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Abstract

In the current practice of short-term power scheduling, online power reserves are used to
address generation mismatches and contingencies. Neither online inertia nor the speed of
the committed units is considered in the scheduling process. With the increasing injection
of uncertain renewable energy sources, this practice is starting to fall short, especially in
island power systems, where the primary frequency response is already scarce, and any con-
tingency leads to potentially poor frequency response. This paper introduces a data-driven
linear constraint to improve the post-fault frequency quality in island power systems. A
coherent initial data-set is obtained by simulating the system frequency response of single
outages. Then logistic regression is employed as a predictive analytic procedure to differ-
entiate the acceptable and unacceptable incidents. To compate the conventional methods
with the proposed approach and also to handle the uncertain nature of renewable energy
generation, an adaptive robust unit commitment formulation is utilized. Results for the
island power system of La Palma show that depending on the chosen cut-point on the
logistic regression estimation the proposed method can improve the frequency response

1 | INTRODUCTION

1.1 | Motivation

Variability and uncertainty are becoming a bigger concern in
power systems due to the ever-increasing penetration of RES
as a source of power generation. Among power systems, island
power systems suffer more as they inherently possess less iner-
tia and primary frequency control capacity. Inertia scarcity in
island power systems makes them more susceptible to power
outages and fluctuations in uncertain renewable energy sources
(RES). Traditionally, online reserve power provided by conven-
tional units has been the main tool to tackle unforeseen sudden
changes in power balance and to maintain the frequency within
a tolerable range. The cutrent reserve assignment is such that
the N-1 criterion is covered and expected load and RES varia-
tions can be absorbed, but it ignores available inertia and system
response speed. This practice is falling short as (1) the conven-
tional units are less utilized by increasing the share of RES, (2)

quality of the system while reducing the operation costs.

the amount of available reserve might not be enough depend-
ing on the changes in RES infeed, which is exposed to forecast
errors, (3) the system is left with insufficient amount of respon-
sive resources facing outages and forecast errors. It’s reasonable
to propose a scheduling method that can tackle the uncer-
tainties that the RES is bringing while ensuring the frequency
response after the outages are tolerable. This is challenging,
because both stochastic formulations and frequency constraints
are quite complex, and impose a lot of computational burden
on the scheduling procedure. This paper tries to address both
of these issues while keeping the size of the UC problem intact.

1.2 | Framework

To address the volatile nature of RES and include the stochas-
ticities in the scheduling process, usually stochastic and robust
models are employed. Considering the pros and cons of differ-
ent models, an adaptive robust UC is employed for the purpose
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of this paper. Some of the more recent usages and develop-
ments in the formulation can be found in [1-3], and [4]. A
robust formulation is employed in this paper to include the
uncertainties of RES. To ensure the provision of sufficient and
fast reserves, different solutions atre introduced in the literature
([5-8]). While new sources of the reserve are being introduced,
it’s also essential to make sure that the quality of frequency tran-
sitions is guaranteed in the scheduling process, in case of any
abrupt contingency.

Following the higher injection of RES to the grid, larger fre-
quency deviations are expected after any power mismatch. The
amount of frequency control that is needed depends on sys-
tem inertia, generation loss, and the speed of providing reserve.
More attention is being paid to this issue. One obstacle is that
frequency-related constraints, like frequency nadir, are highly
non-linear, so it’s hard to implement them in the scheduling
process, which is usually solved by mixed-integer linear pro-
gramming methods. In [9], a linear formulation is introduced
that equips the unit commitment problem with information
about inertial response and the frequency response of the sys-
tem and makes sure that in case of the largest outage, there is
enough ancillary service to prevent under frequency load shed-
ding (UFLS). To lineatize frequency nadir constraint, first-order
partial derivatives of its equation with respect to higher-order
non-linear variables are calculated. Then the frequency nadir is
presented by a set of piecewise linearized constraints. In [10],
different frequency services are optimized simultaneously with
a stochastic unit commitment (SUC) approach, targeting low
inertia systems that have high levels of RES penetration. The
stochastic model uses scenario trees, generated by the quintile-
based scenario generation method. To linearize frequency nadir,
an inner approximation method is used for one side of the equa-
tion, and for the other side, a binary expansion is employed
and linearized using the big-M technique. In [11], a stochas-
tic unit commitment approach is introduced for low inertia
systems, that includes frequency-related constraints. The prob-
lem considers both the probability of failure events and wind
power uncertainty to compute scenario trees for the two-stage
SUC problem. An alternative lineatization approach is used
to make sure the nadir threshold is not violated. Instead of
piece-wise linearizing the whole equation, relevant variables
including the nonlinear equation are confined within a plausi-
ble range that guarantees frequency drop after any contingency
will be acceptable. Reference [12] has proposed a forecasting
approach to model the uncertainties of RES to define upper
and lower bounds and further implement them in a robust unit
commitment (RUC). This study has assumed that frequency
deviation is a linear function of the RoCoF, and has added it as
a constraint to the RUC problem. In [13], a reformulation lin-
earization technique is employed to linearize the frequency nadir
limit equation. To address the uncertainties of wind generation,
an improved interval unit commitment is used. Results show
that controlling the dynamic frequency during the scheduling
process decreases the operation costs of the system while ensur-
ing its frequency security. In [14], first, a frequency response
model is developed that provides enough primary frequency
response and system inertia in case of an outage. All frequency

dynamic metrics, including the RoCoF and frequency nadir, are
obtained from this model, as analytic explicit functions of UC
state variables and generation loss. These functions are then lin-
earized based on a pseudo-Boolean theorem, so they can be
implemented in linear frequency constrained UC problems. To
find the optimal thermal unit commitment and virtual inertia
placement, a two-stage chance-constrained stochastic optimiza-
tion method is introduced in [15]. Frequency nadir is first
defined with a bi-linear equation and then it’s linearized with
the help of the big-M approach. Although these methods are
directly obtained from the dynamic equations, they are based on
assumptions, and they increase the computational complexity of
the UC problem.

