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Abstract

The development of information and communication technologies (ICT) combined

with the implementation of smart grids has significantly enhanced the efficiency and

reliability of power grid systems. However, without robust security measures, these

technological innovations can introduce new vulnerabilities, making power grids

susceptible to a wide range of cyberattacks.

In cyberattacks targeting the generation sector, an attacker may attempt to hack

into large power plants to disrupt or take control of generation units. In attacks

on the distribution and transmission sectors, the attacker might try to manipulate

with energy sensors installed throughout the power grid. In the consumer sector, the

focus may be on executing load-altering attacks (LAA) to disrupt normal operation.

The shared goal of these attacks is to compromise power system stability which

is defined as the capability of the system to return to normal operation status after

a disturbance.

Disturbances can be classified as large disturbances which are related to major

events related to generator or transmission line outages whose equations cannot

be linearized while small disturbances are related to minor events such as small

generation or demand variations and whose equations can be linearized. Therefore,

if a system is not stable under small disturbances, it will not be stable under large

disturbances either so it is important to first evaluate small disturbance stability

also known as small signal stability.

The small signal stability analysis is based on the calculation of the eigenvalues of

the state matrix A of the system which is given by formulating the equations of the

system in standard linearized form in which the derivatives of the state variables are

related to the state variables with through the state matrix A. If eigenvalues have

negative real part the system is stable but if at least one eigenvalue have positive

real part the system becomes unstable.

ii



Related to demand cyberattacks, LAA attempts to control and modify the

demand of a group of remotely controllable and insecure loads in order to damage

the grid. Several types of loads are potentially vulnerable to attacks of this type, e.g.

remotely controllable loads, loads that automatically respond to price commands or

direct load control signals, frequency-dependent loads etc.

LAA disruption attacks can be classified based on type, controller type and scope.

In this thesis we focus on closed-loop multi-point dynamic load altering attacks (D-

LAA) which are characterized of being demand multi-attacks in which the attacker

has real-time monitoring of network conditions and focuses on coordinated attacks

on multiple loads.

Previously described attack is modeled in frequency dependent loads (FDL),

which are those demands that incorporate a frequency controller that modifies the

demanded load as a function of the frequency variation in the system mainly for

system stabilization purposes. The goal is to design the frequency controller in order

to destabilize the system instead of stabilizing it.

Therefore, this master’s final thesis has as its overall objective to analyze small

signal stability to multi-point closed-loop FDL D-LAA on the IEEE 39-bus system

using small signal stability analysis Matlab toolbox.

To this end, this master’s final thesis aims to fullfil the following specific objectives:

• Development of a fundamental model to analyze FDL D-LAA small signal

stability

• Implementation of FDL D-LAA into a small signal stability analysis Mat-

lab toolbox, which allow more accurate and complex calculations than the

fundamental model

• Evaluation of the impact of existing stabilization means such as Power System

Stabilizers on the effectiveness of FDL D-LAA

From the development of the fundamental model to analyze FDL D-LAA small

signal stability, a system of n generators was modeled with network simplifications

such as DC power flow or simplified dynamic generator models, obtaining the

following state matrix A for the subsequent eigenvalue calculation.
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In addition, the frequency controller was modeled with the following transfer

function where KL
j is the controller gain and ∆θj(s) is the bus angle.

∆pLj (s) = KL
j · s

1 + s · T f
·∆θj(s) (0.2)

To carry out the FDL D-LAA small signal stability was analyzed by means of

Matlab toolbox developed for this purpose. The toolbox needed to be updated to

extend its capability to analyze the impact of FDL D-LAA and to enable to design

of FDL D-LAA.

A destabilizing strategy was subsequently designed based on shifting the eigenval-

ues of the system towards the plane with positive real part by varying the controller

gain having the following main steps:

• Calculation of the system eigenvalues and selection of the weakest eigenvalue

• Selection of nodes on which to perform the attack based on weakest eigenvalue

sensitivities analysis

• Implementation of the attack by means of two control destabilization strategies,

manual iterative design and coordinated eigenvalue design

Analyses were conducted in two scenarios within the IEEE 39-bus system: Sce-

nario 1, where only some of the system’s generators have stabilizers, and Scenario 2,

all of the system’s generators have stabilizers.

Some of the main results obtained include: In Scenario 1, using the manual

iterative method, the system is destabilized at a controller gain value of k = -10.

Conversely, in Scenario 2, the system becomes unstable at a controller gain value of

k = -80.
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These gain values indicate that the attacker must be able to modify the demand

by a factor of 10 and 80 respectively in order to destabilize the system. That is,

with a variation in demand of 1%, the attacker must be able to vary the demand by

10% and 80% in each of the corresponding scenarios.

Based on the results obtained, it was clearly observed that:

• The presence of stabilizers in the generators significantly hinders the destabi-

lization of the system, requiring the attacker to manipulate large amounts of

demand to induce system instabilities, which is often not feasible

• The weakest eigenvalue is not necessarily the easiest to destabilize, which makes

it difficult to determine which nodes in the system are the most effective for a

cyberattack

Additionally, several constraints were identified that must be met to enable a

successful cyberattack:

• The attacker must have prior knowledge of which system loads are most

vulnerable to causing system instability

• The attacker must have a foundational understanding of controllers design

• The targeted loads must have sufficient power capacity to be increased or

decreased
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Resumen

El desarrollo de las tecnoloǵıas de la información y la comunicación (TIC), com-

binado con la implantación de redes inteligentes, ha mejorado considerablemente

la eficiencia y la fiabilidad de los sistemas eléctricos. Sin embargo, sin medidas de

seguridad sólidas, estas innovaciones tecnológicas pueden introducir nuevas vulnera-

bilidades, haciendo que las redes eléctricas sean susceptibles de sufrir una amplia

variedad de ciberataques.

En los ciberataques dirigidos al sector de la generación, un atacante puede intentar

manipular grandes centrales eléctricas para interrumpir o tomar el control de las

unidades de generación. En los ataques a los sectores de distribución y transmisión,

el atacante podŕıa intentar manipular con sensores instalados a lo largo de toda

la red. En el sector de los consumidores, el objetivo puede ser ejecutar ataques de

alteración de la demanda (LAA).

El objetivo común de estos ataques es comprometer la estabilidad del sistema

eléctrico, que se define como la capacidad del sistema de volver a su estado normal

de funcionamiento tras una perturbación.

Las perturbaciones se pueden clasificar en grandes perturbaciones, que están

relacionadas con grandes eventos como cáıdas de generadores o ĺıneas de transmisión,

cuyas ecuaciones no se pueden linealizar, mientras que las pequeñas perturbaciones

están relacionadas con eventos menores, como pequeñas variaciones de la generación o

la demanda, y cuyas ecuaciones se pueden linealizar. Por lo tanto, si un sistema no es

estable ante pequeñas perturbaciones, tampoco lo será ante grandes perturbaciones,

por lo que es importante evaluar primero la estabilidad ante pequeñas perturbaciones,

también conocida como estabilidad de pequeña señal.

El análisis de estabilidad pequeña señal se basa en el cálculo de los autovalores

de la matriz de estado A del sistema, que se obtiene formulando las ecuaciones del

sistema en forma linealizada estándar en la que las derivadas de las variables de

estado se relacionan con las variables de estado a través de la matriz de estado A. Si

todos los autovalores tienen parte real negativa, el sistema es estable, sin embargo,

si al menos un autovalor tiene parte real positiva el sistema es inestable.
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En relación con los ciberataques de la demanda, los LAA intenta controlar y

modificar la demanda de un grupo de cargas controlables e inseguras con el fin de

generar interrupciones en el servicio. Varios tipos de cargas son potencialmente

vulnerables a ataques de este tipo, por ejemplo, cargas controlables a distancia,

cargas que responden automáticamente a comandas de precios, cargas dependientes

de la frecuencia, etc.

Los ataques de alteración de la demanda pueden clasificarse en función del tipo,

el control y el alcance. En este trabajo nos centramos en los ataques dinámicos

de alteracíın de la demanda (D-LAA) multipunto y en lazo cerrado que se carac-

terizan por ser ataques múltiples por demanda en los que el atacante dispone de

monitorización en tiempo real de las condiciones de la red y se centra en ataques

coordinados a múltiples cargas.

