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RESUMEN 

Este proyecto explora las aplicaciones de la computación cuántica (QC) en el ámbito del 

aprendizaje automático (ML). Comienza con un análisis de la mecánica cuántica, la 

computación cuántica, los algoritmos cuánticos y el aprendizaje automático cuántico. Se 

centra en el Clasificador Cuántico Variacional (QVC) y la Convolución Cuántica (QCNN), 

dos modelos híbridos cuántico-clásicos, destacando las sinergias entre la computación 

cuántica y el aprendizaje automático. 

Se analiza el estado actual y el progreso en cuanto a hardware y algoritmos cuánticos, 

revisando las tecnologías más populares para construir qubits físicos y la literatura más 

reciente sobre aprendizaje automático cuántico. El trabajo resalta la clara brecha entre los 

algoritmos cuánticos en el marco teórico y su aplicabilidad práctica, evidenciando la 

necesidad de arquitecturas híbridas para acortarla. 

Después, se implementan los modelos híbridos previamente discutidos, QVC y QCNN, 

usando la librería PennyLane con el plugin de Qiskit, y la plataforma de computación 

cuántica de IBM. En los resultados se muestran métricas de rendimiento para nuestros 

modelos en simuladores cuánticos y ordenadores cuánticos, evidenciando las limitaciones 

del hardware cuántico actual para las aplicaciones de aprendizaje automático. Los 

experimentos revelan el largo tiempo de ejecución para este tipo de algoritmos en los 

ordenadores cuánticos de acceso gratuito, como los disponibles en la plataforma IBMQ.   

La tesis concluye con una reflexión sobre el potencial del aprendizaje automático cuántico, 

centrándose en los desafíos actuales y la escalabilidad futura. 

 

Palabras Clave: Computación Cuántica, Aprendizaje Automático, Aprendizaje, 

Automático Cuántico, Clasificador Variacional Cuántico, Convolución cuántica, NISQ 

Pennylane 

 

 

  



1.      Introducción 

Este proyecto explora la intersección de la computación cuántica y el aprendizaje 

automático, dos tecnologías con un gran potencial. Con los modelos de aprendizaje 

automático actuales que requieren cada vez más recursos, la computación cuántica podría 

ofrecer nuevas vías y posibilidades para su ejecución. En este proyecto, nos centramos en 

algoritmos híbridos cuántico-clásicos como el Clasificador Cuántico Variacional y la 

Convolución Cuántica (Quanvolution), que jugarán roles fundamentales para cortar la 

brecha cuántico-clásica. 

El clasificador cuántico variacional ejemplifica este comportamiento híbrido al aprovechar 

un circuito cuántico parametrizado y un optimizador clásico para tareas de clasificación. 

La red neuronal de convolución cuántica, otro modelo híbrido, busca mejorar las redes 

neuronales convolucionales, utilizadas especialmente para el procesamiento de imágenes, 

con el potencial de la computación cuántica. Ambos modelos representan una mezcla de 

técnicas clásicas de aprendizaje automático y principios cuánticos. 

En el proyecto se realiza inicialmente un análisis de los conceptos teóricos, profundizando 

en la mecánica cuántica, la computación cuántica y luego sus aplicaciones en el 

aprendizaje automático. Se detalla el proceso de diseño y ejecución de estos algoritmos 

híbridos en la plataforma cuántica de IBM utilizando la biblioteca de Python PennyLane 

con populares conjuntos de datos. Destaca cómo la combinación de la computación 

cuántica y clásica puede abrir nuevas posibilidades para el aprendizaje automático. 

2.     Conceptos Teóricos 

Mecánica Cuántica 

La mecánica cuántica, principios que rigen el comportamiento de las partículas 

subatómicas, introduce conceptos fascinantes y cruciales para la computación cuántica. La 

superposición cuántica permite que las propiedades observables de una partícula existan 

simultáneamente en múltiples estados. Este principio cuántico fundamental se incorpora en 

la unidad básica de información cuántica - el bit cuántico o 'qubit'. A diferencia de los bits 

clásicos, que existen en estados definidos 0 o 1, los qubits pueden existir en una 

superposición de ambos estados, permitiendo el procesamiento paralelo, una de las claves 

de del potencial de la computación cuántica. 

El entrelazamiento, otro fenómeno cuántico esencial, permite que las partículas interactúen 

instantáneamente, independientemente de la distancia espacial. En el ámbito de la 

computación cuántica, el entrelazamiento se utiliza para vincular qubits, generando una 

superposición de estados que permite el procesamiento cuántico. Esta misteriosa 

sincronización entre partículas es una propiedad fundamental utilizada en la teleportación 

cuántica, la criptografía cuántica y múltiples algoritmos cuánticos. 

Notablemente, el problema de la medición en la mecánica cuántica resalta la naturaleza 

probabilística de la computación cuántica. En los sistemas cuánticos, las partículas 

permanecen en una superposición hasta que una medición las colapsa en un posible estado. 

Este proceso, crucial para la computación cuántica, introduce aleatoriedad, ya que los 

qubits colapsan en un estado específico (0/1) al medirse. Por tanto, para extraer datos 

significativos de los cálculos cuánticos, se requieren algoritmos avanzados capaces de 

abordar de manera efectiva el problema de medición. 



(Feynman, 1963); (Susskind & Friedman, 2014)  

Computación Cuántica 

La computación cuántica aprovecha los principios anteriores para realizar operaciones que 

podrían ser exponencialmente más rápidas que los ordenadores clásicos. Los sistemas 

cuánticos utilizan qubits que existen en una superposición de estados representados por una 

combinación lineal de números complejos de estados de la base. Estos estados, así como 

las transformaciones, pueden visualizarse usando la esfera de Bloch (Quantiki, 2023) y a 

menudo se representan como matrices unitarias. 

Los qubits se manipulan mediante puertas cuánticas, que son los elementos fundamentales 

de los circuitos cuánticos. Las puertas de un solo qubit incluyen la Identidad (I), Pauli (X, 

Y, Z), Fase (S, T), Hadamard (H) y las puertas de rotación (Rx, Ry, Rz). Estas tres últimas, 

en particular, juegan un papel clave en la creación de superposiciones y en la alteración de 

la fase de los qubits- Las puertas de múltiples qubits, como las puertas CNOT, CZ, SWAP 

y TOFFOLI, se utilizan para entrelazar qubits y realizar operaciones más complejas. Estas 

puertas se combinan en circuitos cuánticos, que luego se ejecutan en procesadores 

cuánticos. 

El estado de un sistema cuántico se obtiene mediante realizando una medición. Sin 

embargo, debido a la naturaleza probabilística de la mecánica cuántica, las mediciones 

producen estados definitivos a partir de superposiciones, con las probabilidades dictadas 

por las amplitudes del vector de estado. Por lo tanto, la comprensión y manipulación de las 

puertas cuánticas, junto con una cuidadosa selección de la base para las mediciones, son 

fundamentales en la computación cuántica. 

Aprendizaje Automático Cuántico 

Para entender las aplicaciones de la computación cuántica en el aprendizaje automático, 

necesitamos comprender este concepto primero. 

El aprendizaje automático (ML) es un campo que utiliza modelos matemáticos para 

identificar patrones y realizar predicciones a partir de los datos. Existen diferentes tipos de 

algoritmos de ML, como el aprendizaje supervisado (utilizando datos etiquetados), el 

aprendizaje no supervisado (encontrando patrones en datos no etiquetados) y el aprendizaje 

por refuerzo (adaptándose a través de retroalimentación). El proceso de implementar un 

algoritmo de ML implica la recopilación de datos, el preprocesamiento, la selección del 

modelo, el entrenamiento, las pruebas y la implementación. El éxito de un sistema de ML 

depende en gran medida de la calidad de los datos de entrenamiento y la elección adecuada 

del modelo. 

 

El aprendizaje automático cuántico (QML) utiliza circuitos cuánticos para procesar 

información en tareas de aprendizaje automático, como clasificación y regresión. Uno de 

los desafíos principales es codificar datos clásicos en estados cuánticos. Sin embargo, los 

algoritmos híbridos cuántico-clásicos ofrecen soluciones al utilizar sistemas cuánticos para 

tareas computacionales complejas y sistemas clásicos para el preprocesamiento, el post-

procesamiento y la gestión de elementos cuánticos. 



El Clasificador Cuántico Variacional (VQC) (Schuld et al., 2018) es un algoritmo de 

aprendizaje automático híbrido cuántico-clásico que aprovecha el la computación cuántica 

y clásica para realizar tareas de clasificación de datos. El VQC emplea un sistema cuántico 

para la preparación de estados y circuitos variacionales, seguido de un bucle de 

optimización clásico que encuentra los parámetros óptimos para minimizar una función de 

coste. El algoritmo demuestra robustez frente al ruido y resulta beneficioso para su 

implementación en dispositivos cuánticos a corto plazo. 

 
Figura 1 - Diagrama de Bloques del Clasificador Variacional. Fuente Q-munity: Building a VQC 

La convolución cuántica, también conocida como "quanvolución" (Henderson et al., 2020), 

es un área innovadora de la computación cuántica inspirada en los procesos de convolución 

clásicos, fundamentales en las redes neuronales convolucionales (CNN). La quanvolución 

extiende el concepto de convolución a los sistemas cuánticos, utilizando circuitos cuánticos 

para transformar los datos de entrada, de forma similar a los filtros de las CNN clásicas. 

 
Figura 2 - Capa convolucional cuántica. Fuente: Elaborado a partir de (Henderson et al., 2020) 

3.     Tecnologías empleadas 

Este proyecto utiliza principalmente el lenguaje de programación Python en un entorno de 

Visual Studio Code con Jupyter Notebooks, debido a la popularidad de Python en el 

aprendizaje automático y la ciencia de datos. La biblioteca de programación cuántica 

elegida es PennyLane (Bergholm et al., 2018), un software de código abierto desarrollado 

por Xanadu Quantum Technologies que facilita el aprendizaje automático cuántico. 

PennyLane es único por su uso de la programación cuántica diferenciable y su 

compatibilidad con varias plataformas de computación cuántica. Se utiliza el complemento 

PennyLane-Qiskit para integrar PennyLane con Qiskit de IBM, lo que permite la 

compilación y ejecución de circuitos cuánticos en el hardware cuántico de IBM. 



IBM Quantum es la plataforma elegida para la simulación y computación cuántica. Esta 

plataforma ofrece servicios de computación cuántica basados en la nube, otorgando a los 

usuarios la capacidad de ejecutar programas cuánticos en ordenadores cuánticos reales y 

simuladores potentes ubicados en las instalaciones de IBM. IBM Quantum proporciona 

una variedad de ordenadores y simuladores cuánticos, cada uno con un número variable de 

qubits. Aunque los ordenadores más potentes solo están disponibles a nivel empresarial, 

algunas son de libre acceso para uso académico. Sin embargo, debido a la alta demanda, 

los tiempos de espera para la ejecución de circuitos cuánticos pueden ser largos. (IBMQ, 

2023) 

La ejecución de circuitos cuánticos, o 'trabajos', en la plataforma de IBM opera bajo un 

sistema basado en colas, lo que lleva a tiempos de espera variables que suelen oscilar entre 

una hora y varias horas. El tiempo de espera tota puede llegar a ser extremadamente largo 

dada la cantidad de trabajos necesarios para entrenar nuestros algoritmos híbridos. Los 

factores que afectan estos tiempos son la estructura del modelo, las características del 

conjunto de datos y las limitaciones del hardware y software cuántico actual. 

4.     Estado de la cuestión 

La computación cuántica es un campo en gran medida teórico que recientemente ha 

experimentado algunos avances notables gracias a los nuevos desarrollos en tecnologías de 

hardware cuántico. Actualmente nos encontramos en la era cuántica de escala intermedia 

ruidosa (Noisy Intermediate-Scale Quantum, NISQ), que representa los ordenadores 

cuánticos actuales y del futuro próximo, con un bajo recuento de qubits, ruido y propensos 

a errores. A pesar de retos como mantener la coherencia cuántica, garantizar bajas 

temperaturas de funcionamiento y escalar a un gran número de qubits, los avances en 

hardware de computación cuántica son alentadores, y los investigadores se esfuerzan por 

aumentar los qubits, mejorar la calidad y realizar la corrección de errores. Se están 

desarrollando varios tipos de hardware cuántico, y actualmente la mayor inversión se 

destina a procesadores superconductores basados en compuertas. 

El desarrollo de ordenadores cuánticos fiables no puede evaluarse únicamente por el 

número de qubits. Por ello, IBM ha introducido una métrica de rendimiento más holística 

denominada "volumen cuántico" (Baldwin & Mayer, 2022), que tiene en cuenta también 

otros factores como la calidad de los qubits, las tasas de error de puerta, la conectividad de 

los qubits y la eficiencia del compilador. El mayor volumen cuántico notificado hasta la 

fecha (06/2023) lo alcanzó el Model H1-1 de Quantinuum (Quantinuum News, 2023), 

siendo un gran avance en hardware de computación cuántica. 

Los simuladores cuánticos, que imitan el comportamiento de un sistema cuántico 

utilizando computación clásica, desempeñan un papel vital en la computación cuántica, ya 

que ayudan a explorar nuevos algoritmos, aprender y experimentar sin altos costes. IBM 

lidera en este ámbito con algunos de los simuladores cuánticos gratuitos más potentes. 

Muchos de los nuevos algoritmos cuánticos están diseñados para ordenadores cuánticos 

perfectos y, por lo tanto, aún no son factibles debido al número limitado de qubits lógicos 

prácticos. Están surgiendo resultados prometedores de algoritmos de computación cuántica 

variacional o métodos híbridos cuántico-clásicos, con los avances más notables en 

clustering, SVM y redes neuronales. Los circuitos cuánticos parametrizados, también 

llamados circuitos cuánticos variacionales, han sido ampliamente probados, mientras que 

la convolución cuántica es un concepto más reciente en experimentación. 



5.     Definición del proyecto 

El objetivo es explorar y adaptar algoritmos novedosos de aprendizaje automático para 

hardware cuántico de escala intermedia ruidosa (NISQ), centrándose especialmente en los 

clasificadores variacionales y la convolución cuántica. Dado el interés activo de gigantes 

tecnológicos como IBM y Google, y la creciente demanda de los clientes de Accenture por 

soluciones computacionales cuánticas, este proyecto tiene como objetivo explorar las 

aplicaciones prácticas de QML, abordando tanto sus beneficios como sus desafíos. 

Objetivos 

• Explicar claramente la teoría detrás de la computación cuántica y sus aplicaciones 

en ciertos aspectos del aprendizaje automático. 

• Programar y probar diferentes algoritmos. 

• Obtener una precisión decente y mostrar cómo los modelos podrían ser escalables 

en el futuro con ordenadores cuánticos de mayor número de qubits. 

• El objetivo no es superar a los ordenadores clásicas en velocidad o precisión, sino 

experimentar con la ejecución de algoritmos en ordenadores cuánticos reales y 

mostrar sinergias entre QC y ML. 

Metodología 

1. Investigación: Investigar algoritmos cuánticos existentes y bibliotecas de computación 

cuántica existentes para identificar los algoritmos más adecuados para la tarea de 

aprendizaje automático. 

2. Explicación teórica de la física cuántica, las matemáticas detrás de la computación 

cuántica, las compuertas y circuitos cuánticos, cómo se puede aplicar la computación 

cuántica a los algoritmos de aprendizaje automático y cómo funcionan estos algoritmos en 

realidad. 

3. Diseño: Codificar utilizando bibliotecas de python como Qiskit, PennyLane y 

TensorFlow, diferentes algoritmos cuánticos y variaciones. 

4. Implementación: Implementar el algoritmo cuántico en los ordenadores cuánticos de 

IBM accediendo a sus máquinas de forma remota. 

5. Evaluación: Evaluar los resultados en métricas como precisión, velocidad y 

escalabilidad, y si es necesario, refinar los algoritmos cuánticos. 

 

6.     Desarrollo 

Clasificador Cuántico Variacional (VQC) 

Comenzamos implementando un clasificador cuántico variacional, aprovechando tanto los 

algoritmos cuánticos para el procesamiento como los algoritmos clásicos para la 

optimización. El modelo se basa en circuitos cuánticos variacionales, compuestos de tres 

elementos principales: el feature map (o mapa de características), la capa variacional y la 

medición. (Schuld et al. 2018) 



Inicialmente, definimos dos dispositivos cuánticos diferentes, uno para la ejecución en 

simuladores de IBM u ordenadores cuánticos y otro para la visualización de circuitos 

cuánticos. Vamos a usar el conjunto de datos Iris para la tarea de clasificación. 

Primero, el mapa de características codifica datos clásicos en estados cuánticos, listos para 

ser manipulados en el ámbito cuántico. Usamos la incrustación de ángulo que emplea 

compuertas de rotación para codificar las entradas en estados cuánticos. La función luego 

devuelve los valores de expectación de las mediciones de Pauli-Z para cada qubit en el 

circuito. 

Luego definimos la capa variacional que utiliza operaciones cuánticas parametrizadas que 

se pueden ajustar finamente para optimizar una función objetivo para la clasificación. La 

capa cuántica se define con una capa de compuertas de entrelazamiento con parámetros 

especificados en todos los cables del circuito (qubits). Luego, la etapa de medición 

convierte la información cuántica de nuevo en clásica. 

Para unir todos estos componentes, integramos las arquitecturas cuánticas de Pennylane 

dentro del marco de Keras de TensorFlow para construir un modelo secuencial. Este 

modelo incorpora la capa cuántica variacional, convertida en una capa de Keras para la 

parte cuántica del modelo y una capa de activación regular de Keras con la función 

softmax al final para la clasificación. 

Como extensión al modelo implementado, también diseñamos variaciones del modelo 

agregando capas densas clásicas antes o después de la capa cuántica. Esto no se hizo con la 

intención de mejorar el rendimiento, sino para demostrar la integración de capas cuánticas 

y clásicas en circuitos variacionales. La figura 3 muestra nuestro modelo base. 

 
Figura 3 - Esquema del modelo de Clasificador Variacional. Fuente: realizado con github draw.io 

Convolución cuántica 

En esta sección, implementamos un modelo que consta de convolución cuántica y una red 

neuronal clásica (QCNN). La base de nuestro modelo radica en las convoluciones 

cuánticas que utilizan rotaciones unitarias parametrizadas realizadas en parejas vecinas de 

qubits. Estas convoluciones cuánticas son similares a sus contrapartes clásicas en las CNN 

tradicionales. Curiosamente, en lugar de seguir las capas convolucionales con capas de 

agrupación para la reducción de la dimensionalidad, logramos esto al medir un 

subconjunto de qubits en nuestra QCNN. (Henderson et al., 2020) 

Nuestro estudio utiliza el conjunto de datos Fashion-MNIST, una colección de imágenes 

en escala de grises que representan diez categorías de prendas de vestir. Debido a la 



complejidad computacional y las restricciones de tiempo de los cálculos cuánticos, 

trabajamos con un conjunto de entrenamiento reducido de 200 imágenes y un conjunto de 

prueba de 60. Estas imágenes fueron normalizadas y remodeladas para ser compatibles con 

la operación de convolución cuántica. 

El circuito cuántico para nuestra QCNN fue diseñado para manejar entradas de píxeles 2x2 

de las imágenes, con cada píxel representado por un qubit. Se utilizaron compuertas de 

rotación RY para la codificación de cada píxel en estados cuánticos. A continuación, se 

aplicó un circuito cuántico aleatorio a los qubits, añadiendo un grado de aleatoriedad a las 

operaciones para la identificación de patrones complejos de los datos. El circuito se 

concluyó con una etapa de medición, proporcionando una forma de extracción de 

características. 

