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Resumen

En los últimos años, los académicos han investigado la aplicación de modelos de apren-
dizaje profundo por refuerzo (DRL, por sus siglas en inglés) en el ámbito de la gestión de
carteras de inversión. Una de las principales razones por las que estos modelos demues-
tran un rendimiento superior es por la tecnología subyacente de aprendizaje profundo,
que les permite identificar patrones en los datos que los modelos tradicionales a menudo
pasan por alto. A pesar de la alta demanda computacional y la complejidad asociada con
las redes neuronales, importantes instituciones financieras como JP Morgan han imple-
mentado con éxito estos modelos.

Dada la rápida evolución en este campo, ha habido un creciente interés en com-
prender cómo los diversos hiperparámetros afectan el rendimiento del modelo. En par-
ticular, hay poca investigación sobre el impacto del hiperparámetro del coeficiente de
entropía, un elemento crítico en la configuración de modelos DRL. Este estudio tiene
como objetivo resolver este problema al investigar el valor óptimo del hiperparámetro
del coeficiente de entropía y analizar cómo los cambios en este parámetro influyen en
el rendimiento del modelo. Esta investigación utiliza un conjunto de datos comprensivo
de 15 años del índice Dow Jones, proporcionando un contexto robusto para nuestros ex-
perimentos y conclusiones. El objetivo final es ofrecer información que pueda guiar a
los profesionales y académicos en la mejora de los modelos DRL para obtener mejores
resultados en la gestión de carteras de inversión.

Palabras clave: Aprendizaje Profundo, Gestión de Carteras, Aprendizaje Profundo
de Refuerzo, PPO, Ratio de Sharpe

2



Abstract

In recent years, scholars have dived deep into the application of deep reinforcement
learning (DRL) models in portfolio management. One of the main reasons these models
perform better is due to the underlying deep learning technology, which allows them to
identify patterns in data that traditional models often overlook. Despite the high compu-
tational demands and complexity associated with neural networks, significant financial
institutions like JP Morgan have successfully implemented these models.

Given the rapid advancements in this area, there has been a growing interest in un-
derstanding how various hyperparameters affect model performance. Notably, there is
limited research on the impact of the entropy coefficient hyperparameter, a critical ele-
ment in the configuration of DRL models. This study aims to solve that issue by inves-
tigating the optimal value of the entropy coefficient hyperparameter and analyzing how
changes to this parameter influence the model’s performance. This investigation uses a
comprehensive 15-year dataset from the Dow Jones index, providing a robust context
for our experiments and conclusions. The ultimate goal is to offer a clear analysis on
this particular hyperparameter that could guide practitioners and researchers in refining
DRL models for better portfolio management outcomes.

Keywords: Deep Learning, Portfolio Management, Deep Reinforcement Learning,
PPO, Sharpe Ratio

3



Acknowledgments

Thanks to my family and friends. Also, thanks to my tutor who has helped me a lot
throughout the completion of my work.

4



Contents

1 Introduction 1

2 State of the Art Review 3

3 Thesis definition 11
3.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Specific goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Theoretical background 14
4.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 15
4.3 PPO model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Technical Indicators in Trading . . . . . . . . . . . . . . . . . . . . . . 18

4.4.1 Turbulence Index . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.2 MACD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.3 RSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.4 Sharpe Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Entropy Coefficient Value . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Methodology and results analysis 22
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Descriptive data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 24

5



5.4 Environment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.1 Train-Test Split . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.2 Stock trading environemnt . . . . . . . . . . . . . . . . . . . . 26

5.5 DRL Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . 27
5.5.1 PPO Model Hyperparameters . . . . . . . . . . . . . . . . . . 27

5.6 Evaluation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusions 31

References 34

6



List of Figures

2.1 Organization of the State of the art review . . . . . . . . . . . . . . . . 10

4.1 Deep Q-Network Architecture . . . . . . . . . . . . . . . . . . . . . . 16
4.2 PPO model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 MACD Formula and its Signal Line . . . . . . . . . . . . . . . . . . . 19

5.1 LOESS Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Scatterplot of the Dow Jones returns from 2008 to 2023 . . . . . . . . . 26
5.3 Comparison between how the dataset would be shaped if it had a perfect

Normal Distribution and how it’s shaped . . . . . . . . . . . . . . . . . 26
5.4 Contrasts of pairs of means between the different entropy coefficients

showing no significant difference in performance between the different
entropy coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7



List of Tables

5.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Sharpe ratios of the different entropy coefficients and seeds. . . . . . . 29

8



List of Algorithms

1 PPOwith Clipped Objective from Schulman, Wolski, Dhariwal, Radford,
and Klimov (2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9



List of Equations

1. Deep Reinforcement Learning (q-learning) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. PPO model (clipped objective equation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. PPO model (g-function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

4. PPO model (policy refinement equation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. PPO model (policy sample collection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6. PPO model (ratio adjustment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7. PPO model (surrogate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

8. Sharpe Ratio (formula) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10



Chapter 1

Introduction

Portfolio management involves handling funds and obtaining returns while minimiz-
ing risk by investing them in different types of assets (Kapoor, 2014). The investment
portfolio management industry has a size of five trillion dollars (Insights, 2023).

Traditional portfolio management approaches structured the allocation of weights
for each asset through optimization problems. However, they suffer from a lot of rigid-
ity both in achieving desired objectives and in adapting to changes over time (S. Yang,
2023). Othermore traditional approaches that do not require optimization includeMarkowitz
and the Capital Asset PricingModel (CAPM).Despite these approaches having solid the-
oretical foundations, they make implicit assumptions such as assuming normal distribu-
tions in financial assets and assuming stable correlations (de Inversión, 2023; Ouyang,
2022). This leads to excessive rigidity. Machine Learning models, especially those
using neural networks, offer much more flexibility in their predictions, alleviating the
problems mentioned above (M. M. Fischer et al., 2015).

Quantitative finance and big data have made automated portfolio management im-
perative for investment firms (SUN & AN, 2020). The traditional approach with a fixed
portfolio of stocks is no longer sufficient due to the advent of new technologies. Re-
cently, artificial intelligence has been introduced into the Asset Management industry
in companies such as JP Morgan, Morgan Stanley, and Vanguard Group (News, 2023).
This is because Artificial Intelligence has increased efficiency, returns, and regulatory
compliance (Bartram, 2020). There is great value in investigating how to maximize the
efficiency of these investment portfolio creation processes. Lately, we have seen through
ChatGPT how artificial intelligence can have comparable performance to humans in the
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field of finance (Koubaa et al., 2023). Thus, it seems reasonable for us to test whether
AI can also make better decisions in the field of portfolio management, where many
psychological biases come into play that affect human judgement.