In [16], instead of extracting analytical formulas from swing
equation, a data-driven multivariate optimal classification trees
(OCT) technique is used to extract linear frequency constraints.
A robust formulation is proposed to address the uncertainties
of load and RES. OCT is solved separately as an MILP prob-
lem. Because of that, the size of the training dataset should
be moderately small, especially for deeper tree structures. A
dynamic model is presented in [17] to generate the training
data. The generated data is trained by the deep neural net-
work. Trained neural networks are formulated so they can be
used in an MIL problem and the frequency nadir predictor is
developed, to be used in the UC problem. Then in [18] deep
neural network (DNN) is trained by high-fidelity power simula-
tion and reformulated as an MIL set of constraints to be used in
UC. The number of constraints and variables that are required
for MIL representation of DNN, can be overwhelming and
increase the computational complexity of the problem. In [19],
a revised support vector machine (SVM) based method is intro-
duced to convexify the frequency nadir constraint. Then based
on the method, an FCUC model is formulated as a tractable
mixed integer quadratic problem. In [20] the gradient boost-
ing decision tree algorithm is employed to build a frequency
response model, which is then added to the UC problem to
maintain the frequency within an acceptable range. In the same
line of research, this paper is presenting a data-driven con-
straint to enhance the frequency response quality after outages.
A summary of the reviewed FCUC-related papers is provided in
Table 1.

Analytical formulations for frequency metrics are usually
based on simplified models with respect to fully detailed power
system models or linearizing the nonlinear behavior of power
systems during large active power unbalance, and including
them methodically in the UC problem To include the non-linear
frequency metrics in linear UC, reviewed references are trying
to employ a linearization technique. Eventually, the obtained
linear lines are always a function of system dynamic constants,
available inertia, and the amount of power imbalance. Although
this serves the purpose of ensuring the quality of frequency
response, it usually increases the size and complexity of the
UC problem, in order to reach some level of accuracy. This
paper employs Logistic regression (LR) as a dichotomous clas-
sification approach to classify the post-fault frequency drop as
acceptable or unacceptable. LR is one of the most useful statis-
tical procedures in healthcare analysis, medical statistics, credit
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TABLE 1 A summary of frequency constrained UC references

#/year Uncertainty model Linearization technique Case study
[91/2018 Deterministic First order partial derivatives Great Britain 2030
[10]/2019 Stochastic Inner approximation and binary expansion Great Britain 2030
[11]/2020 Stochastic Extracting bounds on relevant vatiables IEEE RTS-96
[12]/2016 Robust Assuming nadir is a linear function of RoCoF Northern Chile
[13],/2020 Improved interval Reformulation linearization technique IEEE 6-bus
[14],/2020 Deterministic Pseudo-Boolean theorem IEEE RTS-96
[15]/2021 Chance-constrained Binary expansion China 196-bus
[16],/2021 Robust Data-driven optimal classifier trees Rhodes island and IEEE 118
[17]/2021 Deterministic DNN trained by dynamic simulation Modified 33-node system
[18]/2021 Deterministic DNN trained by high-fidelity generated data IEEE 39-bus system
[19],/2022 Deterministic Convexifying by support vector machines IEEE 24 and 118 bus systems
[20],/2022 Deterministic Gradient boosting decision tree algorithm Taipower system in Taiwan
[ Uncertainty model [ Reserveprovision |  Logistic regression | 1.3 | Gaps and contributions
| Analytical FCUC | Il Data-driven FCUC
Perez-Illanes [12] Huang [6] Paturet [11]  Shahidehpour [15] Prakash [7] To the best of the authors’ knowledge, logistic regression has
hoscavi (18] Zobba 1] . Cho [4] Zhang [8] not been used as an analytic tool in the UC problem and
Hilbe [17] has never been employed to estimate the quality of frequency
response in island power systems. Considering the presented
( Y Y O YYD VDY Y Y OO Y O ) background, this paper proposes a predictive analytic approach
— o 1 to enhance post-fault frequency quality in a robust UC model.
2016 2022 The idea is to avoid dispatches that lead to poor frequency
Trovato [9]  Badesa [10] Rabbanifar [14] Lagos [16] | Zhang [17] responses by scheduling only those generators whose out-
Mousavi-Toghiabadi [”]Nus"mm' (9 Rajabdomi (8] (b age would not violate acceptable frequency deviations, thus
Ning [2] Habibi [3] reducing the potential UFLS.

FIGURE 1

Summary of references

rating, ecology, social statistics, econometrics, etc. This proce-
dure is important in predictive analytics, as it’s able to categorize
the outcome [21]. Considering the problem at hand and the
purpose of this paper, this approach is promising. In [22], a
framework is proposed that removes irrelevant features with
no effect on classification and concludes that a training data-set
with missing values can still generate sufficient explanations of
LR classifications. These characteristics of LR make it an inter-
esting option for FCUC application: (a) a linear constraint is
derived from LR that can be directly used in the MIL formu-
lation of UC. (b) in practice thete are some generator outages
that can be tolerated and some others that cannot. This type
of dichotomous problem is what LR describes well. (c) in con-
trary to [14, 16], or [18] the obtained constraint from LR does
notintroduce any additional binary vatiables to the formulation,
making it viable for more computationally demanding methods
like robust and stochastic UC. (d) training data with LR is very
fast, even for a big number of inputs to better represent the sys-
tem behavior. (e) the LR gives a probabilistic interpretation of
the classification. That helps the operator to choose the margin
of security, depending on the requirements. A summary of all
discussed papers is shown in Figure 1.

This paper proposes a novel data-driven constraint, by ana-
lyzing a coherent data-set, using a logistic regression procedure.
To build an initial set of data to train the LR model, an adap-
tive robust UC formulation with reserve constraint is employed
and solved for different levels of the reserve requirement. The
idea of using different levels of the reserve is to simultaneously
determine the level actually needed. The commitment variables
of the robust UC solution for different levels of reserves are
used to solve the economic dispatch (ED) problem for day-
ahead stochastic scenarios. Every single outage of the obtained
results is simulated by an SFR model, which makes the training
dataset a proper representative of all acceptable and unaccept-
able frequency responses. From the training dataset, a new
constraint is derived using the logistic regression procedure and
then included in robust UC instead of conventional reserve
constraint to ensutre both frequency quality after outages, and
feasibility of the result in case of any realization of the stochas-
tic variable. Although the linearization happens in the training
process, the new constraint does not add to the number of con-
straints in the UC problem, hence keeping the problem size
intact. The system operators can use this method to include fre-
quency dynamics in the short-term scheduling process (weekly
UC, day-ahead UC, hours-ahead UC etc.) while keeping the
size of the UC problem unaffected. To compare the proposed
approach with recent data-driven methods that are introduced
in the literature, OCT is also used to train a linear constraint.
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Both methods are compared in the results and their compu-
tational run-time and improvements in the frequency quality
are highlighted. Key contributions and merits compared to the
current state of the art can be summarized as

* This paper introduces logistic regression as a tool to train out-
put data of the SFR model, and develops a new constraint to
be used in UC problems instead of the reserve constraint.

