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Abstract: This article concerns the existence of positive weak solutions of a heterogeneous elliptic
boundary value problem of logistic type in a very general annulus. The novelty of this work lies in
considering non-classical mixed glued boundary conditions. Namely, Dirichlet boundary conditions
on a component of the boundary, and glued Dirichlet-Neumann boundary conditions on the other
component of the boundary. In this paper we perform a complete analysis of the existence of positive
weak solutions of the problem, giving a necessary condition on the λ parameter for the existence of
them, and a sufficient condition for the existence of them, depending on the λ-parameter, the spatial
dimension N ≥ 2 and the exponent q > 1 of the reaction term. The main technical tools used to carry
out the mathematical analysis of this work are variational and monotonicity techniques. The results
obtained in this paper are pioners in the field, because up the knowledge of the autor, this is the first
time where this kind of logistic problems have been analyzed.
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1. Introduction and previous results

This work is devoted to analyze the existence of positive weak solutions of the following
heterogeneous elliptic logistic boundary value problem with mixed and glued Dirichlet-Neumann
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boundary conditions given by 
−∆u = λu − a(x)uq in Ω, q > 1,
u = 0 on Γ0,

u = 0 on ΓD1 ,

∂u = 0 on ΓN1 ,

(1.1)

where the following assumptions are assumed:

i) The domain Ω is a bounded domain of RN , N ≥ 2 of class C2, with boundary ∂Ω = Γ0∪Γ1, where
Γ0 and Γ1 are two disjoint components of ∂Ω and Γ1 = ΓD1 ∪ ΓN1 , being ΓD1 and ΓN1 two connected
pieces, open and closed respectively as N −1 dimensional manifolds, such that ∂ΓD1 = ∂ΓN1 ⊂ ΓN1 ;

ii) −∆ stands for the minus Laplacian operator in RN and λ ∈ R;
iii) The potential a ∈ C(Ω̄), with a > 0, measures the spatial heterogeneities in Ω and satisfies that

Ω0 := int {x ∈ Ω : a(x) = 0} , 0 , Ω0 ∈ C
2 ,

∂Ω0 = Γ1 ∪ Γ0
0 , Γ0

0 := ∂Ω0 ∩Ω , dist(Γ0
0,Γ1) > 0 .

Set Ω+ := Ω \ Ω̄0 .
iv) ∂u = ∇u ◦ n̄, where n̄ is the outward normal vector field to ∂Ω.

Figure 1 shows a possible configuration of the domain Ω, its boundary ∂Ω = Γ0 ∪ ΓD1 ∪ ΓN1 and the
boundary conditions in each piece of the boundary.

Figure 1. Configuration of Ω and ∂Ω = Γ0 ∪ ΓD1 ∪ ΓN1 .

The positive solutions of (1.1) are the positive steady-states of the associated evolutionary problem
given by 

∂tv(x, t) − ∆v(x, t) = λv(x, t) − a(x)v(x, t)q in Ω × R, q > 1,
v(x, t) = 0 on Γ0 × R,

v(x, t) = 0 on ΓD1 × R,

∂v(x, t) = 0 on ΓN1 × R,

v(x, 0) = v0(x) > 0 in Ω,

(1.2)

which describes the dynamics of the positive solutions of many reaction-diffusion problems appearing
in the applied sciences and engineering. In population dynamics, (1.2) describes the dynamics of a

AIMS Mathematics Volume 8, Issue 6, 12606–12621.



12608

population inhabiting a heterogeneous environment Ω, growing accordingly with a generalized logistic
law. From this point of view, v(x, t) stands for the population density, −∆v(x, t) is the diffusion term, λ
is the growth rate of the population and a(x) measures the saturation effect responses to the population
stress in Ω+. As for the boundary conditions, the homogeneous Dirichlet boundary condition on Γ0∪ΓD1
means that Γ0 ∪ ΓD1 are hostile regions, and the homogeneous Neumann boundary condition on ΓN1
guarantees no migration or null flux of population through ΓN1 . The different boundary conditions
considered in (1.1) and (1.2) may be due to a heterogeneous distribution of the natural resources
through the boundary or close to the boundary. The analysis of the positive solutions of (1.1) is crucial
to have a complete understanding of the long time behavior of the positive solutions of (1.2). Also, the
analysis of the existence of positive weak solutions of (1.1) is pivotal in the study of the asymptotic
behavior as γ ↑ ∞ of the strong positive solutions of heterogeneous logistic elliptic boundary value
problems with nonlinear mixed boundary conditions like the following

−∆u = λu − a(x)uq in Ω, q > 1,
u = 0 on Γ0,

∂u = −γb ur on Γ1, r > 1,
(1.3)

where b ∈ C(Γ1) with b > 0 on Γ1 and

ΓN1 = b−1(0) , ΓD1 = b−1((0, ‖b‖L∞(Γ1)]) ,

which stand for again the positve steady-states of the associated parabolic problem with nonlinear flux
on Γ1. In this kind of problems, when λ belongs to a suitable interval, the limiting profile of the strong
positive solutions when γ ↑ ∞, is a positive weak solution of (1.1), as it will be proved elsewhere. The
proof of this fact is out the scope of this work.

