
Degree in Telecommunication Engineering

Bachelor’s final work

Funding Rounds with Blockchain

Author

Álvaro Lastra Aragoneses

Supervised by

Atilano Fernández-Pacheco Sánchez-Migallón

Madrid

May 2023

 Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Funding Rounds with Blockchain en la ETS de Ingeniería - ICAI de la

Universidad Pontificia Comillas en el

curso académico 2022/23 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es

plagio de otro, ni total ni parcialmente y la información que ha sido tomada

de otros documentos está debidamente referenciada.

Fdo.: Álvaro Lastra Aragoneses Fecha: 1/6/2023

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Atilano Fernández-Pacheco Sánchez-Migallón Fecha: 04/06/2023

71216314B
ATILANO
RAMIRO
FERNÁNDEZ-
PACHECO

Firmado digitalmente
por 71216314B
ATILANO RAMIRO
FERNÁNDEZ-
PACHECO
Fecha: 2023.06.04
15:33:25 +02'00'

Degree in Telecommunication Engineering

Bachelor’s final work

Funding Rounds with Blockchain

Author

Álvaro Lastra Aragoneses

Supervised by

Atilano Fernández-Pacheco Sánchez-Migallón

Madrid

May 2023

Rondas de Financiación con Blockchain

Autor: Lastra Aragoneses, Álvaro

Director: Fernández-Pacheco Sánchez-Migallón, Atilano

Entidad Colaboradora: ICAI – Universidad Pontificia Comillas

Resumen del Proyecto

El trabajo pretende desarrollar una plataforma web en donde inversores y em-

prendedores puedan llevar a cabo rondas de financiación para las empresas. Para

el desarrollo de la plataforma se usará la tecnoloǵıa blockchain y Smart contracts

que nos brindarán una gestión descentralizada, pública y segura de la red. La tec-

noloǵıa blockchain reduce los costes de terceras partes que gestionan las rondas de

financiación y da información anónima, veraz y transparente accesible para todo

el mundo. El fin de este trabajo es crear una plataforma que pueda ser usada por

todo el mundo y que mejores las relaciones fiduciarias en los negocios.

Palabras Clave: Blockchain, Rondas de Financiación, Ethereum, IPFS, The-

Graph, React

Introducción

Vivimos en un mundo capitalista en constante evolución y desarrollo gracias a la

tecnoloǵıa. Actualmente, es más fácil que nunca crear y destruir riqueza; el tiempo

medio y el capital para crear una empresa se han desplomado[1]. La evolución de la

tecnoloǵıa en los últimos 20 años ha hecho que sea más fácil registrar una empresa

en ĺınea, intercomunicarse con el mundo casi sin costes, operar sin una ubicación

f́ısica y la comunidad de empresarios está creciendo rápidamente. Todos estos

cambios han dado lugar a un aumento de la creación de start-ups en todos los

páıses[2].

Las rondas de financiación tradicionales son largas y costosas, con procesos com-

plejos y un acceso limitado a los pequeños inversores. Los emprendedores en las

primeras etapas de la empresa buscan inversiones rápidas para entrar en un mer-

cado competitivo en el que el tiempo es crucial para el éxito. Blockchain es una

tecnoloǵıa transparente, anónima y fiable que nos ayuda a resolver muchos de los

problemas actuales de la financiación de start-ups.

Este proyecto final pretende explorar el uso de blockchain en las rondas de finan-

ciación, especialmente en las primeras etapas de una empresa, donde el acceso a

un mayor grupo de inversores y costes reducidos son fundamentales. Este trabajo

también explorará las formas de resolver los problemas fundamentales de inversión

mediante contratos inteligentes. Además, el proyecto determinará el potencial de

blockchain para democratizar la red para pequeños inversores y determinará otros

beneficios del uso de redes Blockchain.

Metodoloǵıa

En primer lugar, investigamos sobre Blockchain utilizando la metodoloǵıa deduc-

tiva para adquirir conocimientos en este campo. Después, exploramos Ethereum y

los Smart Contracts para aprender cómo aplicar esta tecnoloǵıa. En segundo lugar,

realizamos una revisión bibliográfica de las rondas de financiación, determinando

sus principales problemas y cómo las actuales rondas de financiación se enfrentan

a estos retos. Esto nos proporcionó una visión completa del panorama actual y nos

ayudó a identificar las áreas de mejora que se pueden resolver con blockchain. Por

último, utilizamos Agile, la metodoloǵıa más común en el desarrollo de software,

para desarrollar la aplicación.

Resultados

El sistema desarrollado ha demostrado ser eficaz para rondas de financiación us-

ando la tecnoloǵıa blockchain. Los Smart Contracts han permitido crear rondas

de financiación de manera transparente y anónima. Además hemos conseguido

desarrollar una Dapp con React que permite a los usuarios normales usar todas

las funcionalidades de una forma rápida e intuitiva.

La Dapp posee varias vistas con las que se puede interactuar con los smart con-

tracts, además de poder encontrar información guardada mediante IPFS rela-

cionada con las rondas de financiación. En las imagenes 1 y 2 podemos ver

respectivamente las vistas de la lista con todas las rondas de financiación y la

vista de la página de una BitRound.

Figure 1: Home Page Dapp

En términos de costes, el sistema ha demostrado ser rentable en algunas ocasiones

Figure 2: BitRound Page

en comparación con las rondas de financiación tradicionales.

En términos de accesibilidad, el sistema ha demostrado ser accesible para un amplio

rango de inversores. La naturaleza descentralizada de la blockchain permite a

cualquier persona con acceso a internet participar en las rondas de financiación, lo

que democratiza el proceso de inversión.

Conclusiones

El proyecto ha demostrado que la tecnoloǵıa blockchain puede ser una solución efi-

caz para facilitar las rondas de financiación, especialmente en las primeras etapas

de una empresa. Ha cumplido el objetivo de crear una red descentralizada, trans-

parente, anónima, que mejora las relaciones fuduciarias y que reduce los costes en

algunos casos.

En términos de perspectivas futuras, hay varias áreas que podŕıan ser exploradas

para mejorar aún más el sistema. Estas incluyen la implementación de más fun-

cionalidades en los contratos inteligentes, la mejora de la interfaz de usuario y,

principalmente, la exploración de otras tecnoloǵıas blockchain.

En resumen, este proyecto ha demostrado que la tecnoloǵıa blockchain tiene un

gran potencial para revolucionar las rondas de financiación y se espera que su uso

se generalice en el futuro.

Funding Rounds with Blockchain

Author: Lastra Aragoneses, Álvaro

Supervisor: Fernández-Pacheco Sánchez-Migallón, Atilano

Collaborating Entity: ICAI – Universidad Pontificia Comillas

Abstract

The work aims to develop a web platform where investors and entrepreneurs can

conduct company financing rounds. Blockchain technology and Smart contracts

will provide decentralized, public, and secure network management for the plat-

form’s development. Blockchain technology reduces the costs of third parties man-

aging the financing rounds and gives anonymous, truthful, and transparent infor-

mation accessible to everyone. This work aims to create a platform for everyone

to use and improve business fiduciary relationships.

Keywords: Blockchain, Funding Rounds, Ethereum, IPFS, TheGraph, React

Introduction

We live in a capitalist world in constant evolution and development due to technol-

ogy. Currently, it is easier than ever to create and destroy wealth; the average time

and capital to create a company have plummeted[1]. The evolution of technology

in the past 20 years has made it easier to register a business online, intercommu-

nicate with the world with almost no costs, operate without a physical location,

and the entrepreneur community is growing fast. All these changes have led to a

growth in the creation of start-ups in every country[2].

Traditional funding rounds are lengthy and costly, with complex processes and

limited access to small investors. Entrepreneurs seek rapid investment to enter a

competitive market where time is crucial to success. Blockchain is a transparent,

anonymous, and reliable technology that helps us to solve many of the current

problems in start-up funding.

This final project aims to explore the use of blockchain in funding rounds, especially

in implementing the technology in the early stages of a company where access to a

broader pool of investors and reduced costs is critical. This work will also explore

ways to solve fundamental investment issues through smart contracts that secure

investment. Additionally, the project will determine the potential for blockchain to

democratize the network for small investors and other benefits of using Blockchain

networks.

Methodology

First, we researched about Blockchain using the deductive methodology to gain

knowledge in this field. Then, we explored Ethereum and Smart Contracts to

learn how to apply this technology. Second, we conducted a literature review

of funding rounds, determining their main issues and how the current funding

rounds face these challenges. This provided us with a comprehensive view of the

current landscape and help us identify improvement areas that can be solved with

blockchain. Finally, we used Agile, the most common methodology in software

development, to develop the application.

Results

The developed system has proven effective for financing rounds using blockchain

technology. Smart Contracts have allowed creating of funding rounds transparently

and anonymously. In addition, we have developed a Dapp with React that allows

regular users to use all the functionalities quickly and intuitively.

The Dapp has several views with which we can interact with the smart contracts

and find information stored via IPFS related to the financing rounds. In the images

1 and 2, we can see the list views with all the funding rounds and the page view

of a BitRound.

In terms of cost, the system has proven to be cost-effective at times compared to

traditional funding rounds.

In terms of accessibility, the system has proven to be accessible to a wide range

of investors. The decentralized nature of blockchain allows anyone with internet

access to participate in funding rounds, which democratizes the investment process.

Conclusions

The project has demonstrated that blockchain technology can be an effective so-

lution to facilitate financing rounds, especially in the early stages of a company.

It has fulfilled the objective of creating a decentralized, transparent, anonymous

network that improves fiduciary relationships and reduces costs in some cases.

Regarding prospects, several areas could be explored to improve the system further.

These include implementing more functionality in smart contracts, improving the

user interface, and exploring other blockchain technologies.

In summary, this project has demonstrated that blockchain technology has great

potential to revolutionize funding rounds, and its use is expected to become more

widespread.