* Proposed formulation does not add any new binary, inte-
ger, or free variables to the UC problem and does not
enlarge the number of UC constraints, conserving the size
and complexity of the problem.

* The procedure of training the new constraint is very fast and
can be done, using any computer algebra system.

The rest of the paper is organized as follows. In Section 2,
the required methodology of the proposed approach is pre-
sented, starting with the robust UC with reserve constraint in
Section 2.1. Then the SFR model is presented in Section 2.2,
which takes the UC solutions as input. The outputs of the SFR
model ate used as the training data set for the LR model. How
the LR works, and how the LR constraint is obtained is pre-
sented in Section 2.3. The adaptive robust UC formulation with
LR can be found Section 2.4. The results are demonstrated in
Section 3, and conclusions are drawn in Section 4.

2 | METHODOLOGY

This section presents the methodology. The main argument for
using LR is that instead of trying to methodically linearize highly
non-linear terms, it is possible to use historic or synthetic data to
represent frequency metrics with a line that is a function of sys-
tem dynamic constants, available inertia, available reserve, and
the amount of lost power. Such a procedure does not jeopardize
accuracy through linearization and does not introduce unneces-
sary complexity and computational burden. The methodology is
valid for active power unbalances in general, including genera-
tion outages. The proposed method tries to distinguish between
outages that potentially violate tolerable frequency levels and the
ones that do not. This type of problem can be dealt with with
dichotomous classification approaches like LR. The first step is
to build a comprehensive set of data to train an accurate con-
straint. An adaptive robust UC with reserve constraint is used
in this paper to obtain this data-set, which is explained in Sec-
tion 2.1. The UC problem is solved for different levels of the
reserve requirement, and ED is solved for all of the stochastic
scenarios. The obtained results predominantly picture the pos-
sible feasible solutions that might be encountered in real-time.
Using these data dynamic simulations are carried out to see the
quality of frequency response in case of all potential outages. To
perform the dynamic simulations an SFR model including the
UFLS scheme is used (Section 2.2). As the inputs of the SFR
model have different levels of reserve and the amount of inertia
is ignored, the simulation results will be a broad-ranging mix of
tolerable frequency responses, poor responses, and even unsta-

ble cases. Analyzing the correlation between inputs and outputs
of the SFR model facilitates the training of the LR model (Sec-
tion 2.3), so it can distinguish the tolerable cases and the ones
which will lead to poor frequency responses in case of outages.
Note that any other power system simulation tool can be used
instead of the SFR model. The obtained estimation of the LR
model is further used in an adaptive robust UC formulation
as an alternative constraint instead of the current reserve con-
straint (Section 2.4). Such formulation is inherently equipped
with a constraint that is able to control the quality of frequency
response of potential outages.

2.1 | Adaptive robust UC with reserve
constraint

The Unit Commitment (UC) problem is a mixed-integer prob-
lem and is usually solved with MIL Programming solvers after
the linearization of nonlinear terms. To solve the UC problem
with uncertainty, an adaptive robust formulation is employed in
[23] and [24]. The formulation is robust, because it considers all
of the possible realizations of the uncertain input, and makes
sure that the chosen commitment status of the units, which is
decided at the master level, will be feasible for any realization
of the uncertain variable. The formulation is adaptive because
the subproblem level is a function of the uncertain variables
and can adapt the master level decision variable, depending on
the different realizations of the uncertain variable. A general
representation of the UC problem with reserve constraint and
uncertain wind power injection is provided here,
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The aim is to solve Equation (1) subject to Equations (la)
to (1d), which only depends on binary vatiables, and Equa-
tions (1e)—(1k), which depend on both binary and real variables.
ge(.) 1s usually a quadratic cost function, which will be piece-
wise linearized to be utilized in a MIL problem. Equations (1a)
and (1b) represent the binary logic of the UC problem. Equa-
tions (Ic) and (1d) are the minimum up-time and minimum
downtime constraints of the units. Equation 1e is the minimum
power generation constraint, with dual multiplier &. Equation 1f
is the maximum power generation constraint with dual mul-
tiplier B, and states that the summation of power generation
and power reserve of every online unit, should be less than
the maximum output of the unit. Equations (1g) and (1h) are
ramp-down and ramp-up constraints, with dual multipliers ¥
and &, respectively. Equation 1i is the power balance equa-
tion with dual multiplier . Equation 1j with the dual multiplier,
7) makes sure that the scheduled wind power is always equal to
or less than the uncertain forecasted wind. Equation 1k is the
current reserve constraint with dual multiplier g, and makes
sure that in case of any contingency, there is enough head-
room to compensate for the lost generation. Note that all the
decision variables from Equations (le) to (1k) ate a function
of uncertain wind power realization. In practice, an iterative
delayed constraint generating Benders’ decomposition algo-
rithm is used to solve this problem [25]. The problem is broken
to a master problem minimization subjected to Equations (1a)
to (1d), and a subproblem with max-min form subjected to
Equations (le) to (1k).

rgn<mmm»+5g%qu@mﬁ- @

The minimization on the master level is subjected to Equa-
tions (1a) to (1d), and the subproblem level minimization is
subjected to Equations (I¢) to (1k). The subproblem minimiza-
tion problem determines the ED cost for a fixed commitment
%, and then it’s maximized over the uncertainty set WW. Here the
concept of duality in linear problems can be used. As the strong
duality suggests, the dual has an optimal solution if and only if the
primal does, and the solutions are equal. Taking the dual of subprob-
lem converts the max-min form into a maximization problem.
Considering the decomposed form of the problem, the feasible
region of subproblem maximization is independent of x. So the
subproblem maximization can be described as a set of extreme
points and extreme rays of the solution region. Let O be the
complete set of possible extreme points, and F be the com-
plete set of possible extreme rays. These properties will later be
used to define the decomposed master problem. In the itera-
tive solution process, the binary variable, %, ;, is obtained from
the masters’ problem, hence it is fixed. With that in mind, and

defining the auxiliary variable ¢, as an understimator of optimal
subproblem objective value, the dual form of the subproblem is
defined as follows,

teT iel
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a,B,v7,8,n, 1 > 0and ¢ is free. (3¢)

The dual form is Equation (3) subject to Equations (3a) to
(3¢). ¢ is a free variable, because Equation (1i) is an equality.
To find out more about writing a standard form of a problem,
and taking the dual, have a look at [20]. The term 7),», in the
dual objective function is nonlinear, so an outer approximation
approach [27] is employed to cope with it. The objective func-
tion of subproblem dual is a function of all dual variables and
fixed X; ; from the master problem in the previous iteration. Let
us define the set of dual variables as # and the dual objective
solution as f (X, ;, #). Then the master problem is defined as
follows,

min  sue(x; ;) + @,

st (la)to (1d),
> fi) VueEO
0> fGoni) VueF

)

The iterative solution process starts with empty sets of O
and F. Then if the subproblem solution corresponding to X, ,
(f (%, ) is feasible, an optimality cut is generated and added
to O'. And if the subproblem solution corresponding to the
X, is infeasible, f (%, ;, ) is unbounded and a feasibility cut
is generated and added to F’. The iterations continue until ¢
is converged enough. The iterative algorithm is presented in
Algorithm 1.