Este tipo de ataque se modelan en cargas dependientes de la frecuencia (FDL),

que son aquellas que incorporan un controlador de frecuencia que modifica la carga

demandada en función de la variación de frecuencia principalmente con fines de

estabilización del sistema. El objetivo es diseñar el controlador de frecuencia para

desestabilizar el sistema en lugar de estabilizarlo.

Por lo tanto, este trabajo de fin de máster tiene como objetivo general analizar la

estabilidad de pequeña señal ante D-LAA en lazo cerrado y multipunto sobre FDL

en el sistema IEEE 39-buses utilizando una toolbox de Matlab especializada en el

análisis de estabilidad de pequeña señal.

Para ello, es necesario cumplir con los siguientes objetivos espećıficos:

• Desarrollar un modelo fundamental para analizar estabilidad de pequeña señal

ante D-LAA en FDL

• Implementar D-LAA en FDL en una toolbox de Matlab especializada en el

análisis de estabilidad de pequeña señal ya que ofrece mayor precision y potencia

de calculo que el modelo fundamental

• Evaluar el impacto de la presencia de estabilizadores en los generadores la red

en la efectividad de los D-LAA en FDL

A partir del desarrollo del modelo fundamental para analizar la estabilidad de
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pequeña señal ante D-LAA en FDL, se modeló un sistema de n generadores con

simplificaciones de red como el uso del flujo de cargas DC o el modelo dinámico

simplificado de generador, obteniendo la siguiente matriz de estado A para el posterior

cálculo de autovalores.

Asys =


0 Ωbase 0

− 1
2·ω0

·H−1 ·
(
Bagg +Bagb ·Bθδ

)
− 1

2·ω0
·H−1 ·D − 1

2·ω0
·H−1 ·Bagb ·Bθφ

− 1
T f ·Bθδ 0 1

T f ·
(
Bθφ − I

)


(0.3)

Además, el control de frecuencia se modeló con la siguiente función de transfer-

encia donde KL
j representa la ganancia del control y ∆θj(s) el ángulo del nudo.

∆pLj (s) = KL
j · s

1 + s · T f
·∆θj(s) (0.4)

Para llevar a cabo D-LAA en FDL se analizó la estabilidad de pequeña señal

mediante la toolbox de Matlab especializada. Para ellos fue necesario primero

actualizar la herramienta para ampliar su capacidad de analizar el impacto de

D-LAA en FDL y actualizarla para permitir el diseño del control de FDL.

Se diseñó posteriormente una estrategia de desestabilización basada en el de-

splazamiento de los autovalores del sistema hacia el plano con parte real positiva

variando la ganancia del control teniendo los siguientes pasos:

• Cálculo de los autovalores del sistema y selección del autovalor más débil

• Selección de los nudos de demanda sobre los que realizar el ataque a partir de

un análisis de las sensibilidades del autovalor más débil

• Implementación del ataque basado en dos estrategias de desestabilización del

control, diseño iterativo manual y diseño coordinado de autovalores

Los análisis se llevaron a cabo en dos configuraciones distintas dentro del sistema

IEEE de 39 buses: el Escenario 1, con estabilizadores solamente en algunos de los

generadores del sistema; y el Escenario 2, con estabilizadores en todos los generadores

del sistema.
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Algunos de los resultados más destacados indican que, en el Escenario 1, utilizando

el método iterativo manual, el sistema se desestabiliza con un valor de ganancia

del controlador de k = -10. Por otro lado, en el Escenario 2, también mediante el

método iterativo manual, se observa que el sistema se vuelve inestable con un valor

de ganancia del controlador de k = -80.

Estos valores de ganancia indican que el atacante debe ser capaz de modificar la

demanda en un factor de 10 y 80 respectivamente para desestabilizar el sistema. Es

decir, con una variación de la demanda del 1%, el atacante debe ser capaz de variar

la demanda un 10% y un 80% en cada uno de los escenarios correspondientes.

A partir de los resultados obtenidos en los distintos análisis, se pudo apreciar

claramente que:

• La presencia de estabilizadores en los generadores dificulta considerablemente

la desestabilización del sistema, ya que obliga al atacante a manipular grandes

cantidades de demanda para inducir inestabilidades en el sistema, lo que a

menudo no es factible

• El autovalor más débil no es necesariamente el más fácil de desestabilizar, lo

que dificulta determinar qué demanda del sistema son los más eficaces para un

ciberataque.

Además, se identificaron varias limitaciones que deben cumplirse para que un

ciberataque tenga éxito:

• El atacante debe tener conocimiento previo de qué cargas del sistema son más

vulnerables a causar inestabilidad en el sistema

• El atacante debe tener conocimientos básicos de diseño de controles

• Las cargas a atacar deben tener suficiente reserva de potencia a subir o a bajar
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1 Introduction

1.1 Problem statement

The development of information and communication technologies (ICT) combined with

the implementation of smart grids has significantly enhanced the efficiency and reliability

of power grid systems. However, without robust security measures, these technological

innovations can introduce new vulnerabilities, making power grids susceptible to a wide

range of cyberattacks.

In cyberattacks targeting the generation sector, an attacker may attempt to hack into large

power plants to disrupt or take control of generation units. In attacks on the distribution

and transmission sectors, the attacker might try to tamper with energy sensors installed

throughout the power grid. In the consumer sector, the focus may be on executing

load-altering attacks (LAA) to disrupt normal operation. Across all these scenarios, the

common goal is typically to inject false data into the wide-area control system to induce

network instability.

Related to demand cyberattacks, LAA attempts to control and modify the demand of a

group of remotely controllable and insecure loads in order to damage the grid. Several

types of loads are potentially vulnerable to attacks of this type, e.g. remotely controllable

loads, loads that automatically respond to price commands or direct load control signals,

frequency-dependent loads etc.

One possible way of LAA cyberattacks is the manipulation of demand via Internet of

Things also known as MaDIoT. IoT devices typically possess lower security levels, and

when compromised on a large scale, they can be exploited to diminish the overall security

margins of the power system. The ultimate goal of these attacks is to manipulate power

demand in a way that overloads or under-utilises the power system, thus causing service

interruptions. The possible results of these disruptions can range from localised blackouts

to major power outages affecting entire regions or even entire countries.
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This master thesis aims to implement and analyze system’s small signal stability under

dynamic load altering attacks (D-LAAs), which are characterized by being multi-attacks

per load, with focus on converting loads to destabilizing frequency-dependent loads (FDL).

Power system stability refers to the grid’s ability to return to normal operating conditions

after a disturbance. The term ”normal” is emphasized because the post-perturbation state

must be one where key variables (angles, voltages, and frequency) remain within acceptable

ranges defined by system operators. Additionally, the system’s topology should remain

intact, meaning that protection devices and control actions triggered by the disturbance

should not lead to significant system losses or grid separation into islands, which are

protective mechanisms to prevent total blackouts.

Disturbances can be classified classified as ”large” or ”small.” Large disturbances, or

transient stability issues, involve significant events like short circuits or major transmission

line outages. Small disturbances involve minor perturbations that can be analyzed through

linearization of system model equations.

Power system stability is categorized based on key system variables: generator rotor angles,

bus voltage magnitudes, and system frequency, as shown in the accompanying figure. The

stability classifications are defined and characterized as follows:

• Angle Stability. Rotor angle stability refers to the ability of synchronous machines

in the grid to remain in synchronism after disturbances.

• Voltage Stability. Voltage stability is the ability of the power system to maintain

steady voltages at all buses following a disturbance.

• Frequency Stability. Frequency stability involves the recovery of system frequency

after significant imbalances between generation and load due to disturbances.

1.2 State of the art

Nowadays, studies related to cyber-attack protection systems and the possible consequences

of cyber-attacks are crucial to understand the possible risks and mitigation actions in
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the face of an accelerated technological development driven by IoT and the artificial

intelligence boom.

Several projects related to the need for reliable and secure electricity systems have been

developed, such as the development of security systems to protect power grids against cyber-

attacks, the study of the security attributes of power grid systems current cyber-security

problem or the impact of cyber-attacks on electricity grid generation.

Firstly, the concept of an internet-based load-altering attack was defined, identifying direct

and indirect loads that could potentially be compromised [8]. The MaDIoT attack was

introduced as an attack that disrupts the normal operation of the power grid by altering

power demand using IoT devices to which the attacker has access [11]. They studied these

attacks on the Polish grid model, managing to cause local outages and large blackouts

in the grid. However, studies suggest the possibility that the Polish grid model under

analysis was not N-1 secure, which would lead to an overestimation of the impact of the

attacks [3].