Contents

1 Introduction 17

2 Description of the technologies 19

2.1 Ethereum . 19

2.2 Solidity . 20

2.3 React . 20

2.4 Web3 JS . 21

2.5 Infura . 21

2.6 Metamask . 21

2.7 Remix IDE . 22

2.8 Visual Studio Code . 22

2.9 GitHub . 22

2.10 IPFS . 23

2.11 Graph Protocol . 23

3 State of the art 24

3.1 Cryptography . 24

3.1.1 Hash Function . 24

3.1.2 Asymmetric cryptography 25

3.1.3 Private Key . 26

3.1.4 Public Key . 26

3.1.5 Elliptic Curves . 27

3.2 Blockchain . 29

3.2.1 Addresses . 30

3.2.2 Transactions . 30

3.2.3 Block . 31

3.3 Consensus Protocol . 32

3.3.1 Proof of Work (PoW) . 32

3.3.2 Proof of Stake (PoS) . 32

3.3.3 Proof of Capacity (PoC) . 33

3.4 Smart Contracts . 33

3.4.1 Bitcoin Scripts . 33

3.4.2 Ethereum Smart Contracts 35

3.4.3 Ethereum Tokens (ERC20) 35

3.5 Funding Rounds . 36

4 Work Definition 40

4.1 Motivation . 40

4.2 Objectives . 40

4.3 Methodology . 42

4.4 Economic Analysis . 43

4.4.1 Technology Resources . 43

4.4.2 Human Resources . 45

4.4.3 Break Even . 45

5 System development 49

5.1 Architecture design . 49

5.1.1 Users . 50

5.1.2 Customers Flows . 51

5.1.3 UML diagram . 53

5.2 Implementation . 53

5.2.1 Contract Design . 53

5.2.2 The Graph Indexer . 62

5.2.3 IPFS . 63

6 Results 65

7 Conclusions and future scope 68

A Alignment with the Sustainable Development Goals (SDGs) 70

B Installation instructions 72

C User Manual 75

D Queries API 81

References 82

List of Figures

1 Home Page Dapp . 4

2 BitRound Page . 5

3 Time and cost of creating a business in economies covered by Doing

Business report[2] . 17

4 Ethereum Logo[7] . 19

5 Solodity Logo[9] . 20

6 Metamask Logo[14] . 22

7 Diffie-Hellman key exchange concept with mixing paints[21] 26

8 Two-dimensional elliptic curve plot[22] 28

9 Scatter Plot of Elliptic curve mod2503[19] 29

10 Address creation[19] . 30

11 Transaction Diagram[27] . 31

12 Standard scripts stack structure[19] 34

13 Million of euros raised by startups in Spain since 2014[39] 38

14 Kanban board . 43

15 Fee vs. BitRounds for break even 47

16 Architecture design Diagram . 50

17 User flows[48] . 52

18 User flows with the contracts[49] . 54

19 GraphQL APIs developed with GraphQL Voyager 62

20 Home Page Dapp . 66

21 Ethereum Energy Consumption Index, Source: digiconomist.net . . 70

22 Metamask connection wiht the Dapp 75

23 Metamask connected . 75

24 Create BitRound Page . 76

25 Add Information view . 76

26 BitRound Page . 77

27 Successful Contribution . 78

28 New Round Card . 79

29 New Request view . 80

30 Request Card . 80

List of Code Blocks

5.1 BitRound Factory . 56

5.2 BitRound variables . 58

5.3 BitRound contract Functions . 60

5.4 BitRound contract Functions 2 . 61

5.5 JSON CIDs . 64

B.1 deploy.js . 73

B.2 factory.js . 74

D.1 GraphQL Queries . 81

1 Introduction

We live in a capitalist world in constant evolution and development due to technol-

ogy. Currently, it is easier than ever to create and destroy wealth; the average time

and capital to create a company have plummeted[1]. The evolution of technology

in the past 20 years has made it easier to register a business online, intercommu-

nicate with the world with almost no costs, operate without a physical location,

and the entrepreneur community is growing fast. All these changes have led to a

growth in the creation of start-ups in every country[2]. We are going to focus on

Spain and U.S. primarily.

Figure 3: Time and cost of creating a business in economies covered by Doing
Business report[2]

Traditional funding rounds are lengthy and costly, with complex processes and

limited access to small investors. Entrepreneurs seek rapid investment to enter a

competitive market where time is crucial to success. Although new ways of funding

a start-up have emerged, such as crowdfunding and ICOs[3], they have many

17

fraud cases that keep funders away from investing[4]. Blockchain is a transparent,

anonymous, and reliable technology that helps us to solve many of the current

problems in start-up funding.

This final project aims to explore the use of blockchain in funding rounds, especially

in implementing the technology in the early stages of a company where access to a

broader pool of investors and reduced costs is critical. This work will also explore

ways to solve fundamental investment issues through smart contracts that secure

investment. Additionally, the project will determine the potential for blockchain to

democratize the network for small investors and other benefits of using Blockchain

networks.

Blockchain is an emerging technology that has snowballed in recent years. We

know blockchain from cryptocurrency, but many fields, such as finance, cyber-

security, and real estate, already use this technology. Funding rounds must be

transparent and cheaper for all investors, and blockchain solves these problems.

Smart contracts properly manage all funding rounds and meet the requirements

of the entrepreneurs.

18

2 Description of the technologies

For the development of our work, we will use several technologies. We will launch

our project in the Ethereum Network and code our smart contracts in Solidity.

The blockchain network will provide transparent data, anonymity, and efficiency

to our platform. Later, we will need to develop a decentralized application (Dapp)

where the users can launch funding rounds and invest in startups. For the front

end of our application, we will use React.

2.1 Ethereum

Ethereum is the primary tool for our work; it is a decentralized, open-source

network that allows us to launch Smart Contracts through Blockchain method-

ology[5]. Vitalik Buterin, a Russian-Canadian programmer, conceived and co-

founded Ethereum in 2013 to decentralize the web. Ethereum network replicates

Bitcoin, created in 2008 by the inventor of blockchain Satoshi Nakamoto, and adds

Smart Contracts that allow programmers to launch decentralized apps (Dapps).

The cryptocurrency of the network is Ether (ETH). Because it is open-source, there

are several Ethereum networks, which means we can fork the code and create our

private blockchain network that allows access only to specific users.[6]

Figure 4: Ethereum Logo[7]

People use Ethereum over Bitcoin because of the velocity of transactions and smart

contracts. Bitcoin mines the blocks through Proof of Work, while Ethereum uses

19

2.2 Solidity

Proof of Stake, a more efficient and economical way of mining. Ethereum, in the

beginning, used Proof of Work but changed its consensus mechanism architecture

in 2022 to make the network more secure, less energy-sensitive, and better for

scaling.

2.2 Solidity

Solidity is an object-oriented programming language in which we will code Smart

Contracts. Several blockchain platforms use Solidity to code their smart con-

tracts, making it the most popular programming language for blockchain. Solidity

is familiar to web developers because it uses a syntax similar to ECMAScript.

Therefore, its syntax is similar to languages like javascript, although there are

some differences, such as Solidity has static types and variadic return types.[8]

Figure 5: Solodity Logo[9]

Solidity is a new growing programming language; consequently, it is constantly

changing and needs consolidated libraries, making it more challenging to maintain

the code and update deprecated libraries. Another key of Solidity is its immutabil-

ity, meaning we cannot modify an executed contract.[8]

2.3 React

React is an open-source Java scripting library that allows the development of user

interfaces for web applications. It aims to facilitate the development of single-page

applications. Facebook and the community maintain the code.[10] The benefits

of using this programming language are the fast learning and development of web

20

2.4 Web3 JS

applications, which I needed for this project. It also has compatible libraries such

as semantic ui and material ui, which are frameworks that allow us to improve the

aesthetics of our app.

2.4 Web3 JS

Web3 JS is an open-source JavaScript library that allows us to interact with con-

tracts as JS objects. Web3 JS has other features, such as listening for on-chain

events and built-in utilities that make it easier to interact with contracts.[11]

We chose this library because it is the gateway between our React App and the

Ethereum network.

2.5 Infura

Infura is a high-availability cloud service suite that provides infrastructure nodes

for developers working on projects based on the Ethereum blockchain. In essence,

we use Infura because it allows for a simple interface and API for developers to

connect to the Ethereum network without setting up and maintaining their in-

frastructure.[12] Infura is the blockchain node we connect with to deploy contacts,

call functions, and send transactions. Infura saves time for developers because it

handles the complexity of running an entire Ethereum node.

2.6 Metamask

Metamask is a wallet extension for your navigator that allows users to interact

with web Dapps based on the Ethereum blockchain. Metamask, like every dig-

ital wallet, allows users to send, swap, receive, and store cryptocurrencies and

Ethereum tokens. It is the most popular digital wallet.[13]

21

2.7 Remix IDE

Figure 6: Metamask Logo[14]

2.7 Remix IDE

Ethereum IDE is a toolset that allows developers to code, compile, debug, and

deploy contracts in the Ethereum network or public remix networks forked from

Ethereum.[15] This public test networks allow developers fast deployment and

contract interactions. In this development, I have used the web version of Remix

IDE, which requires no setup and has an intuitive user interface for users of any

knowledge level.

2.8 Visual Studio Code

Visual Studio Code is a free and open-source code editor developed by Microsoft.

It is one of the most popular and widely used code editors today due to its flexi-

bility, extensibility, and ease of use. VSC supports many programming languages,

including Solidity and JavaScript, and its plugins allow users to personalize the

code editor. VSC fits this project because it is a light and fast program.

2.9 GitHub

GitHub is a collaborative development platform where developers push their coding

projects. GitHub uses the Git version control system, which means developers

can track changes to source code over time, make backups and revert changes if

necessary.[16]

22

2.10 IPFS

2.10 IPFS

InterPlanetary File System (IPFS) is a protocol and peer-to-peer network designed

for storing and sharing data in a distributed filesystem[17]. Juan Benet founded

IPFS in 2015 to replace the traditional Hyper Text Transfer Protocol (HTTP)

with a more decentralized, secure, and efficient system. IPFS leverages the same

concepts underpinning blockchain technology: decentralization and data distribu-

tion. Each file and all its blocks has a unique fingerprint called a cryptographic

hash. Since it is decentralized, it is robust against attacks and avoids the risk of

central points of failure. Moreover, IPFS minimizes bandwidth use by fetching

data from the nearest node available in the network rather than from a centralized

location.

2.11 Graph Protocol

The Graph Protocol is a decentralized indexing protocol for querying networks like

Ethereum and IPFS[18]. Anyone can build and publish open APIs, named sub-

graphs, that applications can query using GraphQL. The Graph enables developers

to access Blockchain data efficiently without centralized servers. It aims to create

decentralized applications that interact with each other without intermediaries,

providing a truly open and trustless environment for users.

23

3 State of the art

3.1 Cryptography

Before we begin explaining blockchain, we must understand the cryptography be-

hind it and how it is implemented. Blockchain and all other networks leverage

current cryptography knowledge to create solid and secure networks.

3.1.1 Hash Function

A hash function is any function that maps a given input into a fixed-length result.

The input size can be any size, but the output will always have the same length.

Given an input, the output is always the same. Thus, you can use the hash output

as a digital fingerprint. The three main properties of a hash function are:[19]

1. Working out the original from the output is impossible.

2. The same input always returns the same output.

3. No collisions: different inputs return different outputs.

The three main uses of hashes in blockchain are:

1. Transaction hash: Creates a unique identifier for each transaction.

2. Block hashes: Create a unique identifier for each header block and, in Bitcoin,

due to its randomness, allows the mechanism of mining. Each hash block

header is included in the following block header to securitize the blockchain.

3. Addresses: The public key is hashed with SHA-160 to create the address in

Bitcoin. It provides an extra security layer and makes the address shorter

because the output length is shorter than the public key.