The UC problem is solved for different levels of the
reserve requirement. The optimal commitment variables are
then used to solve the ED problem for various stochastic wind
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FIGURE 2 SFR model

scenarios to build an initial dataset, which will be implemented
in the SFR model.

2.2 | System frequency response (SFR) model

This section briefly presents SFR models used to analyze the
frequency stability of small isolated power systems. The model is
able to reflect the underlying short-term frequency response of
small isolated power systems. Figure 2 details the power-system
model typically used to design UFLS schemes for an island
power system, consisting of T generating units. Each generating
unit 7 is represented by a second-order model approximation
of its turbine-governor system. In fact, dynamic frequency
responses are dominated by rotor and turbine-governor system
dynamics. Excitation and generator transients can be neglected
for being much faster than the tutbine-governor dynam-
ics. Since frequency can be considered uniform, equivalent
normalized system inertia H can be defined as follows,

ﬁ _ €1 H/_M;m.wxl,l_ :
¢ Shbase : ( )

The overall response of loads can be considered by means of
a load-damping factor D if its value is known. The gain £&; and
parameters 4; 1, 4; 5, b; 1 and b; 5, of each generating unit 7 can be
deduced from more accurate models or field tests. Since primary
spinning reserve is finite, power output limitations Ap; ,;, and
Ap; e are forced. So the units can only participate as much as
their available reserve. The complete model is explained in [28].

In practice, the UFLS scheme is designed to stabilize the sys-
tem after large outages. For the purpose of building a data set
to train the LR model, the UFLS scheme should be deactivated

so the results capture the free frequency responses, including
the ones that lead to instability quantified by unacceptable low-
frequency nadir and steady-state frequency. Note however that
the UFLS scheme will be considered to quantify the expected
amount of UFLS when comparing the new reserve constraints
with the current one in Section 3.

2.3 | Logistic regression (LR)

Regression methods are used for data analysis, concerned with
describing the relationship between a response variable and one
or more explanatory variables. Sometimes the output variable
needs to be discrete, taking one or more possible values. In
these instances, logistic regression is usually used. Consider a
collection of » independent variables denoted by the vector
£ = (€1,&5,...,&,) related to a dichotomous dependent vari-
able v, where v is typically coded as 1 or 0 for its two possible
categories. Considering that for a (0,1) random variable, the
expected value of v is equal to the probability of v =1 (i.e.
(v = 1)), and is defined here,

1
1+ g_<[(i+[l§l+[2§2+"'+€///§m> )

tw=1)=

©)

The regression coefficients ¢, to ¢, in the logistic model
Equation (6) provide important information about the rela-
tionships of the independent variables in the model to the
dichotomous dependent variable. For the logistic model, these
coefficients are used to estimate the odds ratio. Odds are defined
as the ratio of the probability that some event will occur divided
by the probability that the same event will not occur. Thus the
odds for the event v = 1 is,

v =1)

odd;(v = 1) = m

)

Generally the conditional probability that the outcome
presents is denoted by 77 (). The logit transformation of the
probability 77 (v = 1) is defined as natural logarithm of the odds
of event v = 1, and considering Equation (6) is defined as,

=1
logit (m (v = 1)) = /4%)

= [()+[1§1 +[2§2 + e +[7//§m'

®)

This is the /ogit form of the model and is given by a linear
function [29]. The logit transformation is primarily applied to
convert a variable that is bounded by 0 and 1 (i.e. probabilities)
to a variable with no bounds [30]. When /ogit (r (v = 1)) goes
toward +00, the probability of event v = 1 gets closer to 1, and
when /git (T (U = 1)) goes toward —oo, the probability of event
v = 1 gets closer to 0. Usually /gt (m (v = 1)) = 01is considered
as a cut-point, that separates those events with the probability
of more than 0.5 on the positive side, and those events with
the probability of less than 0.5 on the negative side. Depending
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FIGURE 3 Flowchart of calculating IR coefficients

on the required accuracy for the model, different cut-points can
be chosen.

As the frequency response of the system after contingen-
cies is highly nonlinear, different approaches are employed in
the literature to somehow lineatize and include them in the UC
problem. Some of these approaches are mathematically compli-
cated and often tremendously burdensome for the solver. The
argument here is that instead of linearizing the complex non-
linear equations, the output of developed SFR models can be
analyzed to drive a linear constraint. To do so, the frequency
response after each contingency can be marked as acceptable or
unacceptable, depending on whether it violates the predefined
limits or not. Then logistic regression is employed here to ana-
lyze the data and separate acceptable and unacceptable results
with a trained line. This line is added later to the UC problem
as a constraint by replacing the current reserve constraint Equa-
tion (1k). Such constraint can improve the frequency response
quality and reduce the amount of load shedding due to unex-
pected outages, as it takes into account the expected dynamic
behavior of the system.

As it’s going to be further discussed in Section 3, a training
data-set consisting of either synthetic or historic UC solutions is
created to train the LR model. The independent variables of the
LR model are assigned for every possible generator outage # in
the training dataset. The independent variables that are defined
should have a good correlation with the frequency response
metrics after outage #. In this paper, the defined independent
variables are the weighted summation of online inertia (§; ),
the summation of inverse droop of the online units (&, ), lost
power (§5,), lost power divided by the corresponding demand
of that hour (£, ), and remaining of the reserve power after
generator outages (§5 ). Then every possible generator outage
7 in the training dataset is simulated with the SFR model to
obtain a frequency response for each outage. Depending on the
results of the SFR model, outage # will be tagged as 1 (accept-
able) if the frequency response is within tolerable boundaries or
0 (unacceptable) if it’s not. These binary tags will be employed
as dependent variables of each outage for the LR model (v,).
Now that both independent and dependent variables of the LR
model are formed, the training process can be performed to
obtain coefficients ¢, to ¢5. The process is shown in Figure 3
and explained again later Section 3 for the case study. The gen-
eral form of the trained constraint estimated by the LR model is
presented as follows,

i€l
base
) + 451 Z H”M” Xl,ii +
i

i€l
‘4
o Z Kirii | + espri+ 7 brit ©®
it#i 4
it
& Z(P;;Xz,/z‘ —pi) |2 teT,iel.
i

This constraint enables the UC problem to also take into
account the inertia and time constants of the system. The pur-
pose is to improve the quality of frequency response with these
measures. To obtain ¢ to ¢s, the size and coherency of the train-
ing set should be good enough to desctibe the system. Although
a small training data set can be classified with high precision,
it might be insufficient to reflect the behavior of the system.
Figure 4 shows a hypothetical example of the distribution of
two variables. According to the distribution in Figure 4a all the
lines, L1 to L3, can perfectly separate the two variables. But with
a bigger size distribution sample, Figure 4b shows that L2 is a
better candidate.