Creamos una función para aplicar el circuito cuántico a las imágenes, dividiendo cada 

imagen en cuadrados de 2x2 píxeles, que fueron procesados por el circuito. La salida del 

circuito sirvió como una forma de extracción de características, reemplazando cada 

cuadrado de píxeles 2x2 con un solo píxel de salida que tenía cuatro canales o 

'características'. La operación de convolución cuántica se aplicó entonces a todas las 

imágenes en el conjunto de datos como un paso de preprocesamiento. Esto nos permitió 

evitar la necesidad de ejecutar el circuito cuántico durante cada época del proceso de 

entrenamiento del modelo, ahorrando así recursos computacionales. 

Finalmente, creamos un modelo simple de red neuronal clásica utilizando Keras para 

procesar los datos de imagen con convolución cuántica, con una función de activación 

softmax en su capa de salida para la clasificación multiclase. El modelo entrenado 

demostró cómo la QCNN puede integrar enfoques cuánticos y clásicos para abordar tareas 

de clasificación de imágenes. Las posibles modificaciones a esta arquitectura pueden 

incluir el aumento del número de filtros, la modificación del diseño del circuito cuántico, el 

cambio del tamaño del parche o la adición de más capas de quanvolución, ofreciendo 

amplias posibilidades para trabajos futuros en esta área. La figura 4 muestra la 

arquitectura. 

 
Figura 4 - QCNN: Arquitectura completa: red neuronal convolucional cuántica. Elaboración propia 

 

 

 

 



7.     Análisis de Resultados 

Clasificador Cuántico Variacional (VQC) 

Con el simulador cuántico, el modelo demuestra consistentemente una disminución de la 

pérdida y un aumento de la precisión a lo largo de diez épocas para ambos conjuntos de 

datos de entrenamiento y validación, indicando un aprendizaje exitoso y convergencia. La 

pequeña brecha entre los conjuntos de entrenamiento y validación sugiere la ausencia de 

un sobreajuste significativo. Además, la meseta observada en las gráficas de pérdida y 

precisión, después de alrededor de la quinta época, sugiere que el modelo ha logrado la 

convergencia. Posteriormente, se calcularon las métricas de rendimiento, revelando una 

precisión total del modelo del 83%. El rendimiento del modelo también fue probado con 

diferentes variaciones arquitectónicas, destacando la compatibilidad de la capa cuántica 

con marcos tradicionales de aprendizaje automático como TensorFlow Keras. 

 
Figura 5 - entrenamiento y validación para el clasificador variacional en el simulador cuántico 

Especie precisión recall métrica-f1 

0 1 1 1 

1 1 0.5 0.67 

2 0.67 1 0.8 

Tabla 1- Métricas de rendimiento para el clasificador variacional ejecutado en el simulador cuántico 

Accuracy 83% 

Al pasar al ordenador cuántico real, se seleccionó el dispositivo "quito" de IBM debido a 

su capacidad para manejar el conjunto de datos Iris (4 características) con sus 5 qubits. Sin 

embargo, el entrenamiento del VQC en el hardware cuántico real presentó varios desafíos 

que llevaron a la ejecución de un gran número de trabajos. En particular, la integración de 

Pennylane y Keras con Qiskit resultó en un proceso de agrupación no soportado, lo que 

requiere la ejecución de un trabajo por punto de datos. Después de más de 40 horas, solo se 

completó la primera época. Esta limitación impidió una comparación directa de las 

métricas de rendimiento con el simulador cuántico. 

Época 1 

Perdida - 

entrenamiento 

Pérdida 

validación 

Accuracy - 

entrenamiento 

Accuracy - 

validación 

1.28 1.32 0.18 0.27 

Tabla 2 - Métricas de entrenamiento parciales: clasificador variacional en el ordenador cuántico real 



Convolución Cuántica 

Para el simulador cuántico, el modelo fue entrenado en un conjunto de datos relativamente 

pequeño, dada la naturaleza intensiva en tiempo del procesamiento convolucional cuántico. 

La pérdida y precisión del entrenamiento del modelo mejoró significativamente con cada 

época, sugiriendo un aprendizaje efectivo. Sin embargo, la pérdida de validación y la 

precisión de validación se estabilizaron mientras las métricas de entrenamiento continuaron 

mejorando, indicando un posible sobreajuste. Esta interpretación finalmente se confirma 

con la diferencia en la precisión final del entrenamiento y la prueba. Este sobreajuste no es 

inesperado debido al tamaño limitado del conjunto de datos de entrenamiento. 

Accuracy en Entrenamiento 95% 

Accuracy en Validación 62% 

Tabla 3 - Precisión de entrenamiento y validación para la QCNN 

Cuando la QCNN se comparó con una CNN clásica, el modelo cuántico rindió un poco 

mejor, pero con una diferencia insignificante que cae dentro de la variabilidad del 

entrenamiento de la red neuronal clásica. En resumen, con este conjunto de datos, modelo 

y procesadores cuánticos disponibles, no hay una ventaja clara para la convolución 

cuántica. 

 
Figura 6 - Gráficos de entrenamiento y validación comparando la red neuronal con y sin la capa de 

convolución cuántica. El azul muestra con capa cuántica, el verde sin capa cuántica. 

Fuente: Gráficos realizados con matplotlib 

Al ejecutar el modelo en el ordenador cuántico real, se experimentaron problemas 

similares a los encontrados durante el experimento de VQC. La operación de convolución 

cuántica requirió descomponer una imagen estándar en ventanas de píxeles más pequeñas, 

lo que resultó en un número sustancial de ejecuciones de circuitos para cada imagen. Con 

el agrupamiento no totalmente soportado, el número de trabajos necesarios aumentó 

significativamente. En consecuencia, solo se procesaron cuatro imágenes dentro de un 

marco de tiempo razonable, subrayando los desafíos actuales de la computación cuántica 

para las tareas de aprendizaje automático. La ejecución de la convolución cuántica en un 

ordenador cuántico real se demostró con éxito en la siguiente imagen: Figura 7. Sin 

embargo, debido a que solo se pudieron procesar 4 imágenes, no tenía sentido entrenar 

luego la red neuronal clásica. 



 
 Figura 7 - Imágenes convolucionadas cuánticamente en un ordenador cuántico real.  

8.     Conclusiones y Trabajos Futuros 

Nuestra exploración sobre la aplicabilidad de la computación cuántica dentro del 

aprendizaje automático ha proporcionado un análisis exhaustivo del estado actual del 

campo, así como de los desafíos persistentes. Evaluamos la integración de algoritmos 

cuánticos en los marcos de aprendizaje automático clásicos e identificamos la disparidad 

entre los algoritmos en la teoría y su implementación práctica en el hardware cuántico 

actual. Estos desafíos, que incluyen la limitación de qubits, los errores del sistema cuántico 

y la decoherencia limitan actualmente la aplicabilidad y adopción más amplias de los 

algoritmos cuánticos en el aprendizaje automático. 

El trabajo futuro para este proyecto podría centrarse en explorar otras técnicas de 

aprendizaje automático, investigar una gama más amplia de modelos de aprendizaje 

automático cuántico, experimentar con variaciones de arquitectura de capas cuánticas 

dentro de modelos clásicos y evaluar el rendimiento en ordenadores cuánticos más 

potentes. A medida que avanza el campo de la computación cuántica, esto permitirá una 

comprensión más completa de los beneficios y limitaciones de los algoritmos cuánticos, 

contribuyendo al desarrollo de aplicaciones de aprendizaje automático cuántico más 

eficientes y prácticas. 
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ABSTRACT 

This thesis explores quantum computing (QC) applications in machine learning (ML). It 

begins with an analysis of quantum mechanics, quantum computing, quantum algorithms 

and quantum machine learning. It focuses on the Variational Quantum Classifier (VQC) 

and Quanvolution (Quantum Convolution), two hybrid quantum-classical models, 

highlighting the synergies between QC and ML. 

The current state of the field and the progress in quantum hardware and quantum 

algorithms are  examined by reviewing popular technologies to build physical qubits and 

the latest literature on quantum machine learning. The work shows the clear gap between 

theoretical quantum algorithms and their practical applicability, evidencing the need for 

quantum-classical hybrid architectures to bridge the divide. 

Then, the hybrid models previously discussed, VQC and QCNN, are implemented using 

technologies such as PennyLane, Qiskit, and IBM's Quantum Computing platform.  

Results provide performance metrics for our models on quantum simulators and quantum 

computers, acknowledging the limitations of current quantum hardware for ML 

applications. The experiments reveal how these types of algorithms take an extremely long 

time to run on freely available cloud quantum computers, such as the IBMQ platform.  

The thesis concludes with a reflection on the potential for quantum machine learning, 

focusing on the current challenges and future scalability. 
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1.      Introduction 

This project explores the intersection of quantum computing and machine learning, two 

powerful technologies with transformative potential. With state-of-the-art large machine 

learning models needing increasing resources, quantum computing could offer new ways 

and possibilities for the field. In this project, we focus on hybrid quantum-classical 

algorithms such as the Variational Quantum Classifier and Quantum Convolution 

(Quanvolution), that will be playing pivotal roles in bridging the quantum-classical divide. 

The variational quantum classifier exemplifies this hybrid behavior by leveraging a 

parameterized quantum circuit and a classical optimizer for data classification tasks.  

The quantum convolution neural network, another hybrid model, seeks to enhance 

convolutional neural networks, particularly used for visual data processing, with the 

potential of quantum computing. Both models represent an innovative mix of classical 

machine learning techniques and quantum principles. 

This project unfolds an exhaustive examination of theoretical concepts, delving into 

quantum mechanics, quantum computing, and then their applications in machine learning. 

It details the process of designing and testing these hybrid algorithms on the IBM Quantum 

platform using the PennyLane python library with popular datasets. It highlights how the 

mix of quantum and classical computing can open new possibilities for machine learning. 

2.     Theoretical concepts 

Quantum Mechanics 

Quantum mechanics, the principles governing the behavior of subatomic particles, 

introduces fascinating concepts crucial to quantum computing. At its core, quantum 

superposition allows a particle's observable properties to exist simultaneously in multiple 

states. This fundamental quantum principle is incorporated into the basic unit of quantum 

information - the quantum bit or ‘qubit.’ Unlike classical bits, which exist in definite 0 or 1 

states, qubits can exist in a superposition of both states, enabling the parallel processing of 

complex computations, a cornerstone for quantum computing's potential efficiency. 

Quantum entanglement, another quantum phenomenon, allows particles to interact 

instantaneously, regardless of spatial distance. In the quantum computing realm, 

entanglement is utilized to link qubits, generating a superposition of states that enables 

quantum computation. This mysterious synchronization between particles is a fundamental 

property used in quantum teleportation, quantum cryptography, and multiple quantum 

algorithms. 

Notably, the measurement problem in quantum mechanics underscores the probabilistic 

nature of quantum computing. In quantum systems, particles remain in a superposition 

until a measurement collapses them into one possible state. This process, pivotal to 

quantum computation, introduces randomness, as qubits collapse into a specific state (0/1) 

upon measurement. Consequently, extracting meaningful data from quantum computations 

needs advanced algorithms that can effectively navigate this measurement issue. 

(Feynman, 1963); (Susskind & Friedman, 2014)  

  



Quantum Computing 

Quantum computing leverages the previous principles to perform operations that could be 

exponentially faster than classical computers. Quantum systems utilize qubits which exist 

in a superposition of states represented by a complex linear combination of basis states. 

These states, as well as transformations, can be visualized using the Bloch sphere 

(Quantiki, 2023) and are often represented as unitary matrices. 

Qubits are manipulated using quantum gates, which form the building blocks for quantum 

circuits. Single qubit gates include the Identity (I), Pauli (X, Y, Z), Phase (S, T), Hadamard 

(H), and rotational (Rx, Ry, Rz) gates. The latter three, in particular, play a key role in 

creating superpositions and altering the phase of qubits. Multiple qubit gates, used to 

entangle qubits and perform more complex operations, include the CNOT, CZ, SWAP, and 

TOFFOLI gates. The quantum circuits formed by combining these gates are then executed 

on quantum processors. 

The state of a quantum system is obtained via measurement. However, due to the 

probabilistic nature of quantum mechanics, measurements yield definitive states out of 

superpositions, with the probabilities dictated by the amplitudes of the state vector. The 

selection of the basis for these measurements significantly impacts the results obtained. 

Therefore, the understanding and manipulation of quantum gates, alongside careful basis 

selection for measurements, forms the core of quantum computation. 

Quantum Machine Learning 

To understand quantum computing applications on machine learning, we need to grasp this 

concept first.  

Machine learning (ML) is a field that uses mathematical models to discern patterns and 

make predictions from data. There are different types of ML algorithms, such as 

supervised learning (using labeled data), unsupervised learning (finding patterns in 

unlabeled data), and reinforcement learning (adapting via feedback). The process of 

implementing an ML algorithm involves data collection, pre-processing, model selection, 

training, testing, and deployment. The success of an ML system depends mainly on the 

quality of training data and the chosen model's suitability. 

Quantum machine learning (QML) uses quantum circuits for information processing in 

machine learning (e.g.: classification, regression) tasks. One of the main challenges is 

translating or encoding classical data into quantum states. However, hybrid quantum-

classical machine learning algorithms offer some solutions by utilizing quantum systems 

for intricate computational tasks and classical systems for data pre-processing, post-

processing, and managing the quantum element. 

The Variational Quantum Classifier (VQC) (Schuld et al., 2018) is a promising hybrid 

quantum-classical machine learning algorithm that leverages the power of quantum and 

classical computation to perform data classification tasks. VQC employs a quantum system 

for state preparation and variational circuits, followed by a classical optimization loop that 

finds optimal parameters to minimize a cost function. The algorithm exhibits robustness 

against noise and proves beneficial for implementation on near-term quantum devices. 



 
Figure 1 - Variational Classifier Block Diagram. Source Q-munity: Building a VQC 

Quantum convolution, also known as 'Quanvolution' (Henderson et al., 2020), is a 

groundbreaking area of quantum computing inspired by the classical convolution processes 

fundamental to Convolutional Neural Networks (CNNs). Quanvolution extends the 

concept of convolution to quantum systems, using quantum circuits to transform input 

data, akin to filters in classical CNNs. 

 
Figure 2 - Quantum Convolutional Layer. Source: Made from (Henderson, Shakya, et al. 2020) 

3.     Technologies used 

This project primarily utilizes Python programming language in a Visual Studio Code 

environment with Jupyter Notebooks, due to Python's popularity in machine learning and 

data science. The quantum programming library chosen is PennyLane (Bergholm et al., 

2018), an open-source software developed by Xanadu Quantum Technologies that 

facilitates quantum machine learning. PennyLane is unique for its use of differentiable 

quantum programming and its compatibility with various quantum computing platforms. 

PennyLane-Qiskit plugin is used to integrate PennyLane with IBM's Qiskit, enabling the 

compilation and execution of quantum circuits on IBM’s quantum hardware. 

IBM Quantum is the chosen platform for quantum simulation and computation. This 

platform offers cloud-based quantum computing services, granting users the ability to run 

quantum programs on actual quantum computers and powerful simulators located in IBM's 

facilities. IBM Quantum provides a range of quantum computers and simulators, each with 

varying qubit counts. Although the most powerful computers are only available at an 

enterprise level, a few are freely accessible for academic use. However, due to the high 

demand, the waiting times for executing quantum circuits can be lengthy. (IBMQ, 2023) 

The execution of quantum circuits, or 'jobs', on IBM’s platform operate under a queue-

based system, leading to variable waiting times typically ranging from an hour to several 



hours. The cumulative waiting time can become extremely long given the numerous jobs 

required to train our hybrid algorithms. Factors affecting affect the waiting times include 

the model structure, dataset characteristics, and the limitations of the current quantum 

hardware and software. 

4.     State of the art 

Quantum computing is a largely theoretical field that has recently made some remarkable 

advances owing to new developments in quantum hardware technologies. We are currently 

in the Noisy Intermediate-Scale Quantum (NISQ) era, representing the quantum computers 

of today and the near future, with a low qubit count, noisy and error-prone. Despite 

challenges such as maintaining quantum coherence, ensuring low operating temperatures, 

and scaling to large numbers of qubits, progress in quantum computing hardware is 

encouraging, with researchers striving to increase qubits, enhance quality, and perform 

error correction. Various types of quantum hardware are being developed, with the most 

investment currently in gate-based superconducting processors. 

The development of reliable quantum computers cannot be assessed solely by qubit count. 

In response to this, IBM introduced a more holistic performance metric called Quantum 

Volume (Baldwin & Mayer, 2022), which considers also other factors such qubit quality, 

gate error rates, qubit connectivity and compiler efficiency. The highest reported quantum 

volume so far (06/2023) was achieved by Quantinuum's System Model H1-1 (Quantinuum 

News, 2023), indicating progress in quantum computing hardware. 

Quantum simulators, which mimic the behavior of a quantum system using classical 

computation, play a vital role in quantum computing, aiding in exploring new applications, 

refining techniques, and teaching new generations of quantum programmers. IBM leads 

the way with some of the most powerful free-to-access quantum simulators.  

Many of the new quantum algorithms are designed for perfect quantum computers and thus 

are not yet feasible due to limited numbers of practical logical qubits. Promising results are 

emerging from variational quantum computing algorithms or hybrid quantum-classical 

methods, with the most notable breakthroughs in quantum enhanced machine learning for 

clustering, SVM, and neural networks. Parametrized quantum circuits, also named 

variational quantum circuits, have been widely tested, while quantum convolution is a 

more recent concept under experimentation. 

5.     Scope of the Project 

The goal is to explore and adapt novel machine learning algorithms for Noisy Intermediate 

Scale Quantum (NISQ) hardware, especially focusing on variational classifiers and 

quantum convolution. Given the active interest from tech giants like IBM and Google, and 

the increasing client demand at Accenture for quantum computational solutions, this 

project aims to explore practical applications of QML, addressing both its benefits and 

challenges.  

Objectives 

• Clearly explain the theory behind quantum computing and its applications in 

certain aspects of machine learning. 

• Program and test different algorithms. 



• Get decent accuracy and show how models could be scalable in the future with 

higher qubit quantum computers. 

• The objective is not surpassing classical computers in speed or accuracy but 

experimenting with executing algorithms in real quantum computers and show 

synergies between QC and ML. 

Methodology 

1. Research: Research existing quantum algorithms and existing quantum computing 

libraries to identify the most suitable algorithms for the machine learning task. 

2. Theoretical explanation of quantum physics, the math behind quantum computing, 

quantum gates and circuits, how quantum computing can be applied to machine learning 

algorithms and how these algorithms actually work. 

3. Design: Code using python’s libraries like Qiskit, PennyLane and TensorFlow, 

different quantum algorithms and variations. 

4. Implementation: Implement the quantum algorithm on IBM quantum computers by 

accessing their machines remotely.  

5. Evaluation: Evaluate the results on metrics like accuracy, speed, and scalability and 

refine the quantum algorithms if needed.  

6.     Development 

Variational Quantum Classifier 

We start by implementing a variational quantum classifier, leveraging both quantum 

algorithms for processing and classical algorithms for optimization. The model is based on 

variational quantum circuits, comprised of three main components: the feature map, the 

variational layer, and measurement. (Schuld et al. 2018) 

Initially, we define two different quantum device backends, one for execution on IBM’s 

simulators or quantum computers and another for the visualization of quantum circuits. We 

are going to use Iris dataset for the classification task. 

First, the feature map encodes classical data into quantum states, ready to be manipulated 

in the quantum realm. We use angle embedding that employs rotation gates to encode 

inputs into quantum states. The function then returns the expectation values of Pauli-Z 

measurements for each qubit in the circuit.  

Then we define the variational layer that utilizes parameterized quantum operations that 

can be fine-tuned to optimize a target function for classification. The quantum layer is 

defined with a layer of entangling gates with specified parameters on all the circuit wires 

(qubits). Then the measurement stage converts quantum information back into classical. 