24

3.1 Cryptography

3.1.2 Asymmetric cryptography

Asymmetric cryptography, also known as Public-key cryptography, is the field of

cryptography that uses a pair of keys to encrypt and decrypt data. One-way

cryptographic functions generate the private and public keys, and the security of

the encryption, as always in cryptography, is based on the secrecy of the private

key.[20]

Asymmetric cryptographic system was created because of the need for a rapid

key exchange, the lack of secure channels, and the increased number of users.

Before public key cryptography, there was only symmetric cryptography which

uses the same key to encrypt and decrypt[20]. Symmetric cryptography requires a

prior exchange of the keys in a secure channel; by contrast, in the Diffie-Hellman

key exchange, the public keys are spread in the network, and the secrecy is not

compromised. The shared secret is computed offline based on the shared public

key of the partner and your private key; see key exchange concept with paints

figure 7.[21]

Anyone with the public key can encrypt a ciphertext, but it can only be decrypted

with the private key, known as public key encryption. It also can be used for

digital signature; the private key owner can generate a message’s signature, and

anyone with the public key can verify if the message is signed with the original

private key[20]. This signature exchange is implemented in Bitcoin when someone

wants to unlock Bitcoins that belong to an address. An address in Bitcoin is

the public key (see 3.2.1), and someone demonstrates that an address belongs to

him by providing the signature. The owner does not provide the secret key and

demonstrates the ownership of the address to the network.[19]

25

3.1 Cryptography

Figure 7: Diffie-Hellman key exchange concept with mixing paints[21]

3.1.3 Private Key

A private key is just a random number. To create a private key, you need a reliable

source of randomness. In the case of bitcoin, it is a 256-bit number, meaning there

are more private keys than atoms in the universe (2256). Therefore, the probability

of two people choosing the same private key is negligible. You should never share

your private key because it is the seed to participate in the network, and somebody

can replace you if he has your private key.[19]

3.1.4 Public Key

The public key is your identifier in the network, and it is like a mailbox where any-

body can send you whatever they want. You unlock whatever they send to you

with your private key. The public key is created with your private key. There are

different methods to create a public key from a private key. Bitcoin uses ECDSA

26

3.1 Cryptography

(Elliptic curve digital signature algorithm), which implements DSA (Digital Sig-

nature Algorithm). DSA was released by the National Institute of Standards and

Technology (NIST) as the standard for digital signatures.[19]

To create a pair of keys, we use elliptic curve multiplication:

d G = Q

d is private key

G is the geneartor point

Q is the public key

A private key is an integer number, while Q and d are points in the elliptic curve.

Getting the private key from the public key is impossible, but it is easy to do the

elliptic multiplication to get the public key.[22]

3.1.5 Elliptic Curves

Elliptic curves are described by the set of solutions (x,y) for y2 = x3 + ax + b;

for some coefficients a and b.[22] For instance, a=0 and b=7 are the coefficients

specified in secp256k1[19], the elliptic curve implemented in bitcoin. The elliptic

curve also needs to define prime modulus, and any number will be within that

range when we perform mathematical operations. The fact that a modulus is a

prime number is crucial for cryptography, mainly based on number theory and the

hardness of prime factorization of large numbers.[23]

As we mentioned before, every elliptic curve has a generator point G, which de-

termines the starting point for all the operations in the curve, such as elliptic

27

3.1 Cryptography

multiplication, to calculate the public key.

The elliptic curve function plotted in a two-dimensional diagram looks like figure

8. However, in cryptography, we want to use a finite number of points of whole

numbers. Therefore, the elliptic function used looks like a scatter plot. Secp256k1

looks more like the scatter plot 9, which scatters an elliptic curve of mod 2503 (the

elliptic curve scatter plot of bitcoin would have 2256 points).

Figure 8: Two-dimensional elliptic curve plot[22]

For computing, using whole numbers in a finite field is easier than real numbers

in a continuous area. The accuracy when you work with decimal numbers is

lower than working with whole numbers. Therefore, whole numbers suit better in

cryptography.[19]

28

3.2 Blockchain

Figure 9: Scatter Plot of Elliptic curve mod2503[19]

3.2 Blockchain

Blockchain emerged in 2008 with the release of Bitcoin by Satoshi Nakamoto[24].

At the beginning of Blockchain, it was only used for transacting cryptocurrencies,

and the goal of Satoshi, as he states in Bitcoin’s paper, was to create a monetary

system where banks were no longer necessary. Years later, thanks to the release

of smart contracts, blockchain was introduced in many fields, such as finance,

identity providers, certifications, bureaucracy processing, etc. Although blockchain

technology seems complex, I will summarize it, explain its purpose, and how it

works.

Blockchain is an advanced decentralized, transparent database that allows every-

one in the network to interact with its information. Blockchain creates an im-

mutable log that is governed by the users of the network, who are responsible for

the verification of the transactions.[25]

29

3.2 Blockchain

Although many features vary in each blockchain, I will explain the most com-

mon characteristics of blockchain with a particular focus on Bitcoin (the first

blockchain) and Ethereum (the first smart contract blockchain and the one I use

for this project).

3.2.1 Addresses

Addresses are used to avoid sharing the full public key with the network. ”An

address is a shorthand way of writing blocking scripts in a human-readable form.”

- echeveria (on IRC). Each blockchain network uses its transformation to obtain

the address, and hash functions are used to reduce the size of the public key. In

Bitcoin, we create the address by adding a prefix and a checksum to the end of

the public key hash (Figure 10). It is then converted to Base58, which makes the

address more human-readable. With these changes, we avoid errors when sharing

our addresses.

Figure 10: Address creation[19]

3.2.2 Transactions

A transaction is a transfer of value in the Blockchain[26], in Bitcoin, is the transfer

of the cryptocurrency between two accounts. In other Blockchains like Ethereum,

30

3.2 Blockchain

the concept of the transaction is broader because the transfer of value can be

between accounts and contracts. The unique identifier of a transaction is the hash

of the transaction’s data.

In Bitcoin, the transaction has at least one input and one output. All the bitcoins

transferred are from outputs of previous transactions, and all the inputs included in

a transaction must be spent. In other words, if you have a previous output assigned

to your address and want to send the money to another account, the remaining

input you do not send must be sent to your account again[19]; otherwise, those

bitcoins would be lost. See figure 11 for the transaction structure.

Figure 11: Transaction Diagram[27]

3.2.3 Block

The blocks are the data stored in the Blockchain. The block content varies de-

pending on the Blockchain implementation. Usually, the data stored is a log of all

transactions.

When a user publishes a transaction, it is sent to a network node, and the node

shares the transaction with the rest of the nodes. The transaction is stored in

a memory pool containing all the transactions not in the Blockchain yet. Every

node selects transactions from the memory pool and tries to mine the block. If the

mining is successful, the candidate block is added to the network, and the node

31

3.3 Consensus Protocol

receives a reward[19]. There are different ways to mine a block; see section 3.3.

3.3 Consensus Protocol

The consensus protocol is the mechanism of the Blockchain network to achieve the

ledger’s consensus. Blockchain consensus is much more efficient than human veri-

fiers and audits, and what is more important, the consensus is decentralized [28].

The blockchain avoids fraud and makes the data immutable thanks to consensus

protocol. Some of the most essential consensus protocols are described below.

3.3.1 Proof of Work (PoW)

This consensus mechanism, used by Bitcoin and other cryptocurrencies, is the

most primitive and consists of nodes solving complex mathematical problems to

validate transactions and create new blocks. PoW was created as a technique to

avoid email spam.[29] The first node to solve the problem is rewarded with newly

minted cryptocurrency. This process is energy-intensive and requires significant

computational power.[29]

3.3.2 Proof of Stake (PoS)

Proof of Stake (PoS) is an alternative consensus mechanism to PoW, designed to

address the high energy consumption issue. In PoS, validators are chosen to create

new blocks based on the number of coins they hold and other factors.[28]

This process requires much less computational power and is more energy-efficient.[28]

Examples of PoS-based blockchains include Cardano and the newer versions of

Ethereum.

There is a variation of PoS named delegated proof of stake, in which network

participants vote for a limited number of nodes (delegates) to validate transactions

32

3.4 Smart Contracts

and create new blocks. This approach is more scalable and efficient than traditional

PoS systems.[30]

3.3.3 Proof of Capacity (PoC)

Proof of Capacity (PoC) is another consensus mechanism that leverages available

storage space instead of computational power or coin ownership. In PoC, miners

allocate disk space to store solutions to mathematical problems, and the probabil-

ity of mining a block depends on the amount of storage space dedicated.[31]

This method is more energy-efficient than PoW, but it may lead to increased

storage costs for miners[31]. Burstcoin is an example of a blockchain that uses

PoC.

3.4 Smart Contracts

Smart contracts are self-executing contracts with the terms of the agreement di-

rectly written into code. They are designed to automate transactions and enable

trustless, decentralized applications on blockchain networks.

Smart contracts provide increased transparency, security, and efficiency compared

to traditional contracts.

3.4.1 Bitcoin Scripts

Although Bitcoin does not allow smart contracts, it incorporates a scripting lan-

guage to facilitate transactions within its blockchain network. Bitcoin scripts can

be considered the beginning of smart contracts. Although Bitcoin scripts might be

less flexible and more basic than Ethereum’s smart contracts, they still play a vital

role in the Bitcoin network’s functionality, enabling features like multi-signature

transactions, timelocks, and conditional payments.[19]

33

3.4 Smart Contracts

A Bitcoin script is included in every output, and a Bitcoin script must always be

provided to unlock an output. The data structure is a LIFO stack, not a Turing

complete code. Therefore, it has limited capabilities. However, its simplicity makes

the transactions more secure because it reduces the likelihood of vulnerabilities[19].

There are many standard scripts; the most common is P2PKH (Pay to public key

hash), for which you must provide your public key and a signature to unlock the

Bitcoin output. There are many standards like P2PK (Pay To pubkey), P2MS

(Pay To Multisig), P2SH (Pay To Script Hash), and NULL DATA[19], you can see

their stack structure in Figure 12.

Figure 12: Standard scripts stack structure[19]

34

3.4 Smart Contracts

3.4.2 Ethereum Smart Contracts

Ethereum smart contracts are self-executing contracts that are stored within the

Ethereum blockchain. Contracts are defined solely through code, so there is no

need for intermediaries[32]. Smart contracts are executed by the Ethereum Virtual

Machine (EVM), which runs from multiple nodes but it is a single entity for

the entire network. Thanks to this, the Ethereum network is continuous and

immutable[33]. In short, the EVM is a decentralized computer that supports the

Ethereum network and is also used to execute code.

Smart contracts can be programmed in several languages, the most common is

Solidity, but there are others, such as Vyper, Yul, and Fe, each with pros and

cons[34]. All of them, unlike Bitcoin script, are Turing complete, which offers

complex logic and allows developers to create decentralized applications (Dapps).