The previously mentioned studies show that causing a wide area blackout in a large North

American regional system using evenly distributed MaDIoT attacks is extremely difficult.

Even if the grid is in a vulnerable state before the attack, such attacks would only cause

partial blackouts due to the partial disconnection of loads and generators. The system

would quickly recover its stability after this [3].

Researchers examined MaDIoT attacks on the IEEE 39-Bus system by assuming that

the attacker has advanced knowledge of the system, allowing them to carry out more

sophisticated attacks targeting the most vulnerable nodes in the power system. Results

show that these attacks have success rates between 67% and 91% in causing widespread

blackouts. However, the likelihood of an attacker with the required system knowledge and

resources is estimated to be low.[10]

To date, the LAA literature has mainly focused on static load disruption attacks (S-LAA),

where the attack focuses mainly on the volume of vulnerable loads being altered in a single

attack per load. In contrast, this project is concerned with D-LAA, which is characterized
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by being multi-attacks per load rather than a single attack [9] [6] [5].

Related to D-LAA, we can find a paper which proposes protection schemes after D-LAA

based on stability results obtained with a different method from the one that will be used

in this project for the small signal stability analysis [1].

1.2.1 D-LAA classification

A Dynamic Load Altering Attack can operate in two different ways: open-loop or closed-

loop.

In an open-loop D-LAA, the attacker manipulates unsecured loads without real-time

monitoring of grid conditions or the attack’s impact on the grid. This approach relies on

historical data collected before the attack to determine a pre-programmed trajectory for

the compromised loads [4].

In contrast, a closed-loop D-LAA involves continuous monitoring of grid conditions such

as price, voltage magnitude or frequency among others depending on the typology of the

load. The attacker uses sensors into the existing power system monitoring infrastructure

to adjust the load trajectory based on real-time grid conditions. This method allows for

precise control over the load changes at the victim load buses [4].

D-LAAs can also be categorized by scope: single-point or multi-point. Single-point D-

LAAs target vulnerable loads at one victim load bus, while multi-point D-LAAs involve

coordinated attacks on multiple load buses [7]. Figures (1a) and (1b) illustrate examples

of single-point and multi-point closed-loop D-LAAs, respectively.
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(a) (b) (c)

Figure 1: Classification of dynamic load altering attacks: a) open-loop D- LAA, b) single-
point closed-loop D-LAA, c) multi-point closed-loop D-LAA

Finally, D-LAAs can be classified based on the type of controller used to manipulate load

consumption at the victim buses. Open-loop attacks may use feed-forward controllers,

while closed-loop attacks typically use feedback controllers. In closed-loop D-LAAs,

attackers might employ controllers such as P, PI, or PID, or more complex feedback control

mechanisms [1].

To execute a successful D-LAA, the attacker must compromise a sufficient amount of

vulnerable loads, being more effective with a higher amount of unsecured and flexible loads

to manipulate.

1.2.2 Closed-loop FDL D-LAA

Frequency-dependent loads are essential in modern power systems, enhancing grid stability,

efficiency, and reliability by adjusting power consumption based on frequency changes

having the possibility of reducing consumption when the frequency drops and increasing it

when the frequency rises helping balance supply and demand.

However, through the internet of things, there is potential for cyber manipulation of

frequency controllers to achieve the opposite effect, aiming to destabilize the system in

response to frequency changes [1]. Therefore, attacks on FDL can be classified as D-LAA

since frequency is a parameter that is continuously measured by the frequency controller,

leading to continuous multi-attacks.
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As discussed in [12], the impact of this type of attack can potentially force generators

offline, causing major system disruptions. These disturbances can trigger cascading effects

across the interconnected system, with small localized perturbations potentially causing

disruptive impacts in distant areas [2].

To carry out a closed-loop FDL D-LAA, a cyber attacker may typically follow these three

main steps:

• Frequency Monitoring. Measuring the power grid frequency is generally simple

and can be done at any power outlet using an inexpensive commercial sensor. Such

sensing mechanisms are already embedded in FDLs that help regulate power usage

for frequency regulation.

• Load Calculation. Calculate the amount of vulnerable load that can be compro-

mised at the victim bus(es) based on information about how much load is currently

being consumed and how much load can potentially be manipulated.

• Destabilizing Controller Design. Adjust the victim load frequency controller

to generate system instability based on the monitored frequency and the calculated

load alteration capability.

1.3 Objectives and methodological approach

This master’s final thesis has as its overall objective to analyze small signal stability

to multi-point closed-loop FDL D-LAA on the IEEE 39-bus system using small signal

stability analysis Matlab toolbox.

To this end, this master’s final thesis aims at the following specific objectives:

• Development of a fundamental model to analyze FDL D-LAA small signal stability

• Implementation of FDL D-LAA into a small signal stability analysis Matlab toolbox,

which allow more accurate and complex calculations than the fundamental model

• Evaluation of the impact of existing stabilization means such as Power System

Stabilizers on the effectiveness of FDL D-LAA
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In order to achieve the overall and specific objectives, the small signal disturbance is

analyzed by means of Matlab toolbox developed for this purpose. The toolbox needs to

be updated to extend its capability to analyze the impact of FDL D-LAA. Further, the

toolbox needs to be updated to enable to design of FDL D-LAA.

1.4 Thesis structure

The thesis is organized into seven main sections to facilitate a clear and methodical

understanding.

• Section 1 provides a general introduction to the thesis, setting the context and

objectives of the study

• Section 2 describes the fundamentals of small signal stability, providing an essential

theoretical foundation for the analyses

• Section 3 introduces the FDL D-LAA model

• Section 4 presents a methodology for designing effective FDL D-LAA systems,

outlining the steps and considerations involved

• Section 5 presents the analysis results, detailing the outcomes of implementing the

FDL D-LAA in the IEEE 39-bus system.

• Section 6 discusses how the work aligns with the Sustainable Development Goals

(SDGs), highlighting the contributions and relevance of the study to broader sustain-

ability objectives

• Section 7 illustrates the conclusions drawn from the research, summarizing key

findings and suggesting directions for future work
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2 Small signal stability analysis

This section details the study of small signal stability. First, simplified small signal stability

analysis for simple systems is described and then the study methodology is generalized for

any system.

2.1 Simplified small signal stability analysis

In order to carry out explanation, we consider the classical eigenvalue of a single machine

connected to an infinite bus. In this case, small signal stability analysis consists of

determining whether the generator’s equilibrium point comes back to the original stable

equilibrium point, or reaches a new stable equilibrium point after a small-disturbance

in the mechanical power supplied by the turbine. This study assumes that the initial

equilibrium point is stable and that after the perturbation.

In the case of small disturbances, the nonlinear differential equations that describe the

generator dynamic behavior can be linearized around the operating point to study the

generator response as follows, based on a Taylor-series expansion:

d∆δ

dt
= ∆ω (2.1)

d∆ω

dt
=

ω0

2H

(
∆Pm − E ′V∞

Xe

cos δ0∆δ − D

ω0

∆ω

)
=

ω0

2H

(
∆Pm −K∆δ − D

ω0

∆ω

) (2.2)

Observe in eq. (2.2) that, apart from the mechanical torque (represented by ∆Pm), there

is a synchronizing torque (proportional to the rotor angle, that is, K∆δ) and a damping

torque (proportional to the rotor speed deviation, that is, D
ω0
∆ω) applied to the generator’s

rotor. The constant K is typically referred to as the synchronizing torque coefficient.

Equations eq. (2.1) and eq. (2.2) can be also written in matrix form as

∆δ̇

∆ω̇

 =

 0 1

−Kω0

2H
− D

2H

∆δ

∆ω

+

 0

ω0

2H

∆Pm (2.3)
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which in “standard” linear system compact form are

∆ẋ = A∆x+ b∆u (2.4)

where A is the state matrix and b is the input vector.

The small-signal stability of a generator connected to an infinite bus can be analyzed by

applying the Laplace transform to the set of linear differential equations. Assuming zero

initial conditions, the result is:

∆x(s) = (sI − A)−1b∆u(s) (2.5)

∆x(s)

∆u(s)
=

b

sI − A
(2.6)

The small-signal stability of the generator can be therefore determined by calculating the

roots of the characteristic equation:

det(sI − A) = 0 (2.7)

which results in

det

 s −1

Kω0

2H
s+ D

2H

 = s2 +
D

H
s+

Kω0

2H
= 0 (2.8)

If damping D is positive, the oscillations are damped while if is negative, the oscillations

are undamped.