In order to bring all these components together, we integrate Pennylane’s quantum 

architectures within TensorFlow’s Keras framework to build a sequential model. This 

model incorporates the variational quantum layer, converted into a Keras layer for the 

quantum part of the model and a regular Keras activation layer with softmax function at 

the end for classification. 



As an extension to the implemented model, we also design variations of the model by 

adding classical dense layers either before or after the quantum layer. This was not done 

with the intent of improving performance, but to demonstrate the integration of quantum 

and classical layers in variational circuits. Figure 3 shows our base model. 

 
Figure 3 - Variational Classifier model scheme. Source: made using github draw.io 

Quantum Convolution 

In this section, we implement a model that consists of quantum convolution and a classical 

neural network (QCNN). The basis of our model lies in quantum convolutions, also termed 

as 'quanvolutions,' that utilize parameterized unitary rotations performed on neighboring 

pairs of qubits. These quantum convolutions are similar to their classical counterparts in 

traditional CNNs. Interestingly, instead of following convolutional layers with pooling 

layers for dimensionality reduction, we achieve this by measuring a subset of qubits in our 

QCNN. (Henderson et al., 2020) 

Our study utilizes the Fashion-MNIST dataset, a collection of grayscale images 

representing ten categories of clothing items. Due to the computational complexity and 

time constraints of quantum computations, we worked with a reduced training set of 200 

images and a test set of 60. These images were normalized and reshaped to be compatible 

with the quantum convolution operation.  

The quantum circuit for our QCNN was designed to handle 2x2 pixel inputs from the 

images, with each pixel represented by a qubit. RY rotation gates were used for the 

encoding of each pixel into quantum states. Following this, a random quantum circuit was 

applied to the qubits, adding a degree of randomness to the operations, and facilitating the 

extraction of complex patterns from the data. The circuit was concluded with a 

measurement stage, providing a form of feature extraction. 

We created a function to apply the quantum circuit to the images, dividing each image into 

squares of 2x2 pixels, which were each processed by the circuit. The output of the circuit 

served as a form of feature extraction, replacing each 2x2 pixel square with a single output 

pixel that had four channels or 'features.' The quantum convolution operation was then 

applied to all images in the dataset as a preprocessing step. This allowed us to bypass the 

necessity of running the quantum circuit during each epoch of the model's training process, 

thereby saving on computational resources. 

Finally, we created a simple classical neural network model using Keras to process the 

quantum-convolved image data. with a softmax activation function in its output layer for 

multi-class classification. The trained model demonstrated how the QCNN can integrate 



quantum and classical approaches to tackle image classification tasks. Potential 

modifications to this architecture can include increasing the number of filters, modifying 

the quantum circuit design, changing the patch size, or adding more quanvolutional layers, 

offering extensive possibilities for future work in this area. Figure 4 shows the architecture. 

 
Figure 4 - QCNN: Quantum convolutional neural network full architecture. Source: self-made 

7.     Results Analysis 

Variational Quantum Classifier 

With the quantum simulator, the model consistently demonstrated decreased loss and 

increased accuracy across ten epochs for both the training and validation datasets, 

indicating successful learning and convergence. The small gap between the training and 

validation sets suggests the absence of any significant overfitting. Additionally, the plateau 

observed in the loss and accuracy graphs, after around the fifth epoch suggests that the 

model has achieved convergence. Performance metrics were subsequently calculated, 

revealing an overall model accuracy of 0.83. The model's performance was also tested with 

different architectural variations, highlighting the quantum layer's compatibility with 

traditional machine learning frameworks such as TensorFlow Keras. 

 
Figure 5 -Training & validation graphs for the variational classifier in quantum simulator 

Feature precision recall f1-score support 

0 1 1 1 10 

1 1 0.5 0.67 10 

2 0.67 1 0.8 10 

Table 1- Full performance metrics for the variational classifier run in quantum simulator. 

Accuracy 83% 



When turning to the real quantum computer, the IBM's device “quito” was selected due to 

its capability to handle the Iris dataset (4 features) with its 5 qubits. However, the training 

of the VQC on the real quantum hardware presented several challenges that led to the 

execution of a large number of jobs. In particular, the integration of Pennylane and Keras 

with Qiskit resulted in an unsupported batching process, necessitating the execution of one 

job per data point. After more than 40 hours, only the first epoch was completed. This 

limitation impeded a direct comparison of performance metrics with the quantum 

simulator. 

Epoch 1 

Training Loss Validation Loss Training Accuracy Validation Accuracy 

1.28 1.32 0.18 0.27 

Table 2 - Partial training metrics for variational classifier in real quantum computer 

Quantum Convolution 

For the quantum simulator, the model was trained on a relatively small dataset, given the 

time-intensive nature of quantum convolutional processing. The training loss and accuracy 

of the model significantly improved with each epoch, suggesting effective learning. 

However, the validation loss and validation accuracy plateaued while training metrics 

continued improving, indicating possible overfitting. This interpretation is finally 

confirmed with the difference in final training and test accuracy. This overfitting is not 

unexpected due to the limited size of the training dataset.  

Training Accuracy 95% 

Validation Accuracy 62% 

Table 3 -Training & Validation Accuracy for the QCNN 

When the QCNN was compared with a classical CNN, the quantum model performed 

slightly better but with an insignificant difference that falls within the variability of the 

classical neural network training. In summary, with this dataset, model and available 

quantum processors, there is no clear advantage for quantum convolution.  

 
Figure 6 - Training & Validation Graphs comparing Neural network with & without Quantum 

convolution layer. Blue Shows With Quantum layer, Green without Quantum later. 

Source: Plotted with matplotlib 



When executing the model on the real quantum computer, the issues encountered during 

the VQC experiment were similarly experienced. The quantum convolution operation 

required breaking down a standard image into smaller pixel windows, resulting in a 

substantial number of circuit runs for each image. With batching not fully supported, the 

number of necessary jobs increased significantly. Consequently, only four images were 

processed within a reasonable timeframe, underscoring the current challenges of quantum 

computing for machine learning tasks. The execution of quantum convolution on a real 

quantum computer was successfully demonstrated in the following image. However, due to 

only being able to process 4 images, it did not make sense to then train the classical neural 

network.  

 
 Figure 7 - Quantum convolved images on real Quantum Computer. Source: plotted matplotlib 

 

8.     Conclusions and Future Work 

Our exploration into quantum computing applications within machine learning has 

provided significant insight into the current state of the field, as well as the challenges that 

persist. We evaluated the integration of quantum algorithms into classical machine learning 

frameworks and identified the disparity between theoretical quantum machine learning 

algorithms and their practical implementation on current quantum hardware. These 

challenges, including limited qubits, quantum system errors, and decoherence, currently 

limit the wider applicability and adoption of quantum algorithms in machine learning. 

Future work for this project could be focused on exploring other machine learning 

techniques, investigating a broader array of quantum machine learning models, 

experimenting with architecture variations of quantum layers within classical models, and 

assessing the performance on more powerful quantum computers. As the field of quantum 

computing advances, this will enable a more thorough understanding of the benefits and 

limitations of quantum algorithms, contributing to the development of more efficient and 

practical quantum machine learning applications. 
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Section 1.  INTRODUCTION 

In this era of continuous technological evolution, one area that stands out for its 

potential to redefine our computational capabilities is Quantum Computing. As we 

persistently seek computational power beyond classical computing boundaries, 

Quantum Computing provides a ray of hope. It is in this captivating space where 

Quantum Computing intersects with Machine Learning, a well-established area that 

has been transforming sectors from healthcare to e-commerce, where the focus of this 

project lies. 

Within Machine Learning, there has been a relentless endeavor to design algorithms 

that enable computers to learn from and predict data patterns effectively. However, 

the computational resources needed for state of the art, large models can be massive. 

Quantum computing could offer new ways to manage this load but to tap into this 

potential; it is important to bridge the quantum-classical divide. Hybrid quantum-

classical algorithms, such as the Variational Quantum Classifier and Quantum 

Convolution (or Quanvolution), form the core of this bridge and are the central 

focus of our project. 

The Variational Quantum Classifier is an interesting blend of classical and quantum 

computing principles, harnessing the best of both worlds. By employing a 

parameterized quantum circuit to prepare a quantum state and a classical optimizer 

to fine-tune the parameters, it represents a potent tool for complex data 

classification tasks. 

Quantum Convolution, another hybrid approach, aims to augment Convolutional 

Neural Networks (CNNs), a class of deep learning models fundamental in processing 

visual data. The concept of Quantum Convolution, often called Quanvolution, seeks 

to bring the power of quantum computing into the realm of image processing. Both 
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hybrid models are potential game-changers, offering an interesting fusion of classical 

machine learning techniques and quantum computing principles. 

The project ahead will provide an in-depth understanding of these key concepts, 

navigating the intricacies of Quantum Mechanics, Quantum Computing, and 

Machine Learning. We will delve into how Quantum Computing has enhanced 

Machine Learning, illustrating this with the Variational Quantum Classifier and 

Quanvolution models. We will use the IBM Quantum platform and the PennyLane 

library, key technologies enabling our experiments in Quantum Machine Learning. 

We will design and implement variations of these two hybrid algorithms and test 

their performance, benefits and drawbacks with popular datasets using IBM’s 

quantum simulators and  quantum computers. 

In the relentless quest for advancing our computational capacities, this project 

explores how quantum and classical computing merge, bringing new possibilities for 

machine learning. 
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Section 2.  THEORETICAL CONCEPTS 

2.1 QUANTUM MECHANICS 

Quantum computing is a complex field that first requires familiarization with the 

basic principles of quantum mechanics as they serve as its foundation. This 

understanding must be paired with a proficient ability to operate within its rigorous 

mathematical framework, essential for the design and experimentation with quantum 

computing algorithms. (Feynman, 1963), (Susskind, 2008), (Susskind & Friedman, 

2014)   

2.1.1 MATHEMATICAL FRAMEWORK FOR QUANTUM MECHANICS 

2.1.1.1 Linear Algebra 

The behavior of subatomic particles, like electrons, cannot be explained using the 

same physical rules applied to larger objects in the classical world. Classical physics 

describes objects through continuous functions capable of taking any value within a 

specific range. However, in the quantum realm, particles act like waves and are 

defined by discrete energy levels. Hence, the rules for the macroscopic world fall 

short when explaining the behavior of particles. 

A system’s physical state is represented using a vector in a complex vector space. 

These vectors, known as state vectors or wavefunctions, bear the symbol Ψ. The 

wavefunction’s magnitude squared reveals the probability of the system being in a 

particular state. This probabilistic aspect of quantum mechanics implies that, unlike 

classical physics, we cannot predict an exact measurement outcome; we can only 

estimate the probability of different outcomes. 

The question is: why does linear algebra serve as the ideal mathematical tool for 

representing quantum mechanics? The answer lies in the fact that quantum systems’ 
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properties can be described by linear operators, which act on the system’s state 

vectors. Linear algebra depicts these operators as matrices, and their properties can 

be analyzed using techniques like eigenvalues and eigenvectors. For instance, the 

Schrödinger equation, quantum mechanics’ fundamental equation, is a linear partial 

differential equation. Linear algebra offers an intuitive framework for comprehending 

the mathematical foundation of quantum mechanics.  

2.1.1.2 Vector Space and Wave function 

In quantum mechanics, particle states are represented by vectors of complex 

numbers, with the evolution of the quantum system represented through operations 

with matrices of complex numbers. We use the Dirac Notation, a ket (a column 

vector), to represent a quantum state. Contrary to the macroscopic state, a ket 

represents a quantum state that provides information about the properties of a 

physical system at a particular moment. However, each time these properties are 

measured, different values may be obtained due to the probabilistic nature of 

quantum mechanics. 

2.1.1.2.1 Complex Numbers and basis 

In quantum mechanics we are especially interested in space 𝐶𝑛 being to the set of n-

tuples containing complex numbers. Complex numbers are numbers that include a 

real part and an imaginary part, often denoted as z=a + bi, where z is the complex 

number, a and b are real numbers and 𝑖 is the imaginary unit, with the property 

that 𝑖2 = -1 or i = √−1. The structure and dimension of a vector space is described 

by a basis. A basis is a set of linearly independent vectors that can be combined to 

represent any vector in the space.  

2.1.1.2.2 The wave function 

The wavefunction is a mathematical tool that outlines a particle’s quantum state 

concerning its position. Often represented by the symbol Psi (Ψ), it is a complex-



UNIVERSIDAD PONTIFICIA COMILLAS 

SCHOOL OF ENGINEERING (ICAI) 

DEGREE IN ENGINEERING IN TELECOMMUNICATIONS TECHNOLOGIES 

THEORETICAL CONCEPTS 

11 

valued function of position that meets certain mathematical criteria. The 

wavefunction helps calculate the probabilities of different physical observables like 

position, momentum, and energy, along with their uncertainties. In quantum 

mechanics, the wavefunction is vital for predicting particle behavior and 

interactions. 

2.1.1.3 Hilbert Space 

In quantum mechanics, the space of quantum states can have infinitely many 

dimensions. This is because a quantum state can be a linear combination of an 

infinite number of possible outcomes, and we use these outcomes as a basis for our 

calculations. However, working with infinity in mathematics can be tricky because it 

can lead to situations where objects fall outside our defined space. Therefore, we 

need to be careful when dealing with infinite dimensions in quantum mechanics. 

To avoid this problem in quantum mechanics, we add an extra rule to our vector 

space: every convergent sum of vectors must converge to an element inside our 

vector space. This rule creates a Hilbert space: a vector space with a defined inner 

product that is Cauchy complete. Cauchy complete means that every convergent 

sequence of vectors converges to an element inside the vector space. By defining the 

Hilbert space with these properties, we ensure that every quantum state is inside our 

vector space, and we can use linear algebra to describe our particles with confidence. 

The Hilbert Space is the mathematical space that describes the possible states of a 

quantum system. It is a complex vector space, meaning that its elements are 

complex numbers that can be added and multiplied. (Quantiki Hilbert Space, 2023) 

The Hilbert Space is used to represent the states of particles, which can be described 

as a superposition of multiple energy levels. For example, an electron in an atom can 

be in a superposition of different energy states. The Hilbert Space provides a 

framework for describing the probability of a particle being in a particular state, as 

well as for calculating the evolution of the system over time. 
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2.1.1.4 Inner Product 

In the context of quantum mechanics, the concept of inner products is crucial for 

understanding the behavior of quantum states. Inner products, an abstraction of the 

dot product, are central to defining angle and orthogonality in Hilbert spaces. 

One of the essential applications of inner products in quantum mechanics is the 

ability to work with orthogonal basis vectors. Orthogonal basis vectors allow us to 

expand quantum states in an orthonormal basis, simplifying the calculations and 

interpretation of quantum systems.  

In quantum mechanics, we use the Dirac or bra-ket notation when representing 

vectors. Likewise, the inner product is denoted using this notation as the following: 

Inner product of (v,w)= ⟨𝑣|w 

Kets |𝐰⟩ can be identified as column vectors, and bras ⟨𝒗| as row vectors. 

This notation makes it easier to manipulate and understand mathematical 

expressions in quantum mechanics. 

2.1.1.5 Dirac’s delta 

 

Figure 1 - Representation of the Dirac delta function. Source: Wolfram Alpha 

The Dirac delta is a generalized function whose value is zero everywhere except at 

zero, and whose integral over the entire real line is equal to one. The Dirac delta 

function serves a significant role in mathematical and physical applications by 
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‘selecting’ a specific value from a continuous function when it is integrated with it. 

This function behaves like a ‘pronounced peak’ at the desired value while retaining 

zero value everywhere else. 

The Dirac delta function plays a crucial role in quantum mechanics by providing a 

mathematical tool for working with continuous systems, particularly in the context 

of wavefunction inner products. It allows us to extract specific coefficients from 

continuous functions and enables us to work with continuous orthonormal inner 

products, which are essential for understanding and analyzing quantum states. 

The Dirac delta is essential when working with continuous orthonormal inner 

products of qubit states, a key element in the understanding and operation of 

quantum computers. 

2.1.1.6 Observables operators 

Observables are any measurable physical quantity from a particle, such as: position, 

momentum, energy, and angular momentum. These observables are represented by 

linear operators on the Hilbert space of quantum states, or kets. 

To find the possible values of an observable that can be measured, we look at the 

eigenvalues of the linear operator representing that observable. The eigenvectors 

corresponding to these eigenvalues are called eigenstates and represent the definite 

states of a particle with 100% certainty of having a specific value for the observable. 

A quantum state can be expressed as a superposition of all potential measurement 

outcomes by forming a linear combination of the observable’s eigenstates. Physical 

observables have several properties: 

• Observables must have real eigenvalues, as physical quantities are real. 

• Eigenstates of observables must encompass the entire vector space. This 

ensures any quantum state can be written as a linear combination of 

eigenstates. 
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• Eigenstates must be mutually orthogonal, ensuring that the definite states are 

clearly defined. 

Taking these properties into account, it is safe to infer that the eigenstates of an 

observable constitute an orthonormal eigenbasis. This understanding holds crucial 

relevance in quantum computing. Observables serve as indispensable tools in 

quantifying attributes such as position, momentum, and energy of qubits, thereby 

playing a key role in the realm of quantum computing.  

2.1.1.7 Probability, amplitude, and the Born Rule 

To predict the likelihood of a specific outcome, like measuring an energy value, we 

use probabilities. Based on the Born rule, the observation probability of a particular 

outcome is determined by squaring the absolute value of the corresponding 

eigenstate’s amplitude. In other words, if a system is in a superposition of several 

states, the probability of measuring a particular state is proportional to the square 

of the magnitude of the corresponding coefficient in the superposition. 

Mathematically, if we represent the wave function of a quantum system as ψ, and 

we measure an observable with eigenstates |a⟩, |b⟩, |c⟩: the probability of measuring 

the system in state |a⟩ is given by |⟨a|ψ⟩|². Similarly, the probability of measuring 

the system in state |b⟩ is given by |⟨b|ψ⟩|², and so on. 

When dealing with quantum computing, if a quantum system (qubits) is in a 

superposition of states, the Born rule provides the means to calculate the probability 

of measuring a specific state, which is crucial to quantum algorithm execution. 

2.1.1.8 Unitary operators 

Unitary operators in quantum mechanics are a special class of linear operators that 

play a crucial role in maintaining the conservation of probability. They preserve the 

inner product of two vectors when both vectors are transformed by the operator. 
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This property ensures that the lengths of the vectors and the angles between them 

remain unchanged, which makes unitary operators resemble generalized rotations. 

A unitary operator, denoted by U, is defined as an operator that satisfies the 

condition U * 𝑈† = I, where 𝑈† is the Hermitian conjugate of the operator U, and I 

is the identity operator. This means that the Hermitian conjugate of a unitary 

operator is equal to its inverse.  

One essential property of unitary operators is that their eigenvalues must have a 

magnitude of one. In other words, the eigenvalues are unit complex numbers. This 

property is consistent with the idea that unitary operators, as generalized rotations, 

should not change the lengths of their eigenvectors. 

In quantum mechanics, unitary operators are important because they conserve 

probability. Inner products are primarily used to calculate probabilities in quantum 

mechanics, and since unitary operators preserve inner products, they ensure that the 

probability of obtaining a specific measurement remains unchanged when a unitary 

operator acts on every vector in the space. Additionally, the total probability of a 

state remains equal to one. 

In quantum mechanics, processes such as rotation, translation, and time evolution 

should conserve total probability. Therefore, the corresponding operators for these 

transformations need to be unitary. For example, in the context of the Schrödinger 

equation, time evolution is governed by a unitary operator to maintain the 

conservation of probability. 

