. Additionally, the project encourages

innovation in the energy sector. By aligning with these crucial Sustainable Development

Goals, the project has the potential to make an impact on both the energy sector and the

global environment.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
MASTER’S IN INDUSTRIAL ENGINEERING & SMART INDUSTRY

ANNEX

133