Although we have assumed throughout this paper that Γ1 splits in two connected pieces ΓD1 and ΓN1 ,
the results of this work may be generalized in a natural way to cover the case when Γ1 splits in 2k
connected pieces

{
ΓD1i , ΓN1,i

}k

i=1
, where now

Γ1 = ΓD1 ∪ ΓN1 , ΓN1 = ∪k
i=1Γ

N
1i , ΓD1 = ∪k

i=1Γ
D
1i ,

with ΓD1 and ΓN1 unconnected and where each piece ΓD1i , i = 1, . . . , k is between two consecutive pieces

of the family
{
ΓN1 j

}k

j=1
and viceversa.

On the other hand, owing to [5], the results into this work also may be generalized to cover the case
when, instead of imposing a Neumann boundary condition on ΓN1 , it is imposed a boundary condition
of Robin type like ∂u + b(x)u = 0, where b ∈ C(ΓN1 ) with arbitrary sign satisfies adequate technical
conditions. The novelty of the results in this work is considering glued Dirichlet and Neumann
boundary conditions on a same component of the boundary. These results are pioners in the field,
because up the knowledge of the author, this is the first time where this kind of logistic problems have
been analyzed.

Before stating our main findings, we introduce some notations and previous results. Let us denote

C∞
Γ0∪ΓD1

(Ω) :=
{
φ : Ω̄→ R : φ ∈ C∞(Ω) ∩ C(Ω̄) ∧ supp φ ⊂ Ω̄ \ (Γ0 ∪ ΓD1 )

}
,
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and let H1
∗ (Ω) be the clousure in H1(Ω) of the set of functions C∞

Γ0∪ΓD1
(Ω), that is

H1
∗ (Ω) = C∞

Γ0∪ΓD1
(Ω)

H1(Ω)
.

By construction if u ∈ H1
∗ (Ω), then u = 0 on Γ0 ∪ ΓD1 . In the same way, taking into account that

∂Ω0 = Γ0
0 ∪ Γ1 = Γ0

0 ∪ ΓD1 ∪ ΓN1 , we denote

C∞
Γ0

0∪ΓD1
(Ω0) :=

{
φ : Ω̄0 → R : φ ∈ C∞(Ω0) ∩ C(Ω̄0) ∧ supp φ ⊂ Ω̄0 \ (Γ0

0 ∪ ΓD1 )
}

and
H1
∗ (Ω0) = C∞

Γ0
0∪ΓD1

(Ω0)
H1(Ω0)

.

Also we denote
H̃1
∗ (Ω0) :=

{
ϕ : Ω̄→ R : ϕ ∈ H1

∗ (Ω0) ∧ ϕ = 0 in Ω+ ∪ Γ0

}
,

that is, any function belonging to H̃1
∗ (Ω0) is the extension by 0 to Ω̄ of a previous function belonging

to H1
∗ (Ω0). By definition, if u ∈ H̃1

∗ (Ω0) then u = 0 in ΓD1 ∪ Γ0
0 ∪ Ω+ ∪ Γ0. Also, by construction it is

clear that
H̃1
∗ (Ω0)  H1

∗ (Ω) . (1.4)

By a positive weak solution of (1.1) we mean any function ϕ ∈ H1
∗ (Ω) satisfying

ϕ > 0 ,
∫

Ω+

a(x)ϕq+1 < ∞ ,

and such that for each ξ ∈ C∞
Γ0∪ΓD1

(Ω), or ξ ∈ H1
∗ (Ω), the following holds∫

Ω

∇ϕ∇ξ +

∫
Ω

a(x)ϕqξ = λ

∫
Ω

ϕξ . (1.5)

In particular, taking ξ = ϕ ∈ H1
∗ (Ω) we have that∫

Ω

|∇ϕ|2 +

∫
Ω

a(x)ϕq+1 = λ

∫
Ω

ϕ2 . (1.6)

Thus, since any positive weak solution of (1.1) can not be constant, it follows from (1.6) that if (1.1)
possesses a positive weak solution ϕ for the value λ of the parameter, then

λ =

∫
Ω
|∇ϕ|2 +

∫
Ω

a(x)ϕq+1∫
Ω
ϕ2

≥

∫
Ω
|∇ϕ|2∫
Ω
ϕ2

> 0 , (1.7)

and therefore, λ > 0 is a necessary condition for the existence of positive weak solutions of (1.1).
Hereafter we denote BN , B∗(ΓN1 ) and B∗0(ΓN1 ) the boundary operators defined by

B
Nu :=

{
u on Γ0

∂u on Γ1
, B

∗(ΓN1 )u :=


u on Γ0

∂u on ΓN1
u on ΓD1

,
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and

B
∗
0(ΓN1 )u :=


u on Γ0

0
∂u on ΓN1
u on ΓD1

,

and by D the Dirichlet boundary operator on ∂Ω. Clearly, BN = B∗(Γ1). Also we denote

W2(Ω) :=
⋂
p>1

W2
p(Ω) .