Unitary operators, crucial in quantum mechanics for probability conservation, have 

a vital role in quantum computing as they represent the quantum gates in a 

quantum circuit.  
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2.1.2 QUANTUM PHYSICS 

After going over the mathematical intuition and tools behind quantum mechanics, it 

is time to understand some of the physical principles of Quantum mechanics and 

how they relate to quantum computing.  

Quantum mechanics is the set of rules for the smallest entities in the universe: 

atoms and subatomic particles. It fills in where classical physics, which works well 

for larger, macroscopic phenomena, falls short.  

Quantum physics history starts in the late 1800s and early 1900s from experimental 

atom observations that defied classical physics’ intuition. A fundamental principle is 

wave-particle duality which originated from experiments showing that light and 

matter exhibited both particle and wave properties. 

2.1.2.1 Double Slit Experiment 

There are multiple variations of the double-slit experiment, with Young’s early 1800s 

version laying the groundwork (Young, 1804). This experiment introduced the wave 

theory of light, challenging Newton’s corpuscular theory of light, and a century 

later, Einstein’s publications about the photoelectric effect revealed light’s particle-

like behavior. This contradiction could only be solved with a quantum 

understanding of light.  

 

Figure 2 Double-slit experiment diagram. Source: Wikipedia 

The experiment involves sending a beam of particles, such as electrons or photons, 

toward a barrier with two slits and a detection screen behind it. According to 
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classical mechanics, we would expect the particles to pass through either slit, 

forming two separate patterns on the screen. However, the actual results reveal a 

surprising interference pattern, like the overlapping ripples seen in wave interference. 

Things get even more interesting when we try to measure which slit each particle 

goes through. When we observe the process, the interference pattern vanishes, and 

the expected two separate patterns appear again. This strange behavior 

demonstrates the wave-particle duality, where particles exhibit both wave and 

particle properties. 

In April 2023, a team led by physicists from Imperial College London carried out a 

novel variation of the double-slit experiment, using ‘slits’ in time rather than space 

(Tirole, et al., 2023). By firing light through a swiftly changing material, they 

permitted light to pass only at specific times. This experiment shows how we can 

transfer concepts such as interference from the domain of space to the domain of 

time and this could potentially lead to the development of ultrafast optical switches. 

2.1.2.2 Quantum Superposition 

Unlike classical mechanics, where properties like position or momentum are always 

well-defined, quantum mechanics allows that particle’s observable properties like 

position or energy, simultaneously possess more than one possible value. This is not 

just a gap in our understanding of the system but an inherent property of quantum 

systems. 

An essential element of quantum superposition is its linear nature, allowing quantum 

states to be added together (superposed) to form another valid quantum state. The 

Schrödinger equation, fundamental in quantum mechanics, underlines this by 

asserting that any linear combination of solutions will also be a solution. This 

principle is manifested in experiments like double-slit interference, where superposed 

wave functions produce an interference pattern. 
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This principle translates to quantum computing, where the fundamental unit of 

information is the quantum bit or “qubit” which, unlike classical bits, can exist 

simultaneously in both 0 and 1 states due to superposition. This enables quantum 

computers to process complex computations in different, sometimes more efficient 

ways.  

2.1.2.3 Heisenberg Uncertainty Principle 

The uncertainty principle (formulated by the German physicist Werner Heisenberg 

in 1927) states that we cannot know specific pairs of a particle’s properties with 

complete precision at the same time. The most famous example involves the 

uncertainty between position and momentum. Simply put, the more we know about 

a particle’s position, the less we can know about its momentum, and vice versa. 

 

Figure 3 - Wavelength comparison. Source: Feynman PH300 Modern Physics SP11 Slides 

▪ The first wave, with a consistent wavelength and amplitude, represents a 

particle with a well-defined momentum (related to wavelength) but uncertain 

position (spread out amplitude). 

▪ In the second image, we see the wavelength varying, implying that the 

momentum is not well-defined. However, we can infer a probable position 

where the amplitude peaks (in the middle) 

▪ Finally, the third wave is essentially a spike, with its amplitude peaking 

sharply at one point. Here, the position is highly certain (at the peak), but 

the momentum is highly uncertain due to the lack of a consistent wavelength. 
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This graph encapsulates the uncertainty principle: the more precisely the position of 

a particle is determined, the less precisely its momentum can be known, and vice 

versa. 

Regarding quantum computing, the uncertainty principle supports the concept of 

superposition and is the foundation of the probabilistic nature of quantum 

computing. 

2.1.2.4 Measurement Problem 

The measurement problem in quantum mechanics refers to how quantum systems 

remain in a superposition state until measured when it collapses to one of the 

possible states instantly. 

Quantum mechanics principles state that the wave function (Ψ mathematical 

encapsulation of quantum system) develops deterministically and linearly as per the 

Schrödinger equation. However, when we measure it, the wave function seems to 

collapse instantly and randomly into one of its possible eigenstates. This non-

deterministic collapse contradicts the deterministic evolution dictated by the 

Schrödinger equation. 

This inconsistency creates a challenge in interpreting quantum mechanics because it 

is unclear why the wave function collapses upon measurement or what defines a 

measurement. Several interpretations of quantum mechanics have been proposed to 

tackle the measurement problem, such as the Copenhagen interpretation, Many 

Worlds Interpretation, and de Broglie-Bohm pilot-wave theory. Each interpretation 

offers a unique perspective on the wave function’s nature and the role of 

measurement. The Copenhagen interpretation, being one of the most accepted, 

states that “the past is determined, the future is uncertain. 

The measurement problem is relevant to quantum computing because the process of 

reading out the result of a quantum computation involves measuring the state of the 
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qubits. Since qubits can exist in a superposition of two states (0 and 1), measuring 

them causes their wave function to collapse into one specific state, which is then 

read as a classical bit (0 or 1). This means that the outcome of quantum 

computation is inherently probabilistic. 

Moreover, the measurement problem highlights the limitations of quantum 

computers. For instance, although quantum computers can perform many 

calculations simultaneously due to the superposition of qubits, extracting useful 

information from the results requires sophisticated algorithms and techniques that 

can work around the measurement problem. 

The development of quantum error correction methods and fault-tolerant quantum 

computing is also closely related to the measurement problem. These methods aim 

to mitigate the effects of decoherence and measurement-induced errors to achieve 

more reliable and accurate quantum computers. By better understanding the 

measurement problem and its implications, researchers can develop new strategies to 

harness the full potential of quantum computing. 

2.1.2.5 Entanglement 

In the realm of quantum mechanics, one of the most intriguing phenomena is 

quantum entanglement. Here, two particles become intertwined, their states deeply 

connected, regardless of the vast distances that may separate them. This synchrony 

between particles is instantaneous, implying that when the wave function of one 

entangled particle collapses, its entangled partner’s wave function also collapses 

instantly. 

This peculiar phenomenon, often perceived as ‘spooky action at a distance’ has been 

experimentally confirmed and defies our conventional understanding of space and 

time. However, it is important to note that entanglement does not allow for the 

transfer of information faster than light, aligning with Einstein’s theory of relativity. 
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In quantum computing, entanglement is harnessed to link qubits, creating a 

superposition of states that allows for the simultaneous processing of computations. 

It is one of the most important quantum properties for quantum computing, being 

key to quantum teleportation, quantum cryptography and several quantum 

algorithms. 

2.1.2.6 Physics Nobel Prize 2022 

The Nobel Prize in Physics 2022 was awarded to Alain Aspect, John F. Clauser, and 

Anton Zeilinger “for experiments with entangled photons, establishing the violation 

of Bell inequalities and pioneering quantum information science.” (Sinha, 2023) 

The laureates’ collective work has made significant strides in exploring the 

phenomenon of quantum entanglement, confirming the counterintuitive predictions 

of quantum mechanics. Their research addressed critical aspects like quantum 

teleportation, loophole closure in entanglement measurements, and empirical 

violations of Bell’s inequality. This work has reaffirmed the principles of quantum 

superposition and instant communication between entangled particles, thus paving 

the way for revolutionary breakthroughs in quantum information technology. 
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2.2 QUANTUM COMPUTING 

2.2.1 WHY QUANTUM 

Quantum computing’s appeal is its capability to execute some operations that 

require exponential time on classical computers in a linear time frame. Exclusive 

quantum mechanics properties, such as superposition and entanglement, enable 

quantum computers to perform calculations in unattainable ways by classical 

computers. For instance, a quantum computer can leverage superposition to encode 

multiple problem solutions concurrently, which facilitates more efficient and quicker 

search processes through various possibilities compared to a classical computer. 

However, the solution to the problem is still a superposition of many different 

answers where many are incorrect, and when measuring, we will only get one of the 

answers, that probabilistically is very rare to be the correct one. Quantum 

algorithms are all about shuffling around this exponential collection of terms in the 

superposition so that, when we observe the system, our random snapshot has a high 

probability of showing us the thing we are looking for. 

Quantum computers could potentially revolutionize fields like drug discovery, 

material discovery, chemical simulation, machine learning and many others. 

2.2.2 QUBITS 

As we have mentioned before, while classical computers use bit to represent 

information, quantum computers use qubits (quantum bits) (Schumacher, 1995). We 

will explore the hardware regarding qubits in section 4.1.1. 

A qubit is a two-state quantum mechanical system. While a classical bit would have 

to be in one state or the other, a qubit can be in a superposition of both states. 

(Basics of quantum information, n.d.) 



UNIVERSIDAD PONTIFICIA COMILLAS 

SCHOOL OF ENGINEERING (ICAI) 

DEGREE IN ENGINEERING IN TELECOMMUNICATIONS TECHNOLOGIES 

THEORETICAL CONCEPTS 

23 

The two possible states in a qubit are represented using the bra-ket notation: 

|0⟩, |1⟩. As we explained in section 2.1.1.4, kets are column vectors in vector form, so 

the representation would be: 

|0⟩ =    [
1
0

] ,   |1⟩ =    [
0
1

]   

These two states are particularly important because they form a basis. In this case 

the basis is formed by orthogonal vectors where the inner product between the two 

vectors (as defined in section 2.1.1.4) is 0. 

This is a special basis called the computational basis, and it is the most commonly 

used basis to express quantum states. The computational basis is not only 

orthogonal but also orthonormal meaning that its states are normalized to have 

length 1 (length is calculated by taking the square root of the inner product with 

itself). 

The distinctiveness of qubits is that they can exist in a superposition of |0⟩ 𝑎𝑛𝑑 |1⟩. 

Mathematically, the state of a qubit in superposition is a linear combination of the 

basis states: 

|ψ⟩ = α|0⟩ + β|1⟩ 

Here, α and β are complex numbers representing the probability amplitudes of the 

qubit so |α|2+ |β|2 = 1 to ensure the total probability adds up to 1. 

2.2.2.1 Bloch sphere representation 

The Bloch sphere is a very intuitive and useful visual representation of a qubit state. 

It is a three-dimensional ball with a radius of one. The points within and on the 

surface of this sphere represent all the possible states of a qubit. The state of a qubit 

can be represented as a vector that starts at the center of the sphere and points to a 

location on or within the sphere (Quantiki Blosch Sphere, 2023). 
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At first, it might seem that there should be four degrees of freedom (α, β are 

complex numbers with two degrees of freedom each) but the previous constraint of 

total probability equals 1 removes one degree, making spherical coordinates suitable. 

 

Figure 4 - Bloch Sphere Representation. Source Wikipedia 

The north and south poles of the Bloch sphere represent the two basis states: 

• A qubit in state |0⟩ is represented as a vector pointing to the north pole 

• A qubit in state |1⟩ is represented as a vector pointing to the south pole. 

Superposition states, where a qubit can be in a state both |0⟩ and |1⟩ at the same 

time, are represented as points on the sphere’s surface between the poles. The exact 

location on the surface depends on the relative weights (probability amplitudes) of 

the states |0⟩ and |1⟩ in the superposition. The latitude of the point gives the 

relative phases between the states, another important concept in quantum 

mechanics. 

It is important to note that the points inside the sphere represent mixed states, 

which are statistical mixtures of basis states, not superpositions. These are often the 
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result of partial information or interactions with the environment, also known as 

quantum decoherence. 

2.2.3 QUANTUM CIRCUITS 

Quantum circuits consist of quantum gates and qubits forming the building blocks 

for quantum computing and information processing. 

A quantum circuit begins with a series of wires that signify our qubits. These qubits 

are arranged from top to bottom, a collective group of qubits is referred to as a 

quantum register. At the start of a computation, these qubits are initialized to a 

certain state, often the state |0⟩. In circuit diagrams, It is common to explicitly state 

the initial states of the qubits. 

Quantum operations, or gates, manipulate the qubits in a variety of ways. These 

gates are represented by different shapes on the wires in the circuit. The shape on a 

wire shows a gate acting on a particular qubit at a specific moment.  

We measure the efficiency of quantum circuits by their depth, which is the minimum 

number of non-overlapping layers of gates, with fewer layers often being better. 

Lastly, quantum computation typically concludes with the measurement of one or 

more qubits. This is how we extract the result of our computation. In circuit 

diagrams, we represent measurements with a box containing a dial. 

 

Figure 5 - Representation of quantum circuit with generic gates. Source: Pennylane 
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2.2.4 UNITARY MATRICES 

We talked about unitary operators before in section 2.1.1.8, which is essentially what 

unitary matrixes are within the context of quantum mechanics. When we talk about 

qubits and their state transformations, we represent these transformations with 

square matrices known as unitary matrices. They maintain the all-important 

property of normalization, meaning they keep the total probability of all outcomes 

at 100% when applied to a qubit is state. 

An invertible complex square matrix U is unitary if its conjugate transpose U∗ is 

also its inverse. In quantum mechanics the conjugate transpose is referred to as the 

Hermitian adjoint denoted by (†). 

U∗𝑈 =  𝑈U∗  =  𝑈U−1 =  𝐼,              U†𝑈 =  𝑈U†  =  𝐼 

At first it might seem that 9 real numbers (four complex entries, two real numbers 

each) are needed to specify a 2x2 matrix. But the structure and constraints of 

unitary matrices allow us to describe them with just three real parameters. 

2.2.5 SINGLE QUBIT GATES 

All of the following gates are detailed in Figure 7 where we can see the 

corresponding matrix, circuit representation and how it affects qubits.  

• I gate: Like in classical linear algebra, the Identity gate does not modify the 

qubit state. 

• X gate: It is equivalent to the NOT gate, flipping amplitudes of |0⟩ and |1⟩ 

• H gate: The Hadamard gate is used to create a uniform superposition of 

states |0⟩ and |1⟩. If applied twice the state remains the same HH=I. This 

gate represents a 90º rotation on the y axis followed by 180º on x axis. 
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• Z gate: Represents a 180º rotation on the Z axis. As seen on the table, when 

applied |0⟩ it remains unchanged but it converts |1⟩ into -|1⟩  

• S gate: Also known as the phase gate, it represents a 90º rotation on z axis. 

• T gate: Known as the π/8 gate, it represents a 45ª rotation on z axis 

• Y gate: This gate represents a 180º or π/2 rotation on the y axis 

• Rx, Ry, Rz gates: These gates rotate the qubits is state vector about the 

appropriate axis by angle φ. X, Y, Z gates are known as the Pauli gates, 

represented by Pauli matrices. These gates are a generalization of Rx, Ry, Rz. 

We can implement any single-qubit operation by using these Rx, Ry, Rz gates. Any 

two rotations of {Rx, Ry, Rz} are a universal set for single-qubit operations. A gate 

set is universal if combinations of the gates can be used to approximate any unitary 

matrix up to arbitrary precision.  

 

Figure 6 - Rotations Represented on the Bloch Sphere. Source: Pennylane codebook 
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Figure 7 - Quantum Single Qubit Gates (codebook.xanadu.ai). Source: Pennylane codebook 
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2.2.6 MULTIPLE QUBIT GATES 

In the context of quantum computing, single-qubit states reside in a 2-dimensional 

vector space, defined by the basis vectors |0⟩ and |1⟩. However, when dealing with 

multiple qubits, we have to understand how these vector spaces interact, which 

brings us to the tensor product.   

2.2.6.1 Tensor Product 

The tensor product allows us to combine Hilbert spaces. Suppose we have a pair of 

two-dimensional vectors (two single-qubit states). The tensor product is computed: 

 

The tensor product also applies to the unitary operations that act on qubits: 

 

When considering the bases of multi-qubit systems, things become a bit more 

interesting. A two-qubit computational basis includes four vectors, denoting every 

possible pair of two qubits. However, when we move up to a three-qubit 

computational basis, the number of vectors increases significantly. In fact, for an n-

qubit system, the count and size of these vectors underline the necessity for actual 

quantum computers, as simulating such large systems on classical computers 

becomes highly impractical. 
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It is also worth noting that for multi-qubit systems, for example a 4-qubit state 

|0⟩⊗|1⟩⊗|0⟩⊗|1⟩ can be concisely written as |0101⟩. 

2.2.6.1 Entangled States 

Entanglement, alongside superposition, serves as one of the defining features of 

quantum computing. Consider two single-qubit states and let’s take their tensor 

product to form a combined state. By definition, a state is entangled if it cannot be 

expressed as a tensor product of individual qubit states. On the flip side, if it can be, 

It is termed as separable. An entangled state must be described entirely, as opposed 

to specifying individual qubits. Entanglement is not limited to two qubits either, it 

extends to larger systems too.  

Entanglement in quantum computing is achieved through various quantum gates, 

including the Hadamard (H) gate and the CNOT gate. These gates can be used 

together to create entangled states, such as the Bell state, which is a simple and 

commonly used method for entangling two qubits. 

2.2.6.2 Gates 

The following are the main multiple qubit gates, also represented in Figure 8: 

• CNOT: Also know as controlled-NOT acts on a pair of qubits. It performs an 

action on one qubit (the target) based on the state of another (the control). 

The control qubit remains unchanged, while a NOT gate is applied to the 

target qubit if the control qubit is in the |1⟩. If the control qubit is in 

superposition and the target qubit is either in |0⟩ or |1⟩, then the CNOT gate 

creates entanglement between both qubits. 

Earlier, we saw universal gate sets for single-qubit operations. For multi-qubit 

operations, we just need one more gate, the CNOT. The set {CNOT, Ry, Rz} would 

be a universal gate set for multi-qubit computation. 
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• CZ: The Controlled-Z gate is similar to the CNOT but instead of applying a 

NOT gate (or X gate), it applies a Z gate if the control qubit is on state |1⟩. 

• SWAP: This gate exchanges the state of two qubits. 

• TOFFOLI: Similar to the CNOT gate but having two control and one target 

qubit. It now applies the NOT gate to the target qubit only if both control 

qubits are on state |1⟩. 

 

 

Figure 8 - Multi-qubit gates. Source: codebook.xanadu.ai 

 

2.2.7 MEASUREMENTS 

 In quantum computing, measurement is not a straightforward action, but a 

probabilistic one. When measuring, we cannot see the superposition of a qubit, but 

instead observe it in a definite state, either |0⟩ or |1⟩. The probabilities of these 

outcomes are encoded in the amplitudes of the state vector. After measurement, the 

qubit remains in the observed state, thereby limiting our immediate knowledge 
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about its initial state. Due to this probabilistic nature, we would need multiple 

measurements to support the result obtained. 

As explained earlier if we measure a qubit in state |ψ⟩ = α|0⟩ + β|1⟩, we will observe 

it in state |0⟩ with probability |α|2 and state |1⟩ with probability |β|2. 

A more formal way of expressing the measurement outcome probabilities is using the 

inner product. The probability that we observe the qubit in the state |φ⟩ when we 

measure it with respect to a basis that includes |φ⟩ is equal to 

Pr(φ)= |⟨φ|ψ⟩|2 

This is called projective measurement, which asks how much each basis vector 

contributes to a given state, thus determining the probabilities of potential 

outcomes. (Albornoz, et al., 2021) 

The choice of basis for measurement in quantum computing is very important. The 

selection of the basis can significantly impact the measurement results. Most 

commonly, measurements are made in the computational basis, consisting of |0⟩ and 

|1⟩ states, or the Hadamard basis. It is crucial to remember that a change in the 

basis, also known as a basis rotation, can allow different measurements. 