3.4.3 Ethereum Tokens (ERC20)

Ethereum smart contracts also offer the possibility to develop your token, which

provides the same functionality as Ethereum’s primary token Ether. The most

adopted standard for developing tokens is ERC20, defining a common set of rules

for tokens created on the platform. These tokens, commonly known as ERC20

tokens, follow the same protocol, ensuring compatibility between different tokens

and decentralized applications (dApps), helping developers exploit all their func-

tionalities without learning each token feature separately. The ERC20 standard

outlines a series of functions, including how tokens can be transferred, queried

for their total supply, approved to be spent by other addresses, and accessed for

individual balances.[35]

By adhering to the ERC20 standard, developers can easily create tokens, as they

share a standardized interface. This simplifies integration with various platforms,

35

3.5 Funding Rounds

such as wallets and exchanges, making it more convenient for users and develop-

ers. Overall, the ERC20 standard has been crucial in facilitating the creation of

numerous tokens for various purposes.

3.5 Funding Rounds

A funding round is when a company or entrepreneur wants to raise money from one

or more investors. Since 2008 the most common way to raise money for startups

is funding rounds. Different rounds depend on the nature of the investors, the

quantity, and the stage of the business.[36]

”Friends and family” or seed rounds create the startup. The seed investors are

the founders themselves or ”friends and family.” Then, the second funding round

for a startup is named the angel round. Angel rounds are early investments from

investors not part of the company or related to the founders. It is when the

company is in an early stage, and the risk is highest because the startup will

probably not get positive cash flow in the beginning years. Investors or ’angels’

are looking for high returns on projects when they are just an idea, prototype, or

proof of concept. Most of the time, seed and angel round is the same.[36]

Venture capital firms lead the venture rounds. In this stage, the company is

growing and has positive prospects for the future. They raise a large amount of

money, between $1M and $30M, and letters name the series of stock sold, e.g.,

”round A,” ”round B,” and so on. If the company reaches ”D” or ”E,” it indicates

it is not going as well as expected.[36]

Before going public or a significant merger or acquisition, the last stage for a

startup is the mezzanine round, which is the last private funding.[37]

As described above, the traditional way of funding a startup is through funding

36

3.5 Funding Rounds

rounds. However, since 2017, initial coin offering (ICO) has become popular. An

ICO is a new way of raising money wherein the company sells a digital cryptocur-

rency or token; it is the cryptocurrency’s equivalent to an initial public offering

(IPO). The first ICO dates from July 2013, and it is a common way of raising

money for new blockchain startups. Sometimes this token does not represent a

stake in the company; it may have a utility related to its product or service.[3]

People have heavily criticized the ICOs because of the many cases of fraud.[3]

In fact, ICO activity began to decrease in 2019 because of the need for a legal

framework that regulates this area. The ICOs are legal, but we might never

recover funds lost due to fraud or incompetence because they are not regulated.

The Securities Exchange Commission (SEC) warns investors of scammers that

use ”pump and dump” schemes[3], in which the scammers talk up the value of

a cryptocurrency to pump up the price and then dump the value to get a profit.

There are many cases in which the SEC has intervened an ICO when they consider

it necessary, e.g., Telegram in 2019. We are still determining how long the legality

of ICOs is going to last; for instance, the People’s Bank of China banned ICOs in

2017.[3]

Another popular way of funding a company is via crowdfunding, which raises small

amounts of money from a large number of investors[38]. It has become a popular

way of entrepreneurship because of easy access to a large pool of investors and its

popularization in media. Crowdfunding usually has a small minimum investment

and is very popular for startups. Kickstarted, Seedrs, and Indiegogo are some of

the most popular sites for crowdfunding.

In conclusion, there are five ways of investing in a company: ICO, crowdfund-

ing, Angel Investors, Venture Capital Funds and Corporate Investors. ICO and

crowdfunding are the newest and they are used for startups to raise rapidly money

37

3.5 Funding Rounds

and access to a broader pool of investors. Angel investors are individuals who

seek for high returns in the early stages of a company. Venture Capital are funds

that are looking for new companies with high potential, they invest on behalf of

their owners. Finally, corporate investors represent the company which buys other

companies, however, the companies invest also through venture capital funds.

Figure 13: Million of euros raised by startups in Spain since 2014[39]

Nowadays, funding rounds are more popular than ever in Spain. Domestic startups

raised more money than ever in history thanks to the boost of foreign capital.

Funding rounds for startups boomed and are exponentially increasing over the

last few years, as shown in Figure 1. These operations raised a record 3.8 billion

euros in 2021. It is the highest data recorded in a single year and represents a

250% increase compared to 2020. The average amount of a round in Spain rose

from 1.7 million in 2020 to 6.3 million in 2021.[39]

There is currently no platform for blockchain financing rounds. The development of

blockchain applications is booming, and we can extract broad knowledge from the

current open-source applications. Blockchain has given rise to many decentralized

38

3.5 Funding Rounds

applications, and many are looking for funding. There is no better place to fund

a blockchain company than in a blockchain company, and there is where we take

action. Therefore, we have a growing technology and a market which has yet to

introduce this technology.

39

4 Work Definition

4.1 Motivation

The funding rounds need an update to the market’s new necessities to meet the re-

quirements of investors and entrepreneurs. Entrepreneurs seek lower commissions

than current ones, investors seek transparency, and both seek security. There are

a few things we want to change about the process:

Firstly, the fees are too high for the company. A startup needs to raise as much

money as possible, and the costs of funding rounds reduce profitability and increase

opportunity costs. Optimizing costs is one of the top priorities for a startup.

Secondly, the minimum investment is a problem; for example, young investors

with low capital cannot invest. Finally, need for more transparency; many startups

falsify their accounts to get more investors. Blockchain creates an immutable log

that shows all the investors and how much they have invested, avoiding fraud.

The application scalability is also attractive; with blockchain, the platform could

add new features that help the startup manage its fiduciary relationship with

shareholders. Future development of the application could add new functionalities

ranging from shareholder voting to dividend distribution.

4.2 Objectives

We aim to develop a decentralized application that enhances the current funding

round services. The three main objectives of this work are:

• Reduce funding costs.

• Transparent and anonymous platform.

40

4.2 Objectives

• Improve fiduciary relationships.

One way of improving the services is to reduce the costs of the funding rounds;

we can see that the commissions of the current platforms for financing rounds for

startups in Spain are very high. Sego finance, the rebranding of the old financing

platform Socios Inversores and one of the biggest funding rounds platforms, has a

fixed cost of 1500e and a commission of 6% over the raised funds[40]. Seedrs, a

significant international funding platform, has fees of $2.500 fixed and 7.5% over

the raised funds[41]. We can see that the commissions of the current companies

are similar.

The minimum investment is also an issue for these platforms; low-income investors

cannot be part of a financing round. Blockchain technology can reduce costs

and let low-income investors participate, fostering a more inclusive investment

environment. Through our final work degree, we aim to create a platform that

eliminates entry barriers, empowering individuals to contribute to the growth of

innovative startups.

Another objective is to make the financing round transparent and anonymous to

provide reliability. With this, we avoid the recent cases of fraud in corporate ac-

counts and ensure a secure environment for all parties involved. Our final work

degree will focus on developing a blockchain-based solution that enables the pur-

chase and sale of company shares, providing liquidity in the small business market

and facilitating the startup valuation process.

Finally, we will improve fiduciary relationships between investors and entrepreneurs,

protecting investors’ capital from moral risk decisions and trying to align investors

and entrepreneurs’ objectives. By implementing blockchain technology, our final

work degree aims to foster trust and collaboration, promoting a more sustainable

41

4.3 Methodology

and successful startup ecosystem for all stakeholders involved.

4.3 Methodology

To develop our work, we will follow the steps described below.

First, we will research Blockchain using the deductive methodology to gain knowl-

edge in this field. Then, we will explore Ethereum and Smart Contracts to learn

how to apply this technology. After the research, we will deduct how to implement

this technology specifically for this work.

Second, we will conduct a literature review of funding rounds, determining their

main issues and how the current funding rounds face these challenges. This will

provide us with a comprehensive view of the current landscape and help us identify

improvement areas that can be solved with blockchain.

We will use Agile, the most common methodology in software development, to

develop the application. Agile is a set of principles that uses an iterative scope

to develop applications. We will use the Kanban framework, which gives us the

rules to follow during application development. We visualize the work to see the

application’s process and progress. A Kanban board would look like in Figure 21.

After developing the prototype, we will evaluate and test its performance. We will

consider its effectiveness, the problems it solves, and new problems that arise.

Finally, we will consider future advancements and opportunities to expand the

platform, considering new challenges in funding rounds.

42

4.4 Economic Analysis

Figure 14: Kanban board

4.4 Economic Analysis

We will analyze the budget for this project, which is comprised of human resources

and technology costs. After estimating the budget of this project, we will create a

scenario in which we monetize the Dapp and calculate the company’s break-even.

4.4.1 Technology Resources

The computer used to code the entire application is the HP Pavilion x360 14-

cd0011ns, which cost 900e 5 years ago. The specifications of the laptop are:

• CPU: Intel Core i5-8250U

• Graphic Card: NVIDIA GeForce MX130 (DDR3 2 GB)

• RAM: SDRAM DDR4-2400 12 GB (1 x 4 GB, 1 x 8 GB)

The Agencia Tributaria in Spain stipulates that the computer has a 4-year fiscal

43

4.4 Economic Analysis

life (35,040 h.). We have not used the computer exclusively to develop this app.

Therefore we will estimate the cost of the computer based on the total work hours

for this work.

Table 1: Breakdown of hours by task
Actividad Horas
Organization, planning, meetings and consultations 5
Analysis, study and testing of technologies 100
Development 400
Testing 30
Documentation 300

TOTAL 835

Coste por hora (Portátil) =
900€

35040 horas
≈ 0′0257€/hora (1)

Coste total (Portátil) = 0′02576€/hora× 835 horas ≈ 21′45€ (2)

All the software used to develop this work is free and open source. Therefore,

there is no extra cost related to the software.

The cost of deploying the contract is 2684603 gas, which is around 290€[42]. Our

Dapp needs an Infura node for hosting IPFS. This expense is the only maintenance

cost we have. The pricing of the Infura node is 0.08$/GB/month for data storage

and 0.12$/GB/month for data transfer[43]. Thus, the maintenance cost is variable.

Table 2: Breakdown of Development Costs
Cost Price
Computer 21’45e
Deploy Contract 290e

TOTAL 311’45e

44

4.4 Economic Analysis

Table 3: Breakdown of Variable Maintenance Costs
Cost Price
Data Storage 0.08e/GB/month
Data Transfer 0.12e/GB/month

To make a profit, we can apply a fixed fee above the average space consumption or

a percentage fee depending on the storage consumption of each user. However, the

costs of infura are very cheap compared to a regular database because we estimate

a storage of 10MB per BitRound. Thus, the price of creating a BitRound will be

0.002e, (0.08 + 0.12)GB/month ∗ 0.01GB.