DRL eliminates the issue of having to predict future stock market prices and just
focuses on allocating resources as efficiently as possible (Gu, Jiang, & Su, 2021). DRL
systems learn through actions and rewards (François-Lavet et al., 2018) and they have
been proven as useful through several past studies (Jiang, Xu, & Liang, 2017). Through
this study, we will use this technology to create efficient asset allocation models.

Upon reviewing prior research on the application of Deep Reinforcement Learn-
ing (DRL) in portfolio management, we noted a consistent use of the default entropy
coefficient across all studies. This observation sparked our curiosity regarding the ade-
quacy of this conventional approach. Consequently, we recognized the significance of
investigating whether modifying the entropy coefficient could potentially result in the
development of a more effective model. Thus, our research tries to explore different
values of the entropy coefficient, trying to undersand what the optimal value would be.
As such, we intend to conduct experiments testing different values of the entropy coef-
ficient for both the Proximal Policy Optimization (PPO) model. Several studies such as
(Ahmed, Le Roux, Norouzi, & Schuurmans, 2019; Berner et al., 2019; Eimer, Lindauer,
& Raileanu, 2023; Olsson, Malm, &Witt, 2022) suggest changes in model performance
when optimizing the entropy coefficient. They make us believe that an experiment like
ours may yield better results than the default entropy coefficient value.
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Chapter 2

State of the Art Review

The landscape of trading strategies has seen a huge rise of Machine Learning techniques.
Traditional approaches, fromMeta-Learning strategies to Pattern Matching Algorithms,
faced limitations in aligning with investor goals and leveraging valuable insights from
data. In response, Reinforcement Learning (RL) has emerged as a promising paradigm
to overcome these challenges (T. G. Fischer, 2018; Jiang et al., 2017). This section sur-
veys the evolution of RL in trading, from works like Neuneier’s critic-only approach in
1996 (Neuneier, 1995) to contemporary deep RL frameworks. These studies highlight
the versatility of RL, from actor-only, actor-critic, and deep RL methodologies, as well
as innovations like Adversarial RL and explainable DRL. From integrating market sen-
timent (Koratamaddi, Wadhwani, Gupta, & Sanjeevi, 2021) to dynamic risk-sensitive
allocation (Yu, Lee, Kulyatin, Shi, & Dasgupta, 2019) and cost-sensitive optimization
(Zhang et al., 2020), RL offers a comprehensive toolkit for portfolio management. Fur-
thermore, ensemble methods (H. Yang, Liu, Zhong, & Walid, 2020) and multi-agent
frameworks (Lin, Chen, Sang, & Huang, 2022) take in several models and improve per-
formance. In figure 2.1, we can see an outlook of this state-of-the-art review.

Traditional trading strategies can be divided into Meta-Learning trading strategies
that combine multiple strategies in order to achieve better performance and Pattern
Matching Algorithms that predict the next market distribution of data through learning
from historical data (Jiang et al., 2017). There are several limitations of the traditional
trading strategies that the Reinforcement Learning approach seeks to overcome(T.G. Fis-
cher, 2018). First, the objective of the optimization is not always in line with the in-
vestor’s goals. Second, information from the feature space that draws insights can be
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very valuable for the investing strategy. Third, exogenous constraints imposed by the
environment such as lack of liquidity and transaction costs are normally not considered.
Fourth, the Reinforcement Learning approach combines the portfolio construction and
the prediction tasks of portfolio management. The two-step approach may lead to sub-
optimal performance (Moody, Wu, Liao, & Saffell, 1998).

The first research project that used Reinforcement Learning came in 1996 with (Ne-
uneier, 1995) that proposed a critic-only approach to reinforcement learning applied to
portfolio management. Through Artificial FX data and the German Stock Index DAX,
this actor-critic model outperformed supervised learning and other traditional models.
It also found that volatility could be reduced through a penalty term. (Dempster, Payne,
Romahi, & Thompson, 2001) found out that genetic algorithms can improve the perfor-
mance of RL systems (T. G. Fischer, 2018). In this paper popular technical indicators
are used as input, seeking a profitable trading rule using them. The paper compares a
Markov Decision Process, Genetic Programming (GP), heuristic decision and reinforce-
ment learning (RL) backtesting with a dataset of GBPUSD FX data. It finds out that the
RL and the GP are the best-performing techniques when looking at the Sharpe Ratio.
(J. W. Lee, Park, O, Lee, & Hong, 2007) created a divide and conquer strategy in which
multiple agents were used for portfolio optimization. The trading tasks of the identifi-
cation of opportunities and the determination of prices were divided amongst the agents
(T. G. Fischer, 2018). The proposed framework uses multiple Q-learning agents allow-
ing them to divide and conquer the trading problem by dividing roles and collaborating in
the process of stock picking. Experiments on the korean stock trading market show the
outperformance of this method in comparison to other alternative trading approaches.
More recently, (Eilers, Dunis, von Mettenheim, & Breitner, 2014) demonstrated that
Reinforcement Learning can be applied to trading strategies by taking advantage of sea-
sonal effects. The study uses the Q-Learning algorithm, training the agent so it take
advantage of seasonal events such as holidays that drive stocks up, upward biases at the
end of the month, and pre-FOMC announcement changes. Backtesting with S&P 500
and DAX historical stock price data, the model clearly outperforms the baseline strategy.

In the line of actor-only agents, (Moody & Wu, 1997) proposed the first actor-only
Reinforcement Learning approach for Portfolio Management. With a dataset of monthly
S&P 500 data and a dataset of 30-minute FX data, it proved that Recurrent Reinforce-
ment Learning can be used when you have a portfolio with only a risky asset and a
risk-free asset. (T. G. Fischer, 2018) (Dempster & Leemans, 2006) puts its focus on
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risk as it proves that actor-only systems can be embedded in a multi-layered risk man-
agement system. The paper introduces Adaptive Reinforcement Learning for portfolio
management, in which hyperparameters are dynamic instead of fixed. Tested in foreign
exchange markets, this framework enhances the performance of traditional trading sys-
tems. More recently, (Deng, Kong, Bao, & Dai, 2015) proved that the performance of
actor-only models can be improved by introducing sparse-coded, task-specific feature
representations. The model creates a very rich state representation with more than 80
variables including volume patterns, technical indicators as well as order-book level fea-
tures. Backtesting experiments were performed on the high-frequency data of Shangai
IF, the most liquid chinese derivative. The model proved itself to be very robust and to
reduce noise in predictions in comparison to past trading strategies.