While obtaining measurement outcome probabilities gives us useful information 

about a qubit is state, we are usually interested in other measurable quantities that 

correspond to something physical like energy. These are called observables and 

where explained in detail in section 2.1.1.6. To get an idea of the value of an 

observable we measure its expectation value, essentially the weighted average of 

what we would see over many experiments. 
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2.3 MACHINE LEARNING 

In a nutshell, machine learning is the science of deriving insights, patterns and 

predictions from data. It is about constructing and training mathematical models 

that can infer or predict from given data points. Data would be numeric values 

harvested from measurements, surveys, or interactions with technology, anything 

that can be processed by a computer. 

We usually consider each individual piece of data as a tuple of ‘m’ real numbers, 

data points, represented as x ∈ Rm. A collection D = {𝑥1, ... , 𝑥𝑛} of ‘n’ such data 

points form a dataset.  

Machine learning leverages datasets to draw insights about specific scenarios. The 

fundamental premise is that data obtained from a particular context or domain is 

not random but follows certain patterns that may be too complex for a human to 

analyze and discover. Essentially, a machine learning solution assumes the existence 

of an underlying mechanism that can account for variations in the data. This is 

mathematically expressed by the function 𝑓 ∈  F   with parameters 𝜃 ∈  Θ, modeling 

characteristics of a dataset, with the noise term 𝜖𝑗 accounting for possible 

inaccuracies. F represents the space of possible functions that can be used to model 

the dataset, and Θ represents the space of possible parameter values that can be 

assigned to the function.  For a labeled dataset, the equation would be: 

𝑦𝑗 = 𝑓(𝑥𝑗|θ) + ϵ𝑗 

 

The key paradigms in machine learning are supervised learning, unsupervised 

learning, and reinforcement learning. 
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Supervised learning is about training a model using labeled data to generate the 

right output y for a given input x. Semi-supervised learning is a variant where a 

small set of labeled data helps to assign labels to unlabeled data. 

In contrast, unsupervised learning deals with unlabeled data, intending to discover 

hidden structures within the dataset. These could be clusters, correlations, or 

relational dependencies. 

Reinforcement learning, a type of supervised learning, receives feedback instead of 

labels. This feedback helps tune models for decision-making scenarios where a 

current output could influence the next input, typically framed as a partially 

observable Markov decision process (POMDP). 

 

2.3.1 THE MACHINE LEARNING PROCESS 

The application of machine learning in practical scenarios involves multiple steps: 

Step 1: Data Collection: This is the starting point where we collect and possibly 

annotate examples relevant to the problem at hand. It is crucial that the data 

collected should represent all possible situations the system could encounter when It 

is deployed. In an ideal scenario, the data would be balanced, showing all possible 

use cases in approximately equal proportions, but this might not be feasible all the 

time. 

Step 2: Data Pre-processing: Here, the gathered data is converted into a format that 

is easier to process, and any faulty data points are removed. For instance, we might 

convert text data into a suitable numeric form or smooth out any noise in sensor 

data. 

Step 3: Data Splitting and Model Selection: Next, we divide the data into two 

separate sets: one for training the model and another for testing it. The type of 
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model to be used will depend on the data and the use case, requiring some domain 

expertise. As we dive deeper into model selection, there are many more specific 

choices to make, like deciding the number of states in a Markov chain or the depth 

of a decision tree. However, It is becoming common to use flexible models, such as 

deep neural networks, which are applicable to a wide range of situations. 

Step 4: Training Phase: Here, we adjust the parameters of the chosen model to best 

match the training data. This is done automatically via learning algorithms, often 

using optimization techniques. For this kind of mathematical learning, we need to 

measure how well the model and the current parameters match the training data. 

We do this through an error or loss function, which we seek to minimize during the 

training process. It is worth noting that the choice of loss function should be made 

considering the data and model. 

Step 5: Testing Phase: The model, once trained, is evaluated on the test data set. 

The performance measure used for this evaluation will again depend on the specific 

application. In a classification task, for instance, we often check the accuracy, which 

is the percentage of correct class predictions, while for regression we check the error 

distance from predicted to actual points. Remember that the training and testing 

data sets must be independent, to ensure we are assessing the model’s ability to 

generalize to new data. 

Step 6: Deployment: After the model has been thoroughly tested and shown to 

perform reliably and accurately, it can be launched in the real world.  

Overall, the described process is most common in situations where systems need to 

make data-driven predictions, suggest actions or decisions based on data, or classify 

new observations or measurements. The capabilities of a machine learning system 

largely depend on the nature of the available training data and the chosen model.  
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2.4 QUANTUM ALGORITHMS 

A quantum algorithm is a procedural set of directions that directs the actions of a 

quantum computer. The promise of quantum algorithms lies in their potential to 

solve certain computational problems faster than classical algorithms, usually due to 

quantum superposition, allowing a quantum computer to examine many possible 

solutions simultaneously, and quantum interference, guiding the quantum computer 

towards the correct answer. 

Navigating this landscape, one inevitably wonders: Are there problems that can be 

solved efficiently on a quantum computer? To illustrate this point, Deutsch, in his 

exploration of a universal quantum computer, demonstrated quantum parallelism by 

devising a method to compute the parity f(0)⨁ f(1) of a one-bit function. 

Building upon this groundwork, Deutsch and Jozsa advanced a quantum algorithm 

that exceeded the efficiency of classical counterparts for a specific problem (Deutsch 

& Jozsa, 1992). This significant step motivated the quest for algorithms capable of 

tackling “real” problems.  

In this chapter, we will examine the Deutsch-Jozsa algorithm, which serves as a 

starting point of our understanding of quantum efficiency. Following that, we will 

explore other notable quantum algorithms, such as Shor’s algorithm, celebrated for 

its potential to crack cryptographic codes, and Grover’s algorithm, known for its 

prowess in searching unsorted databases. 

2.4.1 FAMOUS QUANTUM ALGORITHMS EXPLAINED 

2.4.1.1  Deutsch-Jozsa Algorithm 

The problem itself, called Deutsch’s problem (Deutsch & Jozsa, 1992), revolves 

around determining whether a given binary function is constant (having the same 
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output for all inputs) or balanced (having an equal number of zeros and ones as 

outputs).  

In the classical computing paradigm, we would need to evaluate the function for half 

the inputs plus one to conclusively establish whether the function is balanced or 

constant. For a function with a large number of inputs, this process can quickly 

become computationally expensive (O(n)=2𝑛−1 + 1). 

In contrast, the Deutsch-Jozsa algorithm solves this problem using a quantum 

computer with only a single query, regardless of the size of the input. This 

performance leap is due to superposition, allowing to examine possible input states 

simultaneously.  

To accomplish this, the algorithm prepares a quantum system in a superposition of 

all possible input states and then applies the quantum version of the function (called 

an oracle). This operation transforms the quantum states in a way that depends on 

the function values. Finally, a measurement strategy reveals whether the function is 

constant or balanced without the need to inspect each state individually. 

The Deutsch-Jozsa algorithm, while not practical for real-world applications due to 

the artificial nature of the problem, represented a milestone in quantum computing. 

It provides a clear demonstration of how quantum computers can outperform 

classical computers under the right circumstances. 

2.4.1.2  Grover’s Search Algorithm 

Grover’s algorithm, (Grover, 1996) is a quantum algorithm for unstructured search 

problems. Simply put, it is a way to speed up searching in an unsorted database.  

Imagine we have a huge list of items, and only one item is marked as the “target.” 

In classical computing, on average, we would need to check half of the items in the 

list before finding the target. In the worst case scenario, we might even have to 

check the entire list. This is what is called a linear search, a classical algorithm. 
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This is where Grover’s algorithm steps in, being able to find the target item in 

roughly square root of the number of items in the list, significantly faster than any 

classical algorithm. This is a quadratically faster search, which in the world of 

computation, is a substantial speed boost, especially for large lists. 

Now, let’s break down how Grover’s algorithm works: 

• Initialization: All quantum states are prepared in a superposition (equal 

probability of being any item in the list). 

• Oracle Application: An oracle function is applied to the quantum states, 

which marks the target item by flipping its phase (in other words, 

multiplying it by -1). 

• Amplitude Amplification (Diffusion Operator): This step amplifies the 

probability of the marked target state and decreases the probabilities of the 

non-marked states. This process is repeated several times. 

• Measurement: After approximately the square root of the total number of 

items iterations, a measurement is performed, revealing the target item with 

high probability. 

So, Grover’s algorithm leverages superposition and interference, to significantly 

speed up the process of searching in an unsorted list or database. It is important to 

note, however, that while Grover’s algorithm accelerates unstructured searches, it 

does not apply to structured problems like factoring, where other quantum 

algorithms, like Shor’s Algorithm outperform it. 

2.4.1.3  Shor’s Algorithm 

This algorithm is in essence a factorization algorithm for finding the prime factors of 

an integer (Shor, 1994). To understand the importance of this algorithm we are 

going to first contextualize its implications in cryptography. 
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Public key cryptography is a widely used method of encryption that involves a pair 

of encrypt-decrypt keys, ideal for nowadays multi-user environments, being RSA the 

most popular algorithm. The security of RSA is based on the difficulty to find the 

factors of large integers that are the product of two large prime numbers.  

The key parameter of RSA is 𝑁 = 𝑝 ⋅ 𝑞 , where p and q are big prime numbers. If 

we could find p and q, we could break RSA scheme, come up with the private key 

and be able to decrypt ciphertexts which are encrypted messages. 

Peter Shor developed in 1994 an algorithm that is able to find these factors in 

polynomial time when run in a quantum computer, instead of the usual exponential 

time it takes when run on a classical computer. However, when run in a classical 

computer it would take even longer thank just factorizing N in other ways. For 

RSA-2048 it would take a classical computer around 300 trillion years to break the 

key, while a perfect Quantum Computer can do it in 10 seconds. However, this 

perfect computer does not exist yet, since practical quantum computers do not have 

the necessary number of error free qubits. Runtime complexities are 

• Best classical factorization algorithm on classical computer:  

o 𝑂 [𝑒(1.9 (𝐿𝑜𝑔𝑁)1/3(𝑙𝑜𝑔𝑙𝑜𝑔𝑁)2/3)] "Number Field Sieve" (wolfram.com, 2015) 

• Shor’s algorithm on perfect quantum computer 

o  𝑂[(𝑙𝑜𝑔𝑁)2 (𝑙𝑜𝑔𝑙𝑜𝑔𝑁)(𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑁)] ≈  𝑂[(𝑙𝑜𝑔𝑁)3] 

Although we are far from achieving this perfect quantum computer, there are papers 

that describe how a quantum computer with noisy qubits could break RSA (Gidney 

& Ekerå, 2021).As for now the largest number factored successfully using Shor’s 

original algorithm in a quantum computer is 21 (Martín-López, et al., 2012) (35 

failed), which is not very hopeful.  

Shor’s algorithm can be split up into three main parts: 
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1) Converting the factoring problem into a period finding problem using the modular 

exponentiation function. Dividing our number by a guest number ′𝑎′ and computing 

the remainder. For good guesses of ′𝑎′  the function is periodic as we increase the 

power of ′𝑎′ . 

2) Using the Quantum Fourier transform to find the period of the modular 

exponentiation function. The key is to send a quantum superposition of numbers to 

avoid exponential time and use the QFT as a computational interferometer so the 

outputs interfere and we only get the answer we want 

3) The period is used to efficiently compute the factors of the original number. We 

will first obtain two numbers that are co-factors of N, (𝑏 ⋅ 𝑝𝑓𝑎𝑐𝑡𝑜𝑟)(𝑐 ⋅ 𝑞𝑓𝑎𝑐𝑡𝑜𝑟) . 

Then by using the Euclidean Greatest Common Divisor algorithm we can obtain p 

and q original factors efficiently.  

 

2.5 QUANTUM MACHINE LEARNING 

Modern machine learning is extremely successful but also a very resource intensive 

endeavor. Very powerful hardware, typically located in data centers, normally 

accessed using cloud platforms is currently needed in order to train complex state-of-

the-art machine learning models. Access to numerous CPUs and GPUs that forms 

clusters are usually offered to users at different prices by large cloud companies such 

as Google Cloud, AWS, or Microsoft Azure. 

Since this trend is likely to continue, it is no surprise that an increasing number of 

machine learning researchers are starting to look at the potential benefits of 

quantum computing. We are going to focus on machine learning quantum-classical 

hybrid algorithms with classical data, however different options include: 

• Quantum algorithms for classical data. 
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• Quantum – classical hybrid algorithms classical data. 

• Classical algorithms for quantum data. 

• Quantum algorithms for quantum data. 

Due to currently low numbers of qubits and high error rates there is a gap between 

the theoretical designs of quantum algorithms and their practical applications. 

2.5.1.1 Data encoding 

One of the challenges for many quantum algorithms is the ability to effectively 

translate classical data into quantum states. Methods for such translations typically 

require a number of gates proportional to O(2𝑛) for a precise representation of 

standard data into an n-qubit state. As a result, scaling concerns must be considered 

as they can easily increase quantum algorithm’s complexity and render any quantum 

speedups useless. (Bauckhage, et al., 2022) 

The issue lies at the heart of state preparation. Consider an n-qubit state: 

|ψ⟩ =  ∑ √𝑝𝑗|𝑗

2𝑛−1

𝑗=0

 

where |j⟩ symbolizes the computational basis state that corresponds with the binary 

encoding of integer j, and 𝑝𝑗 is an arbitrary, fixed, classical probability mass 

function over {0, 1}𝑛. Several types of data can be encoded into this representation:  

• Intensity values of pixels in an 2𝑛/2×2𝑛/2 image 

• Term frequencies over some text corpus with a vocabulary of size 2𝑛 

• Probability of observing a traffic jam on a specific set of streets 

In that representation, a greyscale image in 4K resolution (3840 x 2160 pixel) would 

occupy [𝑙𝑜𝑔2(3840 × 2160)] = 23 qubits. 

However, preparing the state |ψ⟩ demands resources proportional to the dimension 

of the underlying qubit register’s Hilbert space. If n is large, we cannot prepare |ψ⟩. 

Even if a quantum algorithm promises exponential improvement over the best 
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classical algorithm, any advantage is neutralized due to the complexity of preparing 

the initial state. Grover and Rudolph propose a method to generate the quantum 

state efficiently, but their assumptions are often unfulfilled.  

Similar problems arise when we want to interpret the result of a quantum 

computation. An exponential number of results must be measured if the full Hilbert 

space representation of the state encodes our desired outcome. Therefore, any 

quantum speedup could be nullified when all probability amplitudes of the final 

state need to be estimated. 

Finally, several QML assumes state preparations to be given and the existence of 

Quantum Random Access Memories (QRAMs). However, current technologies do 

not allow for the creation of such devices. The quantum mechanical principle, the 

no-cloning theorem, states that it is impossible to create independent identical copies 

of arbitrary quantum states, and this could limit the repeated access to quantum 

states for processing in a QRAM. Even if a quantum algorithm can produce a 

quantum state representation for a solution much faster than classically possible, the 

effort for measuring and reading the resulting state into classical memory could still 

be substantial enough to cancel out any advantage. (Bauckhage, et al., 2022) 

In conclusion, before asserting the superiority of quantum machine learning 

algorithms, it is crucial to consider the efforts for state preparation or measurements 

and compare these against pre and post-processing efforts of efficient classical 

algorithms. 

2.5.1.2 Hybrid algorithms 

Hybrid quantum-classical machine learning algorithms play a crucial role in bridging 

the gap between classical and quantum computing realms. These approaches 

leverage the strengths of both computational paradigms to solve complex problems. 
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In essence, hybrid quantum-classical machine learning algorithms entail the 

utilization of quantum systems to execute certain computationally expensive parts of 

a machine learning task, while classical systems take on the rest of the procedure, 

such as data pre-processing, post-processing, and sometimes even steering the 

quantum component of the algorithm. This composition provides a powerful 

approach to overcome the restrictions of current Noisy Intermediate-Scale Quantum 

(NISQ) devices and harness their potential. 

A prime example of such hybrid models is the Variational Quantum algorithm. This 

algorithm operates by defining a parameterized quantum circuit, the parameters of 

which are updated iteratively by a classical optimization routine to minimize a 

certain cost function. The optimization loop is repeated until an optimal solution is 

reached or a stopping condition is met. The advantage lies in the possibility of 

employing the quantum system’s ability to traverse the complex solution space 

efficiently and the classical system’s capacity for reliable optimization and 

processing. 

Another example is the quantum support vector machine, where the kernel of the 

support vector machine is computed using a quantum device. The quantum device 

offers an efficient way of computing the kernel for higher-dimensional data, after 

which a classical machine learning algorithm can utilize the calculated kernel for 

subsequent steps, such as classification. 

Hybrid quantum-classical machine learning algorithms show great promise (Bonet-

Monroig, et al., 2023), pointing towards a future where classical and quantum 

systems co-exist and work together to solve complex machine learning problems. 

2.5.2 VARIATIONAL QUANTUM CLASSIFIER 

The Variational Quantum Classifier (VQC) is a hybrid quantum-classical machine 

learning algorithm (Schuld, Bocharov, Svore, & Wiebe, 2018). It is one of the 

algorithms that is getting better performance with current quantum hardware 



UNIVERSIDAD PONTIFICIA COMILLAS 

SCHOOL OF ENGINEERING (ICAI) 

DEGREE IN ENGINEERING IN TELECOMMUNICATIONS TECHNOLOGIES 

THEORETICAL CONCEPTS 

44 

(Bonet-Monroig, et al., 2023), characterized by their limited number of qubits and 

susceptibility to noise. The VQC is designed to be robust against noise in the inputs 

and parameters, therefore, suitable for implementation on near-term devices. 

2.5.2.1 Loading the Data into the Quantum System: Feature Map 

The first step in the VQC algorithm is to encode the classical data into a quantum 

system, necessary because quantum computers operate on quantum states, which are 

fundamentally different from classical bits. This is achieved through a process known 

as a feature map. The feature map transforms the classical data into a quantum 

state, effectively mapping an input vector from an N-dimensional real space to a 2𝑛 

dimensional amplitude vector that describes the initial quantum state. The total 

number of qubits used to represent the features corresponds to the letter 𝑛 . This 

process also referred to as state preparation, creates an encoded feature vector which 

is now a ket vector in the Hilbert space of a 𝑛 qubit system. 

Depending on our encoding method, a different number of qubits would be needed. 

One common encoding scheme is amplitude encoding, which is highly efficient and 

allows the encoding of N classical features into 𝑙𝑜𝑔2(𝑁). Therefore, a quantum state 

of n qubits can represent 2𝑛 complex amplitudes, which can be used to encode 2𝑛 

real features. However, it is important to note that while amplitude encoding is 

efficient, it also requires more complex quantum operations to implement, which 

might not be feasible on near-term quantum devices (Weigold, Barzen, Leymann, & 

Salm, 2020). 

In the case of angle embedding, another popular method, each feature in the dataset 

corresponds to one qubit in the quantum system. This is because each feature 

controls the rotation of a qubit around a certain axis. This is a simpler and more 

direct encoding scheme compared to amplitude encoding, but it also requires more 

qubits for a given number of features. 
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2.5.2.2 Variational Circuit 

Once the data is encoded into the quantum system, the next step is to apply a 

variational circuit to the prepared quantum state. The variational circuit is a 

sequence of parameterized quantum gates represented by a unitary operation 𝑈θ 

where θ is a set of adjustable parameters. The purpose of the variational circuit is to 

explore the space of quantum states and find the one that minimizes a given cost 

function. This is achieved by adjusting the parameters θ of the unitary operation. 