Since it is a decentralized application, the entrepreneur will incur the rest of the

costs of creating a BitRound.

4.4.2 Human Resources

For the development of this application, we needed a software developer whose

salary is 29 344e on average in Spain[44]. Application’s development time is six

months; thus, the human resources cost is 14 672e.

Furthermore, we also need human maintenance costs for the application. The most

logical way to address maintenance is by hiring a software developer for the year.

Therefore, total maintenance costs account for 29 344e, the salary of a software

developer.

4.4.3 Break Even

Total development costs are 14 983,45e. This amount is the initial investment

needed for creating this project. Once we have developed this project, we need to

earn money to make a profit. The fixed costs of each year are 29.344e, and the

variable costs are 0.002e per BitRound.

45

4.4 Economic Analysis

The price of creating a BitRound in the Blockchain is around 2 million Gwei,

around 200e[42]. We can add a fee of 10e, a fixed fee of 5%, making a profit of

10e for each BitRound created. Thus, our break-even equation is:

0 = (Fee− V ariableCosts) ∗BitRounds− FixedCosts

0 = (10− 0.002) ∗BitRounds− 29.344

BitRounds = 2935

The total number of BitRounds needed to break even is 2935. Kickstarter has

593.000 campaigns created since April 2009[45]. That is 42.357 campaigns a year.

Therefore, we would need 14.43% of Kickstarter campaigns to break even. Kick-

starter market share is 21%[46], so we would be competing approximately for

14.43/100 ∗ 21 = 3% of market share. It is essential to mention that, as stated in

state of the art, this is a growing market, which favors us for an entrance.

Although 10 euros seems reasonable compared to competitors’ fees, we can lower

the price more and attract more clients without increasing the BitRounds needed

to break even. We are going to plot the relationship between BitRounds and Fee

given by the break-even equation:

0 = (Fee− 0.002) ∗BitRounds− 29.344

BitRound =
29.344

Fee− 0.002

The x-axis is the Fee per BitRound in euros, and the y-axis is the BitRounds

needed to break even. As we can see, between 2.5e and 10e, the slope decreases

slower than between 0 and 2.5e. Therefore, it might be interesting to decrease

46

4.4 Economic Analysis

Figure 15: Fee vs. BitRounds for break even

even more the fee if we attract more clients. We need to carry out further analysis

of the demand and supply curves to unveil which is the optimum fee. We also have

to take into account that entrepreneurs are already paying 200 euros to deploy the

BitRound in Ethereum Blockchain; there is little difference between 202.5 and 210

euros.

Our platform has high fixed fees at BitRound’s creation that might keep some

entrepreneurs away. We will compare ourselves to competitors like Kickstarter,

where we only pay fees on the amount raised (around 5% in Spain[47]). Thus,

our funding rounds are profitable compared to Kickstarter if the BitRound raises

more than 4200e (210/0.05). The investors in Kickstarter also pay fees when

they invest in a campaign, between 3% and 5% in Spain[47]. In our platform,

the investors pay around 230.000 of gas, which today is around 22e. Therefore,

an investor is profitable to invest in our platform if they invest more than 550e

(22/0.04).

47

4.4 Economic Analysis

Other competitors like Sego Finance have fixed costs of 1.500e; however, they

provide more services which might be interesting for some entrepreneurs. We offer

fewer services for less price. The rest of the competitors, not crowdfunding sites,

are generally more expensive. However, they offer more financial services.

48

5 System development

In this section, we will talk about the development of our system, which is fully

decentralized. For the development of the Dapp, we have used several technologies:

IPFS, Ethereum Blockchain, The Graph Blockchain, and React. As it is not a

centralized Web App, the user needs an Ethereum wallet like Metamask to log

into it.

We chose this technology because it suits our app’s necessities well. IPFS is a

decentralized storage that makes our data more secure and resistant to censorship.

Ethereum is a public log that gives our app transparency and anonymity. The

Graph is an Ethereum indexer that helps us to organize and query information in

the blockchain to show it to the final user. Finally, React allows us to develop an

easy and fast front end for the final user.

In the rest of the section, we will explain the architecture and the structure of our

code and data. Finally, we will explain the implementation in the front end of our

Dapp.

5.1 Architecture design

Our application has a front-end and a back-end. The front-end is developed in

React and creates an intuitive user interface that supports wallet connectivity to

interact with Blockchain. With the react app we can interact with the contract

and use all flows described below.

On the other hand, the backend comprises the following technologies: Ethereum

smart contract, IPFS, and TheGraph. Each of them has specific functionality for

our application; the smart contract records all the information of the financing

49

5.1 Architecture design

rounds and creates an immutable log, IPFS allows us to add information that

complements the essential information of the financing round and that is not ef-

ficient to store in the contract and, finally, TheGraph allows us to create an API

to search for information about the BitRound efficiently.

Figure 16: Architecture design Diagram

5.1.1 Users

There are two kinds of customers in our Dapp, the same customers a usual fund-

ing round web has. A customer can be an investor, entrepreneur, or both. The

investors deposit money in the campaigns, and the entrepreneurs create the cam-

paigns to raise money. In a founding web for start-ups like Kickstarter, the en-

trepreneur posts his company or project, and if he can raise enough money, Kick-

starter sends all the money to the entrepreneur with a 6% fee and no control over

the money. Our application with blockchain proposes an investment manner for

the early stages of a company with lower fees and more control over the money

50

5.1 Architecture design

raised; it is a win-win for entrepreneurs and investors.

A third kind of user exists, which is a potential customer. Anyone can visit the

Dapp on the internet and explore the different campaigns.

5.1.2 Customers Flows

In our applications, several flows for our customers exist. We plot them with the

backend components involved, see Figure 17 diagram.

If we are an entrepreneur:

• Create a new BitRound. A BitRound represents a company for our Dapp.

• Modify BitRound. Each BitRound has a description and images to describe

the company.

• Create a new Round. A company has many rounds to raise money, as we

explained in state of the art section. The entrepreneur can decide when to

start a Round and its duration.

• Create Request. In order to protect the investors, we have created a method-

ology based on requests to withdraw money. The investors approve or deny

the spending of the entrepreneur.

• Finalize Request. Any participant in the blockchain can do this action; it

costs money. Therefore, the entrepreneur will probably execute the func-

tion. If the Request has the necessary approved votes, this transaction will

withdraw the amount requested from the contract.

• View BitRounds created.

If we are an investor:

51

5.1 Architecture design

Figure 17: User flows[48]

52

5.2 Implementation

• Contribute to a Round of a BitRound.

• Vote a request. Our vote is equivalent to your stake in the company.

If we are a connected user, which means we connected our wallet:

• We can access our portfolio view to find all the BitRounds we invested in

and created.

Even though we are not connected, all users can view all the BitRounds created

and their information.

5.1.3 UML diagram

The user can interact with the BitRoundFactory, BitRound, and Token contracts

following the diagram in Figure 18. Through these interactions with the contract,

the user can perform the functionalities described in section 5.1.2.

The diagram describes the interactions with the contracts for the User Flows

of Create BitRound, Start Round, Contribution, Request, Approval, and With-

drawal. The rest of the interactions are view, which means is a simple call instruc-

tions.

5.2 Implementation

5.2.1 Contract Design

The smart contract coded in solidity allows us to manage the previous function-

alities with anonymity and transparency and creates an immutable log. We have

designed two contracts, a BitRound contract, which represents a company in the

Blockchain, and a BitRound Factory contract, which creates and keeps a record of

our contracts in the Blockchain. We implement the Factory for various reasons:

53

5.2 Implementation

Figure 18: User flows with the contracts[49]

54

5.2 Implementation

• Security: The customers know that every BitRound contract deployed in the

Blockchain by our Factory will be the BitRound contract designed for this

project. Otherwise, a malicious entity can deploy a BitRound contract, for

instance, without security restrictions for withdrawal, which will lead to cases

of fraud. By implementing the Factory, investors can rely on our contract

because every BitRound created by the Factory is the original contract.

• Keep a record. The Factory, combined with The Graph technology, helps us

keep a record of all the BitRounds created in our Dapp, making it easy to

show them to the users.

• Creating a Factory for our contracts is a usual pattern to manage contracts

in the Blockchain. Best implementations allow developers to update con-

tracts.[50]

55

5.2 Implementation

Code Block 5.1: BitRound Factory

1 contract BitRoundFactory {

2

3 event BitRoundCreated(address indexed creator, address indexed bitRound,

string name);↪→

4

5 function createBitRound(

6 address tokenAddress,

7 uint256 _minimumContribution,

8 string memory name

9) public {

10 address newBitRound = address(new BitRound(tokenAddress, msg.sender,

_minimumContribution));↪→

11 emit BitRoundCreated(msg.sender, newBitRound, name);

12 }

13

14 function withdrawTokens(address BitRoundAddress, uint256 index) public {

15 IBitRound token = IBitRound(BitRoundAddress);

16 token.finalizeRequest(index);

17 }

18 }

In the code of the factory 5.1, we observe that the factory contract is straightfor-

ward. It only has no variable, it is not necessary an array that keeps a record of all

the created campaigns because we use The Graph indexer to store of all created

campaigns. One function interacts with the BitRound contract: withdrawTokens.

The function accesses the BitRound function finalizeRequest, which is ownable,

which means that if our factory deploys a BitRound, our factory is the only one

that can execute these two functions of the BitRound. This implementation pro-

vides an extra security layer for investors to avoid fraud through contract factories.

Every time a BitRound is created, the contract emits an event that will help us to

query information later with The Graph.

56

5.2 Implementation

The BitRound contract has the variables shown in code block 5.2. The first variable

is the Token Address, which refers to the contract address of the token (currency)

we want to use in our funding round. One of the problems we found when we

developed the Dapp is that the investors have to invest in Ethers if we want to

keep the money stored in our contract. This is an issue because cryptocurrencies

are very volatile, and the price of the ethers can fluctuate too much, which is

unsafe for investors and entrepreneurs. However, Ethereum allows the creation

of tokens, which are cryptocurrencies, and deploys them through smart contracts.

Some tokens, such as USDT, are pegged to the dollar. Our contract can use

any personalized token: a pegged token to a FIAT currency, any token in the

Ethereum network, or even the token company’s design. The first option will

solve the problem of the volatility of cryptocurrencies. The last option will be

similar to IPOs, providing our contract’s extra security and reliability layer.