In the sequel we will say that a function u ∈ W2
p(Ω), p > N is strongly positive in Ω, and we will denote

it by u � 0, if u(x) > 0 for each x ∈ Ω ∪ Γ1 and ∂u(x) < 0 for each x ∈ Γ0 such that u(x) = 0.
Let us consider the eigenvalue problem{

−∆ϕ = σϕ in Ω,

BNϕ = 0̄ on ∂Ω.
(1.8)

By a principal eigenvalue of (1.8) we mean any eigenvalue of it which possesses a one-signed
eigenfunction and in particular a positive eigenfunction. Owing to the results in [1, Theorem 12.1] it is
known that (1.8) possesses a unique principal eigenvalue, denoted in the sequel by σΩ

1 [−∆,BN ], which
is the least eigenvalue of (1.8) and it is simple. Moreover, the positive eigenfunction ϕN1 associated to
it, unique up multiplicative constant, satisfies

ϕN1 � 0 in Ω, (1.9)

and in addition
ϕN1 ∈ W2(Ω) ⊂ C1+α(Ω̄) for all α ∈ (0, 1) . (1.10)

A function ϕ ∈ W2
p(Ω) for p > N is said to be a positive strict supersolution of the problem (−∆,Ω,BN ),

if ϕ > 0 in Ω and the following hold {
−∆ϕ ≥ 0 in Ω,

BNϕ ≥ 0 on ∂Ω,

with some of the inequalities strict. Since any positive constant µ > 0 is a positive strict supersolution
of the problem (−∆,Ω,BN ), it follows from the characterization of the strong maximum principle
given in [2, Theorem 2.4] that

σΩ
1 [−∆,BN ] > 0 . (1.11)

Now, for any K ∈ L∞(Ω), let us denote LK := −∆ + K and let us consider the eigenvalue problem with
mixed boundary conditions and glued Dirichlet-Neumann boundary conditions on Γ1 given by{

LKϕ = µϕ in Ω ,

B∗(ΓN1 )ϕ = 0̄ on ∂Ω .
(1.12)

A function ϕ is said to be a weak solution of (1.12) if ϕ ∈ H1
∗ (Ω) and for each ξ ∈ H1

∗ (Ω) the following
holds ∫

Ω

∇ϕ∇ξ +

∫
Ω

Kϕ ξ = µ

∫
Ω

ϕ ξ .
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The value µ is an eigenvalue of (1.12), if there exists a weak solution ϕ , 0 of (1.12) associated
to µ. In that case, it is said that ϕ is a weak eigenfunction of (1.12) associated to the eigenvalue
µ. By a principal eigenvalue of (1.12) we mean any eigenvalue of it which possesses a one-signed
eigenfunction and in particular a positive eigenfunction.

Owing to the results in [5, Theorem 1.1] it is known that (1.12) possesses a unique principal
eigenvalue, denoted in the sequel by σΩ

1 [LK ,B
∗(ΓN1 )], which is simple and the smallest eigenvalue

of all others eigenvalues of (1.12). Moreover, the positive eigenfunction ϕ∗ associated to it, unique up
multiplicative constant, satisfies that ϕ∗ ∈ H1

∗ (Ω) and

ϕ∗(x) > 0 a.e. in Ω . (1.13)

Furthermore, σΩ
1 [LK ,B

∗(ΓN1 )] comes characterized by

σΩ
1 [LK ,B

∗(ΓN1 )] = inf
ϕ∈H1

∗ (Ω)\{0}

∫
Ω
|∇ϕ|2 +

∫
Ω

Kϕ2∫
Ω
ϕ2

=

∫
Ω
|∇ϕ∗|2 +

∫
Ω

K(ϕ∗)2∫
Ω

(ϕ∗)2
(cf. [5, (2.27)]). (1.14)

Also, owing to [5, Corollary 3.5] the following hold

σΩ
1 [LK ,B

N ] < σΩ
1 [LK ,B

∗(ΓN1 )] < σΩ
1 [LK ,D] . (1.15)

In the same way, substituting in (1.12) Ω by Ω0 and B∗(ΓN
1 ) by B∗0(ΓN

1 ), owing to [5, Theorem 1.1] we
obtain the following variationl characterization for σΩ0

1 [LK ,B
∗
0(ΓN1 )]

σΩ0
1 [LK ,B

∗
0(ΓN1 )] := inf

ϕ∈H1
∗ (Ω0)\{0}

∫
Ω0
|∇ϕ|2 +

∫
Ω0

Kϕ2∫
Ω0
ϕ2

. (1.16)

In the particular case when K = 0, that is, when L0 := −∆, set

σΩ
1 [D] := σΩ

1 [−∆,D] , σΩ
1 [BN ] := σΩ

1 [−∆,BN ],

and
σΩ

1 [B∗(ΓN1 )] := σΩ
1 [−∆,B∗(ΓN1 )] , σΩ0

1 [B∗0(ΓN1 )] := σΩ0
1 [−∆,B∗0(ΓN1 )].