This simple example of one generator can be extended to several generators. Equation

(2.9) shows the state-space equations for n generators represented by their classical model1.

∆δ̇

∆ω̇

 =

 0 Ωbase

− 1
2·ω0

·H−1 ·Ks − 1
2·ω0

·H−1 ·D


︸ ︷︷ ︸

=Asys

·

∆δ

∆ω

+

 0

1
2·ω0

·H−1

 ·∆Pm (2.9)

1For more information about state-space representation for n classical model generators see A
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Small signal stability is determined by the eigenvalues of the system matrix, Asys. If all

eigenvalues have negative real part, the system is asymptotically stable. In other words,

if ∆pm is disturbed, generator speeds start oscillating but these oscillations are damped

out over time. The damping is mainly affected by the equivalent damping matrix, D,

and the distribution of the inertia, whereas the oscillation frequency is affected by the

synchronizing power matrix, Ks, and the distribution of the inertia.

2.2 Generalization of small signal stability analysis

Let us consider a dynamic system described by a set of non linear differential equations

written in explicit form (the derivatives of the state variables depend only on the state

variables x):

ẋ = f(x) x ∈ RN×l (2.10)

If the set of non linear differential equations are linearized around an operating point

x = x0, it results in:

∆ẋ =
∂f(x)

∂x

∣∣∣∣
x=x0

,∆ẋ = A∆x, A ∈ RN×N , ∆x = x− x0 (2.11)

The small signal stability analysis of complex eigenvalues is not performed in practice based

on computing the roots of the characteristic equation, given the difficulties of calculating

the determinant of a matrix that can be of large dimension. Thus, this analysis is typically

carried out by determining the analytical solution of the linear system expressed in terms

of the exponential of the state matrix A.

∆x = eAt∆x(0) (2.12)

The exponential of the state matrix A may be computed using the Taylor expansion:

eAt = I +
A

1!
t+

A2

2!
t2 + · · · (2.13)

However, this method is not always numerically robust. A physically meaningful alternative

is based on the eigenvalues and eigenvectors of the state matrix A. An eigenvalue λi of
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the state matrix A and the associated right vi and left wi eigenvectors are defined as:

Avi = viλi (2.14)

wT
i A = λiw

T
i (2.15)

The study of eq. (2.14) and eq. (2.15) indicates that the right and left eigenvectors are not

uniquely determined (they are computed as the solution of a linear system of N equations

and N + 1 unknowns). An approach to eliminate that degree of freedom is to introduce a

normalization such as:

wT
i vi = 1 (2.16)

in case of N distinct eigenvalues, eq. (2.14) and eq. (2.15) and can be written together for

all eigenvalues in matrix form as:

AV = V Λ WA = ΛW WV = I (2.17)

where Λ, V y W are respectively the matrices of eigenvalues and right and left eigenvectors:

Λ =


λ1

. . .

λN

 , V = [v1 · · · vN ], W =


wT

1

...

wT
N

 (2.18)

If the exponential of the state matrix eAt is expressed in terms of eigenvalues and right

and left eigenvectors of the state matrix, it results in:

eAt = VW +
V ΛW

1!
t+

V Λ2W

2!
t2 + · · ·

= V

(
I +

Λ

1!
t+

Λ2

2!
t2 + · · ·

)
W = V eΛtW

(2.19)

The solution of the set of linear differential equations eq. (2.11) can be expressed in terms

of the eigenvalues and right and left eigenvectors of the state matrix A as:

∆x = V eΛtW∆x(0) =
N∑
i=1

vie
λit[wT

i ∆x(0)] (2.20)
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The study of eq. (2.20) allows to draw the following conclusions:

• The system response is expressed as the combination of the system response for N

eigenvalues.

• The eigenvalues of the state matrix determine the system stability. A real negative

(positive) eigenvalue indicates an exponentially decreasing (increasing) behaviour. A

complex eigenvalue of negative (positive) real part indicates an oscillatory decreasing

(increasing) behaviour.

• The components of the right eigenvector vi indicate the relative activity of each

variable in the i-th eigenvalue.

• The components of the left eigenvector wi weight the initial conditions in the i-th

eigenvalue.

2.2.1 Modal controllability and observability factors

Let us consider that in the linear dynamic system written in explicit form eq. (2.11) an

input u and an output y have been selected:

∆ẋ = A∆x+ b∆u

∆y = cT∆x
(2.21)

Let us apply to the previous equations a variable transformation defined by the matrix of

right eigenvectors ∆x = V∆x̃:

∆ ˙̃x = Λ∆x̃+Wb∆u

∆y = cTV∆x̃
(2.22)

or:

∆ ˙̃xi = λi∆x̃i + wT
i b∆u

∆y = cTvi∆x̃i

i = 1, . . . , N (2.23)

The study of eq. (2.23) allows to draw the following conclusions:
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• wT
i b measures the controllability of the eigenvalues associated to the variable ∆x̃i

from the input ∆u. In other words, it indicates if the eigenvalu λi can be controlled

from the input ∆u.

• cvi measures the observability of the eigenvalue associated to the variable ∆x̃i from

the input ∆y. In other words, it indicates if the eigenvalue λi can be observed from

the variable ∆y.

These results can be summarized as follows: the effectiveness of a control action on an

eigenvalue requires that both the eigenvalue is observable from the measured variable ∆y

and the eigenvalue is controllable from the control variable ∆u.

2.2.2 Transfer function residues

The transfer function between ∆u and ∆y is obtained applying the Laplace transform to

the equations (3.16) and eliminating the Laplace transform of the state variables ∆x(s):

∆y(s)

∆u(s)
= cT (sI − A)−1b (2.24)

The transfer function eq. (2.24) can also be written as a partial fraction expansion in

terms of the poles pi and the associated residues R∆y/∆u,i:

∆y(s)

∆u(s)
=

N∑
i=1

R∆y/∆u,i

(s− pi)
(2.25)

If equation eq. (2.25) is written in terms of the eigenvalues and eigenvectors of the state

matrix, it becomes:

∆y(s)

∆u(s)
= cTV (sI − Λ)−1Wb =

N∑
i=1

cTviw
T
i b

(s− λi)
(2.26)

The comparison of eq. (2.25) and eq. (2.26) confirms that the eigenvalues of the state

matrix are the poles of the open loop transfer function and that the transfer function

residues can be computed as the product of the modal controllability and observability

factors.

R∆y/∆u,i = cviw
T
i b = v∆y,iw∆u,i (2.27)
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2.2.3 Eigenvalue sensitivities in feedback systems written in transfer function

form

The state space representation of linear dynamic systems is appropriate for the analysis of

large scale systems. In this context, the expressions obtained in the previous sections are

very useful. However, the transfer function representation of linear dynamic systems is

more useful when the design of control systems is considered.

Let us consider the feedback system of Figure 2. The plant to be controlled is eigenvalueed

by the transfer function H(s) and the controller is represented by the transfer function

F (s, q).

Figure 2: Feedback system in transfer function form

The sensitivity of a pole (eigenvalue) λi of the close loop transfer function ∆y(s)/∆r(s)

with respect to a parameter q of the controller transfer function F (s, q) is product of the

residue of closed loop transfer function ∆y(s)/∆r(s) corresponding to the pole λi and the

partial derivative of the controller transfer function with respect to the parameter q for

s = λi:

∂λi

∂q
= R∆y/∆r,i ·

∂F (s, q)

∂q

∣∣∣∣
s=λi

(2.28)

Therefore, the residue plays a crucial role in the design of controllers, as the variation of

an eigenvalue λi with respect to a certain controller parameter q for a specific input and

output ∆y(s)/∆r(s) is proportional to the residue R∆y/∆r,i associated with that eigenvalue,

input, and output.
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3 FDL D-LAA small signal stability model

3.1 Fundamental model

Equation (2.9) can be extended to include frequency-dependent loads. This will show how

frequency-dependent loads can affect state matrix and thus the eigenvalues of the system.

A frequency-dependent load at bus j varies its active power consumption according to the

bus frequency deviation.