57

5.2 Implementation

Code Block 5.2: BitRound variables

1 contract BitRound is Ownable {

2 IERC20 public token;

3 uint256 public roundNumber;

4 uint256 public roundEndTime;

5 uint256 public roundDuration;

6 address public manager;

7 uint256 public minimumContribution;

8 uint256 public totalInvestment;

9 Request[] public requests;

10 string public BitInfo;

11

12 struct Request {

13 string description;

14 uint value;

15 address recipient;

16 bool complete;

17 uint approvalCount;

18 uint refuseCount;

19 uint256 roundEndTime;

20 mapping(address => bool) approvals;

21 }

22

23 struct Round {

24 uint256 totalContribution;

25 uint256 totalParticipants;

26 }

27

28 mapping(uint256 => Round) public rounds;

29 mapping(uint256 => mapping(address => uint256)) public participants;

30 mapping(address => uint256) public shareholders;

From lines 3 to 5 of code block 5.2, we find the variables related to the current round

of the company, the number of the round, when the current round finishes, and its

total duration in days. The manager variable in line 6 refers to the entrepreneur,

the wallet address who created the BitRound. It has nothing to do with the owner,

58

5.2 Implementation

who is in the factory contract because the owner is who deploys the contract.

Therefore, if the owner of a BitRound is the factory contract’s address, we know

that BitRound is reliable. MinimumContribution variable defines the minimum

contribution to our company; entrepreneurs might not want a too fragmented

company. Line 10 is a string variable that is the CID in IPFS. That CID refers to

a JSON in IPFS containing information about our company: text and images.

Line 9 is an array with all withdrawal requests; we created a Request structure

containing all the relevant information. The request has a mapping of all the voters

to check if someone has already voted, the amount, a short description, end time,

and a counter of approvals and refusals. The Request structure also has a boolean

parameter to mark the completion of a request.

There is a Round structure defined, which contains the total contribution and

number of participants in each round. The evolution of the rounds in a company

is vital to know its valuation by investors. We store all rounds in a mapping

and create a hashmap of the participants of each round and their stake in each

round. Finally, there is a shareholders mapping that stores each shareholder’s

stake in the company, which is relevant for the voting system and checking the

stakes individually.

59

5.2 Implementation

Code Block 5.3: BitRound contract Functions

1 constructor(address tokenAddress, address creator, uint256

_minimumContribution) {↪→

2 token = IERC20(tokenAddress);

3 manager = creator;

4 minimumContribution = _minimumContribution;

5 }

6

7 function startNewRound(uint256 _roundDuration) public restricted {

8 require(roundEndTime < block.timestamp, "Previous round still

ongoing");↪→

9 roundNumber++;

10 roundDuration = _roundDuration;

11 roundEndTime = block.timestamp + roundDuration * 1 days;

12 emit RoundStarted(roundNumber, block.timestamp, roundEndTime);

13 }

14

15 function contribute(uint256 amount) public {

16 require(block.timestamp < roundEndTime, "No ongoing funding round");

17 require(amount >= minimumContribution, "Amount below minimum

contribution");↪→

18

19 token.transferFrom(msg.sender, address(this), amount);

20 if (participants[roundNumber][msg.sender] == 0) {

21 rounds[roundNumber].totalParticipants++;

22 }

23 shareholders[msg.sender] += amount;

24 participants[roundNumber][msg.sender] += amount;

25 totalInvestment += amount;

26 rounds[roundNumber].totalContribution += amount;

27 emit InvestedInBitRound(msg.sender, address(this), amount);

28 }

29

30 function createRequest(string memory description, uint value, address

recipient, uint256 requestDuration) public restricted {↪→

31 Request storage newRequest = requests.push();

32 newRequest.description = description;

33 newRequest.value = value;

34 newRequest.recipient = recipient;

35 newRequest.complete = false;

36 newRequest.refuseCount = 0;

37 newRequest.approvalCount = 0;

38 newRequest.roundEndTime = block.timestamp + requestDuration * 1 days;

39 }

60

5.2 Implementation

In code block 5.3, we show some of the most relevant functions in our code. The

function of contributing is to invest in the company. First, it checks the minimum

contribution, and if the invested amount is higher than the minimum contribution,

it transfers the token amount from the sender to the contract. The BitRound

contract uses an IERC interface token to execute the transaction. Notice that

the BitRound contract is executing this transaction. Therefore, the investor has

to pre-approve the contract to spend the token on his behalf. We have to take

this consideration into account in the front-end implementation. Furthermore,

contribute controls the shareholder stake in each round and total.

Code Block 5.4: BitRound contract Functions 2

1 function finalizeRequest(uint index) public onlyOwner {

2 Request storage request = requests[index];

3

4 require(!request.complete, "Request is already finalized");

5 require(request.approvalCount > (totalInvestment / 2) ||

6

7 (request.approvalCount > request.refuseCount) &&

8 ((request.approvalCount + request.refuseCount) >

(totalInvestment * 70 / 100)),↪→

9 "You need more votes!");

10

11 token.transfer(request.recipient, request.value);

12 request.complete = true;

13 }

14

15 function setInfo(string memory info) public restricted {

16 BitInfo = info;

17 }

Notice that finalizeRequest is Ownable, which means they can only be executed

by factory contract in our Dapp. We implemented the Ownable restriction in

finalizeRequest because if tokens are withdrawn, it is verified by our contract.

61

5.2 Implementation

The function finalizeRequest checks if a minimum number of votes approves the

request. If the request is approved, the contract transfers the amount from its

balance to the recipient.

SetInfo and createRequest functions are restricted. Restricted functions are called

without a factory contract and only by the manager.

Notice also that in contribute function, in the end, it emits an event with all the

relevant information we want to store in our indexer with The Graph.

5.2.2 The Graph Indexer

First, we will explain the structure of all data we want to collect for our factory

contract. The structure is similar to a usual SQL database. The Gaph helps us

to structure the data chained in the Blockchain. Chain structure is helpful for

immutability and security, but it is only efficient to search for information about

contracts if we use an indexer.

Figure 19: GraphQL APIs developed with GraphQL Voyager

Figure 19 visually represents all the endpoints we can query with GraphQL. There

are three main tables of information: Campaign, Investment, and User. The table

62

5.2 Implementation

named Meta also collects all the metadata from the Ethereum Blockchain. The

table Meta has a collection of Block , which has the metadata of one block. On

the left, we have the Query table from which we obtain all data and are in charge

of querying data.

Notice the relationships between data; the User, for example, has a collection of

createdCampaigns and a collection of investments. Thus, we can query for a user

and get all its investments and created campaigns.

With structured data, we can make valuable queries. On the home page, we

query the top 10 total invested BitRounds. We can only do this query in the

Blockchain if we store this data specifically for each User, which is not cost-efficient

in Blockchain. In our React application, we query using Apollo client; see code

block D.1.

5.2.3 IPFS

For the final user, we wanted to implement a friendly user interface that shows

information about the company, so we decided to add a description and images for

each BitRound. Storing this data in the blockchain is costly. Therefore we needed

another technology to store this data. We chose IPFS because it is a decentralized

protocol, cheap, and many decentralized applications such as Uniswap and NFT

Dapps use it.

To store the minimum data in the blockchain, we store just one CID, an address in

IPFS, which stores a JSON with the CIDs of the description and images. Storing

a CID in the contract and a JSON in IPFS with all the CIDs is the most efficient

manner of storing data.

Therefore, the CID string variable will refer to a JSON stored in IPFS that looks

63

5.2 Implementation

like code block 5.5. There are two fields, one description CID address where

description text is stored and an image array with all the CIDs addresses where

the images are stored.

Code Block 5.5: JSON CIDs

1 {

2 "images": [

3 "QmZ8mkNkfAu4J3pzc86ZhsHDUo5K9N1QNBcDyyhDU731xD",

4 "QmWNuQkgt89Ai1HKGzxyY9kmkBth8bMdRjHt7mcxitEpXH",

5 "QmdJR6aRLwCCXZbQvYZ5TX89tT2Qof4cA7gjH8Ed6ZXZM3"

6],

7 "description": "QmTLLwMY89G7UndTJEaoQa9LnHbJj43WnrCs9QBVhKcZRr"

8 }

Since IPFS is a decentralized protocol, anybody can edit this field and personalize

its application individually. However, we also add a page in our application where

anybody can edit these fields and personalize the BitRound page. Anybody can

add as many images as they want, and the text is as long as the entrepreneur

wants.

64

6 Results

We will review the objectives stated in section 4.2 of this work.

• The main objective was to create a decentralized contract that manages

the company funding process. We have successfully achieved this objective

by creating a secure contract that properly manages the whole process of

funding a company.

• Reducing costs: the current costs of our Dapp are fixed compared to variable

costs of crowdfunding sites, obove a minimum investment exposed in section

4.4.3 our Dapp is cheaper. Our application provides fewer services than

current competitors; however, it is an interesting choice for the niche of start-

ups who want to raise money fast and cheaply. Gas prices are increasing and

fluctuate every day. Thus, prices of deployment also fluctuate. Ethereum is

the most expensive network, 200 times more expensive than the second most

expensive network. This goal is partially achieved.

• Minimum contribution barriers: This objective is fulfilled and democratizes

the network to allow the entry of small investors.

• Transparency and anonymity: Blockchain technology implementation pro-

vides us with the tools to fulfill this goal. Ethereum creates an immutable

anonymous log that registers all transactions of our application.

• Fully decentralized app: We have created an application where intermediaries

are unnecessary, and we need an Ethereum wallet to raise and invest money.

We achieve this objective by implementing blockchain, IPFS, and The Graph.

• Improve fiduciary relationships: Apart from transparency, immutability, and

65

anonymity, we have developed a smart contract specialized for a secure in-

vestment. We achieve this objective by implementing a secure smart contract

and providing tools like withdrawal requests 30 29 that protect the investors

from fraud. However, there is still work to be done in this area since we can

implement more tools that increase the security of the investments.

In this section, we show the final Dapp for the user, explaining its flows and how

to use it. As we said, we developed the user interface with React.

Figure 20: Home Page Dapp

The results shown in the user manual C are screenshots of our front-end applica-

tion. However, it is essential to note that anybody can execute all functionalities

without our front-end application since it is decentralized. Even they can per-

sonalize their posts in our Dapp without using it. Therefore the main purpose

of this work is fulfilled, since we have created a fully decentralized app that does

not depend on an intermediary. Executing all the functionalities from our Dapp

66

is recommended since it is more intuitive.

67

7 Conclusions and future scope

Overall, we have achieved the main goals since we created a decentralized web

application that appropriately manages funding rounds with blockchain. We had

to research for new technologies to deploy a fully decentralized Dapp that is user-

friendly and do not reduce user experience due to its decentralization.

In terms of cost, the system has proven to be cost-effective at times compared to

traditional funding rounds, as exposed in section 4.4.3. Our application is cheaper

sometimes, however the entrepreneur needs to decide if it is interesting to pay less

fees and get less services.

In terms of accessibility, the system has proven to be accessible to a wide range

of investors. The decentralized nature of blockchain allows anyone with internet

access to participate in funding rounds, which democratizes the investment process.

All the crucial BitRound information is public, anonymous and secure in our net-

work. The fraud is waived with the request of withdrawal system that provides an

extra security layer. We can say that we achieved the security and anonymity of

the platform by implementing smart contracts.