Owing to (1.11) and (1.14)–(1.16) the following hold

σΩ
1 [B∗(ΓN1 )] := inf

ϕ∈H1
∗ (Ω)\{0}

∫
Ω
|∇ϕ|2∫
Ω
ϕ2

=

∫
Ω
|∇ϕ∗|2∫

Ω
(ϕ∗)2

, (1.17)

σΩ0
1 [B∗0(ΓN1 )] := inf

ϕ∈H1
∗ (Ω0)\{0}

∫
Ω0
|∇ϕ|2∫

Ω0
ϕ2

=

∫
Ω0
|∇ϕ∗0|

2∫
Ω0

(ϕ∗0)2
, (1.18)

and
0 < σΩ

1 [BN ] < σΩ
1 [B∗(ΓN1 )] < σΩ

1 [D], (1.19)

where ϕ∗ and ϕ∗0 stand for the positive principal eigenfunctions associated to σΩ
1 [B∗(ΓN1 )] and

σΩ0
1 [B∗0(ΓN1 )], respectively, unique up multiplicative constant. Taking into account (1.4) and the

variational characterizations (1.17) and (1.18), it is clear that

σΩ
1 [B∗(ΓN1 )] ≤ σΩ0

1 [B∗0(ΓN1 )]. (1.20)
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The statements and proofs of the main findings of this work appear in Proposition 1 and Theorem 1.
The main technical tools used to carry out the mathematical analysis of this work are variational and
monotonicity techniques.

The distribution of the rest of this paper is the following. In Section 2 is given a necessary condition
for the existence of positive weak solutions of (1.1), sharper than (1.7), and some results about the
pointing profile of such solutions. In Section 3 is given a sufficient condition for the exsitence of
positive weak solutions of (1.1) depending on the λ-parameter, the spatial dimension N ≥ 2 and the
exponent q > 1 of the reaction term.

2. Necessary condition for the existence of positive weak solutions of (1.1)

In this section is given a necessary condition for the existence of positive weak solutions of (1.1)
sharper than (1.7), and some partial results about the pointing profile and regularity of the weak positive
solutions of (1.1). The main result of this section establishes the following

Proposition 1. Let u be a positive weak solution of (1.1) for the value λ of the parameter. Then,

0 < σΩ
1 [B∗(ΓN1 )] < λ (2.1)

and
u > 0 in Ω+. (2.2)

Moreover:

a) If u ∈ L∞(Ω+), then
λ ≤ σΩ0

1 [B∗0(ΓN1 )] (2.3)

and
u(x) > 0 a.e. in Ω. (2.4)

b) If

N ≥ 3 and 1 < q <
N

N − 2
, (2.5)

then u ∈ H2(Ω′) for any subdomain Ω′ ⊂⊂ Ω.
c) If

N = 3 and 1 < q < 3, (2.6)

then u ∈ C(K) in any compact subset K ⊂ Ω .

Proof. Let us denote
σ∗1 := σΩ

1 [B∗(ΓN1 )] , σ∗0 := σΩ0
1 [B∗0(ΓN1 )] .

Owing to (1.19) and (1.20) we know that

0 < σ∗1 ≤ σ
∗
0 .

To prove (2.1), let u ∈ H1
∗ (Ω) be a positive weak solution of (1.1) for the value λ of the parameter.

Then

λ =

∫
Ω
|∇u|2 +

∫
Ω

a(x)uq+1∫
Ω

u2
(cf. (1.7)). (2.7)
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Now, since u(x) ≥ 0 a.e. in Ω and a(x) > 0 for all x ∈ Ω+, we have that∫
Ω

a(x)uq+1 =

∫
Ω+

a(x)uq+1 ≥ 0 , (2.8)

and hence, since u ∈ H1
∗ (Ω) \ {0}, it follows from (2.7), (2.8) and (1.17) that

λ =

∫
Ω
|∇u|2 +

∫
Ω

a(x)uq+1∫
Ω

u2
≥

∫
Ω
|∇u|2∫
Ω

u2
≥ inf

ϕ∈H1
∗ (Ω)\{0}

∫
Ω
|∇ϕ|2∫
Ω
ϕ2

= σ∗1 (2.9)

and therefore,
λ ≥ σ∗1. (2.10)

We now prove that (1.1) does not possess a positive weak solution for λ = σ∗1. To prove it we will argue
by contradiction. Let us assume that v ∈ H1

∗ (Ω) is a positive weak solution of (1.1) for λ = σ∗1 and
let ϕ∗ be the positive principal eigenfunction associated to σ∗1, normalized so that

∫
Ω

(ϕ∗)2 = 1. Owing
to (1.13) and (1.17) we know that

ϕ∗(x) > 0 a.e. in Ω (2.11)

and

σ∗1 =

∫
Ω
|∇ϕ∗|2∫

Ω
(ϕ∗)2

.