2.4 | Adaptive robust UC with LR constraint

The general formulation is similar to Equation (1), but reserve
constraint in Equation (1k) is replaced by the LR constraint in
Equation (9). The subproblem dual with the new constraint will
become as follows,

teT i€l
Z Z (P50,
teT i€l _

- Z Z B Pk, ;)
teT i€l
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FIGURE 4 A hypothetical example to show the importance of the size of Simulate SFR model with no UFLS and steady state frequency

the training data set. a) small size. b) big size.

ALGORITHM 1 Iterative UC with reserve

Input: System specifications, wind uncertainty set, power demand
Output: €-optimal solution
1. ;=0
. S o) i1
while |¢/ (%], W) — ¢/ (%, ,#/7")| < € dodo

Solve master, minimizing .rw(x,/,i) +¢/ (xf/,i, 71 to get f‘{,i

Solve subproblem using outer approximation, maximizing f(&{,/, )
to get 7/

5 Iff(?t}/’,-, WY is bounded = O" U {;,j}

6 Iff(f‘f,ﬁ”) is unbounded — F' U {}
T J=J+1
8

end while

L4, >0 €T, (10b)

a,f,v,8,m,p = 0and ¢ is free. (10¢)

As the objective function in the primal form and all the
constraints that only involve binary variables are the same, the
master problem remains the same as Section 2.1. The iterative
solution procedure here is the same as Algorithm 1. A flowchart
of the different steps of the proposed method is presented in
Figure 5.

3 | RESULTS

3.1 | Case study and inputs

Simulations for the proposed methodology are carried on the
real power system of La Palma island, one of Spain’s Canary
Islands. The yeatly demand in 2018 is reported as about 277.8
GWh (average hourly demand of 31.7 MWh), supplied by
eleven Diesel generators pre-dominantly. According to [31], the
installed capacity of the La Palma island power system mounts
to 117.7 MW, whete about 6% of the installed capacity belongs

to wind power generation. RES covers about 10% of the yeatly
demand. The capacity of the generators is shown in Table 2.

for all possible contingencies

Using the results of SFR model a
dataset is formed to train LR model

Mark acceptable results of SFR
model as 1, and unacceptable
ones as 0

Fit the data with a line using LR

Solve robust UC problem with the
constraint derived from LR

Compare the expected amount of

is now obtained for all
outages with no UFLS.

Now the data has a
dichotomous form and we
can perform LR.

Independent variables are
inertia, droop  inverse,
available reserve, power
loss, and power loss ratio.

UFLS using SFR model with UFLS End
FIGURE 5 Flowchart of the proposed method
TABLE 2  Generator capacities
# P [Mw] P [MW]
1 2.35 3.82
2 2.35 3.82
3 2.35 3.82
4 2.82 4.30
5 3.30 6.70
6 3.30 6.70
7 6.63 11.50
8 6.63 11.20
9 6.03 11.50
10 6.63 11.50
11 4.85 21

The input data for solving the UC problem is obtained from real
data. Different scenarios of forecasted wind generation data of
a sample day are chosen, which also provide the upper bound
and the lower bound of the wind availability for the robust for-
mulation. Wind data with 10 scenarios is shown in Figure 6.
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An initial data set is required to train the LR model. The
training data set should be able to represent the system, even i s
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in extreme circumstances, so it should include incidents with Time [centisecond] Time [centisecond]
Reserve level multiplier= 0 Reserve level multiplier= 1.4

bad and unstable frequency responses too. Here it’s decided to
consider different reserve levels and different probable wind
scenarios, to provide a wide range of plausible data to train the
LR model, so it can reliably distinguish acceptable and unaccept-
able results. To achieve such a training data set, the conventional
day-ahead robust UC is solved for ascending reserve require-
ments levels, starting from zero requirements until the problem
becomes infeasible. By doing so a wide range of plausible UC
solutions will be obtained, including generator outages that lead
to tolerable frequency responses, poor frequency responses, and
even unstable responses. In the conventional UC, the reserve
requirement is typically the largest generation source under
moderate RES penetration. A multiplier is defined here for the
reserve requirement starting from 0, with 0.1 ascending steps,
until 1.5, which is the point that problem becomes infeasible in
this case. The RUC commitment schedule and the correspond-
ing frequency response of every single outage for a sample hour
are shown in Figure 7, for minimum reserve level (reserve level
multiplier = 0) and maximum feasible reserve level (reserve
level multiplier = 1.4). Then the ED is solved for 10 probable
wind scenarios, using the robust UC solution for each reserve
requirement level. At this stage, independent variables for the
LR model can be picked up from ED results. Every possible
generator outage # in the obtained ED solution is simulated
with the SFR model, resulting in the corresponding frequency
responses, to form the LR training data set. Considering the
solved houtly RUCs and then for each of them hourly EDs of 10
wind scenarios, there will be around 20,000 possible single out-
ages in total (every possible outage in every hour), building up
the diverse training data set. The first RUC with a reserve level
of zero is very fast. The corresponding ED problem receives
fixed binary values from RUC, hence it’s a linear problem with
no integer values involved, so it is also very fast even when
the quadratic cost function is used. As all the wind scenarios
(Figure 0) are within the upper bound and lower bound of the

FIGURE 7  Schedule generation and reserve for different reserve levels
and their corresponding frequency response after single outages for a sample
hour

TABLE 3  Pearson’s correlation between parameters

fnadiy qux RoCoF
>H 0.568 0.558 0.668
YK 0.286 0.283 0.319
P —0.561 —0.532 —0.876
4 —0.617 —0.588 —0.965
> 0.506 0.516 0.269

RUC, it’s certain that the ED for any scenario is feasible. To
reduce solution time for higher levels of the reserve, the lower
bound of the objective function can be set as the objective func-
tion of the previous level and a feasible binary solution can be
attained from the previous level to give the current level a warm
start. Obtained results confirm that other system characteristics,
like online inertia, lost power, lost power percentage, and the
droop of the turbine-governor system are more correlated with
the quality of the frequency response, compared to the amount
of reserve. The reason is that in systems with low inertia (like
islands) frequency drops so fast after outages that the UFLS
scheme is activated, although there is enough headroom in the
remaining units (enough reserve). Table 3 shows the Pearson’s
correlation between mentioned characteristics and frequency
response metrics, around 20,000 single outages that are simu-
lated by the SFR model. For our case study, the whole process
of building up the training data set and carrying out the dynamic
simulations takes around 1 h. The SFR simulations are done by
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TABLE 4  Logistic regression coefficients

Independent variable LR coefficient

- - @ 26.577
i€l

3! Y H M, o —0.366
i#i
i€l

& X K 0 0.102
ii#i

& Dri o 1.484

& o 4 ~173.995
ie1 .