The actor-critic was first introduced into the portfolio management problem (Li,
Dagli, & Enke, 2007). This paper found out that actor-critic models outperform actor-
only models and the supervised learning benchmark.(T. G. Fischer, 2018) Specifically,
it found out that actor-critic models were more succesful at short-term prediction than
the actor-only model through three stock price historical datasets: SP500, NASDAQ
and IBM.

Further research focuses more highly on Deep Reinforcement Learning, the com-
bination of Deep Learning and Reinforcement Learning (François-Lavet et al., 2018).
Deep Learrning models train train multiple neural networks, which can bring instability
to the model (Jiang et al., 2017). In a stable model, performance metrics are similar
when testing with two different validation sets of data (Ling, 2019). That is why when
analyzing each of the state-of-the-art models in this field, it’s worth taking a look at
whether they proved to be robust.

In this line of research, (Jiang et al., 2017) explores a deep reinforcement learn-
ing framework for the financial portfolio management problem. The proposed frame-
work in this paper consists of using ”the Ensemble of Identical Independent Evalua-
tors (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch
Learning (OSBL) scheme, and a fully exploiting and explicit reward function.” With
this framework, it does experiments using a Convolutional Neural Network (CNN), a
basic Recurrent Neural Network (RNN) and a Long-Short Term Memory (LSTM). Us-
ing a dataset with cryptocurrency prices datasets, it performs backtesting in order to test
out the model’s accuracy. All three algorithms performed better than the other traditional
trading strategies against which this was tested including UCRP and UBAH.
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Moreover, this project (Liang, Chen, Zhu, Jiang, & Li, 2018) explores Adversarial
DeepReinforcement learning for financial management, implementing three algorithms:
Policy Gradient (PG), Deep Deterministic Policy Gradient (DDPG), and Proximal Pol-
icy Approximation (PPO). While they were tested for game playing and robot control,
they hadn’t yet been tested in a portfolio management problem. Intensive experiments
were conducted under a stock market prices dataset. Performance metrics show that the
PG algorithm performed the best out of the three of them. The experiment also finds
the effectiveness of DRL algorithms in capturing market patterns. This is a great indi-
cator that our model will be successful at capturing market patterns, thus conducting a
profitable market strategy.

Furthermore, this research (Yu et al., 2019) explores the performance of a DRL
framework in Dynamic Portfolio Management problem, when wealth has to be sequen-
tially allocated. The framework consists of an infused prediction module (IPM), a gen-
erative adversarial data augmentation module (DAM) and a behavior cloning module
(BCM). Using a financial market dataset, the model is tested. The DRL model is ro-
bust, profitable and risk-sensitive when matched against other trading strategies and RL
models. The paper also approaches this problem using a PPO algorithm, obtaining state-
of-the-art performance. This is very much encouraging for the thesis a PPO algorithm
in a financial markets dataset will be applied.

In addition, this line of research (Zhang et al., 2020) includes a cost component
into the DRL algorithm in a portfolio management problem. This component includes
both risk-related costs and transaction-related costs. A novel policy is designed in order
to extract asset correlations and price series patterns. Also, a function is developed in
order to maximize returns while constraining costs. This model is tested in a real-world
financial markets dataset, finding out that this methodology provides profitability, cost-
sensitivity and representation abilities. This proves that DRLmethodologies can be used
for managing the risk in a portfolio, something we will try to achieve through this thesis.

Also, this research project creates a DRL-based approach called DeepTrader (Wang,
Huang, Tu, Zhang, & Xu, 2021) for Risk-Return balanced portfolio management. The
proposed methodology includes macroeconomic variables to change the long-short pro-
portion of stocks to lower risk, including the negativemaximum drawdown as the reward
function. Moreover, the model incorporates a unit to assess individual assets, using price
rising rate as the reward function. Experiments conducted with past financial markets
data demonstrate the effectiveness of this approach, being specially effective during the
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great financial crisis and its recovery period. Through this study, we find proof that
DRL-based algorithms are able to manage risk in portfolios effectively and specially
during economic downturns.

Explainable approaches to DRL portfolio management have also been explored.
This paper (Guan & Liu, 2021) models a DRL agent with integrated gradients for fea-
ture weights, testing its performance in a Dow Jones return dataset from 2009 to 2021.
They do this for both single-step and multi-step prediction. When benchmarking the
model with other traditional machine learning models, the DRL agent shows a stronger
performance than traditional machine learning models in multi-step prediction.

This paper (Koratamaddi et al., 2021) researches including market sentiment for
DRL agents in stock portfolio allocation. This project proposes a approach to train an in-
telligent automated trader that uses historical stock data and market sentiment for a port-
folio of Dow Jones stocks. They do sentiment analysis examining market news through
Twitter and Google News. Through the Sharpe Ratio, they prove that their approach
performs better than a vanilla DDPG, an adaptive DDPG, a mean-variance analysis, and
a minimum variance analysis.

This research project (Soleymani& Paquet, 2021) explores deep graph convolutional
reinforcement learning for financial portfolio management with a model called Deep-
Pocket. The model extracts low-dimensional features through a Restricted Stacked Au-
toencoder. They find correlation among the financial instruments using the deep graph
convolutional network. An Actor Critic method is used to exploit the investment policy.
Results show this model clearly outperforms financial indexes through five datasets over
three distinct investment periods.

AlphaPortfolio (Cong, Tang, Wang, & Zhang, 2021) is a Deep Reinforcement Learn-
ing framework proposed through this research that employs a Transformer Encoder and
Long-Short Term Memory for feature representation. It uses a novel approach to at-
tention mechanisms that they call Cross-Asset Attention Network in order to obtain the
asset’s weights. It uses a dataset of the NYSE market from 1965 to 2016 because of the
requirement for a large amount of data that Deep Learning models have. The agent is
tested with different trading and economic restrictions, yielding superb returns, proving
that the model is robust. Researchers did also learn very valuable insights about stocks,
through the feature representation that these models produce.

Moreover, this research (Benhamou, Saltiel, Ungari, &Mukhopadhyay, 2020) project
hedges risk with a DRL-based model creating a dependency between market informa-

7



tion and hedging strategies. The model adds contextual information related to current
financial indicators in order to train the model. Through different reward functions in-
cluding net profit and sortino ratio, this strategy obtains higher returns and lower risk
than the Markowitz approach. This encourages us to think that an approach different to
the traditional industry-wide Markowitz approach can be more profitable.