Since v ∈ H1
∗ (Ω) is a positive weak solution of (1.1) for λ = σ∗1 > 0, we have that∫

Ω

a(x) vq+1 < ∞,

and for any ξ ∈ H1
∗ (Ω) the following holds∫

Ω

∇v∇ξ +

∫
Ω

a(x) vq ξ = σ∗1

∫
Ω

v ξ (cf. (1.5)). (2.12)

Also, it follows from (1.6) that ∫
Ω

|∇v|2 +

∫
Ω

a(x)vq+1 = σ∗1

∫
Ω

v2. (2.13)

Moreover, necessarily
v > 0 in Ω+, (2.14)

because on the contrary, if
v = 0 in Ω+, (2.15)

then for all ξ ∈ H1
∗ (Ω) we have that∫

Ω

a(x) vq ξ =

∫
Ω+

a(x) vq ξ = 0

and (2.12) becomes ∫
Ω

∇v∇ξ = σ∗1

∫
Ω

vξ ∀ ξ ∈ H1
∗ (Ω). (2.16)
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Then, v ∈ H1
∗ (Ω) is a weak positive eigenfunction associated to σ∗1 and therefore, owing to the

simplicity of σ∗1 guaranted by [5, Theorem 1.1], there exists α > 0 such that

v = αϕ∗ in Ω. (2.17)

Now, it follows from (2.11) and (2.17) that v(x) > 0 a.e. in Ω+ which contradicts (2.15). This completes
the proof of (2.14). Then, since (2.14) holds, we have that∫

Ω

a(x)vq+1 =

∫
Ω+

a(x)vq+1 > 0, (2.18)

and hence, (2.13) and (2.18) imply that

σ∗1 =

∫
Ω
|∇v|2 +

∫
Ω

a(x)vq+1∫
Ω

v2
>

∫
Ω
|∇v|2∫
Ω

v2
,

which contradicts the variational characterization of σ∗1 given by (1.17), and completes the proof of the
fact that (1.1) does not possess a positive weak solution for λ = σ∗1. This fact, together with (2.10)
and (1.19), complete the proof of (2.1).

We now prove (2.2). To prove it we will argue by contradiction. Indeed, let v ∈ H1
∗ (Ω) be a positive

weak solution of (1.1) for the value λ of the parameter and let assume that v = 0 in Ω+. Then, (2.1)
holds, ∫

Ω

∇v∇ξ +

∫
Ω

a(x)vqξ = λ

∫
Ω

vξ ∀ ξ ∈ H1
∗ (Ω) (cf. (1.5)) (2.19)

and since ∫
Ω

a(x)vqξ =

∫
Ω+

a(x)vqξ = 0 ∀ξ ∈ H1
∗ (Ω),

(2.19) becomes ∫
Ω

∇v∇ξ = λ

∫
Ω

v ξ ∀ ξ ∈ H1
∗ (Ω). (2.20)

Now, since v > 0 in Ω, it follows from (2.20) that (λ, v) is a principal eigenpair of the problem{
−∆ϕ = µϕ in Ω,

B∗(ΓN1 )ϕ = 0 on ∂Ω,
(2.21)

and owing to the uniqueness of the principal eigenvalue of (2.21) guaranteed by [5, Theorem 1.1], we
have that λ = σ∗1, which contradicts (2.1) and completes the proof of (2.2).

We now prove (2.3) and (2.4). If u ∈ H1
∗ (Ω) ∩ L∞(Ω+) is a positive weak solution of (1.1) for the

value λ of the parameter, then u is a positive weak solution of the eigenvalue problem
(
−∆ + a(x)uq−1

)
u = λu in Ω,

B∗
(
ΓN1

)
u = 0 on ∂Ω,

(2.22)

where the potential
K = a(x)uq−1 ∈ L∞(Ω).
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Now, since (2.22) fits into the abstract framework of (1.12), it follows from the uniqueness of the
principal eigenvalue of (2.22) and the structure of its positive eigenfunction, unique up multiplicative
constant (cf. [5, Theorem 1.1]) that

λ = σΩ
1 [−∆ + a(x)uq−1,B∗(ΓN1 )] (2.23)

and
u(x) > 0 a.e. in Ω.