∆pLj = KL
j ·∆θ̇j (3.1)

where KL
j is the load-frequency damping factor.Since the pure derivative of the bus voltage

angle is not causal, the following approximation is used:

∆φ̇j =
1

T f
· (−∆φj +∆θj) (3.2a)

∆pLj =
KL

j

T f
· (−∆φj +∆θj) (3.2b)

where ∆φj is a new state variable that represents the bus voltage frequency at bus j and

T f is a small filter time constant. Equation (3.2) is the state-space formulation of the

following transfer function:

∆pLj (s) = KL
j · s

1 + s · T f
·∆θj(s) (3.3)

In matrix form,

∆φ̇b =
I

T f
· (−∆φb +∆θb) (3.4a)

∆PL =
KL

T f
· (−∆φb +∆θb) (3.4b)

where KL = diag([..., KL
j , ...]) is diagonal matrix with the load-frequency damping factors

on its diagonal.

Considering small perturbations, the bus voltage angle variations can be expressed in
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terms of the nodal load variations and the internal voltage angle variations (see eq. (A.9)):

−∆PL = Babg ·∆δ +Babb ·∆θb (3.5)

Further, if all loads were frequency dependent, merging eq. (3.4b) and eq. (3.5) leads to:

∆θb =

(
KL

T f
+Babb

)−1

·
(
KL

T f
·∆φb −Babg ·∆δ

)
= Bθφ ·∆φb −Bθδ ·∆δ

(3.6)

Bθδ =

(
KL

T f
·∆φb −Babg ·∆δ

)
(3.7)

Equation (3.4a) becomes then:

∆PL =
KL

T f
·
(
Bθφ − I

)
·∆φb − KL

T f
·Bθδ ·∆δ (3.8a)

∆φ̇b =
1

T f
·
(
Bθφ − I

)
·∆φb − 1

T f
·Bθδ ·∆δ (3.8b)

By using eq. (3.7), active power generation injection can now be computed in terms of the

state variable as follows:

∆PGg = Bagg ·∆δ +Bagb ·∆θb

=
(
Bagg −Bagb ·Bθδ

)
·∆δ +Bagb ·Bθφ ·∆φb

(3.9)

Equation (A.12) finally becomes by including the load-frequency dynamics:


∆δ̇

∆ω̇

∆φ̇

 = Asys ·


∆δ

∆ω

∆φ

+


0

1
2·ω0

·H−1

0

 ·∆Pm (3.10)

where
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Asys =


0 Ωbase 0

− 1
2·ω0

·H−1 ·
(
Bagg +Bagb ·Bθδ

)
− 1

2·ω0
·H−1 ·D − 1

2·ω0
·H−1 ·Bagb ·Bθφ

− 1
T f ·Bθδ 0 1

T f ·
(
Bθφ − I

)


(3.11)

Given the state matrix eq. (3.11), small signal stability can be analyzed using the simplified

method by directly calculating the roots of the characteristic equation, as described in the

example in Section 2.1, or by applying the generalized methodology outlined in Section

2.2.

3.2 Detailed model

Although the fundamental model allows us to simplify the analysis of small signal stability

for FDL D-LAA, this model employs simplifications both in terms of calculations and

representation of network elements, which does not clearly reflect reality.

So, to analyze FDL D-LAA small signal stability with greater accuracy, frequency-

dependent load model was implemented in a Matlab small signal stability toolbox. In

this tool, the various network elements are represented in more detail, and employs more

accurate calculation methods, such as AC-PF instead of DC-PF, or the generalized method-

ology for small signal stability calculation described in Section 2.2. Elemental network

elements are modeled as follows:

• Generator units are modeled taking into account the rotor equations, the turbine

governor, the excitation system, and the stabilizing units

• Loads can be modeled as constant admittances, constant current, or constant power

• The network is represented by its admittance matrix expanded into its real and

imaginary parts
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FDLs were modeled in Matlab toolbox using the following dynamic controller system

which corresponds with previously described eq. (3.3):

Figure 3: FDL controller
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4 FDL D-LAA destabilizing methodology

Small signal stability analysis for FDL D-LAA were carried out using the Matlab toolbox

previously described in Section 3 with the aim of determining how easy or difficult it was

to destabilize the IEEE 39-bus system 2.

The methodology used is as follows:

• First, eigenvalues of the system are calculated, and the weakest eigenvalue selected

• Secondly, the demand buses on which to carry out the cyberattacks are selected. For

the weakest eigenvalue, sensitivity analysis was conducted for a transfer function

with frequency as the input and power as the output. This analysis aimed to identify

the demand buses with the highest residues related to this eigenvalue and transfer

function, as attacks on these nodes would have a greater impact on the eigenvalue

and consequently to system stability

• Finally, the attack was carried out on the three demand buses with the highest

residues by designing a destabilizing FDL controllers with the aim of destabilizing

the system. Two different destabilizing controller designs were implemented: manual

iterative design and coordinated eigenvalue sensitivity design

4.1 Manual iterative design

This destabilizing controller design consists of iteratively modifying the value of the selected

FDL controller gain K shifting eigenvalues to the half-plane with positive real part until

one of the system’s eigenvalues, usually the one that was initially the weakest, begins to

have positive real part, thereby destabilizing the system.

It is important to consider the sign of the controller gain to shift eigenvalues in the right

direction and help destabilize the system. For the demand to contribute to destabilizing

the system, it should be reduced when the frequency rises to increase excess generation

and increased when the frequency drops to worsen the generation deficit. These actions

2For more information about the IEEE 39-bus system see Appendix B
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amplify the disparity between generation and demand, leading to greater instability in the

system’s frequency. Therefore, the sign of the FDL controller gain k must be negative.

4.2 Coordinated eigenvalue sensitivity design

The coordinated eigenvalue sensitivity approach to design a destabilizing controller to

destabilize an eigenvalue comprises two steps, the design of the phase compensation

network of the controller and the computation of the controller gain.

• The phase compensation network of the controller need to be designed so that the

phase of the eigenvalue sensitivity becomes 0 degrees at the eigenvalue natural

frequency

• The controller gain needs to be determined such that the eigenvalue moves to the

desired position, which in this case is to the point where the eigenvalue begins to

have a positive real part

The following Figure 4 shows a geometric interpretation of the eigenvalue sensitivity

approach to design a destabilizing controller.

Figure 4: geometric interpretation of the eigenvalue sensitivity approach

Assuming the filtering ratio αj and the number of stages Nsj of the phase compensation

networks of the j-th controller, the design of the phase compensation network consists of
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determining the time constant Tsj of the transfer function

(
1 + sTsj

1 + sTsj/αj

)Nsj

(4.1)

so that the phase of the eigenvalue sensitivities with respect to the j-th controller becomes

as close as possible to 0 degrees. In other words:

max
Tsj

G(Tsj) = max
Tsj

NE∑
i=1

βij cos (arg [Si(Tsj)]) (4.2)

where NE is the total number of eigenvalues and:

βij =
|Rj|∑NE

k=1 |Rkj|
(4.3)

The filtering ratio of the controllers is determined from the average phase of the sensitivities

corresponding to the nodes of interest and assuming the number of stages of the phase

compensation networks. It should be noted that φj is the average phase of the eigenvalue

sensitivities:

φj = arg

(
Nk∑
i=1

Si(Tsj = 0)

)
(4.4)

Once the phase of the sensitivities is close to 0, the gains of the controllers are determined

to move the eigenvalues to the desired position. The gains of the controllers are determined

by solving a linear programming problem. The objective function is to minimize the

control action. The control action is expressed as the sum of the gains weighted by the

sensitivities:

min

NC∑
j=1

γj∆Ksj (4.5)

where NC is the total number of controllers being designed and:

∆Ksj = Ksj −K0
sj (4.6)

γj =

NE∑
i=1

∣∣∣∣ ∂λi

∂Ksj

∣∣∣∣ (4.7)
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The constraints are the maximum values of the real part of the eigenvalues and the lower

and upper bounds of the gains:

NC∑
j=1

Re

(
∂λi

∂Ksj

)
∆Ksj ≥ Re

(
λd
i − λ0

i

)
, i = 1, . . . , NE (4.8)

Kmin
sj ≤ K0

sj +∆Ksj ≤ Kmax
sj , j = 1, . . . , NC (4.9)

λ0
i and λd

i are respectively the original and the desired eigenvalues. Assuming that the

phase of the eigenvalue sensitivity is 0 degrees, the imaginary part of the desired eigenvalue

remains constant and the real part is defined by the desired eigenvalue.