This research line (Lim, Cao, & Quek, 2022) tries to maximize returns for a portfolio
through a DRL-based algorithm. It uses a Q network with reward function that includes
dynamically calculating the Net Asset Value of the portfolio, the model gets rewarded
for its actions. The paper tests four methods: an LSTM-based DRL agent with grad-
ual rebalancing, an LSTM-based DRL agent with full rebalancing, gradual rebalancing
without an LSTM-based DRL agent and full rebalancing without an LSTM-based DRL
agent. The proposed agent shows the ability to adapt to the market conditions and shows
good performance. The gradual rebalancing as well shows better performance than full
rebalancing. In our model, we will use elements in order to assure a proper gradual
rebalancing of the portfolio, thus this paper reassures us of our methodology.

In this line of papers try to optimize for a certain portfolio metric,(Zhao, Ma, Li, &
Zhang, 2023) should be mentioned as it optimizes for the asset’s correlation. This model
includes nonlinearity relationships between the assets through an attention-based mech-
anism. The algorithm chosen for training is a deterministic policy gradient recurrent
reinforcement learning method based on Monte Carlo sampling. The method obtains
state-of-the-art performance in return compared to traditional and advanced methodolo-
gies.

Even Morgan has published research using DRL for portfolio management. In a
recent study (Sood, Papasotiriou, Vaiciulis, & Balch, 2023), they compare the perfor-
mance of an DRL agent to a traditional Mean-Variance Optimization approach. This
framework uses a PPO agent as its algorithm and Sharpe Ratio as the reward. Because
of both appraoches algortihms optimizing for the Sharpe Ratio, we can now compare
which model is more efficient. This approach shows better Annual Returns, Maximum
Drawdown and Sharpe ratio than the traditional Mean-Variance optimization approach.
As well, the DRL agent shows more consistent returns and a more stable portfolio.

More recent papers trying to optimize DRL-based models’ performance include
(S. Yang, 2023), which proposes a Task-Context Mutual Actor–Critic (TC-MAC) algo-
rithm. Through a financial market setting, this algorithm shows superior performance
to other traditional portfolio management algorithms. It as well shows transferability to
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other problems.
Ensemble approaches (H. Yang et al., 2020) that combine more than one model for

the final prediction have as well been researched. This paper combines three actor-critic
based algorithms: Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO)
and Deep Deterministic Policy Gradient (DDPG). They are back-tested with historical
stock price data of 30 Dow Jones companies. The performance of the ensemble is better
than the three individual algorithms as well as two other baselines (the Min-Variance
approach and the Dow Jones Index Return).

In this line of research, (Lin et al., 2022) proposes a multi-agent DRL approach for
risk-shifting portfolio management. Each agent has a refined deep policy network and
a special training method that makes the DRL agent to learn risk transfer behavior. This
model outperforms other traditional strategies in the Sharpe Ratio.

Deep Reinforcement Learning has also been applied in the field of Economics (Char-
pentier, Elie, & Remlinger, 2021), a field very closely related to portfolio management.
This article uses DRL for optimal control problems in economics, game theory, oper-
ations research, and finance. Despite not providing results for each selected task, they
conclude that while advances are very promising in this field for making the models,
computational capabilities are slowing progress down. They also note that these models
assume that a lot of information is available, something that is not always true.
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Figure 2.1: Organization of the State of the art review
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Chapter 3

Thesis definition

This section outlines the scope and framework of the thesis, focusing on the development
of a software code employing Deep Reinforcement Learning (DRL) for financial market
analysis. Key objectives include modifying the open-source Stable Baselines algorithm
to evaluate various entropy coefficients’ effectiveness. Additionally, the constraints,
hypothesis, and underlying assumptions crucial to the study are detailed, providing a
comprehensive foundation for the research.

3.1 General Objective

The general objective of this work is the utilization of Deep Reinforcement Learning
for the creation of diversified investment portfolios. Specifically, the Proximal Policy
Optimization (PPO) technique will be employed. Additionally, a new methodology for
quantifying portfolio diversification will be introduced and compared with the tradi-
tional approach. The work will conclude with hyperparameters that optimize portfolio
behavior and determine if our methodology is more efficient than the previous one. The
specific objectives are as follow:

3.2 Specific goals

1. Analyze the importance of using deep learning in the field of portfolio manage-
ment, using reinforcement learning to verify its value.
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2. Evaluate the performance of DRL algorithms testing for different entropy coeffi-
cients.

3. Provide a practical framework for the utilization of Deep Learning algorithms in
the field of finance, especially in portfolio optimization.

4. Train a PPO model for the optimization of a portfolio with the assistance of stock
market data from recent years.

3.3 Constraints

1. Time Limitation: The thesis must be completed within the academic year 2023-
2024, affecting both the model training and its subsequent analysis.

2. Computational Limitation: The model will be executed using Google Collabora-
tory, utilizing Google’s hosted computing resources, which offer more flexibility
than personal computing but within Google’s closed environment.

3. Data Collection: Due to computational and time constraints, the dataset used for
testing will cover a limited period.

4. Measurement Errors: The dataset consists of close prices with a daily frequency,
potentially introducing measurement inaccuracies.

3.3.1 Hypothesis

In this study, we provide a statistical analysis of the entropy regularizer for financial
portfolio optimization problems. The hypothesis to be tested is that the entropy required
for these financial problems obtains a better performance than the default value which
is traditionally used. Because of this, we frame the problem as follows:

Null Hypothesis: H0 : entropy_coefficient ≤ default_entropy_coefficient Al-
ternative Hypothesis: H1 : entropy_coefficient > default_entropy_coefficient
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3.3.2 Assumptions

1. Transferability: Our model’s behavior observed in our dataset is assumed to gen-
eralize to other financial market scenarios, making our findings relevant for prac-
titioners applying DRL agents to portfolio optimization problems.

2. Model Assumptions: We assume past returns predict future returns, neglect trans-
action costs and taxes, assume trading doesn’t impact pricing, consider invest-
ments infinitely divisible, and understand that investors are price takers. We also
assume that trades can take place regardless of time, day, and share quantity.

3. Underlying Theory: We assume that the theory behindDeepReinforcement Learn-
ing theory.
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Chapter 4

Theoretical background

4.1 Deep Learning

The Deep Learning paradigm is the basis of the architecture of the PPO model, with
neural networks at its core.Understanding the fundamental structure of a Deep Learning
model is imperative.