This completes the proof of (2.4). Now, taking into account the variational characterization of the
principal eigenvalue σΩ

1 [−∆ + a(x)uq−1,B∗(ΓN1 )] given by

σΩ
1 [−∆ + a(x)uq−1,B∗(ΓN1 )] = inf

ϕ∈H1
∗ (Ω)\{0}

∫
Ω
|∇ϕ|2 +

∫
Ω

a(x)uq−1ϕ2∫
Ω
ϕ2

(cf. (1.14)),

(2.23), the definition of H̃1
∗ (Ω0), (1.4) and (1.18), the following hold

λ = infϕ∈H1
∗ (Ω)\{0}

∫
Ω
|∇ϕ|2 +

∫
Ω

a(x)uq−1ϕ2∫
Ω
ϕ2

≤ infϕ∈H̃1
∗ (Ω0)\{0}

∫
Ω
|∇ϕ|2 +

∫
Ω

a(x)uq−1ϕ2∫
Ω
ϕ2

= infϕ∈H1
∗ (Ω0)\{0}

∫
Ω0
|∇ϕ|2 +

∫
Ω0

a(x)uq−1ϕ2∫
Ω0
ϕ2

= infϕ∈H1
∗ (Ω0)\{0}

∫
Ω0
|∇ϕ|2∫

Ω0
ϕ2

= σ∗0 ,

which completes the proof of (2.3).
We now prove b). Let u ∈ H1

∗ (Ω) be a positive weak solution of (1.1). Owing to the Rellich-
Kondrachov theorem we have that under condition (2.5) the following holds

H1(Ω) ⊂ L2q(Ω). (2.24)

Then, since u ∈ H1
∗ (Ω), it follows from (2.24) that uq ∈ L2(Ω) and since a ∈ C(Ω̄), we have that the

function
f = −auq ∈ L2(Ω). (2.25)

Now, since u ∈ H1(Ω) satisfies
−∆u − λu = −auq in Ω

in the weak sense, owing to (2.25) it follows from [6, Theorem 8.8] that u ∈ H2(Ω′) for any subdomain
Ω′ ⊂⊂ Ω, which completes the proof of b).

We now prove c). Let u be a positive weak solution of (1.1) and let K be a compact subset of Ω.
Let pick up Ω′ a subdomain of Ω satisfying

K ⊂ Ω′ ⊂⊂ Ω. (2.26)
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Owing to (2.6) it follows from b) that
u ∈ H2(Ω′). (2.27)

Now, since for N = 3 under the general assumptions we have that

H2(Ω′) ⊂ C(Ω′) (cf. [6, Eq (7.30)]), (2.28)

the result follows from (2.26)–(2.28). This completes the proof of c).
This completes the proof. �

Remark 1. It should be pointed out that owing to (1.19), (2.1) provides us with a necessary condition
for the existence of positive weak solution of (1.1) sharper than (1.7). In fact, as it will be shown in the
following section, the lower bound about the λ-parameter for the existence of positive weak solution
of (1.1) given by (2.1) is optimal.

3. Sufficient condition for the existence of positive weak solutions of (1.1)

In this section is given a sufficient condition for the existence of positive weak solutions of (1.1)
depending on the λ parameter, on the exponent q > 1 of the reaction term and on the spatial dimension
N ≥ 2. To prove it are used some of the arguments given in [7, Theorem 2]. The main result of this
section establishes the following

Theorem 1. Assume that
σΩ

1 [B∗(ΓN1 )] < λ < σΩ0
1 [B∗0(ΓN1 )] (3.1)

and either:

i) N = 2 (and q > 1), or
ii) N ≥ 3 and 1 < q < N+2

N−2 .

Then, (1.1) posseses a positive weak solution. Moreover, if v stands for such a positive weak solution
of (1.1), then v > 0 in Ω+.

Proof. At the beginning we remark that (1.19) and (3.1) imply that

λ > σΩ
1 [B∗(ΓN1 )] > σΩ

1 [BN ] > 0. (3.2)

To prove the existence of a weak positive solution of (1.1) for each λ satisfying (3.1), we will consider
the functional

Φ(u) =
1
2

∫
Ω

|∇u|2 +
1

q + 1

∫
Ω

a(x)|u|q+1 −
λ

2

∫
Ω

u2,

and we will show that it reaches its minimum in a positive function of H1
∗ (Ω). Before proving the

existence of such a global minimum ϕm ∈ H1
∗ (Ω) of Φ in H1

∗ (Ω), we will prove that if it exists, then it
is nontrivial, that is, ϕm , 0, and it may be considered positive. Indeed, since (3.1) holds, taking into
account the variational characterization of the principal eigenvalue σΩ