2.5.2.3 Classical Optimization Loop 

The classical optimization loop is an iterative process that aims to find the optimal 

parameters θ that minimize the cost function. This is typically achieved using 

classical optimization algorithms such as gradient descent. The optimization loop 

involves a feedback mechanism between the quantum and classical components of 

the algorithm: the quantum component generates a candidate solution (i.e., a 

quantum state), the classical component evaluates the cost function for this solution 

and updates the parameters θ based on the result, and the updated parameters are 

then fed back into the quantum component for the next iteration. 

On the following diagram we see the different parts of the VQC: 

 

Figure 9 - Variational Classifier Block Diagram. Source Q-munity: Building a VQC 
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2.5.2.4 Measurement and Assigning of Label 

After the optimal parameters θ have been found, the final quantum state is 

measured. In the case of the VQC, the measurement is based on the probability of 

measuring the first qubit in state 1. This probability is estimated by repeating the 

entire algorithm multiple times and taking samples from the resulting Bernoulli 

distribution. The final prediction of the model is then obtained by thresholding the 

continuous output of the model, which is the sum of the probability and a learnable 

bias term. If the result is greater than 0.5, the output is 1; otherwise, it is 0. 

2.5.2.5 Conclusion 

The Variational Quantum Classifier is a promising approach for leveraging the 

computational capabilities of quantum computers in combination with classical ones 

for machine learning tasks. By combining quantum state preparation, variational 

circuits, classical optimization, and quantum measurement, the VQC provides a 

robust and flexible framework for data classification.  

The performance and effectiveness of the VQC depend on the choice of feature map, 

the structure of the variational circuit, and the optimization strategy. Therefore, 

further research and experimentation are needed to further advance this quantum-

classical hybrid algorithm to its full potential. 

2.5.3 QUANVOLUTION – QUANTUM CONVOLUTION 

Quantum convolution is an exciting field of research in quantum computing, inspired 

by classical convolution principles, an essential component in machine learning. 

(Cong, Choi, & Lukin, 2019) (Henderson, Shakya, Pradhan, & Cook, 2020) 

2.5.3.1 Classic Convolution in CNNs  

The convolution operation is critical in image processing and is a fundamental part 

of Convolutional Neural Networks (CNNs). These networks, which represent a 
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specific architecture of deep learning models, have demonstrated their proficiency in 

image, video, and audio machine learning tasks. 

In a CNN, the input data, typically an image, is subdivided into smaller, localized 

chunks. The processing of these regions occurs through the use of a filter, also called 

kernel, which is a matrix of weights applied consistently to each chunk of the image. 

The application of the filter generates specific results for each chunk, which are 

typically linked to different channels of a single output pixel. The concept of a 

channel refers to the individual components of a pixel, such as the red, green, and 

blue channels in a color image. 

The cumulative output pixels from this process construct a new, image-like 

structure. Convolutional layers are usually followed by pooling layers that reduce 

dimensionality. Then, they are further processed through additional layers, if 

required, each of which employs the same convolution process with different filters. 

A key feature of CNNs is their capability to learn spatial hierarchies and patterns in 

the data adaptively. As a result, the weights in these filters are not static but get 

updated and optimized during the learning process.  

2.5.3.2 Quantum Convolution 

Quantum convolution extends the idea of classical convolution to quantum 

variational (Henderson, Shakya, Pradhan, & Cook, 2020): 

1. Input Image Embedding: The first step involves embedding a small region of the 

input image into a quantum circuit. This image region is typically a grid of pixels, 

with each pixel's color intensity value corresponding to a particular state of a qubit. 

It is important to note that qubits are initialized in the ground state, the lowest 

energy state, so it is a uniform starting point that allows superposition and 

entanglement. 
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2. Parameterized Rotations: Once the qubits have been initialized, parameterized 

rotations are applied to them. These rotations, change the state of the qubits based 

on specific parameters such as the intensity values of the pixels in the image region. 

3. Quantum Computation: Following the application of the parameterized rotations, a 

quantum computation is executed. This computation is represented by a unitary 

transformation U, which can be considered the "quantum equivalent" of a filter in 

classical convolution. The transformation could be generated by a variational 

quantum circuit or a simpler random circuit. 

4. Measurement: After the quantum computation, the quantum system undergoes 

measurement. In quantum mechanics, the measurement process forces the qubit into 

one of its possible states, yielding classical information. Each measurement provides 

a specific outcome for each qubit, and after several measurements, we have 

frequencies for classical expectation values, essentially probabilities associated with 

the states of the qubits. 

5. Output Mapping: The classical expectation values derived from the measurement 

step are then mapped to different channels of a single output pixel. This process 

mirrors the operation in a classical convolution layer, where the result of the kernel 

operation on an image region is mapped to an output pixel. 

6. Iteration: Steps 1-5 are then repeated for each region of the input image, allowing 

the entire image to be scanned. The output is a multi-channel image similar to the 

output of a traditional CNN layer. 

7. Further Processing: The output image from the quantum convolution layer can then 

be passed on to further layers for additional processing. These could be quantum 

layers, using the same process as above, or classical layers, utilizing traditional CNN 

techniques. 

 

The following diagram Figure 10 represents a ‘quanvolutional’ layer 
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Figure 10 - Quantum Convolutional Layer. Source: Made from (Henderson, Shakya, Pradhan, & Cook, 2020) 

 

2.5.3.3 Quanvolution filters and motivation 

Unlike classical convolutional filters that apply element-wise matrix multiplication, 

quanvolutional filters use quantum circuits to transform input data. Quantum 

circuits are able to generate sophisticated kernels capable of tasks beyond classical 

methods. This unique feature of quantum convolution holds promising potential to 

revolutionize image processing and related fields.  

Strengths include its hybrid nature, no QRAM requirements, and potential resiliency 

to consistent error models, making it ideal for the NISQ computing era. Limitations 

involve determining optimal interfacing with classical data, a potentially large 

number of quantum circuit executions, and a definitive demonstration of quantum 

advantage. Despite its potential benefits, proving the usefulness of the QNN 

approach over classical methods is essential for its wider acceptance. 
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Section 3.  TECHNOLOGIES INVOLVED 

The following section details the specific libraries and quantum computing 

frameworks used during the project. 

3.1 IDE AND PROGRAMMING LANGUAGE: PYTHON 

This project's primary Integrated Development Environment (IDE) was Visual 

Studio Code with Jupyter Notebooks. Due to its suitability for experimental and 

exploratory projects, the notebook format was chosen rather than a regular scripting 

interface.  

As a programming language, the clear choice was python. Due to its wide use in 

machine learning and data science, developers and companies are now creating high-

level quantum libraries for python, which made it ideal for our use case. 

To ensure smooth execution and prevent potential conflicts among libraries, the 

project was run on virtual environment with just the required packages installed. 

3.2 QUANTUM PROGRAMMING LIBRARY: PENNYLANE 

There are several Python libraries designed to build quantum algorithms and 

interact with quantum computer. The following are the most popular: 

• Qiskit: An open-source library developed by IBM, Qiskit provides tools for 

creating and manipulating quantum programs. (Qiskit, 2023) 

• Cirq: An open-source library developed by Google, Cirq is specifically tailored 

for running on Noisy Intermediate Scale Quantum (NISQ) circuits. (Cirq, 

2023) 
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• PennyLane: An open-source library developed by Xanadu Quantum 

Technologies that integrates quantum computers into existing machine 

learning frameworks, providing tools for quantum machine Learning. 

(Bergholm, et al., 2018) 

From these libraries, we chose Pennylane due to its focus on machine learning. 

PennyLane allows programmers to interface with quantum computing hardware and 

simulators across multiple platforms. Its distinctive feature is its use of differentiable 

quantum programming, which facilitates the optimization of quantum and hybrid 

quantum-classical computations. This feature sets PennyLane apart as it makes it 

possible to perform computations on a quantum device and compute their gradients, 

providing key information for optimizing quantum circuits and algorithms. 

In essence, PennyLane functions as a quantum-computing-compatible extension to 

popular machine learning libraries such as TensorFlow or PyTorch. It essentially 

"quantum-enables" these libraries, allowing for the development of quantum machine 

learning models alongside classical models. 

A core design principle of PennyLane is its multi-platform nature. It allows quantum 

circuits to be run on various types of quantum simulators or hardware devices with 

minimal adjustments, simplifying the task of optimizing communication with 

devices, compiling circuits to suit the backend, and choosing the best gradient 

strategies. 

While it comes with built-in simulator devices, PennyLane is designed to work 

seamlessly with external quantum computing platforms such as IBM’s Qiskit, 

Google’s Cirq, or Rigetti’s Forest. This flexibility allows programmers to experiment 

with different quantum hardware and simulators while using a unified interface. 

In an academic sense, PennyLane represents an important advance in the field of 

quantum computing, bridging the gap between quantum and classical computation 
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and offering new possibilities for research and application in quantum machine 

learning. (Bergholm, et al., 2018) 

3.2.1 PENNYLANE-QISKIT PLUGIN 

This plugin integrates PennyLane capabilities with IBM Qiskit, which is IBM 

framework for quantum computing. This allows us to compile and run our pennylane 

defined quantum circuits on IBM’s quantum simulators and quantum computers. 

3.3 QUANTUM SIMULATION & COMPUTING PLATFORM: IBMQ 

IBM Quantum is a platform developed by IBM that provides access to quantum 

computers, simulators, and a comprehensive set of tools for developing quantum 

applications. The platform provides a cloud-based quantum computing service that 

allows users to run quantum programs on actual quantum computers and powerful 

simulators located at IBM's facilities. (IBM Quantum, 2023) 

Qiskit is IBM's open-source quantum software development kit (SDK) which allows 

users to create quantum algorithms and circuits. As described previously, we are 

using pennylane-qiskit plugin to integrate both of them and be able to code using 

the pennylane library while running the circuits on IBM’s hardware, 

IBM has several quantum simulators and computers of varying qubit counts. Some 

are free to use for academic use while higher qubit systems are only available with 

premium enterprise-grade access. However, due to the popularity of IBM Quantum 

as the main platform to access quantum computing, the wait times and queues are 

very long, even for the least powerful of their quantum computers. The following 

shows the available quantum computers first, followed by the simulators, each with 

their respective qubits, quantum volume and other features. 
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Figure 11 - Free to use available quantum computers & simulators. Source: Screenshot IBMQ 

As we see, IBM’s most powerful free to use quantum computer: ibm_perth has only 

7 qubits, in contrast with the 127 qubit Eagle Quantum computer available at 

enterprise level. We also see the high number of jobs being launched by people 

across the world, at a specific point in time, which causes our algorithms to take 

hours or days to run. 

3.3.1 IBM QUANTUM JOBS 

Jobs are executions of the quantum circuit on IBM’s platform. Key factors range 

from the structure of the model and the characteristics of the dataset to the 

limitations of current quantum hardware and software. 

The IBM quantum computer operates under a queue-based system. Each job 

submitted is placed in a queue and must wait its turn to be executed. The waiting 

time can vary significantly, but it typically ranges from an hour to several hours. 

Given the large number of jobs required to train the variational classifier, the 

cumulative waiting time can be exceedingly long. 

 



UNIVERSIDAD PONTIFICIA COMILLAS 

SCHOOL OF ENGINEERING (ICAI) 

DEGREE IN ENGINEERING IN TELECOMMUNICATIONS TECHNOLOGIES 

STATE OF THE ART 

55 

Section 4.  STATE OF THE ART 

4.1 QUANTUM COMPUTING 

Quantum computing, a domain once reserved to the world of theoretical physics, has 

rapidly transformed into an exciting field of practical research and development. 

This shift has been primarily fueled by advancements in quantum hardware 

technologies. However, the road to building reliable quantum computers is filled 

with unique challenges. 

A critical term in contemporary discussions around quantum computing hardware is 

NISQ, which stands for Noisy Intermediate-Scale Quantum. This refers to quantum 

devices that are available today and in the near future. These devices typically have 

a few to a few hundred qubits and are subject to noise, meaning that errors can and 

do occur during their operation. Despite this, NISQ devices can still perform some 

tasks that surpass the capabilities of classical computers, thus proving their 

potential. 

There's a vast spectrum of technologies employed for creating qubits - the basic 

units of quantum information, and It is still unclear which one, if any, will triumph 

in the long run. The main challenge lies in maintaining quantum coherence or 

keeping a qubit in its quantum state long enough to perform calculations.  

Temperature is another substantial challenge in quantum computing. Quantum 

processors require very low temperatures, often close to absolute zero, to function. 

This is because any thermal energy in the environment can cause qubits to change 

state or lose coherence. Cooling systems for quantum computers are complex and 

contribute significantly to the size and energy cost of these machines. 
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Despite these challenges, the pace of progress in quantum computing hardware is 

promising. Researchers around the globe are continually innovating and developing 

techniques to increase qubit counts, improve qubit quality, and reduce or correct 

errors.  

4.1.1 QUANTUM HARDWARE  

Many companies are currently developing quantum hardware and there are several 

different methods to implement qubits. The following are the main ones:  

• Gate-Based Superconducting Processors: These quantum computers rely on 

superconducting circuits operating at very low temperatures. The property of 

superconductors is that their electrical resistance drops to zero at certain 

temperatures (close to absolute zero), allowing electric currents to persist 

indefinitely without a power source. Superconducting qubits are created within 

these circuits using capacitors and Josephson junctions. They help to isolate two 

energy levels to form a qubit - the '0' and '1' states. By employing microwave 

pulses, the state of the superconducting qubit can be manipulated, leading to 

superposition of states and entanglement between qubits.  

• Gate-Based Ion Trap Processors: Here, qubits are implemented using the electronic 

states of ions, which are charged atoms. These ions are held above a trap through 

electromagnetic fields, and quantum gates are applied using lasers that alter the 

ions' electronic states. A significant advantage is that these qubits use atoms from 

nature, eliminating the need for synthetic manufacturing. 

• Photonic Processors: These quantum computers use special light sources that emit 

specific light pulses. The qubit counterparts correspond to modes of continuous 

operators such as position or momentum. 

• Neutral Atom Processors: Similar to trapped ion technology, neutral atom 

processors use light instead of electromagnetic forces to trap the qubits. The atoms 

are neutral, i.e., not charged, and the circuits can work at room temperatures, 

making them more practical. 



UNIVERSIDAD PONTIFICIA COMILLAS 

SCHOOL OF ENGINEERING (ICAI) 

DEGREE IN ENGINEERING IN TELECOMMUNICATIONS TECHNOLOGIES 

STATE OF THE ART 

57 

• Rydberg Atom Processors: These involve excited atoms, known as Rydberg atoms, 

with electrons that are positioned further from the nucleus. These atoms have 

peculiar properties, such as exaggerated responses to electric and magnetic fields, 

and longer lifespans. As qubits, they offer strong and tunable atomic interactions. 

• Quantum Annealers: This hardware places the system's qubits in an absolute 

energy minimum through a physical process, then alters the system's configuration 

to reflect the problem to be solved. Although they can have a larger number of 

qubits than gate-based systems, their use is limited to specific cases. D-wave, one 

of the most experienced quantum computing companies, developed a qubit 

quantum annealing system. 

It is worth noting that there is no consensus on the "best" qubit technology yet. 

However, given its promising potential, it is in gate-based superconducting 

processors where most major tech corporations such as Google, IBM, Intel, and 

Rigetti are invested.  

IBM was one of the first major corporations to bet on quantum computing and start 

developing their own hardware. Since we chose IBM quantum platform to run our 

algorithms, we will focus on their recent advancements. Below we see IBM’s 

roadmap when it comes to quantum computing. On November 2022, IBM unveiled 

its new 433 qubit ‘Osprey’ processor triplicating its predecessor Eagle which had 127 

qubits.  
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Figure 12 - IBM Quantum Computing Roadmap. Source: ibm.com 

It is important to note that the qubit number is not the only metric of quantum 

computer performance. 

4.1.2 QUANTUM VOLUME 

While the initial stages of quantum computing's development were often 

benchmarked by the total number of qubits, it was soon evident that just the qubit 

count was not a comprehensive measure of a quantum computer's performance. In 

response, IBM introduced Quantum Volume (Baldwin & Mayer, 2022), a more 

holistic performance metric. Quantum volume considers various factors, including: 

• Number of qubits: The basic building blocks of quantum information. 

• Quality of qubits: How long qubits can maintain their state (coherence time). 

• Gate error rates: The accuracy of operations (gates) performed on qubits. 

• Connectivity between qubits: How well qubits can interact with each other. 

• Software and circuit compiler efficiency: The ability to translate complex 

algorithms into executable instructions. 



UNIVERSIDAD PONTIFICIA COMILLAS 

SCHOOL OF ENGINEERING (ICAI) 

DEGREE IN ENGINEERING IN TELECOMMUNICATIONS TECHNOLOGIES 

STATE OF THE ART 

59 

By assessing these elements, quantum volume provides a more rounded measure of a 

quantum computer's overall power and potential problem-solving ability. As a 

single-number metric, it aids in tracking the advancement and performance of 

quantum computing hardware more effectively than a simple qubit count. 

On June 30, 2023, a significant milestone was achieved in the field of quantum 

computing by Quantinuum's System Model H1-1, powered by Honeywell 

(Quantinuum news, 2023). This system demonstrated a quantum volume of 524,288, 

marking a substantial leap in performance improvement, being currently the highest 

reported, impressively 1000x higher than the next best. 

They use trapped-ion computing which  allow for flexibility in algorithmic design 

and shows a clear pathway to scaling. The H1 system operates with a 20-qubit 

universal quantum computer and achieves two-qubit gate fidelities of 99.87% 

(Quantinuum Hardware, 2023), mirroring the best fidelities observed in leading two-

qubit experimental setups. 

4.1.3 QUANTUM SIMULATORS 

Quantum simulators are powerful tools that play a crucial role in quantum 

computing and its applications, including machine learning. In essence, these 

simulators mimic the behavior of a quantum system using classical computation. 

This allows researchers to study and explore quantum systems without needing 

access to a full-scale quantum computer, which is presently a resource with limited 

availability. 

The use of quantum simulators is crucial for exploring new applications of quantum 

computing, refining computational techniques, and experimenting with error 

correction methods. Additionally, they offer an invaluable platform for education 

and training, fostering the development of a new generation of quantum 

programmers and researchers. 
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In the realm of quantum simulators, IBM has established itself as a leading player. 

The company provides some of the most powerful free-to-access quantum simulators, 

enabling a wider audience to delve into the world of quantum computing and its 

potential applications, including machine learning. 

4.1.4 THE FUTURE 

Despite the promise, quantum computing still grapples with significant technological 

challenges. Currently, qubits' physical implementation struggles with stability, 

decoherence, error tolerance, and scalability. These issues necessitate multiple 

physical qubits for error correction to perform useful computations. Thus, there is a 

gap between the theory and practice of quantum algorithm design, with many 

theoretically valid algorithms not yet feasible due to limited numbers of practical 

logical qubits. 

Furthermore, today's quantum computing is still rooted at the bit level, meaning it 

lacks the abstract data structures we're used to in higher-level programming. . Even 

basic programming patterns like variable assignments face challenges due to 

quantum principles like the no-cloning and no-broadcast theorems, which prevent 

creating independent identical copies of arbitrary quantum states. 

As we look forward to the future of quantum computing, one of the crucial aspects 

that emerges is the advancement in hardware. The development of reliable quantum 

processors capable of mitigating noise and decoherence effects poses a formidable 

challenge. However, researchers are ceaselessly striving to improve error correction 

techniques and design better quantum processors (Quantinuum news, 2023). 

Quantum computing also offers immense potential in the realm of optimization 

problems and machine learning. Complex problems, such as those found in logistics 

and supply chain management, are often difficult to solve using classical computers 

due to their inherent limitations. 
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The promise of quantum computing extends to chemistry and materials science as 

well. By enabling the simulation of complex chemical reactions, it could fast-track 

the creation of new materials and drugs, pushing advancements in medicine and 

science. Additionally, the implications for cryptography are significant, where it 

could crack some of the current encryption methods, but also help develop new, 

stronger encryption resistant to quantum attacks.  