The backpropagation algorithm discovers deep patterns in high dimensional data
by adjusting parameters (LeCun, Bengio, & Hinton, 2015). Essentially, the structure of
deep learning is composed of a multilayer stack of modules, with somemodules learning
information while others create non-linear input-output mappings of the data. Known
as Multilayer Neural Networks, these multilayer stacks stack neural networks on top of
one another. Using feedforward neural networks, these architectures involve a set of
units computing a weighted sum of their inputs from the previous layer of neurons and
passing the output through a non-linear function to traverse through the different layers.

Despite Deep Learning initially gaining traction in disparate fields such as speech
recognition, object recognition, and object detection, it has made strides in Portfolio
Management due to many of the same characteristics that made it so powerful in its ini-
tial domains of study. Forecasting models have a lot of substantial noise, and neural
networks offer a potential solution as they have demonstrated an ability to discern un-
derlying patterns in datasets. As an example, RL integrates both prediction and portfolio
construction tasks into a unified process, aligning closely with investors’ objectives. Be-
cause of this architecture, critical constraints such as transaction costs, market liquidity,
and investor risk aversion can be effectively addressed (T. G. Fischer, 2018).
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4.2 Deep Reinforcement Learning

(Sutton & Barto, 2018) highlights the similarities between reinforcement learning and
human learning. Just as individuals acquire skills like bicycling through hands-on prac-
tice, reinforcement learning operates similarly, without actively considering principles
like angular momentum, momentum, and force. Rather than addressing optimization
challenges based on pre-established rules, an agent takes in the current state within a
specified environment and aims to maximize rewards from available actions (Jang &
Seong, 2023).

Q-learning isthe foundation of reinforcement learning (Hester et al., 2018). It is
based on the Q-function, which represents the reward received by an agent when an
action a is performed in a specific state s. In Q-learning, the Q function is updated by
utilizing the greedy action a(t+ 1) that maximizes the Q(St+1) function.

Q(st, at) = E[r(st, at, st+1) + γmax
at+1

Q(st+1, at+1)] (4.1)

The Deep Q-Network (DQN), a reinforcement learning algorithm that incorporates
a neural network and approximates the Q function. With this architecture, the state is
encoded as a value function. However, the DQN approach becomes challenging to use
as the amount of computation increases when the action space is large (Hester et al.,
2018). In the stock market, the portfolio weight is not discrete and has an action space
in the form of a continuous box, leading to infinite action spaces. Therefore, DQN is not
deemed suitable for portfolio optimization. We can see the model’s architecture through
this 4.1 from (Latex Figure for Deep Reinforcement Learning— tex.stackexchange.com,
n.d.).

4.3 PPO model

As outlined in the original paper by (Schulman et al., 2017), the objective of PPO was to
achieve the data efficiency and reliability similar to TRPO, applying only first-order op-
timization techniques. A unique objective function with clipped probability ratios was
introduced by PPO, fin order toi get a consertive setting of results. PPO represents an
innovative category of policy gradient methodologies where data is once and again ac-
quired through interactions with the environment, and a ”surrogate” objective function
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Figure 4.1: Deep Q-Network Architecture

is improved via stochastic gradient ascent. Unlike traditional policy gradient methods,
where gradients are updated once per data sample, PPO uses an updated objective func-
tion that allows for several epochs of mini-batch updates (Schulman et al., 2017). This
objective function of PPO can be represented as:

L(s, a, θk, θ) = min
(
πθ(a|s),

πθold(a|s)
πθk(a|s)

)
Aπθk (s, a) (4.2)

g(·, A) =

(1 + ϵ)A if A ≥ 0

(1− ϵ)A if A < 0
(4.3)

In its implementation, PPO keeps track of two policy networks. The initial one
represents the current policy in need of refinement (Schulman et al., 2017).

πθ(at|st) (4.4)

The policy used for sample collection previously:
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πθk(at|st) (4.5)

Switching between sampling data and interacting with the environment, PPO in-
creases sample efficiency by evaluating a new policy using samples obtained from an
earlier policy, employing the concept of significance sampling (Schulman et al., 2017).

Our goal is to maximize the expected surrogate objective function in order to opti-
mize

t

[
πθ(at|st)

πθold (at|st)
πθk

(at|st) Â
πk(s, a)

]
(6.37)(4.6)

As the current policy is developed, the gap between it and the previous policywidens,
leading to increased estimation variance and resulting in poor judgments due to inaccu-
racy. Consequently, every four iterations, the second network is remade with the revised
policy (Schulman et al., 2017). Using a clipped objective, a ratio between the new policy
and the old policy is computed (Schulman et al., 2017).

rt(θ) =
πθ(at|st)
πθk(at|st)

(6.38) (4.7)

The comparison of the two policies is represented by this ratio. When the new policy
significantly deviates from the previous one, a modified objective function is generated
to constrain the estimated advantage function. The resulting objective function is now
as follows (Schulman et al., 2017):

Lθk
CLIP(θ) = Eτ∼πk

[
T∑
t=0

min
(
rt(θ)Â

πk
t , clip (rt(θ), 1− ϵ, 1 + ϵ) Âπk

t

)]
(6.39)

(4.8)

If the probability ratio between the new and old policies exceeds the range (1 − ϵ)

to (1 + ϵ), adjustments are made to the advantage function. Clipping is applied to limit
the extent of effective modifications permitted at each stage, thereby enhancing stability.
This discourages significant alterations to the policy if they fall beyond our acceptable
threshold (Schulman et al., 2017). The method is illustrated in Equation 1. We can
observe the model’s architecture in Figure 4.2(Schulman et al., 2017)
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Algorithm 1: PPO with Clipped Objective from Schulman et al. (2017)
Input: initial policy parameters θ0, clipping threshold
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy πk = π(θk)

Estimate advantages Âπk
t

Compute policy update θk+1 = argmaxθ Lθk
CLIP(θ) by takingK steps of

minibatch SGD (via Adam), where
Lθk
CLIP(θ) = Eτ∼πk

[∑T
t=0min

(
rt(θ)Â

πk
t , clip (rt(θ), 1− ϵ, 1 + ϵ) Âπk

t

)]
end

Figure 4.2: PPO model architecture

4.4 Technical Indicators in Trading

Traders often rely on indicators such as the moving average, relative strength index,
moving average convergence divergence, and stochastic oscillators to identify buy and
sell signals. However, making profits in a market where numerous investors trade
against each other presents a challenge. According to the efficient market hypothesis,
any advantages gained by an investor are susceptible to being nullified by others who
possess the same market information (C. I. Lee, Pan, & Liu, 2001). Consequently, in-
vestors seek additional insights to inform their trading decisions, often turning to histor-
ical data for guidance on future price movements. Trading strategies rooted in technical
analysis have garnered significant attention from investors, particularly high-frequency
traders(Fyfe, Marney, & Tarbert, 1999). These strategies typically involve parameters
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EMAn1,EMAn2,EMAn3 (4.9)

MACD = EMAn1 − EMAn2 (4.10)

MACD Signal = EMAn3 of MACD (4.11)

Figure 4.3: MACD Formula and its Signal Line

borrowed from conventional trading practices, such as selecting durations for the mov-
ing average and relative strength index. Recent research has focused on refining and
optimizing these trading strategies (Faijareon & Sornil, 2019).