The estimated eigenvalue λc
i after incorporating the destabilizing controllers can also be

determined using the first order eigenvalue sensitivity:

λc
i = λ0

i +∆λi = λ0
i +

NC∑
j=1

∂λi

∂Ksj

∆Ksj = λi +

NC∑
j=1

Si(Tsj) ·Ksj (4.10)
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5 Results analysis

Small signal stability analysis for FDL D-LAA were conducted using the detailed model

described in Section 3 and following the destabilizing methodology outlined in Section 4.

Two different scenarios were considered:

• Scenario 1: Stabilizers on some of the IEEE 39-bus system generators

• Scenario 2: Stabilizers on all of the IEEE 39-bus system generators

5.1 Scenario 1 results analysis

First, system eigenvalues illustrated in the Figure 5 were calculated.

Figure 5: Scenario 1 eigenvalues
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It can be observed that the weakest eigenvalue is associated with the generator rotor speed

of bus 39, as it has the real part closest to positive values (-0.0866) and the lowest damping

ratio (2.176).

Sensitivity analysis was then performed on the previously identified eigenvalue. The

residues associated with the weakest eigenvalue for each node of the system, with a

frequency input and power output transfer function, are shown in the following Figure 6.

Figure 6: Scenario 1 weakest eigenvalue residues

The demand nodes where the attack would have the greatest impact were selected, being

buses 20, 23 and 29 due to their higher resiudes.

First, manual iterative design of destabilizing FDL controller was implemented in these

three nodes. After iterating the control gain value K for each of the selected FDLs, from a

value of K = -10, the system became unstable. The recalculated eigenvalues of the system

for this gain value are shown below in Figure 7.
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Figure 7: Scenario 1 eigenvalues with FDLs at buses 20, 23, and 29, with a gain value of
K = -10

It can be observed that the eigenvalue associated with the generator rotor speed of bus 39

now has a positive real part (0.0143) and consequently a negative damping ratio (-0.3608),

destabilizing the system.

This result indicates that the demand should be changed by a factor of 10 times the

frequency in pu in each of the three demand nodes to destabilize the system. For example,

if there is a 1% deviation in frequency, demand must be modulated by 10% to destabilize

the system.

Secondly, coordinated eigenvalue sensitivity design of FDL destabilizing controller was

implemented in the previous three demand nodes, resulting in a value of k = −6 for each of

the nodes to destabilize the selected eigenvalue and consequently the system, accompanied

by a phase compensation of 91°.
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This result indicates that if a phase compensation of 91º is added to the controller, the

demand should be changed by a factor of 6 times the frequency in pu in each of the

three demand nodes to destabilize the system. For example, if there is a 1% deviation in

frequency, demand must be modulated by 6% to destabilize the system.
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5.2 Scenario 2 results analysis

First, system eigenvalues illustrated in the Figure 8 were calculated.

Figure 8: Scenario 2 eigenvalues

It can be observed that the weakest eigenvalue is now associated with the generator rotor

speed of bus 30, as it has the real part closest to positive values (-0.4835) and the lowest

damping ratio (6.6381).
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Sensitivity analysis was then performed on the previously identified eigenvalue. The

residues associated with the weakest eigenvalue for each node of the system, with a

frequency input and power output transfer function, are shown in the following Figure 9.

Figure 9: Scenario 2 weakest eigenvalue residues

The demand nodes where the attack would have the greatest effect were selected, being

buses 28, 29 and 31 due to their higher resiudes.

First, manual iterative design of destabilizing FDL controller was implemented in these

three nodes. After iterating the control gain value K for each of the selected FDLs, from

a value of K = -80, the system became unstable. The recalculated eigenvalues for this

gain value of the system are shown below in Figure 10.
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Figure 10: Scenario 2 eigenvalues with FDLs at buses 28, 29, and 31, with a gain value of
K = -80

It can be observed that the eigenvalue that destabilizes the system had changed. The

eigenvalue associated with the generator rotor speed of bus 31 now has a positive real part

(0.0236) and consequently a negative damping ratio (-0.3128), destabilizing the system.
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This result indicates that the demand should be changed by a factor of 80 times the

frequency in pu in each of the three demand nodes to destabilize the system. For example,

if there is a 1% deviation in frequency, demand must be modulated by 80% to destabilize

the system.

It can be seen that the PSS makes it much more difficult to destabilize the system compared

to scenario 1. The difficulty is due to the fact that a larger amount of demand has to be

modified, which indicates that MaDIoT must infiltrate much more demand.

Secondly, coordinated eigenvalue sensitivity design of FDL destabilizing controller was

implemented in the previous three demand nodes, resulting in a value of k = −10000

for each of the nodes to destabilize the selected eigenvalue and consequently the system,

accompanied by a phase compensation of 105°.

This high result for the control gain k is due to the fact that the coordinated eigenvalue

sensitivity design focuses on destabilizing the selected eigenvalue without considering the

values of the other eigenvalues in the system. In this case, the eigenvalue that begins

to destabilize the system is not the weakest eigenvalue, but the eigenvalue associated to

generator rotor speed of bus 31 being this eigenvalue the most sensitive to an attack on the

selected nodes. The weakest eigenvalue would start to destabilize at much higher values of

k, by which the system would already be destabilized.
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5.3 Sensitivity analysis

After conducting the analyses for both scenarios, sensitivity studies were developed, which

involved extrapolating the results obtained in Scenario 1 to Scenario 2.

First, the nodes associated with the weakest eigenvalue in Scenario 1—the generator rotor

speed of bus 39 eigenvalue—where the attack would have the greatest impact were selected.

Nodes 20, 23, and 29 were targeted in Scenario 2 with a controller gain value of k = 10,

which successfully destabilized the system in Scenario 1.

Secondly, the eigenvalues for Scenario 2 were calculated. As shown in the Figure 11,

attacking the previously mentioned FDL demand nodes with a control gain value of k = 10

does not succeed in destabilizing the system having all eignvalues negative real part.
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Figure 11: Scenario 2 eigenvalues with FDLs at buses 20, 23, and 29, with a gain value of
K = -10

Thirdly, the gain value K of the FDL controller for demand nodes 20, 23, and 29, at which

the Scenario 2 system begins to destabilize, was determined. Manual iterative design of

the destabilizing FDL controller was implemented, resulting in a gain value of k = 70,

from which the system in Scenario 2 becomes unstable, as shown in Figure 12, with the

generator rotor speed of node 39 eigenvalue having a positive real part.
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Figure 12: Scenario 2 eigenvalues with FDLs at buses 20, 23, and 29, with a gain value of
K = -70

These results indicate that the eigenvalue selected to determine which nodes would be

most effective for a cyberattack may not necessarily be directly related to the weakest

eigenvalue.

In this case, targeting nodes 20, 23, and 29—identified from the sensitivity analysis of the

generator rotor speed eigenvalue of node 39—proved to be more effective than attacking
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nodes 28, 29, and 31, which were identified from the sensitivity analysis of the weakest

eigenvalue in Scenario 2, associated with the generator rotor speed of bus 30, requiring

FDL controller gain values of 70 and 80 to destabilize the system, respectively.

This ultimately reaffirms the conclusion that the weakest eigenvalue is not necessarily the

easiest to destabilize, complicating the task of identifying which nodes in the system are

the most effective targets for a cyberattack.
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6 Alignment with Sustainable Development Goals

(SDGs)

The development and implementation of smart power grids are intrinsically linked to

SDG 9 and SDG 11, which emphasize building resilient infrastructure, sustainable cities,

promoting inclusive and sustainable industrialization, and fostering innovation.

Smart grids integrate power systems with information and communication technologies

(ICT), enhancing reliability and flexibility but also opening the door to cyberattacks.

6.1 SDG 9: Industry, Innovation, and Infrastructure

Power grid infrastructure is a vital component for economic development and job creation.

Cyberattacks can severely damage power grid infrastructure, disrupting industries and

hindering the ability to innovate. Resilient infrastructure against cyberattacks is critical

to maintaining the integrity of these systems and promoting sustainable economic growth.

This project contributes to SDG 9 by providing tools to analyze and understand cyber

threats to power grid systems through both a fundamental model and a more precise

Matlab implementation. These tools enhance the ability to detect vulnerabilities and

improve the resilience of power grid infrastructure.