& X Pixvii = Pri) s 2.356
u#i

MATLAB Simulink.As expected, the ratio of lost generation to
hourly demand has the best correlation with frequency metrics,
as the big outages relative to the whole generation tend to dis-
turb frequency considerably. Interestingly enough, the sum of
the available reserves has a weaker correlation with frequency
metrics, compared to the others. Meaning that fulfilling reserve
criteria do not guarantee the quality of frequency response in
small power systems with low inertia, as the remaining units are
not fast enough to compensate for the power mismatch, while
the frequency is dropping fast due to lack of inertia. So other
parameters like total available inertia and power loss ratio are
better representatives of the system dynamics.

From the results of the SFR model for every single outage, it
is possible now to determine acceptable and unacceptable out-
ages. At this stage generator outages 7, which are followed by
bad frequency responses are tagged with 1, and the outages that
are followed by tolerable frequency outages are tagged with 0.
This forms the dependent variable v, in the LR model. For the
purpose of this paper, any generator outage incident which leads
to frequency nadir less than 47.5 Hz, or a RoCoF higher than 1.5
Hz/s, or steady-state frequency less than 49.6 Hz, is considered
an unacceptable incident and is tagged with 0. Other incidents
are considered acceptable and are tagged with 1.

Independent variables that are chosen should have a good
correlation with the frequency response metrics and have the
ability to be used in the linear constraint. For this study, the
presented patrameters in Table 3 are defined as independent vari-
ables. Now that both independent variables and their associated
dependent variables are acquired, the LR model can be trained
to calculate the coefficients of Equation (9). The LR coefficients
for the case study of La Palma island are presented in Table 4.
These coefficients can be implemented to Equation (9), with an
adjustable cut-point P to set up a new constraint. As discussed
in Section 2.3, the logit form is a transformation of probabilities.
In this case, incidents that are more probable to be acceptable
should have a positive logit and a probability close to 1. On
the other hand, incidents that are more probable to be unac-
ceptable should have a negative logit and a probability close
to 0. There will also be some errors, mainly around 0.5 prob-
ability, meaning that some acceptable incidents might end up
possessing a negative logit value and vice versa. Depending on

10
x
X
5 X
£ X
g0 gt
3 x
-5 X
X
-10
0.0 0.2 04 0.6 0.8 1.0

Probability

FIGURE 8 Logistic regression approximation

the preferred outcome, a proper cut-point can be chosen to cre-
ate a more conservative or less conservative constraint. Figure 8
shows how accurately the applied logistic regression can sepa-
rate acceptable and unacceptable results. Acceptable results are
in red and unacceptable ones are in yellow.

Depending on the required conservativeness a cut-point is
chosen. For example, 3 = 0 cortesponds to w(v = 1) = 0.5.
Putting 1 = 0, means all the incidents that their probability of
being unacceptable is more than 0.5, will be eliminated, hence
it’s very conservative. A less conservative approach is to only
eliminate the instances with the probability of being unaccept-
able mote than 0.9 (w(v = 1) < 0.1). Then ¥ should be set
equal to —2.12 (considering Equation 8). Some probabilities and
their corresponding cut-points are shown with the cross sign in
Figure 8.

In Figure 9, it is shown how different independent variables,
&, to &5 (as defined in Table 4), are described by the logis-
tic regression approximation. Those incidents that are marked
as acceptable before are the red dots, and unacceptable inci-
dents are the yellow dots. There are some errors, especially
close to the /ogit (r = 1) line, but the overall accuracy is justi-
fiable. The summation of online inertia, &, is depicted in the
Figure 91. Acceptable results are more concentrated on the top
side which are the incidents with higher online inertia, and as
the online inertia drops, the dots move towards unacceptable
results. A similar conclusion can be drawn for the summation
of the droops of online turbine-governor systems, &,, shown
in Figure 911. The amount of lost generation, &3, is depicted in
Figure 9111. As expected, larger outages tend to result in unac-
ceptable incidents and as the figure goes toward smaller outages,
the concentration of acceptable incidents grows. The same con-
clusion is derived from Figure 91V, which shows the ratio of
lost generation to hourly demand, &,. The available reserve is
depicted in Figure 9V. Generally incidents with a higher amount
of online resetrve tend to lead to better results, but still there are
a considerable number of incidents that lead to unacceptable
results, although they have a relatively high available reserve.
This confirms that the available reserve is not the best indi-
cator to ensure the quality of dynamic response after outages.
The goal is to improve the quality of frequency response by
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including all of these independent variables, each of them

weighted carefully with logistic regression coefficients.

3.2 | Comparison of different methods

Simulations are carried out for three different methods:

3.2.1 | Conventional approach

The conventional formulation of robust UC, that the frequency
response after an outage is only guaranteed by reserve criteria.
Reserve requirement is the biggest online generation infeed.

322 | LR

The proposed logistic regression method. Reserve criteria are
substituted with a constraint that is trained by the LR model.
Different cut-points (i) are considered to assess the effective-
ness of the proposed method, when the LR constraint is looser

(smaller ¥) or tighter (bigger ).

323 | OCT

To also compare the proposed method with other recent data-
driven methods in the literature, optimal classification trees are
implemented to train a constraint, as introduced in [16]. The
outputs of the SFR model are classified into acceptable and
unacceptable incidents, using the MIL solution method of [33].
As solving the optimization problem for classification becomes
very hard with a big set of inputs and a high depth of trees, only
the biggest hourly outage of a limited number of scenarios is fed
to the OCT problem as input, with the maximal depth of one
and two.