4.4.1 Turbulence Index

The Turbulence indicator functions as a tool for evaluating risk. (Chow, Jacquier, Kritz-
man, & Lowry, 1999) were the first to introduce a measure of financial turbulence, orig-
inally developed by (Mahalanobis, 1925). Their methodology addresses the volatility of
risk parameters within the realm of portfolio allocation. A central part of their study in-
volves detecting multivariate outliers and employing them to calculate a revised covari-
ance matrix. The authors argue that their approach provides a more precise assessment
of a portfolio’s risk level during periods of market turbulence. However, their method
is designed specifically for portfolio allocation and does not prioritize the identification
of market turbulence periods. (Dumitrescu, 2015)

4.4.2 MACD

Gerald Appel developed the Moving Average Convergent Divergent (MACD) in the
late 1970s. It is employed to monitor stock direction and assess stock price momentum
through the utilization of two moving averages:

A sample trading rule based on MACD is: buy if MACD is greater than signal.
Parameters of the MACD trading rules are fast length n1, slow length n2, and signal
length n3. (Faijareon & Sornil, 2019)

4.4.3 RSI

The relative strength index (RSI) is a tool for monitoring stock direction and quantifying
the rate of price change over a specified timeframe. It ranges from 0 to 100 and can be
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computed as follows:
RSI = 100− 100

1 + RS
(4.12)

where RS is the average gain of up periods during a time frame divided by average
loss of down periods during the time frame.(Faijareon & Sornil, 2019)

4.4.4 Sharpe Ratio

The Sharpe ratio, widely recognized in the industry for measuring risk-adjusted returns,
will be used to evaluate performance. The numerator of the ratio represents the expected
portfolio return minus the risk-free rate, while the denominator is the expected volatility
of the portfolio or the standard deviation of returns (adjusted by subtracting the risk-free
asset’s standard deviation, which is zero) (deborahkidd.com, n.d.). The resulting ratio
isolates the expected excess return that the portfolio could generate per unit of portfolio
return variability. Originally, Sharpe’s version assumed that borrowing at the risk-free
rate would fund the investment in the risky asset, implying a zero-investment strategy.
Over time, the metric has been referred to by users as the Sharpe measure or Sharpe ratio,
and it has been used to evaluate investment decisions ex-post. The ex-post, or historical,
Sharpe ratio employs actual rather than expected returns and is calculated as follows:

Sharpe Ratio =
Rp −Rf

σp

(4.13)

In the Sharpe ratio calculation, Rp is the average return of the portfolio, Rf is the
average return of the risk-free rate for the period being assessed, and σp is the average
standard deviation of the portfolio. An investor is informed by the Sharpe ratio about
the proportion of a portfolio’s performance linked with undertaking risk. It quantifies
the incremental value of a portfolio compared to its overall risk. A portfolio comprising
risk-free assets or one yielding zero excess return would register a Sharpe ratio of zero
(deborahkidd.com, n.d.).

4.5 Entropy Coefficient Value

The entropy coefficient functions as a regularizer. When all actions have equal proba-
bilities, the policy achieves maximum entropy, whereas it minimizes when one action’s
probability becomes dominant. This coefficient is multiplied by the maximum possible
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entropy and integrated into the loss function. Its role is to prevent premature dominance
of one action’s probability within the policy, thereby encouraging exploration (Aure-
lianTactics, 2018). Serving as a hyperparameter in the PPO model, it steers exploration.
Adjustments to this coefficient are aimed at broadening the model’s exploration capac-
ity, particularly in tackling the CAT problem, which involves a wide array of potential
moves. Insufficient exploration could impede the model’s ability to learn optimal strate-
gies (Corecco, Adorni, & Gambardella, 2023)

This research demonstrates the benefits of adjusting the entropy coefficient in en-
hancing performance. It indicates that integrating entropy into the reward system, along
with adopting a more stochastic policy, alters the optimization goal. Additionally, it sug-
gests that entropy and stochasticity tend to promote a more favorable objective for opti-
mization. Through a secondary experimental setup, the study explores the optimization
effects of stochastic policies, revealing that high entropy policies can accelerate learn-
ing and improve the quality of final solutions. (Ahmed et al., 2019) . This means that
the agent would explore states as it is learning and that the model would also be better
equipped to deal with abnormal situations, which would make it more robust.(Olsson et
al., 2022)

This paper also proves how a change in the entropy coefficient can greatly affect
performance (Eimer et al., 2023) OpenAI has published an article that discusses varying
performance levels associatedwith different entropy coefficients. In aDRL context, they
demonstrate that lower entropy tends to result in poorer performance because the model
struggles more with exploration, while higher entropy leads to even worse outcomes
due to excessively random actions.(Berner et al., 2019). Through these articles, we can
observe that different entropy coefficient values can drive performance, thus making us
comfortable that our experiment will yield some positive and significant results for this
research field.
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Chapter 5

Methodology and results analysis

This section is divided into a methodology part and a results part. In the methology part,
I will detail how the experiment was executed sequentially, detailing the acquisition and
data pre-processing, the descriptive data analysis, the environment design, the applica-
tion of the DRL algorithms and the evaluation of results.Afterwards, in the experiment
evaluation part, we will evaluate the shift in the model’s performance when changing
the entropy coefficient. If when running experiments the sharpe ratio improves, we will
conclude that said entropy coefficient is the most efficient for this context.

5.1 Methodology

The primary aim of this study is create a model that can improve stock price forecast-
ing by adjusting the entropy coefficient. Specifically, this involves altering the entropy
coefficient values within the PPO DRL model.