By advancing cybersecurity in the power grid, the project stimulates innovation in cyber-

security technologies and more efficient energy management systems. This innovation not

only protects critical infrastructure but also contributes to the development of advanced

technological solutions that can be applied in other industries and sectors, thus fostering

resilience and innovation.

6.2 SDG 11: Sustainable Cities and Communities

Urban areas rely heavily on electric power to ensure a high quality of life. Protecting the

power grid from cyberattacks is essential for creating safer and more sustainable cities

by preventing power supply disruptions that could affect daily life and the operation of
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essential services.

This project supports SDG 11 by enhancing the capability to study and mitigate the

impacts of cyberattacks on smart grids, thereby improving the resilience of urban power

infrastructures. The availability of reliable power is critical to the development of both

urban and rural communities.

By providing tools for comprehensive analysis and protection against frequency dependent

loads dynamic load altering attacks, this research aims to ensure uninterrupted power

supply, which promotes the continuous operation of essential services in cities.

Furthermore, studying cyberattacks is essential for the smooth integration of renewable

energy sources within smart grids, contributing to sustainable energy management and

reducing the environmental impact of urban energy consumption. This holistic approach

not only makes cities more resilient but also fosters a cleaner and more sustainable urban

environment.
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7 Conclusions

It’s crucial to understand the significant impact that cyber threats can have on the evolving

landscape of smart power grids. The integration of electrical power systems with IoT and

smart grids enhances reliability and flexibility, but also opens the door to cyberattacks.

This master’s thesis aimed to analyze small signal stability in the IEEE 39-bus system

using a Matlab toolbox for small signal stability analysis.

To achieve this, the thesis focused on several specific goals. Firstly, the development

of a fundamental model to assess small signal stability of FDL D-LAA. Secondly, the

implemetation FDL D-LAA into an advanced Matlab toolbox, enhancing its capability for

more accurate and complex calculations compared to the fundamental model. Lastly, the

impact evaluation of existing stabilization measures, such as Power System Stabilizers, on

the effectiveness of FDL D-LAA.

To meet these objectives, the analysis of small signal disturbances were conducted using

the specialized Matlab toolbox after extending its functionality to both analyze and design

FDL D-LAA effectively.

Based on the results obtained, it was clearly observed that:

• The presence of stabilizers in the generators significantly hinders the destabilization

of the system, requiring the attacker to manipulate large amounts of demand to

induce system instabilities, which is often not feasible

• The weakest eigenvalue is not necessarily the easiest to destabilize, which makes

it difficult to determine which nodes in the system are the most effective for a

cyberattack

Additionally, several constraints were identified that must be met to enable a successful

cyberattack:

• The attacker must have prior knowledge of which system loads are most vulnerable

to causing system instability
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• The attacker must have a foundational understanding of controllers design

• The targeted loads must have sufficient power generation capacity to be increased or

decreased

For future work, the small signal stability results presented in this work must be confirmed

by non-linear time-domain simulations taking into account the limited amount of load

available. This helps understanding to what extent FDL D-LAA could be an actual threat.

Further, other type of input signals instead of frequency should be analyzed, to further

undestand the impact of the input signal. In general terms and independently of the

cyberattack framework, the selection of appropriate eigenvalues a control should act upon

without affecting others should be addressed.
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A State-space representation for n classical model

generators

A.1 DC power flow (DC-PF)

The DC-PF assumes that (i) voltage magnitudes are around nominal (1 pu), (ii) branch

resistances can be neglected (which is commonly an acceptable assumption in transmis-

sion networks), (iii) the angle difference between two adjacent buses is typically small.

Equation (A.1a) shows the active power flow of a branch between buses j and k. The

active power balance at bus j is shown in (A.1b) according to Kirchhoff’s law.

pjk =
θj − θk
xjk

(A.1a)

pj =
∑
k∈Bj

pjk = pGj − pLj (A.1b)

where pj and θj are the power injection and the voltage angle at bus j and pjk and xjk are

the branch flow and the branch reactance of branch from bus j to bus k. The nodal power

injection is the difference between the nodal generation, pGj , and load, pLj . Equation (A.1b)

can be generalized for all branches and buses in the system as follows:

P l = X−1 · A · θb (A.2a)

P b = AT · P l = PG − PL (A.2b)

whereX = diag([..., xjk, ...]) is a diagonal matrix with the branch reactances on its diagonal,

and A is the incidence matrix relating branches and buses in the same order as in X. P l

and P b are vectors of branch flow and bus injections, and PG and PL are vectors of nodal

generation and load. From (A.2) one can obtain:

PG − PL = AT ·X−1 · A · θb = B′ · θb (A.3)

Note that B′ is singular (not invertible) given the linear dependency of the A. One way to

deal with the singularity is to define a reference bus, where the voltage angle is arbitrarily

41



Master in Industrial Engineering (MII)
Master Final Thesis

fixed (e.g., 0 rad/s). The corresponding row and column of this bus are then eliminated

for matrix inversion. Further, eq. (A.2b) can be expanded to explicitly represent generator

(g) and non-generator buses ( ng) in the following way:

PGg − PLg

−PLng

 = B′ · θb (A.4)

Note that the first buses are generator buses, followed by non-generator buses. Nodal

generation at non-generator buses is 0.

A.2 Augmented DC-PF by explicitly representing generators

Matrix B′ can be augmented to include the transient reactances of generators. Generators

are modelled by a simplified electrical circuit representing an internal voltage, eg, behind

a transient reactance, xgk
′, of the generator at bus k as follows:

eg = uk + j · x′
gk · igk (A.5)

In this case, the active power injected by the generator g at bus k can approximated as

shown in (A.6) by making use of similar hypotheses as for the DC-PF:

pgk =
δg − θk
x′
gk

(A.6)

The expression in eq. (A.6) very much resembles the one in eq. (A.1a) and the active power

injection can be handled as an active power inflow from the internal voltage of generator

g to the bus k. Equation (A.6) can be generalized as follows:

P lG = (X ′)−1 ·
[
Ag Ang

]
·

 δ

θb

 (A.7a)

PGg =

 (Ag)T

(Ang)T

 · (X ′)−1 ·
[
Ag Ang

]
·

 δ

θb

 (A.7b)

where X ′ = diag([..., x′
gk, ...]) is a diagonal matrix with the transient reactances on its

diagonal and [Ag Agb] is the incidence matrix of the active power inflows. P lG and PGg are
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the vector of active power inflow and the vector of nodal generation, respectively. Note

that Ag is a diagonal matrix if the explicit generator representation follows the same order

as in eq. (A.4). In that case, the first columns corresponding to the generators in Ang also

form a diagonal matrix.

The explicit generator representation can then be included by augmenting B′ appropriately.

By using eq. (A.4) and eq. (A.7) the augmented DC-PF becomes:

PGg

−PL

 =

 (Ag)T · (X ′)−1 · Ag (Ag)T · (X ′)−1 · Ang

(Ang)T · (X ′)−1 · Ag B′ + (Ang)T · (X ′)−1 · Ang

 ·

 δ

θb

 (A.8)

or PGg

−PL

 =

Bagg Bagb

Babg Babb

 ·

 δ

θb

 = Ba ·

 δ

θb

 (A.9)

Further, the matrix Ba in eq. (A.9) is still singular. Again, this can be handled by defining

a reference generator (e.g., the first one) and eliminating the corresponding row and

column. Note that Babb is non-singular.

A.3 Fundamental dynamic model

The fundamental dynamic model of the power system couples the dynamics of the generators

by means of the network. The network is represented by the augmented DC-PF. The

dynamics of the generator g at bus k are modelled by means of the classical generator

model.

δ̇g = Ωbase · (ωg − ω0) (A.10a)

2 ·Hg · ω0 · ω̇g = pmg − peg −Dg · (ωg − ω0) (A.10b)

where Hg and Dg are the inertia constant and the equivalent damping factor (representing

damper windings, PSS, etc.) of the generator. Ωbase and ω0 are the base angular speed in

rad/s and the nominal angular speed per unit (i.e., 1 pu). pmg and peg are the mechanical

and electrical power of the generator g at bus k. Note that peg = pgk (see also eq. (A.6)).

Equation (A.10) can be expressed in matrix form as follows:
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δ̇ = Ωbase · (ω − ω0 · I) (A.11a)

2 ·H · ω0 · ω̇ = Pm − PGg −D · (ω − ω0 · I) (A.11b)

where H and D are diagonal matrices with the inertia constants and equivalent damping

factors on their diagonals. I is the identity matrix. If the perturbations are sufficiently

small, eq. (A.11) can be linearized.