324 | RoCoF

The RoCoF estimation from the swing equation is linear and
can be directly used in MIL formulation. Different critical
RoCoFs are considered to make comparison easier. More detail
can be found in [10] and [12]. The added constraint to the
conventional RUC is as follows,

el
2 (Z H,-Z-Mff”x,ﬁ> XAfy>pt €T,i€l. (11
iidi

A comparison of frequency response indicators for the
conventional approach, LR, and OCT is presented in Table 5.
Frequency-response quality indicators are the average amount
of UFLS which is obtained from SFR with UFLS active, average
frequency nadir, average RoColLi, and average quasi-steady-state
frequency, which is obtained from SFR with UFLS deactivated.
The changes in average UFLS and operation costs relative to
the conventional approach are presented in percentage too. To
better compare the overall frequency response quality of all pre-
sented methods, HQFR and LQFR are defined in percentage.
LQEFR is the percentage of incidents with low-quality frequency
response, which are incidents with RoCoF higher than 1.5
Hz/s or frequency nadir lower than 47.5 Hz or quasi-steady-
state frequency lower than 49.6 Hz. The rest of the incidents
are counted as HQFR, or High-quality frequency response.
Cut-points beyond ¢ = 2.12 make the problem infeasible, so
1 = 2.12 is presented in the table as the most consetvative cut-
point that is feasible. The results assert that more conservative
approaches lead to higher operation costs. But depending on
the chosen cut-point, the proposed approach can sometimes
lead to better frequency response quality, while keeping the
operation costs relatively low. As it can be seen in Table 5,
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TABLE 5 Results of the simulations on La Palma island
HQFR (%) LQFR (%) Average 7 Average f"*“" Average RoCoF Average UFLS Operation cost Run-time (s)
Conventional approach  67.6% 32.4% 49.61 Hz 48.29 Hz —1.31 Hz/s 2.30 MW 140.61 k€ 1, 422"
LR with 3 = 2.12 81.8% 18.2% 49.81 Hz 48.81 Hz —1.00 Hz/s 1.14 MW (=50.5%) 145.26 k€ (+3.3%) 1, 819"
LR with =0 81.3% 18.7% 49.82 Hz 48.77 Hz —1.03 Hz/s 1.23 MW (—46.5%) 143.68 k€ (+2.1%) 2,092"
LR with 3 = —2.12 78.9% 21.1% 49.81 Hz 48.68 Hz —1.09 Hz/s 1.47 MW (=36.1%) 14290 k€ (+2.3%) 2,345"
LR with 3 = —4.95 78.2% 21.8% 49.74 Hz 48.57 Hz —1.12 Hz/s 1.75 MW (=23.9%) 141.32 k€ (+0.5%) 1,965"
LR withp = =5 73.4% 26.6% 49.73 Hz 48.48 Hz —1.18 Hz/s 2.03 MW (=11.7%) 140.78 k€ (+0.1%) 1,411"
IR with p = —6.91 76.8% 23.2% 49.66 Hz 48.52 Hz —1.13 Hz/s 2.06 MW (—=10.4%) 139.83 k€ (=0.6%) 1, 015"
LR with p = —9.21 69.8% 30.2% 49.26 Hz 48.09 Hz —1.24 Hz/s 2.20 MW (—4.3%)  138.53 k€ (—1.5%) 794"
LR with ¢p = —10 64.2% 35.8% 47.97 Hz 46.96 Hz —1.28 Hz/s 244 MW (+6.1%)  136.86 k€ (—2.7%) 847"
LR with p = —11.51 61.9% 38.1% 4791 Hz 46.85 Hz —1.36 Hz/s 2.61 MW (+13.5%)  136.67 k€ (—2.8%) 761"
OCT,d =1, N=1001 79.2% 20.8% 49.80 Hz 48.75 Hz —1.05 Hz/s 1.31 MW (—43.0%) 144.33 k€ (+2.6%) 1, 750"
OCT,d =2, N =1001 79.1% 19.9% 49.81 Hz 48.77 Hz —1.04 Hz/s 1.29 MW (—43.9%) 145.09 k€ (+3.2%) 3, 144"
OCT,d =1, N =2800 79.2% 20.8% 49.80 Hz 48.76 Hz —1.05 Hz/s 1.30 MW (—43.5%) 144.12 k€ (+2.5%) 1,807"
RoCoF (A f,; = 1.5) 88.4% 11.6% 49.80 Hz 48.81 Hz —0.91 Hz/s 1.17 MW (—49.1%) 151.41 k€ (+7.1%) 1,104"
RoCoF (Af,y = 2) 75.3% 24.7% 49.79 Hz 48.60 Hz —1.16 Hz/s 141 MW (—36.8%) 144.40 k€ (+2.7%) 1,984"
RoCoF (Af,;; = 2.5) 69.3% 30.7% 49.78 Hz 48.42 Hz —1.26 Hz/s 2.01 MW (=12.6%) 142.10 k€ (+1.1%) 1, 620"
10 TABLE 6 Comparison of the training process
— 0 Method N Inaccuracy Run-time
£-10
E -20 LR 19860 3.71% 00°03”
5 -30 OCT,d =1 1001 1.15% 00°32”
::8 OCT,d =2 1001 0.1% 28077
-2 -1 0 1 2 3 OCT,d =1 2800 2.07% 42°06”
Operation Cost [%]
FIGURE 10  Average UFLS and operation cost in percentage

more conservative cut-points lead to less percentage of LQFR.
Each column in the table is compared with the conventional
approach. The ones that perform better than the conventional
approach are underlined with red lines, and the ones that
perform worse are underlined with yellow lines. The results
also show that the proposed approach can guarantee a better
frequency response quality if a proper cut-point is chosen.
Depending on the required level of cautiousness, the operator
can choose a cut-point. For the La Palma island, a probabil-
ity assurance of P = —6.91 seems appealing, because both
frequency response quality and operation cost are improved.

To better compate and choose the best 9, all the simulated
cases of La Palma island are compared with the conven-
tional approach (highlighted with a yellow cross) in Figure 10.
Although the opetation costs go higher by choosing 9 closer
to zero, the average UFLS is decreased considerably. Also, there
are cases that lead to improvement in both operation cost and
average UFLS, which are highlighted in red.