In short, despite the challenges, the future of quantum computing is promising, 

4.2 QUANTUM MACHINE LEARNING 

There has recently been a “quantum machine learning mini-revolution,” and the 

number of scientific reports on quantum circuits for certain general problems in 

machine learning has grown considerably over the past decades. 

However, many of these papers explore quantum algorithms designed for perfect 

quantum computers with many logical qubits instead of real physical qubits. Some 

of the most promising algorithms require encoding and decoding classical data into 

quantum data, which is not yet clear how fast it can be done. In addition, these 

authors hypothesize using Quantum Memory or QRAM, which has not yet been 

achieved, and it is questionable whether it is possible in its true sense. 

Therefore, in the last years, the most promising results are from variational 

quantum computing algorithms or hybrid quantum-classical methods. The classical 

computer is used to adjust the parameters of quantum gates in a parametrized 

quantum circuit to optimize its performance. The quantum computer is then used to 

perform the actual computation, and the measurement results are fed back to the 

classical computer in order to further refine the parameters. 

Overall, there have been many recent breakthroughs in Quantum Enhanced Machine 

Learning by effectively using quantum algorithms for  clustering, SVM, Boosting 
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and Neural networks or, as they are more commonly called: parametrized quantum 

circuits. Particularly variational quantum circuits have been extensively tested and 

implemented over the last few years using different architectures and libraries 

(Bauckhage, et al., 2022). On the other hand, quantum convolution is a more recent 

concept that has not yet been experimented with as widely as other quantum 

algorithms. Some researches (Henderson, Shakya, Pradhan, & Cook, 2020) have 

explored their potential utility and implemented it with varying success. 

4.2.1 HYBRID QUANTUM-CLASSICAL MACHINE LEARNING 

On this subsection, we discuss some of the most recent literature regarding hybrid 

quantum-classical machine learning publications. 

A key breakthrough discussed by (Abbas, et al., 2021) is the Quantum Neural 

Networks (QNN). QNNs are shown to train faster on noisy quantum devices. They 

introduced a new concept, 'effective dimension', which measures a model's capacity 

to predict unseen data accurately, crucial for the machine learning model's 

generalization capability. 

In another innovative approach, (Chen & Yoo, 2021) combined quantum and 

classical machine learning methods. Their model, called federated QML, tackles the 

rising privacy concerns while utilizing the limited quantum hardware efficiently. 

Essentially, this approach allows local quantum devices to work as clients, handling 

both classical and quantum data. 

Quantum algorithms for image classification are also being developed. Notably, 

(Dang, Jiang, Hu, Ji, & Zhang, 2018) presented the Quantum K-Nearest Neighbors 

(QKNN) algorithm, a quantum version of a popular classical machine learning 

model. Another important contribution (Adhikary, Dangwal, & Bhowmik, 2020) 

introduced a quantum classifier that encodes N-dimensional data using a single 

quantum system. 
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(Havlíček, et al., 2019) proposed two quantum techniques in supervised machine 

learning, the Variational Quantum Classifier (VQC) and Quantum Kernel Estimator 

(QKE). These methods utilize the quantum state space for feature extraction and 

data classification. 

These are just a few of the most promising publications in the area over the last few 

years. Due to increasing interest and widely available usage of quantum computers 

through cloud platforms, more researchers are entering and experimenting on this 

relatively new field. 
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Section 5.  SCOPE OF THE PROJECT 

5.1 JUSTIFICATION 

In the current era of data-driven decision-making, Machine Learning (ML) has 

emerged as the foundation of numerous industry domains. Simultaneously, Quantum 

Computing (QC) is making advancements with its potential to resolve issues beyond 

the scope of classical computing. A unique fusion of these two technologies—

Quantum Machine Learning (QML)—promises to unlock new paradigms in data 

processing and knowledge discovery. 

The motivation for this project springs from the understanding that QML is an new 

but rapidly evolving field. Novel models and algorithms are being introduced 

frequently, reflecting the active research interest and the potential for 

groundbreaking advancements. Within the significant and constant progress, there 

are possibilities for new adaptations of machine learning algorithms for NISQ 

hardware. This project aims to bridge this gap, exploring the practical 

implementation variational classifiers and quantum convolution. 

Notably, leading tech corporations are showing a keen interest in the quantum 

space. Tech giants like IBM and Google are not only developing advanced quantum 

hardware but also spearheading the integration of QC into areas like machine 

learning and artificial intelligence by developing their own libraries. 

Moreover, at Accenture, there is already an increasing demand from clients to 

understand the impact of quantum computation on their operations and many are 

eager to explore potential projects that leverage quantum computing. Thus, there is 

a clear market need for practical exploration of QC applications in ML. This project 

will serve as a valuable guide to demonstrate the practical benefits and challenges of 

implementing QML algorithms. It will also help in preparing businesses for the 
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quantum future by providing them with a roadmap for leveraging QC in their 

machine learning applications. 

In summary, this project is an exploration of the intersection of QC and ML. It aims 

to provide a practical perspective on its implementation, and inform how quantum 

computation can revolutionize traditional machine learning techniques. 

5.2 OBJECTIVES 

• Clearly explain the theory behind quantum computing and its applications in 

certain aspects of machine learning. 

• Program and test different algorithms. 

• Get decent accuracy and show how models could be scalable in the future 

with higher qubit quantum computers. 

• The objective is not surpassing classical computers in speed or accuracy but 

experimenting with executing algorithms in real quantum computers and 

show synergies between QC and ML. 

5.3 METHODOLOGY 

For this project, a combination of theoretical and practical methods will be used to 

explore the potential of quantum computing to enhance machine learning. The 

theoretical approach will involve research into the theoretical foundations of 

quantum computing and its potential applications to machine learning algorithms.  

The practical approach will involve utilizing IBM quantum computers and libraries 

such as Qiskit and PennyLane to implement quantum computing algorithms and 

analyze their performance compared to classical machine learning algorithms. 

Different data sets will be used to evaluate the performance of the algorithms. 

Experiments will be conducted on the IBM quantum platform and the performance 

of the algorithms will be measured. The results of these experiments will be analyzed 
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and discussed to draw conclusions on the effectiveness and applicability of quantum 

computing for machine learning tasks. 

1. Research: Research existing quantum algorithms and existing quantum 

computing libraries to identify the most suitable algorithms for the machine 

learning task. 

2. Theoretical explanation of Quantum Physics, the math behind Quantum 

Computing, Quantum Gates, and Circuits, how Quantum Computing can be 

applied to Machine Learning algorithms and how these algorithms actually 

work. 

3. Design: Code using python’s libraries like Qiskit, PennyLane and 

TensorFlow, different quantum algorithms and variations. 

4. Implementation: Implement the quantum algorithm on IBM quantum 

computers by accessing their machines remotely   

5. Evaluation: Evaluate the results on metrics like accuracy, speed, and 

scalability and refine the quantum algorithms if needed  
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Section 6.  DEVELOPMENT 

6.1 VARIATIONAL CLASSIFIER  

This section covers the software implementation of variational quantum classifiers 

with Pennylane, pennylane-qiskit and Keras python libraries. As mentioned in 

section 2.5.2, variational quantum circuits are also referred to as quantum neural 

networks in some publications (Farhi & Neven, 2018). 

We start by defining a seed so that the algorithms that we use throughout the 

development of this section behave in a deterministic way. 

def set_seeds(seed=10): 

    np.random.seed(seed) 

    tf.random.set_seed(seed) 

    random.seed(seed) 

    tf.keras.utils.set_random_seed(seed) 

    tf.config.experimental.enable_op_determinism() 

 

6.1.1 A HYBRID APPROACH 

As described in section 2.5.2, the variational classifier quantum circuit is formed by 

three main components: 

1. Feature map 𝒰Φ(𝓍): responsible for encoding classical data x⃗⃗ into quantum 

states that will be processed in the quantum circuit by the algorithm.  

2. Variational layer 𝑈(�⃗�) This part of the circuit is parameterized by �⃗�. These 

are the parameters adjusted during the training process. 

3. Measurement: The final step of the circuit involves measuring the qubits, 

which produces classical information 
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The VQC is a hybrid algorithm that combines this quantum circuit with classical 

optimization as represented in Figure 13. 

 

Figure 13 - Scheme of a hybrid quantum-classical algorithm (VQC).  

Source: (Macaluso, Clissa, Lodi, & Sartori, 2020) 

The key features of our model architecture are: 

• The forward propagation is quantum in nature. 

• With measurement, we retrieve classical information and build the loss/cost 

function classically. 

• The parameters �⃗� are updated to optimize the cost function classically. 

• In this sense, the backpropagation is classical. 

6.1.2 DATA 

For the experiments, we have chosen the Iris dataset (Fisher, 1936), widely used as 

a starting point for classification tasks. The dataset contains 150 rows of data, 

divided evenly among three distinct iris flower species: setosa, versicolor, and 

virginica. Each flower has four numerical features: sepal length, sepal width, petal 

length, and petal width, all measured in centimeters.  

In the following plot we see an overview of the distribution and correlation of the 4 

different features for the three different flower species. 
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Figure 14 - Iris data distributions pairplot - Source: Self-made with seaborn 

We start by separating the data into a training, validation, and test set with 

proportions of 60%, 20%, 20% where stratification is applied to ensure proportional 

class distribution. The target classes are represented numerically using categorical 

codes to convert them into numeric labels. 

For the neural network, the target classes are further transformed into binary 

vectors which is important for the neural network to perform multi-class 

classification. 

6.1.3 ARCHITECTURE: VARIATIONAL QUANTUM LAYER 

We start by defining an execution backend which describes what hardware, either a 

quantum simulator or a quantum computer, will be used for the different 

computations. 
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dev = qml.device("default.qubit", wires=n_qubits) 

dev_qiskit = qml.device("qiskit.aer", wires=n_qubits, seed_simulator=42) 

 

We define two different backends: a default backend for circuit execution and a 

backend with visualization capabilities through the qiskit framework to represent 

quantum circuits. 

6.1.3.1 Feature map 

@qml.qnode(dev_qiskit) 

def feature_map(inputs): 

    qml.AngleEmbedding(inputs, wires=range(n_qubits)) 

    return [qml.expval(qml.PauliZ(i)) for i in range(n_qubits)] 

dev_qiskit._circuit.draw("mpl") 

 

Figure 15 - Feature map qiskit compiled quantum circuit. Source: run on IBMQ 

Angle Embedding operation is used to encode the inputs into the quantum circuit by 

applying rotation gates with angles specified by the inputs. The function then 

returns the expectation values of Pauli-Z measurements for each wire (qubit) in the 

circuit. The feature map is then visualized: 

On Figure 15 we see IBM’s low-level compilation of the circuit we defined using 

high-level penny lane code. We can see four wires (qubits), each representing one of 

4 features in the dataset, followed by the Rx rotation gates and the measurements. 



UNIVERSIDAD PONTIFICIA COMILLAS 

SCHOOL OF ENGINEERING (ICAI) 

DEGREE IN ENGINEERING IN TELECOMMUNICATIONS TECHNOLOGIES 

DEVELOPMENT 

73 

6.1.3.2 Variational Layer 

We now build a Variational Quantum layer which involves parameterized quantum 

operations that can be adjusted to optimize a target function for classification. 

@qml.qnode(dev_qiskit) 

def var_layer(parameters): 

    qml.StronglyEntanglingLayers(parameters, wires=range(n_qubits)) 

    return [qml.expval(qml.PauliZ(i)) for i in range(n_qubits)] 

 

This function takes parameters as an argument, which represents the parameters of 

the variational layer. The qml.StronglyEntanglingLayers operation is used to apply a 

layer of entangling gates with the specified parameters on all the wires (qubits) of 

the circuit. The function then returns the expectation values of Pauli-Z 

measurements for each wire. 

We are now going to see how 1 and 2 variational layers are represented: 

shape = qml.StronglyEntanglingLayers.shape(n_layers=1, n_wires=4) 

parameters = np.random.random(size=shape) 

dev_qiskit._circuit.draw("mpl") 

 

Figure 16 - 1 Entangling layer qiskit compiled quantum circuit. Source: run on IBMQ 

shape = qml.StronglyEntanglingLayers.shape(n_layers=2, n_wires=4) 

parameters = np.random.random(size=shape) 

dev_qiskit._circuit.draw("mpl") 
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Figure 17 - 2 Entangling layer qiskit compiled quantum circuit. Source: run on IBMQ 

We generate initial parameters, to feed into the Variational Quantum layer,  with 

the appropriate shape determined by the number of layers in the strongly entangling 

layer and the number of qubits involved. 

On the visualizations we can see the Rz rotation gates and the CNOT gates 

resulting from our variational circuit compiled. We see that the only difference when 

using 2 strongly entangling layers instead of 1 is the duplication of gates before the 

final measurements. 

6.1.4 MODEL 

set_seeds(10) 

n_qubits = X_train.shape[1] 

n_classes = y_train.nunique() 

n_var_layers = 2 

weight_shapes = {"parameters" : (n_var_layers, n_qubits, 3)} 

 

# ================ Quantum layer definition ================ 

@qml.qnode(dev) 

def vqc_layer(inputs, parameters): 

    qml.AngleEmbedding(inputs, wires=range(n_qubits)) 

    qml.StronglyEntanglingLayers(parameters, wires=range(n_qubits)) 

    return [qml.expval(qml.PauliZ(i)) for i in range(n_classes)] 

 

# ============= Keras model with quantum layer ============= 

model = tf.keras.models.Sequential() 

model.add(qml.qnn.KerasLayer(vqc_layer, weight_shapes,output_dim=n_classes)) 

model.add(tf.keras.layers.Activation("softmax")) 
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# ========== Classical optimization & compilation ========== 

opt = tf.keras.optimizers.Adam(learning_rate=0.05) 

model.compile(loss="categorical_crossentropy",optimizer=opt,metrics=["accuracy"]) 

Firstly, the random seed is set for reproducibility, and the number of qubits, classes, 

and variational layers are defined according to the dataset. A specific weight shape 

for the quantum node is set, reflecting the structure of the strongly entangling layers 

in the variational circuit. 

Then the Variational Quantum layer is defined according to the explanation in 

section 6.1.3.2. The Pauli-Z expectation values are returned for each class, providing 

quantum state representations for each possible classification outcome. 

Following the definition of the quantum function, a Sequential model is initiated 

using TensorFlow’s Keras. The quantum node is converted into a Keras layer 

establishing the quantum layer of the model. An activation layer using the softmax 

function is added, ensuring the output of the model can be interpreted as 

probabilities for each class classification. 

In the final section, the model is compiled for classical optimization. An Adam 

optimizer with a specified learning rate is chosen as the optimization algorithm, and 

the loss function is set to be the categorical cross-entropy, which is suitable for 

multi-class classification tasks. The metric used to evaluate the model’s performance 

is accuracy. 

The following image represents the created model: 
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Figure 18 - Variational Classifier model scheme. Source: made using github draw.io 

 

6.1.5 MODEL VARIATION 1: ONE CLASSICAL LAYER 

We now add a classical dense layer after the quantum layer. This makes the model 

hybrid also in the forward propagation. 

model = tf.keras.models.Sequential() 

model.add(qml.qnn.KerasLayer(vqc_layer, weight_shapes, output_dim=n_qubits)) 

model.add(tf.keras.layers.Dense(n_classes, activation="softmax")) 

This last line of code adds a fully-connected classical layer of neurons with softmax 

activation function included. The circuit is represented on Figure 19: 

 

Figure 19 - Variational Classifier model variation 1. Source: made using github draw.io 
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6.1.6 MODEL VARIATION 2: TWO CLASSICAL LAYERS 

In this case, we add another classical fully connected layer before the quantum layer, 

resulting in a hybrid model with two classical layers in the forward propagation. 

model = tf.keras.models.Sequential() 

model.add(tf.keras.layers.Dense(n_qubits,activation="relu",input_dim=X_train.shape[1])) 

model.add(qml.qnn.KerasLayer(vqc_layer, weight_shapes, output_dim=n_qubits)) 

model.add(tf.keras.layers.Dense(n_classes, activation="softmax")) 

As seen on the second line, we now start the sequential model with a fully connected 

layer of 4 neurons (one for each feature) and a ReLU activation function that 

applies a non-linear transformation where any input value below zero is set to zero 

and any value above zero remains unchanged, enabling the model to learn complex 

patterns during training. 

 

Figure 20 - Variational Classifier model variation 2. Source: made using github draw.io 

The objective of these other models is not to demonstrate a performance 

improvement when using more classical layers but to show the easy and seamless 

integration of quantum and classical layers on variational circuits.  
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6.2 QUANVOLUTIONAL NEURAL NETWORKS 

This section covers the software implementation of a quanvolutional neural network 

with Pennylane (Henderson, Shakya, Pradhan, & Cook, 2020), and pennylane-qiskit 

python libraries. We are going to first apply quantum convolution to a set of images 

and then use this new set of ‘quanvolved’ images to train a classical neural network. 

An overview architecture of our model is represented in the following Figure 21 

 

Figure 21 - QCNN: Quantum convolutional neural network full architecture. Source: self-made 

Quanvolution and quantum convolution is used interchangeably. As described in 

section 2.5.3.2 quantum convolutions are just parameterized unitary rotations like 

those of regular variational circuit, performed on neighboring pairs of qubits. In 

classical CNNS convolutional layers are followed by pooling layers, in QCNNS this 

dimensionality reduction occurs when by measuring a subset of the qubits.  

6.2.1 DATA 

Convolution is generally used when dealing with image related tasks so we chose one 

of the most widely used datasets for testing image classification: the Fashion-MNIST 

dataset (Xiao, Rasul, & Vollgraf, 2017). The Fashion-MNIST dataset comprises of 

70,000 grayscale, Zalando's article images, each of 28x28 pixels in size. These images 

represent ten categories of clothing items: T-shirts/tops, trousers, pullovers, dresses, 

coats, sandals, shirts, sneakers, bags, and ankle boots. It is worth noting that, while 
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the Fashion-MNIST dataset provides a more challenging problem space than the 

original MNIST, it is still relatively simple for image classification.  

After loading the dataset, we reduce the training set to 200 images and the test set 

to 60 due to the computational complexity and time constraints associated with 

quantum computations. Next, we normalize the images in the dataset to have pixel 

values between 0 and 1, which facilitates the learning process and improves the 

performance of the model. Finally, we reshape the images by adding an extra 

dimension to accommodate the requirement of convolution channels in the quantum 

convolution operation. 

6.2.2 QUANTUM CONVOLUTION 

6.2.2.1 Quanvolution circuit 

We start by defining the quantum circuit: 

dev_qiskit = qml.device("qiskit.aer", wires=4, seed_simulator=10) 

rand_params = np.random.uniform(high=2 * np.pi, size=(n_layers, 4)) 

 

@qml.qnode(dev_qiskit, interface="autograd") 

def circuit(phi): 

        for j in range(4): 

        qml.RY(np.pi * phi[j], wires=j) 

        RandomLayers(rand_params, wires=list(range(4))) 

       return [qml.expval(qml.PauliZ(j)) for j in range(4)] 

 

The quantum circuit is designed to handle a 2x2 pixel input from the images, which 

is why there are four qubits (one for each pixel in a 2x2 pixel square). The circuit 

function takes a 4-element input (phi), where each element represents a pixel. These 

values are used to perform an RY rotation on each of the 4 qubits. Here, RY is a 

type of rotation gate in the Bloch sphere's y-axis used to encode the pixel values 

into quantum states. 
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Following the encoding layer, the random quantum circuit is applied. This circuit 

adds a certain degree of randomness in the operations applied to the qubits, which 

can help in extracting complex patterns from the data. 