∆δ̇ = Ωbase ·∆ω (A.12a)

2 ·H · ω0 ·∆ω̇ = ∆Pm −∆PGg −D ·∆ω (A.12b)

Similarly and if the load does not vary (e.g., constant power loads), eq. (A.9) becomes for

small variations:

∆PGg

0

 =

Bagg Bagb

Babg Babb

 ·

∆δ

∆θb

 (A.13)

From eq. (A.13) it becomes clear that first, under no (or neglectable) load variations, there

exists a direct relation between the bus voltage angles, ∆θ, and the angles of the internal

voltages, ∆δ. Second, generation variations and variations of the angles of the internal

voltages are related, too. Finally, bus frequencies (derivative of bus voltage angles) depend

on generator speeds (derivative of internal voltage angles)3.

∆θb = −(Babb)−1 ·Babg ·∆δ (A.14a)

∆PGg = (Bagg −Bagb · (Babb)−1 ·Babg) ·∆δ = Ks ·∆δ (A.14b)

∆ωb = −(Babb)−1 ·Babg ·∆ω (A.14c)

If eq. (A.14b) is substituted in eq. (A.12), then

3This relationship has been denoted frequency divider in the literature since it highlights that bus
frequencies are mainly a result of generator speeds. Indeed, in power systems with synchronous generation,
the terminal voltage frequency is due to the rotating field. The frequency divider highlights that bus
frequencies are weighted generator speeds, where the weights depend on the electrical distances.
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∆δ̇

∆ω̇

 =

 0 Ωbase

− 1
2·ω0

·H−1 ·Ks − 1
2·ω0

·H−1 ·D


︸ ︷︷ ︸

=Asys

·

∆δ

∆ω

+

 0

1
2·ω0

·H−1

 ·∆Pm (A.15)

which is the matrix form of a n-coupled oscillators. Small signal stability is determined

by the eigenvalues of the system matrix, Asys. If all eigenvalues have negative real part,

the system is asymptotically stable. In other words, if ∆pm is disturbed, generator speeds

start oscillating but these oscillations are damped out over time. The damping is mainly

affected by the equivalent damping matrix, D, and the distribution of the inertia, whereas

the oscillation frequency is affected by the synchronizing power matrix, Ks, and the

distribution of the inertia.

B IEEE 39-bus system

The IEEE 39-bus system, commonly known as the New England Test System, has been

widely employed in various studies with different objectives, most of which are related to

small signal stability analysis and control. There are multiple versions of the New England

Test System, including those with different system technologies, FACTS integration, among

other modifications. For this study, we chose to adhere closely to the original data source.

Network elements data are shown on Tables (1), (3), (2) while generators dynamic

parameters are provides in Tables (4), (5), (6).
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From Bus To Bus R (p.u.) X (p.u.) B (p.u.)
1 2 0.0035 0.0411 0.6987
1 39 0.001 0.025 0.75
2 3 0.0013 0.0151 0.2572
2 25 0.007 0.0086 0.146
3 4 0.0013 0.0213 0.2214
3 18 0.0011 0.0133 0.2138
4 5 0.0008 0.0128 0.1342
4 14 0.0008 0.0129 0.1382
5 6 0.0002 0.0026 0.0434
5 8 0.0008 0.0112 0.1476
6 7 0.0006 0.0092 0.113
6 11 0.0007 0.0082 0.1389
7 8 0.0004 0.0046 0.078
8 9 0.0023 0.0363 0.3804
9 39 0.001 0.025 1.2
10 11 0.0004 0.0043 0.0729
10 13 0.0004 0.0043 0.0729
13 14 0.0009 0.0101 0.1723
14 15 0.0018 0.0217 0.366
15 16 0.0009 0.0094 0.171
16 17 0.0007 0.0089 0.1342
16 19 0.0016 0.0195 0.304
16 21 0.0008 0.0135 0.2548
16 24 0.0003 0.0059 0.068
17 18 0.0007 0.0082 0.1319
17 27 0.0013 0.0173 0.3216
21 22 0.0008 0.014 0.2565
22 23 0.0006 0.0096 0.1846
23 24 0.0022 0.035 0.361
25 26 0.0032 0.0323 0.513
26 27 0.0014 0.0147 0.2396
26 28 0.0043 0.0474 0.7802
26 29 0.0057 0.0625 1.029
28 29 0.0014 0.0151 0.249

Table 1: Transmission Line Data
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From Bus To Bus R (p.u.) X (p.u.) Tap (p.u.)
6 31 0 0.025 1.007
10 32 0 0.02 1.007
19 33 0.0007 0.0142 1.007
20 34 0.0009 0.018 1.009
22 35 0 0.0143 1.025
23 36 0.0005 0.0272 1
25 37 0.0006 0.0232 1.025
2 30 0 0.0181 1.025
29 38 0.0008 0.0156 1.025

Table 2: Transformer Data

From Bus To Bus R (p.u.) X (p.u.) Tap (p.u.)
12 11 0.0016 0.0435 1.006
12 13 0.0016 0.0435 1.006
19 20 0.0007 0.0138 1.006

Table 3: Generator Step-Up Transformer Data

Unit No. TR KA TA TB TC Vsetpoint Efd,Max Efd,Min

1 0.01 200.0 0.015 10.0 1.0 10.300 5.0 -5.0
2 0.01 200.0 0.015 10.0 1.0 0.9820 5.0 -5.0
3 0.01 200.0 0.015 10.0 1.0 0.9831 5.0 -5.0
4 0.01 200.0 0.015 10.0 1.0 0.9972 5.0 -5.0
5 0.01 200.0 0.015 10.0 1.0 10.123 5.0 -5.0
6 0.01 200.0 0.015 10.0 1.0 10.493 5.0 -5.0
7 0.01 200.0 0.015 10.0 1.0 10.635 5.0 -5.0
8 0.01 200.0 0.015 10.0 1.0 10.278 5.0 -5.0
9 0.01 200.0 0.015 10.0 1.0 10.265 5.0 -5.0
10 0.01 200.0 0.015 10.0 1.0 10.475 5.0 -5.0

Table 4: AVR data for the New England Test System

Unit No. H Ra x’d x’q xd xq T’do T’qo xl

1 500 0 0.006 0.008 0.02 0.019 7.0 0.7 0.003
2 30.3 0 0.0697 0.17 0.295 0.282 6.56 1.5 0.035
3 35.8 0 0.0531 0.0876 0.2495 0.237 5.7 1.5 0.0304
4 28.6 0 0.0436 0.166 0.262 0.258 5.69 1.5 0.0295
5 26 0 0.132 0.166 0.67 0.62 5.4 0.44 0.054
6 34.8 0 0.05 0.0814 0.254 0.241 7.3 0.4 0.0224
7 26.4 0 0.049 0.186 0.295 0.292 5.66 1.5 0.0322
8 24.3 0 0.057 0.0911 0.29 0.28 6.7 0.41 0.028
9 34.5 0 0.057 0.0587 0.2106 0.205 4.79 1.96 0.0298
10 42 0 0.031 0.008 0.1 0.069 10.2 0.0 0.0125

Table 5: Generator Data for the New England Test System
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Unit No. K TW T1 T2 T3 T4 VPSS,Max VPSS,Min

1 1.0/(120π) 10.0 5.0 0.60 3.0 0.50 0.2 -0.2
2 0.5/(120π) 10.0 5.0 0.40 1.0 0.10 0.2 -0.2
3 0.5/(120π) 10.0 3.0 0.20 2.0 0.20 0.2 -0.2
4 2.0/(120π) 10.0 1.0 0.10 1.0 0.30 0.2 -0.2
5 1.0/(120π) 10.0 1.5 0.20 1.0 0.10 0.2 -0.2
6 4.0/(120π) 10.0 0.5 0.10 0.5 0.05 0.2 -0.2
7 7.5/(120π) 10.0 0.2 0.02 0.5 0.10 0.2 -0.2
8 2.0/(120π) 10.0 1.0 0.20 1.0 0.10 0.2 -0.2
9 2.0/(120π) 10.0 1.0 0.50 2.0 0.10 0.2 -0.2
10 1.0/(120π) 10.0 1.0 0.05 3.0 0.50 0.2 -0.2

Table 6: PSS data for the New England Test System
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