The results for OCT in Table 5 show improvements in the
quality of frequency response compared to the conventional
approach and LR with some cut-points. 4 is the depth of the

tree structure. OCT with 4 = 1 leads to one set of constraints
(so the size of the UC problem will remain the same), and OCT
with d = 2 leads to two sets of constraints. Although OCT is
very accurate in classifying the inputs, the run-time of the opti-
mization problem relies heavily on the number of inputs and the
depth of the tree structure. For that reason making the training
set smaller was necessary. Solving OCT with a full set of train-
ing set (around 20,000 points) can take many days. So only the
biggest hourly outages of some scenarios are considered (like
in [16]), creating two training data-sets, one smaller with 1001
points, and one bigger with 2800 points. A comparison between
the accuracy of representing the data set and solution run-time
is presented in Table 6. The downside of a small training set
for this practice is that more unacceptable incidents might be
flagged as acceptable and vice versa. As it can be seen in Table 0,
the advantage of OCT compated to LR is the superior accu-
racy in classifying the training set and the OCT disadvantage
compared to LR is the computational burden of the training
process, which effectively limits the size of the training set. Also,
tuning the initial values in the OCT optimization problem is
hard, and time-consuming, More discussion about this can be
found in [33].
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FIGURE 11
UFLS

Frequency response after outages for a random hour with

Simulations are also carried out for RUC with reserve con-
straint, plus the linear RoCoF constraint, considering different
critical values for RoCoE The problem is infeasible for Af, .,
below 1.5 Hz/s. This criterion keeps the RoCof of any outage,
under the defined A £, .. Yet it cannot prevent some of the unac-
ceptable /7% and f, 4, from happening. Also, the operation cost
is considerably higher, because so many units should be online
at the same time to keep RoCoF within boundaries after out-
ages. Higher A £, results are less conservative, but as expected
they will cost more than the conventional approach. As it can be
concluded from the results, even for the most restricted criteria,
the percentage of LQFR is impossible to be zero for La Palma
island. There is no feasible solution that can guarantee only
HQFR incidents. Simply starting up more units would not solve
the issue, as the units should maintain the minimum power out-
put constraint, which effectively limits the maximum number of
online units. For all the simulations in this paper, a computer
with Intel core i7-8700 CPU and 32 GB installed RAM is used.
All of the MILP problems (RUC and OCT), and ED which are
quadratic, are solved by CPLEX solver in GAMS. The run-time
of each respective method is presented in Table 5 as well. Differ-
ent things might affect the solution-time of an MILP problem,
including: tightness of the solution domain, compactness of the
problem (problem size), lower bound of the objective function
that the solver finds, number of feasible cuts, optimality gap,
and etc.

It’s also interesting to see and compare the dynamic fre-
quency responses obtained from the SFR model. In Figures 11
and 12, the frequency tesponse for a period of 15 s after out-
ages are presented, for every single outage of online units in a
random hour. In Figure 11 the UFLS scheme is activated, and
Figure 12 shows frequency responses with no UFLS. The sim-
ulations for the conventional approach are in yellow, the most
consetvative case with P = 2.12in red, and one of the preferred
cases with 1 = —06.91 in green. The moments that the UFLS
scheme has operated are also highlighted with dashes. The bet-
ter performance of the conservative case is noticeable. Also, the
case with P = —6.91 outpetforms the conventional approach.
The minimum allowed frequency nadir is shown with the gray
line in Figure 12.

0 200 400 600 800 1000 1200 1400

Time [centisecond]

FIGURE 12 Frequency response after outages for a random hour
without UFLS

4 | CONCLUSION

This paper proposes a novel procedure to schedule short-term
unit commitment in island power systems. Island power sys-
tems usually suffer from a lack of inertia and frequency response
capacity, complicating containing frequency within an accept-
able range during large disturbances. The proposed method uses
an initial data set to train a linear constraint that takes into
account the dynamic response of the system. For the purpose of
training this constraint, logistic regression is employed to avoid
incidents with undesirable frequency responses as much as pos-
sible. Then the logistic regression constraint is included in an
adaptive robust formulation. Results show that by choosing a
proper cut-point, the proposed method improves the frequency
response, as well as the operation costs. As training data with
the LR model is very fast, the size of the training set is not
an issue. A complete training data set can better represent the
system, leading to a more reliable frequency constraint. The pro-
posed approach is compatred with OTC as a method to classify
the training set and also with linear RoCoF constraint. In both
cases, the proposed method is more cost-efficient. The operator
can use the proposed constraint in the UC problem to improve
the frequency response of the system after outages, instead of
lengthy analytical approaches.

NOMENCLATURE
Acronyms

DNN  Deep neural network
ED  Economic Dispatch
GAMS  General algebraic modeling system
HQFR  High Quality Frequency Response
LOFR  Low Quality Frequency Response
LR Linear Regression
OCT  Optimal Classification Trees
RES  Renewable Energy Soutces
RoCoF Rate of Change of Frequency
RUC Robust Unit Commitment
SFR  System Frequency response Model
SIVM  Support vector machine
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UC Unit Commitment
UFLS  Under Frequency Load Shedding

SFR model

Ad  Load deviation [p.u.]

Ap Mechanical power deviation [p.u.]

frequency deviation [p.u.]

Inertia [s]

Normalized gain of turbine-governor model
Base rated power of units [MW]

Base power of the system [MW]

Total load deviation [p.u.]

Total mechanical power deviation [p.u.]

>
3

Poles of the second order system
Zeros of the second order system
Inverse of the droop [p.u.]

Total number of contingencies

AN SN *EZEJ(IJK?S::

Index of contingency

LR model

7w(.) Probability of .
¥ Regtession cut-point
v Dependant variable
¢ Independent variable
¢ Regtression coefficient
f7r " The minimum value of frequency reached during the
transient period

S? Quasi steady-state frequency

Robust UC

a  Dual variable of minimum power constraint
B Dual variable of maximum power constraint
Critical RoCoF [Hz/s]

Dual variable of up ramp constraint

>
=~
3

Dual variable of power balance constraint
Dual vatiable of down ramp constraint

Set of all generators

Set of all time intervals

Set of Wind generation uncertainty

Dual variable of minimum reserve constraint
Maximum power output of generator

(MW]

Maximum ramp-up of generator

[MW]

Dual variable of LR constraint
Minimum power output of generator

[MW]

Maximum ramp-down of generator

[MW]

Dual variable of maximum wind constraint

L(\‘] N AR N‘\‘]l SIS SNR<S o

>
N o

Minimum down-time of generators [hours|
Generation costs [€ ]

~. %8

Index of generators

X

Alias index for generators
Power generation variable [MW]
Online reserve power variable [MW]

>

S

sue(.)  Start-up costs [€]
¢ Index of time intervals
#  Alias index for time intervals
UT"  Minimum up-time of generators [hours]
w  Available forecasted wind power [MW]
wg  Wind generation variable [MW]
x  Commitment variable [€{0,1}]
y Start-up variable [€{0,1}]
%z Shut-down variable [€{0,1}]
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