To accomplish this objective, the FiNRL library will be employed. As the initial
open-source framework tailored for financial reinforcement learning, it has three layers:
market environments, agents, and applications. In the context of trading, this means
making sequential decisions as an agent interacts with a market environment. Addi-
tionally, several open-source Python packages will be integrated, including as Yahoo
Finance API, pandas, numpy, matplotlib, stockstats, OpenAI gym, stable-baselines, Ten-
sorFlow, and pyfolio. (FinRL, 2023a)

This thesis will examine the trading data of Dow 30 constituents from 2008 to 2023,
employing the final year for testing and the rest of the years for training purposes. The
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DowHones is composed by 30 notable U.S. publicly traded companies.(What Is the Dow
30, Companies In It, Significance— investopedia.com, 2023) Serving as an indicator for
the U.S. stock market and economy, it reflects the combined share price performance
of significant entities listed on the New York Stock Exchange (NYSE) and NASDAQ,
excluding transportation and utility firms.

• Acquisition and data pre-processing: We will acquire data from Yahoo Finance
and we will apply several pre-processing techniques to better apply our model.

• Descriptive data analysis: Analysis of data was carried out to understand the
structure of our dataset. We examined distribution, seasonality, and evolution to
gain an initial understanding of the dataset.

• Environment Design Financial tasks are modeled as a Markov Decision Process
(MDP) challenge. The training process involves monitoring stock price fluctu-
ations, executing actions, and assessing rewards to facilitate the agent’s strategy
adjustments. Via reinforcement learning, the trading agent will formulate a strat-
egy geared towards maximizing rewards over time. Our trading environments,
built upon the OpenAI Gym framework, emulates real stock markets by employ-
ing time-driven simulation principles with actual market data.(FinRL, 2023b)

• Application of DRL AlgorithmsWe will experiment with various entropy coef-
ficient values for PPO. We have an initial capital of $1,000,000 on January 1st,
2023 and we will trade Dow Jones 30 stocks with that capital. (FinRL, 2023b)

We will now examine different entropy coefficients to determine whether altering
this parameter significantly impacts model accuracy. Our focus will be on the Sharpe
ratio, a key metric, calculated over a fixed trading period of one year following training
on previous years’ data from the DOW JONES 30 index ETF.(FinRL, 2023b)

Actions define defining stock weight allocations, rewards quantify changes in port-
folio value, and states take in observed features. The environment consists of the Dow
30 stocks.(FinRL, 2023b)

5.2 Data pre-processing

Yahoo Finance provides us with the stock informationat no cost. FinRL utilizes a Ya-
hooDownloader class to download data from the Yahoo Finance API, which has a call
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limit of 2,000 requests per hour per IP or up to 48,000 requests per day. Subsequently,
this data is stored in a pandas library DataFrame. This data is used in the Python file for
further data pre-processing. Technical indicators are incorporated in the dataset from
the start. In real-world trading, various factors have to be taken in, such as historical
stock prices, current holdings, and technical indicators. In this context, we illustrate two
trend-following technical indicators: MACD and RSI. Additionally, a turbulence index
is introduced.(FinRL, 2023b)

Risk aversion plays a crucial role in determining whether an investor will prioritize
capital preservation. It also influences the trader’s trading strategy in response to market
volatility. To manage risk in highly volatile markets, such as during the Great Financial
Crisis, FinRL employs a financial turbulence index for assessment. Wemanually include
the covariance matrix as states.(FinRL, 2023b)

5.3 Descriptive data analysis

Here we can observe a table containing key statistics of the daily changes and a his-
togram. From both representations, it is evident that average returns are predominantly
clustered around zero, which makes sense taking into account classic financial theory
that says that financial returns are zero in the long-term. Additionally, the distribution
appears to be symmetrical, as the absolute maximum and minimum returns in the distri-
bution are almost equal.

Statistic Value
Count 4027.000000
Mean 0.000339
Standard Deviation 0.012231
Minimum -0.129265
25% Quartile -0.004229
50% Quartile 0.000554
75% Quartile 0.005597
Maximum 0.113650

Table 5.1: Summary Statistics
Table 5.2: Histogram

Through this seasonality decomposition, we can see the big seasonality that stock’s
prices suffer. We can also observe that markets tend to move around the economic cycles
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which makes them have this type of coherent trend.

Figure 5.1: LOESS Decomposition

We are as well able to observe the decomposition of returns through this scatterplot
in 5.2, where we can observe how stock returns moved over the observed period. As an
example of volatility, we can clearly observe the covid crisis as one of the most volatile
times of the last 15 years for the stock market.

One of the primary assumptions in classical portfolio management models is that
returns follow a normal distribution. We will now examine whether this assumption
holds true for our dataset. To assess this, a statistical Shapiro test was conducted to
determine the normality of the distribution. The results indicate that we cannot confirm
a normal distribution with a 90% confidence level. In order to get further confirmation,a
plot was generated to compare it with the distribution of points if the model were entirely
normal. From the visual representation in 5.3, it becomes apparent that our distribution
is not normal, as it is more concentrated around the mean compared to a typical normal
distribution.

5.4 Environment Design

5.4.1 Train-Test Split

In time series forecasting, randomly dividing the dataset into training and testing sets
does not make sense since observations are dependent in time series analysis. For this
project, the period between 2008 and 2022 was selected as training and the test was
2023. This resulted in a training test split of 95/5.(FinRL, 2023b)
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Figure 5.2: Scatterplot of the Dow
Jones returns from 2008 to 2023

Figure 5.3: Comparison between how
the dataset would be shaped if it had
a perfect Normal Distribution and how
it’s shaped

5.4.2 Stock trading environemnt

This framework uses a DataFrame (df) to represent input data and integrates crucial pa-
rameters such as stock_dim, indicating the number of unique stocks; hmax, setting the
maximum number of shares for trading; initial_amount, meaning the starting capital;
transaction_cost_pct, representing the percentage of transaction costs per trade. Fur-
thermore, it also uses reward_scaling to fine-tune reward magnitudes, state_space to es-
tablish input feature dimensions, and action_space corresponding to the dimensionality
of stocks. Additionally, tech_indicator_list contains the names of technical indicators
guiding trading decisions, while turbulence_threshold regulates risk aversion. Lastly,
day functions for the dates. (FinRL, 2023b)