We have achieved the main objectives of this work, but there are still areas of

improvement and new scopes.

The most important issues of the Dapp taking into account feedback from people

working in finance:

• Time value of money: The money invested in a company is locked until

a successful request occurs. That money could be staked in an asset and

produce a profit while it is locked in the BitRound. Finding ways to invest

68

that money to get returns while it is locked might be interesting.

• Updating the smart contract: It would be interesting to implement a contract

that can be updated so it does not become deprecated. The immutability of

the blockchain has the counterpart of updating the contracts.

• Legal environment: Every company needs a legal environment to participate

in our society. Our application needs a legal framework which is vital for a

company.

• Although the objective of this work is not to make our Dapp profitable, It

is interesting to find ways of making a profit with this Dapp. Although ev-

erybody can post its BitRound in a decentralized manner, the IPFS node,

which is implemented in our React app, is hosted by us, which means it costs

money to us. We use IPFS so entrepreneurs can personalize their BitRounds

with a description and photos. We can ask for a fee for personalizing since

hosting an IPFS node costs us money. It is important to note that any en-

trepreneur could still personalize from outside our React app their BitRound

via IPFS and Blockchain, so it is optional to use our React app to create a

complete BitRound.

• We have implemented our smart contract in Ethereum since it is the Blockchain

with more information for coding smart contracts. We can explore another

Blockchain that might be cheaper or provides us with more capabilities. In

fact, Ethereum is the network with higher cost, there are alternatives with

200 times lower gas prices like Binance Smart Chain. In BSC we can deploy

contracts coded in Solidity, therefore, our smart contract would be compat-

ible and we reduce the costs by 200 times.

69

A Alignment with the Sustainable Development

Goals (SDGs)

Ethereum moved from Proof of Work to Proof of Stake, which makes the network

cleaner and aligned with goal number 13: climate action. Mining the blocks in

Ethereum was very polluting; however, the advances in blockchain have led to a

cleaner mining method. Proof of Stake, introduced by other blockchains such as

Cardano, is 99% cleaner than Proof of Work. Ethereum announced this change

many years ago by the name of ’The Merge’, and in 2022, they made it real.

The Merge has an actual impact on the world; Ethereum’s electricity footprint

was around 8.5TWh per year, similar to electricity consumption in Bangladesh,

and overnight it dropped to 0.01TWh, see Figure 5. This fact clearly shows the

intention of blockchain to be sustainable and clean technology.

Figure 21: Ethereum Energy Consumption Index, Source: digiconomist.net

Proof of Stake enables all the users to participate in the governance of the network.

Before The Merge, there was a capital barrier entry if we wanted to participate in

70

the mining of blocks. Now, we can participate with as much capital as we wish to

and receive the yield in return. Ethereum has removed the minimum investment

for mining, which aligns with goal number 10: reducing inequality.

The efficient use of resources is also a principal matter in the industry, and we

should achieve this goal through technological progress. It is crucial to develop

an industry that is accessible to anyone and sustainable. We want to achieve this

through an open-source code that enables everyone to participate in the develop-

ment of the industry, allowing specialists and experts to be part of this project

and add value to society with their knowledge. This way, we achieve goal number

9: ’Industry innovation and infrastructure.’

Ethereum is constantly updating its code not only to bring the latest technology

to the market but also to achieve sustainable goals that leave the world better

than we found it.

71

B Installation instructions

Copy the repository from: https://github.com/lastriita/BitRound. You need

to have installed Node.js. Then go to the home folder and run ’npm install’ to

install all the libraries.

Then deploy your own contract BitRound Factory. First, you compile the contract

by running ’npx hardhat compile’. Then you need to deploy the contract in the

blockchain by using the js file deploy B.1. After you create deploy.js, run ’npm

deploy.js’.

Create factory.js B.2 and add the address of the contract factory you deployed.

Run ’npm run dev’ to initialize the Dapp in local. You need to have metamask

installed to interact with the contracts in your navigator.

72

https://github.com/lastriita/BitRound

Code Block B.1: deploy.js

1 const HDWalletProvider = require("@truffle/hdwallet-provider");

2 const Web3 = require("web3");

3 const compiledFactory =

require("./artifacts/contracts/BitRound.sol/BitRoundFactory.json");↪→

4 const compiledToken =

require("./artifacts/contracts/BitRound.sol/MyTestToken.json");↪→

5

6 const provider = new HDWalletProvider(

7 'your word seeds',

8 'your infura node'

9);

10 const web3 = new Web3(provider);

11

12 const deploy = async () => {

13 try {

14 const accounts = await web3.eth.getAccounts();

15

16 console.log("Attempting to deploy from account", accounts[0]);

17

18 const result = await new web3.eth.Contract(compiledFactory.abi)

19 .deploy({ data: compiledFactory.bytecode })

20 .send({ gas: "3000000", from: accounts[0] });

21 //, gasPrice: web3.utils.toWei("10", "gwei")

22

23 console.log("Contract deployed to", result.options.address);

24

25 const result2 = await new web3.eth.Contract(compiledToken.abi)

26 .deploy({ data: compiledToken.bytecode, arguments: [100] })

27 .send({ gas: "3000000", from: accounts[0] });

28

29 console.log("Token deployed to", result2.options.address);

30

31 provider.engine.stop();

32 } catch (error) {

33 console.error("Error during deployment:", error);

34 provider.engine.stop();

35 }

36 };

37

38 deploy();

73

Code Block B.2: factory.js

1 import web3 from "./web3";

2 import campaignFactory from

'./artifacts/contracts/BitRound.sol/BitRoundFactory.json';↪→

3

4 const instance = new web3.eth.Contract(

5 campaignFactory.abi,

6 //your contract address

7);

8

9 export default instance;

74

C User Manual

A user can visit our Dapp whether logged in or not. There is only a one-page view

that a not logged user cannot visit: the portfolio page. A not logged user can visit

the rest of the pages, but they obviously cannot modify any data; they can only

view the content.

Figure 22: Metamask connection wiht the Dapp

Figure 23: Metamask connected

In Figure 20, we see a screenshot of the homepage of our Dapp. This page shows

all the BitRounds listed, a button to create a new BitRound, and a login button.

75

Figure 24: Create BitRound Page

Figure 25: Add Information view

If we click on a BitRound, we will be redirected to the BitRound view. If we click

on the login button, we will be asked to connect our wallet with the page. See

Figure 22. If the connection succeeds, we will see Figure 23, showing our Ethereum

public address. This flow is similar to the login flow in decentralized applications

like Uniswap.

If we click on the button ’+’ of our home page to create a new BitRound, we will be

76

redirected to the Figure 24 view. Here we fill the form with the company’s name,

the token’s address we want to use for funding, and the minimum contribution in

the token’s minimum unit of value. In Figure 24, we use a token I created in the

testnet named LSTC.

When we complete the form, we are redirected to the second step of BitRound

creation, Figure 25. This page has information about BitRound, which we can

edit in the future. We can even leave this form empty and complete it after.

Figure 26: BitRound Page

If we have paid all the gas fees and completed all fields of the first step, we have

successfully created a new BitRound. We will be redirected to our BitRound page

(Figure 26), where we can find all the information about the BitRound. There is

a description of the company, the title of the company, and a carousel of images.

In the top right, we find the contribute card where we invest in the token currency

77

the amount we desire.

Contribution is the only step that requires two steps in the blockchain, as we have

to allow the contract to spend tokens on our behalf. The first step will approve

this spending, and the second step is to invest the money in the BitRound. Since

we are investing tokens and the contract always executes this transfer of tokens,

we have to do this action even if we invest in the BitRound from outside our Dapp.

After we have completed the two steps, we see the success message that confirms

our investment in the BitRound; see Figure 27

Figure 27: Successful Contribution

With the BitRound created, the entrepreneur can initiate as many rounds as he

wants, filling the duration of each round. There is only one rule: the entrepreneur

cannot initiate another round if there is one ongoing. Our front end manages

this rule appropriately; the contract also checks this restriction. In our front-end

application, the new round action (Figure 28) is only shown if the user is logged

in with the manager account since it is a function restricted for managers.

Managers also can create new spending requests. We create them below the Bi-

78

Figure 28: New Round Card

tRound page, where the user can find all the finalized and ongoing requests ordered

by creation time.

In each request card, an investor can approve or refuse the request. On the right

of the card, we can see the total number of votes and the percentage of approvals

and refusals based on the total stake. If the minimum number of approvals is

reached, any user can finalize the request, and the transaction will be executed.

The request card has the interface shown in Figure 30.

If the request is approved, the card will be green; if the request is not approved

within the request time, the card color will be red.

Finally, the portfolio page can only be accessed if logged in. This page has two

tabs: invested BitRounds and created BitRounds. This page shows all the re-

lated information of our contract with an address—the page query for the user’s

information to the BitRound subgraph.

79

Figure 29: New Request view

Figure 30: Request Card

80

D Queries API

Code Block D.1: GraphQL Queries

1 const PORTFOLIO_QUERY = gql`

2 query Portfolio($userId: ID!) {

3 user(id: $userId) {

4 id

5 investedCampaigns(first: 10, orderBy: amount, orderDirection: desc) {

6 amount

7 campaign {

8 name

9 id

10 }

11 }

12 createdCampaigns(first: 10, orderBy: totalInvestment, orderDirection:

desc) {↪→

13 id

14 name

15 totalInvestment

16 }

17 }

18 }

19 `;

20

21 const TOP_INVESTMENTS_QUERY = gql`

22 query TopInvestments {

23 campaigns(first: 10, orderBy: totalInvestment, orderDirection: desc) {

24 id

25 name

26 creator {

27 id

28 }

29 totalInvestment

30 }

31 }

32 `;

81

References

References

[1] COSTEERICK & TJONG FREDERIC MEUNIERNADIA NOVIKCYR-

IANE. How did starting a business become easier than ever? 2017. url:

https://blogs.worldbank.org/developmenttalk/how-did-starting-

business-become-easier-ever.

[2] Doing Business Legacy. https://www.worldbank.org/en/businessready/

doing-business-legacy. Accessed: 2023-04-25.

[3] JAKE FRANKENFIELD. Initial Coin Offering (ICO): Coin Launch De-

fined, with Examples. 2022. url: https://www.investopedia.com/terms/

i/initial-coin-offering-ico.aspr (visited on 2022).

[4] Christian Rauch Kimberly Gleason Yezen H. Kannan. “Fraud in startups:

what stakeholders need to know”. In: (1984).

[5] Welcome to Ethereum. https://ethereum.org/en/. Accessed: 2023-04-26.

[6] Ethereum. https://es.wikipedia.org/wiki/Ethereum. Accessed: 2023-

04-26.

[7] Ethereum-Logo. https : / / artistsatrisk . org / donations / ethereum -

logo/?lang=es. Accessed: 2023-04-26.

[8] Solidity. https://es.wikipedia.org/wiki/Solidity. Accessed: 2023-04-

26.