1 [B∗(ΓN1 )] we have that

σΩ
1 [B∗(ΓN1 )] = inf

u∈H1
∗ (Ω)\{0}

∫
Ω
|∇u|2∫
Ω

u2
< λ.
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Hence, there exists ϕ̃ ∈ H1
∗ (Ω) \ {0} such that

σΩ
1 [B∗(ΓN1 )] <

∫
Ω
|∇ϕ̃|2∫
Ω
ϕ̃2

< λ,

and therefore, ∫
Ω

|∇ϕ̃|2 − λ

∫
Ω

ϕ̃2 < 0 . (3.3)

We can assume that ϕ̃ > 0 because on the contrary we can replace ϕ̃ by |ϕ̃|.
Since ϕ̃ ∈ H1

∗ (Ω), it follows from the Rellich-Kondrachov Theorem that under condition i), that is,
N = 2 and q > 1, or under condition ii), that is N ≥ 3 and q ∈

(
1, N+2

N−2

)
, we have that ϕ̃ ∈ Lq+1(Ω) and

hence ∣∣∣∣∣∫
Ω

a(x)ϕ̃q+1
∣∣∣∣∣ ≤ ‖a‖L∞(Ω)‖ϕ̃‖

q+1
Lq+1(Ω) < ∞. (3.4)

Now, for each ε > 0, let us consider the positive function

ϕ̃ε := εϕ̃ ∈ H1
∗ (Ω).

We have that

Φ(ϕ̃ε) = ε2
(
1
2

∫
Ω

|∇ϕ̃|2 −
λ

2

∫
Ω

ϕ̃2 +
εq−1

q + 1

∫
Ω

a(x)ϕ̃q+1
)

and hence, owing to (3.3) and (3.4), we infer that Φ(ϕ̃ε) < 0 for ε > 0 small enough. Then, a possible
minimum ϕm ∈ H1

∗ (Ω) of Φ must be nontrivial. Moreover, we can assume that ϕm > 0 because on the
contrary, since Φ(ϕm) = Φ(|ϕm|), we can replace ϕm , 0 by |ϕm| > 0.

Now, in order to prove the existence of the global minimum of Φ in H1
∗ (Ω), we will prove that Φ is

coercive and weakly lower semicontinuous.
To prove that Φ is coercive we will argue by contradiction, assuming the existence of a sequence

un ∈ H1
∗ (Ω), n ≥ 1 satisfying

lim
n→∞
‖un‖H1

∗ (Ω) = ∞, (3.5)

and
Φ(un) =

1
2

∫
Ω

|∇un|
2 +

1
q + 1

∫
Ω

a(x)|un|
q+1 −

λ

2

∫
Ω

u2
n ≤ C (3.6)

for some C > 0. Then, it follows from (3.5) and (3.6) that

lim
n→∞

∫
Ω

u2
n = ∞, (3.7)

because on the contrary, if there exists a subsequence on un, again labeled by n such that∫
Ω

u2
n ≤ D , n ≥ 1, (3.8)

for some positive constant D > 0, then, since λ > 0 (cf. (3.2)), it follows from (3.6) and (3.8) that

1
2

∫
Ω

|∇un|
2 ≤

1
2

∫
Ω

|∇un|
2 +

1
q + 1

∫
Ω

a(x)|un|
q+1 ≤ C +

λ

2

∫
Ω

u2
n ≤ C +

λ

2
D,
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and hence ∫
Ω

|∇un|
2 ≤ 2C + λD,

which implies, together with (3.8), that un is bounded in H1
∗ (Ω), which contradicts (3.5). This proves

that under conditions (3.5) and (3.6), (3.7) holds.
Now, set

vn =
un

‖un‖L2(Ω)
, n ≥ 1.

By construction,
‖vn‖L2(Ω) = 1, n ≥ 1. (3.9)

Taking into account the definition of vn, it follows from (3.6) and (3.9) that

1
2

∫
Ω

|∇vn|
2 +

1
q + 1

∫
Ω

a(x)|vn|
q+1‖un‖

q−1
L2(Ω) ≤

C
‖un‖

2
L2(Ω)

+
λ

2
(3.10)

and hence, ∫
Ω

|∇vn|
2 ≤

2C
‖un‖

2
L2(Ω)

+ λ. (3.11)

Now, (3.7), (3.9) and (3.11) imply that vn is a bounded sequence in H1
∗ (Ω) and therefore, along some

subsequence of vn, again labeled by vn. we have that vn converges strongly in L2(Ω), that is

lim
n→∞
‖vn − v‖L2(Ω) = 0, v ∈ L2(Ω), (3.12)

and vn converges weakly in H1(Ω) ,

vn ⇀ v in H1(Ω). (3.13)

It follows from (3.9) and (3.12) that
‖v‖L2(Ω) = 1. (3.14)

Also, owing to (3.10) the following holds

1
q + 1

∫
Ω

a(x)|vn|
q+1‖un‖

q−1
L2(Ω) ≤

C
‖un‖

2
L2(Ω)

+
λ

2
.