The quantum circuit concludes with a measurement stage, where the expectation 

values of each qubit in the Z-basis (the computational basis) are calculated. These 

expectation values are real numbers that can be seen as the output of the quantum 

circuit, providing a form of feature extraction. 

We now select from the first image, a region approximately in the center of the 

image to see the compiled circuit: 

print(circuit(selected_region)) 

dev_qiskit._circuit.draw("mpl") 

 

Figure 22 - Feature map + random layer qiskit compiled quantum circuit. Source: run on IBMQ 

As described, on the left we see how a Ry rotation gate is applied to each qubit. We 

selected a region of 4 pixels in the middle of the image because when selecting for 

example the first region (top left 4 pixels), since they are mostly all black for many 

images, we always observed 0 values for the angles in the Ry gates represented. 
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Following the Ry gates there is a random combination of gates including: Rx, Ry, 

Rz, CNOT to create a more complex entanglement and superposition among the 

qubits. Finally, each qubit is measured. 

6.2.2.2 Applying the Quanvolution circuit 

After creating the quanvolution function, we create a function to apply it to the  

def quanv(image): 

    out = np.zeros((14, 14, 4)) 

    for j in range(0, 28, 2): 

        for k in range(0, 28, 2): 

            q_results = circuit( 

                [image[j, k, 0],image[j, k + 1, 0], 

                    image[j + 1, k, 0], image[j + 1, k + 1, 0]]) 

            for c in range(4): 

                out[j // 2, k // 2, c] = q_results[c] 

    return out 

 

Here, the image is divided into squares of 2x2 pixels, and each square is processed by 

the previously defined quantum circuit. The output is four expectation values (the 

result of the final measurement of the quantum circuit), which are assigned to four 

different channels of a single output pixel. It is important to note that this process 

halves the resolution of the input image, as each 2x2 square is replaced by a single 

pixel in the output which is why the output is 14x14. However, the output contains 

four channels that can be viewed as features that the quantum circuit has extracted 

from the 2x2 pixel patch. 

Then the Quantum Convolution is applied to all images in the Fashion MNIST 

training and test datasets as a preprocessing step. The benefit of this approach is 

that the computationally heavy quantum circuit does not have to be run for each 

epoch during the model's training process, it is done once, and the outputs are saved 

for later use. 
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6.2.2.3 Visualization 

The following image Figure 23 shows 4 images in our training set and the respective 

‘quanvolved’ objects. As explained, after our quantum convolution, images have 

halved in resolution but now have 4 channels that can be represented as different 

images. 

 

Figure 23 - Quantum convolved images on simulator. Source: plotted with matplotlib 
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6.2.2.4 Architecture Variations 

We can modify the architecture of our quantum convolution layer in several ways: 

• Number of Filters: Just like in a classical CNN, you could use multiple 

quantum circuits, each acting as a separate filter. The outputs from each 

circuit would form different channels in the output image, increasing its 

depth. 

• Quantum Circuit Design: the design of the quantum circuit that is used to 

process each patch of the image can be modified. This might involve using 

different gates or different methods to encode the input data into the 

quantum state. 

• Patch Size: Currently, we are using a 2x2 patch size so 4 qubits. We could do 

larger patch sizes, which would result in larger quantum circuits, therefore 

needing more qubits. 

• Add more quanvolutional layers: Simply add more layers one after the other 

6.2.3 QCNN 

In the previous section we processed the images to obtain a new set of quantum 

convolved images. Now we are going to model a simple neural network that receives 

them as input to the first layer. 

We use a basic Keras Sequential model with a flattening layer to convert 

multidimensional input into a one-dimensional array, allowing for straightforward 

processing by subsequent layers. Following the Flatten layer is a Dense layer with 10 

units, using a softmax activation function for multi-class classification. The model is 

compiled with the Adam optimizer and the sparse categorical cross-entropy loss 

function, suitable for integer labels. The model is trained using the quantum-

processed image data, with validation performed on a separate quantum-processed 

test set.  
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The following shows the full model that combines quantum convolution with a 

classical feedforward neural network for classification: 

 

Figure 24 - QCNN: Quantum convolutional neural network full architecture. Source: self-made 
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Section 7.  RESULTS ANALYSIS 

This section includes training and performance metrics for the two completely 

different models we have experimented within 0 

7.1 VARIATIONAL CLASSIFIER  

7.1.1 QUANTUM SIMULATOR 

The following show the results for the model built in section 6.1. The algorithm was 

run on ibmq_qasm_simulator by connecting to the IBM quantum platform.  

This is “A general purpose simulator for simulating quantum circuits both ideally 

and subject to noise modeling. The simulation method is automatically selected 

based on the input circuits and parameters.” (IBM Quantum, 2023) with 32 qubits. 

7.1.1.1 Training 

The fit function from the Keras API is used to initiate the training process. The 

model is trained 10 epochs (number of complete passes through the entire training 

dataset). The batch size 10 denotes the number of training data in one iteration.  

Furthermore, validation data is provided to the fit function allowing the model’s 

performance to be assessed on an unseen dataset during training, which can help in 

monitoring the model for overfitting. Model described in section 6.1.4. 

Epoch 1 2 3 4 5 6 7 8 9 10 

Train Loss 1.14 1.01 0.89 0.81 0.74 0.71 0.70 0.69 0.69 0.68 

Valid Loss 1.07 0.94 0.85 0.76 0.71 0.70 0.69 0.68 0.67 0.67 

Train 

Accuracy 
0.12 0.56 0.74 0.87 0.92 0.88 0.88 0.90 0.90 0.90 

Test 0.25 0.61 0.86 0.92 0.92 0.86 0.89 0.89 0.86 0.86 
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Accuracy 

Table 7.1:1 - Training & validation metrics for the variational classifier in quantum simulator 

 

Figure 25 - Training & validation graphs for the variational classifier in quantum simulator 

 

From the training logs, we observe that the model demonstrates a consistent 

decrease in loss and an increase in accuracy over the ten epochs for both the training 

and validation sets. This behavior indicates successful learning and convergence. 

Moreover, the small gap between training and validation sets suggest no visible 

overfitting. If a gap between training and validation lines where widening 
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significantly as epochs increase, it could be a sign of overfitting, where the model 

performs well on the training data but fails to generalize on unseen data. 

Lastly, we notice the lines for loss and accuracy start to flatten after around the 5th 

epoch. This plateau suggests that the model has achieved convergence, with no 

substantial improvement in performance despite further training. This convergence, 

added to the absence of visible overfitting, indicates a well-trained model. 

7.1.1.2 Performance metrics 

Once the model is trained, we use the sklearn.metrics module to produce a 

classification report and a confusion matrix for the validation set: 

Species precision recall f1-score support 

0 1 1 1 10 

1 1 0.5 0.67 10 

2 0.67 1 0.8 10 

Table 7.1:2 – Full performance metrics for the variational classifier run in quantum simulator 

Accuracy 83% 

 

Figure 26 – Confusion matrix for validation set - variational classifier in quantum simulator 



UNIVERSIDAD PONTIFICIA COMILLAS 

SCHOOL OF ENGINEERING (ICAI) 

DEGREE IN ENGINEERING IN TELECOMMUNICATIONS TECHNOLOGIES 

RESULTS ANALYSIS 

88 

From the precision metrics as well as from the confusion matrix, we see perfect 

precision and recall for class 0-setosa, and some errors in classification between 

classes 1-versicolor and 2-virginica. 

For class 1 while the model achieved perfect precision (meaning there were no false 

positives), its recall is 0.5, suggesting that it could only correctly identify half of the 

actual instances of this class. This is reflected in the f1-score, a harmonic mean of 

precision and recall, which is at 0.67. 

Class 2 was identified with a precision of 0.67, implying some false positives, while it 

had a perfect recall, indicating no false negatives. The f1-score for this class stands 

at 0.8. 

Overall, the model achieved an accuracy of 0.83 on the validation set, which 

indicates it correctly classified 83% of the instances. The macro and weighted 

averages for precision, recall, and f1-score are all around 0.8, indicating a relatively 

balanced performance across all classes. 

7.1.1.3 Model Variations 

As described on section 6.1.5 and section 6.1.6 we then experiment by adding more 

classical layers. A quick overview of the results for these variations is shown on the 

next table. 

Validation 

set metrics 
Accurcay 

Precision 

(weighted) 

Recall 

(weighted) 

F1-Score 

(weighted) 

Base Model 0.83 0.89 0.83 0.82 

Model 1 0.93 0.93 0.93 0.93 

Model 2 0.78 0.82 0.77 0.76 

Table 7.1:3 - Architecture variations performance metrics - variational classifier in quantum simulator 
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We see some improvement in model 1 while worsening in model 2. However, the 

objective of experimenting with architecture variations by adding classical layers 

after and before the variational quantum layer is not to improve performance but to 

show the versatility and compatibility of our quantum later. By successfully 

executing these models, we illustrate the potential for smooth integration of 

quantum computing techniques within traditional machine learning frameworks such 

as TensorFlow Keras. 

7.1.2 REAL QUANTUM COMPUTER 

As explained on section 3.3.1 we have several quantum computers to choose from. 

We chose IBM quito quantum computer (IBM Quantum, 2023) that has 5 qubits 

and a quantum volume of 16. We did not choose the most powerful Quantum 

computer freely available since 5 qubits are enough with our dataset that contains 4 

features and the 7 qubits computers were much more saturated. 

7.1.2.1 Training 

Training a variational classifier on IBM's quantum computer introduces several 

challenges that can lead to the necessity of executing a large number of jobs.  

A variational classifier is trained iteratively over multiple epochs, where an epoch is 

a complete pass through the entire dataset. The Iris dataset, although relatively 

small by classical standards, contains 150 data points. For each epoch, each of these 

data points needs to be processed, meaning the quantum circuit has to be executed 

150 times per epoch, reaching hundreds for a standard training time of 10+ epochs. 

Another challenge arises from the batching process. Batching refers to the practice 

of feeding multiple data points through the model at once, which can significantly 

speed up the training process. Unfortunately, when integrating pennylane and Keras 

with Qiskit, the batching of jobs is not fully supported when executing on quantum 
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hardware. This limitation necessitates the execution of one job per data point, 

further amplifying the number of jobs that need to be run. 

 In our case, we were only able to complete the first epoch after more than 40 hours.  

Epoch 1 

Training Loss Validation Loss Training Accuracy Validation Accuracy 

1.28 1.32 0.18 0.27 

Table 7.1:4 – Partial training metrics for variational classifier in real quantum computer 

These results are not representative of performance since it is only the first epoch 

where the model is starting to train. We would need about 10 epochs in order to 

compare performance with the quantum simulator, but as we explained this was not 

possible due to the queuing system of IBM’s platform and the hybrid nature of the 

algorithm. 

7.1.2.2  IBM Quantum jobs execution 

Figure 27 shows a screenshot of IBMQ during the execution of one of the jobs to 

train the variational classifier. We observe the completion times as well as the 

number of shots and circuits. 

Shots are the number of times the given quantum circuit is executed. Because of the 

probabilistic nature of quantum mechanics, the result of executing a quantum circuit 

once may not provide sufficient information. Therefore, quantum circuits are 

typically executed multiple times, with the number of executions often referred to as 

"shots". The bar chart you shows the frequency of different measurement outcomes 

for our 4 qubits over a certain number of shots. These frequencies can provide useful 

information about the probabilities associated with different states of the quantum 

system. 

The number of circuits refers to the number of individual quantum circuits that are 

packaged together to be executed as a single job on a quantum computer. When 
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running a quantum algorithm, especially in the context of quantum machine 

learning or optimization, we need to execute a variety of different quantum circuits. 

For instance, in variational quantum algorithms, you might need to run different 

circuits corresponding to different parameter settings of your variational form. 

As for the visualization of the compiled quantum circuit, this provides a schematic 

representation of the quantum operations that will be performed during the 

execution of each job. Each operation corresponds to a quantum gate, and the 

overall structure of the circuit reflects the sequence and combination of gates that 

implement the quantum algorithm. 

 

 

Figure 27 – IBM Quantum Platform screenshot showing for a random job: main characteristics: time, 

number of circuits & jobs; bar chart of frequency of measurements for shots & compiled circuit 
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7.2 QUANVOLUTION  

7.2.1 QUANTUM SIMULATOR 

The following show the results for the model built in 6.2.3. The algorithm was also 

run on ibmq_qasm_simulator by connecting to the IBM quantum platform.  

7.2.1.1 Training 

The model was trained on a small dataset with a total of 200 training samples and 

validated with 60 test samples. This is because of the time-consuming process of 

quantum convolutional processing for quantum circuits. Images were batched in 

groups of 4 and the neural network was trained for 10 epochs. 

 

 

Figure 28 - Training & validation metrics for the Quantum Convolutional Neural Network.  

Source: Plotted with matplotlib 
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From the generated plots, we can observe that both the training loss and accuracy 

improve considerably with each epoch. This indicates that the model is learning well 

from the training data. 

However, although the validation loss initially decreases, it then flattens after the 

5th epoch, while the validation accuracy also seems to flatten and even decrease 

slightly after reaching a peak around the 6th epoch. This may suggest that the 

model begins to overfit to the training data after about 5-6 epochs, as it performs 

well on the training data but not as well on the unseen validation data. 

The phenomenon of overfitting is not surprising given the small dataset size. We 

only have 200 samples for training, which is quite small, especially for image 

classification. 

7.2.1.2 Performance Metrics 

On the images we see that the neural network with the quantum layer performs 

slightly better. However, the difference is not significantly big and it is accounted for 

due to the variability of the classical neural network training. 

 

Figure 29 - Training & Validation Graphs comparing Neural network with & without Quantum 

convolution layer. Blue Shows With Quantum layer, Green without Quantum later 

Source: Plotted with matplotlib 
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Training Accuracy 95% 

Validation Accuracy 62% 

Table 7.2:1 - Training & Validation Accuracy for the QCNN 

As we already saw during the training, due to the small size of the dataset, our 

model is not able to generalize well with unseen data. This is clear from the high 

training accuracy and much lower validation accuracy. Also, in the plots we do see 

some improvement, but it clearly stops after only about 5 epochs. 

7.2.2 REAL QUANTUM COMPUTER 

In section 7.1.2.2, we highlighted the high number of jobs needed to run the 

variational classifier. This also applies when processing images via quantum 

convolution on the IBM quantum computer- 

Quantum convolution necessitates breaking down a standard 28x28 pixel image into 

2x2 pixel windows, resulting in 196 circuit runs for each image. Again, due to the 

unsupported batching, the number of jobs required increases to several hundred. 

Therefore, due to these limitations, our experiment could only process four images 

within a feasible timeframe. These results underline the current challenges of 

quantum computing, especially for machine learning tasks. Due to only being able to 

perform the quantum convolution in four of the images, applying the classical CNN 

model with such small amount of data did not make sense. 

However, we do show how it is possible to execute quantum convolution on a Real 

Quantum computer as results for 4 images are shown on Figure 30: 

Our quantum convolution operation resulted in four distinct images for each input 

image, corresponding to four channels. 2x2 windows reduced resolution from 28x28 

to 14x14 pixels. Each channel aims to identify different features within the image, 

just like filters in convolutional neural networks operate. These channels can detect 
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diverse attributes like edges, textures, or other patterns, providing a multilayered, 

comprehensive view of the initial image's key features. 

 

Figure 30 - Quantum convolved images on real Quantum Computer. Source: plotted matplotlib 
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Section 8.  CONCLUSIONS & FUTURE WORK 

8.1 CONCLUSIONS 

Our exploration of quantum computing (QC) applications in machine learning (ML) 

has shown both exciting advancements and considerable challenges. Despite the 

field's growth, we are still in the early stages, with obstacles such as the limited 

number of qubits, quantum systems' errors, and quantum decoherence inhibiting the 

practical implementation of promising quantum algorithms.  

In response, there has been a significant shift towards developing hybrid quantum-

classical models and numerous research papers are emerging, exploring different 

architecture variations, and experimental configurations aimed at optimizing the use 

of our existing NISQ devices. 

In the context of this project, which focused on the investigation of Variational 

Quantum Classifiers and Quantum Convolution, these challenges and their 

implications were acutely evident. In the realm of quantum machine learning, we 

faced a significant bottleneck when dealing with regular classical datasets. Current 

quantum systems, like IBM's freely available quantum computers, are still not 

capable of completely executing moderately complex ML algorithms, which is a 

significant barrier to wider applicability and adoption. 

In the experiments carried out with the Variational Quantum Classifier, performance 

was promising when using IBM's quantum simulator. However, when the same 

algorithm was implemented on a real quantum computer, we encountered issues 

with extended execution times due to the high number of jobs, the characteristics of 

IBMQ’s queue, and the algorithm's hybrid iterating nature. This illustrates the real-

world constraints we are currently facing and underscores the need for advancements 

in quantum hardware. 

Similarly, our work with Quantum Convolution, while promising in theory, revealed 

a set of distinct challenges in practice. The quantum simulator was able to handle 

the algorithm but was limited to a small number of images due to time and 

computational constraints. This limitation affected our ability to fully train and test 
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the Quantum Convolutional Neural Network (QCNN), resulting in results that did 

not show an advantage of the quantum convolution layer. On real quantum 

hardware, these limitations were even more pronounced since processing single 

images took hours. Quantum convolution has not yet been proven useful over 

regular convolution, and our results evidenced this. 

In summary, these experiments have served to show the integration of quantum 

algorithms within classical machine learning frameworks but also highlight the gap 

between the theoretical quantum learning algorithms and the practical realities of 

implementing these algorithms on current quantum hardware.  

The field of Quantum Machine Learning is promising and offers compelling synergies 

between quantum and classical computing approaches. However, realizing this 

potential will require us to overcome significant challenges both technological and in 

terms of refining and adapting quantum algorithms. 

8.2 FUTURE WORK 

Based on the proyect’s exploratory analysis and results, potential future directions I 

would like to explore include: 

• Other types of Machine Learning: I have tried specifically classification and 

quantum convolution. Other areas could include regression, unsupervised 

algorithms or reinforcement learning. 

• Quantum Model Exploration: Given the rapid development of the quantum 

machine learning field, investigating a broader range of quantum machine 

learning models would be insightful. There are many other hybrid algorithms 

and purely quantum machine learning algorithms to study. 

• Architecture Variations: Exploring even more variations of quantum layers 

within classical models could also be a interesting. This could involve 

tweaking the structure and parameters of quantum layers, or experimenting 

with different configurations of hybrid quantum-classical architectures. 

• Access to More Powerful Quantum Computers: As quantum hardware 

advances, accessing more powerful it would provide an opportunity to study 

the scalability and potential benefits of quantum algorithms in more depth. 

Larger qubit quantum computers would offer a richer platform for developing 

and testing quantum machine learning models. 
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• Climate action (SDG 13): Quantum machine learning algorithms could be 

used to analyze large datasets related to climate change and to develop more 

accurate models for predicting and mitigating the impacts of climate change. 

• Healthcare (SDG 3): Quantum machine learning algorithms could be used to 

analyze large datasets from healthcare systems and to develop more effective 

treatments for diseases. Quantum computing has been proven to have many 

applications in chemistry when modeling molecules and chemical reactions, 

which could be useful for the development of new, more effective drugs 

• Agriculture (SDG 2) and clean water and sanitation (SDG2): related to 

chemical simulations, QC could also accelerate the use of heterogeneous 

catalysts for water treatment and develop more effective methods of fixing 

nitrogen in fertilizers. 

• Affordable clean energy (SDG 7): Quantum gates are reversible, with the 

advantages of reduced power consumption and no heat generation. In theory, 

reversible gates take require no energy to run, but this is far in the future 

from our current Quantum computers that even need to be kept at near to 

absolute zero temperatures to work. 
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