[9] Solidity Logo. https://blog.knoldus.com/structure-of-a-contract-

in-solidity/. Accessed: 2023-04-26.

[10] React. https://es.wikipedia.org/wiki/React. Accessed: 2023-04-26.

[11] Web3 JS. https://web3js.org/. Accessed: 2023-04-27.

[12] Infura. https://www.infura.io. Accessed: 2023-04-27.

[13] Metamask. https://metamask.io. Accessed: 2023-04-27.

82

https://blogs.worldbank.org/developmenttalk/how-did-starting-business-become-easier-ever
https://blogs.worldbank.org/developmenttalk/how-did-starting-business-become-easier-ever
https://www.worldbank.org/en/businessready/doing-business-legacy
https://www.worldbank.org/en/businessready/doing-business-legacy
https://www.investopedia.com/terms/i/initial-coin-offering-ico.aspr
https://www.investopedia.com/terms/i/initial-coin-offering-ico.aspr
https://ethereum.org/en/
https://es.wikipedia.org/wiki/Ethereum
https://artistsatrisk.org/donations/ethereum-logo/?lang=es
https://artistsatrisk.org/donations/ethereum-logo/?lang=es
https://es.wikipedia.org/wiki/Solidity
https://blog.knoldus.com/structure-of-a-contract-in-solidity/
https://blog.knoldus.com/structure-of-a-contract-in-solidity/
https://es.wikipedia.org/wiki/React
https://web3js.org/
https://www.infura.io
https://metamask.io

References

[14] MetaMask Cryptocurrency Wallet Review. https://www.investopedia.

com / metamask - cryptocurrency - wallet - review - 5235562. Accessed:

2023-05-1.

[15] Remix IDE. https://remix-project.org. Accessed: 2023-04-27.

[16] GitHub. https://es.wikipedia.org/wiki/GitHub. Accessed: 2023-04-27.

[17] Benet, J. (2014). IPFS - Content Addressed, Versioned, P2P File System.

https://arxiv.org/abs/1407.3561. Accessed: 2023-05-16.

[18] About The Graph. https://thegraph.com/docs/en/about/. Accessed:

2023-05-16.

[19] Learn Me a Bitcoin. https://learnmeabitcoin.com/technical/. Ac-

cessed: 2023-04-25.

[20] Public-key cryptography. https://en.wikipedia.org/wiki/Public-key_

cryptography. Accessed: 2023-04-25.

[21] Diffie–Hellman key exchange. https://en.wikipedia.org/wiki/DiffieHellman_

key_exchange. Accessed: 2023-04-25.

[22] Elliptic Curve. en.wikipedia.org/wiki/Elliptic_curve. Accessed: 2023-

03-14.

[23] Integer factorization. https://en.wikipedia.org/wiki/Integer_factorization.

Accessed: 2023-03-14.

[24] Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/

bitcoin.pdf. Accessed: 2023-04-25.

[25] Bitcoin. https://es.wikipedia.org/wiki/Bitcoin. Accessed: 2023-04-25.

[26] How Does a Blockchain Transaction Work? https://www.ledger.com/

academy/how-does-a-blockchain-transaction-work. Accessed: 2023-04-

26.

[27] Transaction. https://en.bitcoin.it/wiki/Transaction. Accessed: 2023-

04-26.

83

https://www.investopedia.com/metamask-cryptocurrency-wallet-review-5235562
https://www.investopedia.com/metamask-cryptocurrency-wallet-review-5235562
https://remix-project.org
https://es.wikipedia.org/wiki/GitHub
https://arxiv.org/abs/1407.3561
https://thegraph.com/docs/en/about/
https://learnmeabitcoin.com/technical/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Integer_factorization
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://es.wikipedia.org/wiki/Bitcoin
https://www.ledger.com/academy/how-does-a-blockchain-transaction-work
https://www.ledger.com/academy/how-does-a-blockchain-transaction-work
https://en.bitcoin.it/wiki/Transaction

References

[28] What Are Consensus Mechanisms in Blockchain and Cryptocurrency? https:

//www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.

asp. Accessed: 2023-04-26.

[29] What Is Proof-of-work (PoW)? All You Need to Know. https://blockworks.

co/news/what-is-proof-of-work. Accessed: 2023-05-1.

[30] Proof Of Stake Vs Delegated Proof Of Stake. https://101blockchains.

com/proof-of-stake-vs-delegated-proof-of-stake. Accessed: 2023-

05-1.

[31] Proof of Capacity (Cryptocurrency) Overview. https://www.investopedia.

com/terms/p/proof-capacity-cryptocurrency.asp. Accessed: 2023-05-

1.

[32] INTRODUCTION TO SMART CONTRACTS. https://ethereum.org/

en/developers/docs/smart-contracts/. Accessed: 2023-05-1.

[33] ETHEREUM VIRTUAL MACHINE (EVM). https://ethereum.org/en/

developers/docs/evm/. Accessed: 2023-05-1.

[34] SMART CONTRACT LANGUAGES. https://ethereum.org/en/developers/

docs/smart-contracts/languages/. Accessed: 2023-05-1.

[35] ERC-20 TOKEN STANDARD. https://ethereum.org/en/developers/

docs/standards/tokens/erc-20/. Accessed: 2023-05-1.

[36] Doing Business Legacy. https : / / www . investopedia . com / articles /

personal-finance/102015/series-b-c-funding-what-it-all-means-

and-how-it-works.asp. Accessed: 2023-04-25.

[37] Mezzanine Capital. https://en.wikipedia.org/wiki/Mezzanine_capital.

Accessed: 2023-04-26.

[38] Tim Smith (2022). Crowdfunding: What It Is, How It Works, Popular Web-

sites. https://www.investopedia.com/terms/c/crowdfunding.asp.

Accessed: 2023-05-16.

84

https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp
https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp
https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp
https://blockworks.co/news/what-is-proof-of-work
https://blockworks.co/news/what-is-proof-of-work
https://101blockchains.com/proof-of-stake-vs-delegated-proof-of-stake
https://101blockchains.com/proof-of-stake-vs-delegated-proof-of-stake
https://www.investopedia.com/terms/p/proof-capacity-cryptocurrency.asp
https://www.investopedia.com/terms/p/proof-capacity-cryptocurrency.asp
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://www.investopedia.com/articles/personal-finance/102015/series-b-c-funding-what-it-all-means-and-how-it-works.asp
https://www.investopedia.com/articles/personal-finance/102015/series-b-c-funding-what-it-all-means-and-how-it-works.asp
https://www.investopedia.com/articles/personal-finance/102015/series-b-c-funding-what-it-all-means-and-how-it-works.asp
https://en.wikipedia.org/wiki/Mezzanine_capital
https://www.investopedia.com/terms/c/crowdfunding.asp

References

[39] 2021, EL AÑO DE LAS MEGA RONDAS. https://lab.expansion.com/

record-startup/. Accessed: 2023-04-25.

[40] Grupo Sego Finance: plataformas y caracteŕısticas — Mayo 2023. https://

finanzas.roams.es/entidades-financieras/segofinance/. Accessed:

2023-05-2.

[41] Gúıa básica de crowdfunding 15: Los costes del crowdfunding. https://

vanacco.com/articulo/costes-crowdfunding/. Accessed: 2023-05-2.

[42] Gas fees Calculator. https : / / www . cryptoneur . xyz / en / gas - fees -

calculator?gas-input=46834&gas-price-option=on. Accessed: 2023-05-

24.

[43] Infura Pricing. https://www.infura.io/pricing. Accessed: 2023-05-24.

[44] Indeed Software Developer Salary in Spain. https : / / es . indeed . com /

career/desarrollador-de-software/salaries. Accessed: 2023-05-24.

[45] Kickstarter: Estad́ısticas. https://www.kickstarter.com/help/stats.

Accessed: 2023-05-24.

[46] 6sense: Kickstarter. https://6sense.com/tech/crowdfunding/kickstarter-

market-share. Accessed: 2023-05-24.

[47] Kickstarter: Comisión para España. https://www.kickstarter.com/help/

fees. Accessed: 2023-05-24.

[48] Visual Paradigm. https://online.visual- paradigm.com/diagrams/

features/use-case-diagram-software/. Accessed: 2023-05-25.

[49] Mermaid. https://mermaid.live. Accessed: 2023-05-25.

[50] Cloning Solidity smart contracts using the factory pattern. https://blog.

logrocket.com/cloning-solidity-smart-contracts-factory-pattern/.

Accessed: 2023-05-16.

85

https://lab.expansion.com/record-startup/
https://lab.expansion.com/record-startup/
https://finanzas.roams.es/entidades-financieras/segofinance/
https://finanzas.roams.es/entidades-financieras/segofinance/
https://vanacco.com/articulo/costes-crowdfunding/
https://vanacco.com/articulo/costes-crowdfunding/
https://www.cryptoneur.xyz/en/gas-fees-calculator?gas-input=46834&gas-price-option=on
https://www.cryptoneur.xyz/en/gas-fees-calculator?gas-input=46834&gas-price-option=on
https://www.infura.io/pricing
https://es.indeed.com/career/desarrollador-de-software/salaries
https://es.indeed.com/career/desarrollador-de-software/salaries
https://www.kickstarter.com/help/stats
https://6sense.com/tech/crowdfunding/kickstarter-market-share
https://6sense.com/tech/crowdfunding/kickstarter-market-share
https://www.kickstarter.com/help/fees
https://www.kickstarter.com/help/fees
https://online.visual-paradigm.com/diagrams/features/use-case-diagram-software/
https://online.visual-paradigm.com/diagrams/features/use-case-diagram-software/
https://mermaid.live
https://blog.logrocket.com/cloning-solidity-smart-contracts-factory-pattern/
https://blog.logrocket.com/cloning-solidity-smart-contracts-factory-pattern/

	Introduction
	Description of the technologies
	Ethereum
	Solidity
	React
	Web3 JS
	Infura
	Metamask
	Remix IDE
	Visual Studio Code
	GitHub
	IPFS
	Graph Protocol

	State of the art
	Cryptography
	Hash Function
	Asymmetric cryptography
	Private Key
	Public Key
	Elliptic Curves

	Blockchain
	Addresses
	Transactions
	Block

	Consensus Protocol
	Proof of Work (PoW)
	Proof of Stake (PoS)
	Proof of Capacity (PoC)

	Smart Contracts
	Bitcoin Scripts
	Ethereum Smart Contracts
	Ethereum Tokens (ERC20)

	Funding Rounds

	Work Definition
	Motivation
	Objectives
	Methodology
	Economic Analysis
	Technology Resources
	Human Resources
	Break Even

	System development
	Architecture design
	Users
	Customers Flows
	UML diagram

	Implementation
	Contract Design
	The Graph Indexer
	IPFS

	Results
	Conclusions and future scope
	Alignment with the Sustainable Development Goals (SDGs)
	Installation instructions
	User Manual
	Queries API
	References