Hence, ∫
Ω+

a(x)|vn|
q+1 =

∫
Ω

a(x)|vn|
q+1 ≤

(q + 1)C

‖un‖
q+1
L2(Ω)

+
λ(q + 1)

2‖un‖
q−1
L2(Ω)

(3.15)

and therefore, owing to (3.7) it follows from (3.15) that

lim
n→∞

∫
Ω+

a(x)|vn|
q+1 = 0. (3.16)

Now, owing to the Fatou Lemma, it follows from (3.12) and (3.16) that∫
Ω+

a(x)|v|q+1 = 0,
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and since a(x) > 0 for all x ∈ Ω+ we have that

v = 0 a.e. in Ω+. (3.17)

Thus, owing to (3.17) and (3.7), letting n→ ∞ in (3.11) we obtain that∫
Ω0

|∇v|2 =

∫
Ω

|∇v|2 ≤ λ. (3.18)

On the other hand, it follows from (3.14) and (3.17) that

‖v‖L2(Ω0) = 1. (3.19)

Also, since by construction vn = 0 on Γ0 ∪ ΓD1 , n ≥ 1, taking into account (3.12) we have that

v = 0 on Γ0 ∪ ΓD1 (3.20)

in the sense of traces. We now show that

v = 0 on Γ0
0. (3.21)

Since Γ0
0 = ∂Ω0∩Ω = ∂Ω+∩Ω, let us consider the trace operator on Γ0

0, γ̃ ∈ L(H1(Ω+), L2(Γ0
0)). Owing

to the continuity of γ̃, it follows from (3.17) the existence of K̃ > 0 such that

‖v|Γ0
0
‖L2(Γ0

0) ≤ K̃‖v‖H1(Ω+) = 0,

and therefore v = 0 on Γ0
0, which proves (3.21). Then, (3.18)–(3.21) imply that v ∈ H1

∗ (Ω0) and since
‖v‖L2(Ω0) = 1, it follows from (3.18) and the variational characterization for σΩ0

1 [B∗0(ΓN1 )] that

σΩ0
1 [B∗0(ΓN1 )] ≤

∫
Ω0

|∇v|2 ≤ λ,

which contradicts (3.1) and proves that Φ is coercive.
We now prove that Φ is weakly lower semicontinuous in H1

∗ (Ω). To prove it, let un be a sequence
such that un ⇀ u. Then, un is bounded in H1(Ω) and

‖u‖H1(Ω) ≤ lim inf
n→∞

‖un‖H1(Ω) (cf. [3, Proposition III.5]). (3.22)

By compactness we have that un → u in L2(Ω) and hence,

lim
n→∞
‖un‖L2(Ω) = ‖u‖L2(Ω), (3.23)

and
un(x)→ u(x) a.e. in Ω. (3.24)

Then, it follows from (3.22) and (3.23) that∫
Ω

|∇u|2 ≤ lim inf
n→∞

∫
Ω

|∇un|
2. (3.25)
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Now, let us consider the sequence fn = a|un|
q+1 ≥ 0 and f = a|u|q+1. Owing to (3.24) fn(x)→ f (x) a.e.

in Ω and hence, the Fatou’s Lemma implies that∫
Ω

f ≤ lim inf
n→∞

∫
Ω

fn,

that is, ∫
Ω

a|u|q+1 ≤ lim inf
n→∞

∫
Ω

a|un|
q+1. (3.26)

Now, (3.23), (3.25) and (3.26) imply that

Φ(u) ≤ lim inf
n→∞

Φ(un),

and therefore Φ is weakly lower semicontinuous.
Then, since Φ is coercive and weakly lower semicontinuos, it follows from [8], [4] that Φ reaches a

global minimun ϕm in H1
∗ (Ω) and, as it was remarked at the beginning of the proof, it may be considered

positive, that is, ϕm > 0. Now, differentiating Φ at ϕm in any direction ξ ∈ H1
∗ (Ω) we obtain that

d
dt

Φ(ϕm + tξ)|t=0 =

∫
Ω

∇ϕm∇ξ +

∫
Ω

a(x)ϕq
mξ − λ

∫
Ω

ϕmξ , (3.27)

and since Φ reaches its global minimum at ϕm, it follows from (3.27) that∫
Ω

∇ϕm∇ξ +

∫
Ω

a(x)ϕq
mξ − λ

∫
Ω

ϕmξ = 0,

which proves, under condition i) or ii), the existence of a weak positive solution ϕm of (1.1) for any λ
satisfying (3.1). The fact that v = ϕm > 0 in Ω+ follows from Proposition 1.

This completes the proof. �
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3. H. Brézis, Análisis funcional, Madrid: Alianza Editorial, 1984.
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