In terms of actions undertaken during training, the model has various actions. These
actions include sell_stock() and buy_stock(), for selling and buying actions re-
spectively based on the sign of the action. The step() method organizes the trading
process by returning actions, computing rewards, and providing subsequent observa-
tions at each step. Moreover, the reset() function is utilized to reset the environment,
while render() returns additional functions for visualization . Additionally, save_-
asset_memory() and save_action_memory() are employed to document values and
actions/positions at each time step, facilitating comprehensive data collection and anal-
ysis within the trading environment. (FinRL, 2023b)
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5.5 DRL Algorithm Implementation

We’ll evaluate different entropy coefficient values for PPO. Starting with an initial in-
vestment of $1,000,000 on January 1, 2023, we’ll use trained PPO models to trade Dow
Jones 30 stocks. To account for transaction costs, we set the transaction cost at 0.1%.
We will use the Sharpe Ratio to examine each entropy coefficient’s performance in this
dataset.(FinRL, 2023b)

5.5.1 PPO Model Hyperparameters

• Horizon range Horizon refers to the number of time steps into the future that
a current reward can be linked to a past action (or how far back a past action
can influence the current reward). For consistency with DRL models, we will
consistently employ a horizon of 2048 steps, a widely accepted practice in the
field. (Unity, 2020)

• Entropy coefficient The entropy coefficient acts as a regularizer in reinforcement
learning. It measures the level of uncertainty in the policy, with maximum entropy
occurring when all actions are equally probable and minimum entropy when one
action dominates. During training, the entropy coefficient is multiplied by the
maximum possible entropy and added to the loss function. We will experiment
with various entropy coefficients, including 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1,
0.5, and 0.9 to determine the most effective option. (AurelianTactics, 2018)

• Learning Rate Deep learning neural networks are trained through the stochastic
gradient descent algorithm. This optimization technique estimates the error gra-
dient for the current model state using examples from the training dataset. It then
updates the model’s weights using the backpropagation of errors algorithm. The
magnitude of these weight updates during training is referred to as the step size or
the ”learning rate.” The learning rate is a tunable hyperparameter crucial in neu-
ral network training, typically set to a small positive value between 0.0 and 1.0.
(Brownlee, 2019) In this study, we will adopt a stable learning rate of 0.0001.

• Batch size This hyperparameter determines the number of samples processed be-
fore updating the internal model parameters. (Devansh, 2024) We will use a se-
lected batch size of 128.
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5.6 Evaluation of results

In this academic study, we aim to estimate the mean of the Sharpe ratio through a re-
peated experiment conducted 25 times with the different entropy coefficients, employ-
ing different random seeds. This experiment will experiment with both the default en-
tropy coefficient and higher entropy coefficients. We think that higher values of the
entropy coefficient will lead to more robust policies for the agent, attributed to a more
exploratory learning process of the policy distribution. However, we also anticipate a
potential degradation in performance with higher entropy coefficients.

Subsequently, we will conduct a statistical hypothesis contrast of pairs of means and
a linear regression analysis of the Sharpe ratio. This analysis will be based on the out-
comes derived from various values of the entropy regularizer. The objective is to assess
what the relationship between the Sharpe ratio and the entropy regularizer is.(FinRL,
2023b)

In Table 5.3 presented below, we present a comparative analysis of performance
across various entropy coefficients utilized, with consideration of five distinct seeds.
Each seed and entropy coefficient pairing showcases the model’s performance, quanti-
fied by its Sharpe ratio. Notably, there is consistent performance observed across the
array of entropy coefficients. Among our experiments, the lowest recorded Sharpe ra-
tio is 1.35368135 for Seed 2 and a coefficient of 0.0, while the highest Sharpe ratio is
1.35566438 for Seed 4 utilizing a coefficient of 0.00001. The difference between the
best and worst performing experiments amounts to a just 0.15% change in model perfor-
mance. Through entropy coefficient values ranging from 0 to 1, for this specific dataset,
alterations in the entropy coefficient hyper-parameter, while holding all other variables
constant, impact performance very little.

In order to further illustrate the lack of performance variance between the different
entropy coefficients, we took the average performance of a entropy coefficient through
its different seeds (a contrast of pairs ofmeans), which is represented in 5.4. In this graph,
we once again observe almost no change in performance between the different entropy
coefficients, thus proving no change in performance. As noted in the methodology part
of this thesis, it needs to be stated that each experiment was run 25 times, thus proving
that the change in entropy coefficient is not significant in this context and that the lack
of change in performance is not just due to chance.

It’s important to note that this experiment was conducted with very limited resources,
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including very limited computational capacity as well as very limited time to conduct
this experiment. In order to get more assurance over the results, these experiments would
need to be conducted with more computational capacity.

Entropy Coefficient Seed 1 Seed 2 Seed 3 Seed 4 Seed 5
0.0 1.35368433 1.35368135 1.35369012 1.35368806 1.35369305

0.00001 1.35565479 1.35565737 1.3556624 1.35566438 1.35566236
0.0001 1.35565479 1.35565737 1.35566241 1.35566438 1.35566235
0.001 1.35565479 1.35565737 1.35566241 1.35566438 1.35566236
0.01 1.35565479 1.35565737 1.3556624 1.35566438 1.35566235
0.1 1.3556548 1.35565738 1.35566237 1.35566437 1.35566235
0.5 1.35565479 1.35565738 1.35566235 1.35566428 1.35566232
0.9 1.35565477 1.3556574 1.35566235 1.35566426 1.35566234

Table 5.3: Sharpe ratios of the different entropy coefficients and seeds.
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Figure 5.4: Contrasts of pairs of means between the different entropy coefficients show-
ing no significant difference in performance between the different entropy coefficients
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Chapter 6

Conclusions

Our research project analyses the importance of fine-tuning the entropy coefficient hy-
perparameter in Portfolio Management using Deep Reinforcement models. We exam-
ined the utility of incorporating deep learning methodologies in portfolio management
by analyzing a real-world dataset from the Dow Jones 30 index. Our study tries to de-
termine whether adjustments to the entropy coefficient would have a substantial impact
on the model’s effectiveness, as assessed through the Sharpe ratio. Our results indicate
that altering the entropy coefficient does not significantly influence the model’s perfor-
mance.

We start the paper by analyzing the development of quantitative finance in portfolio
management and highlighting the potential of Deep Reinforcement Learning (DRL) as
a cutting-edge technology in this sphere. Through a comprehensive literature review,
we identified crucial methodologies and recent advancements in DRL Portfolio Man-
agement. This helped us select Proximal Policy Optimization (PPO) model for exper-
imentation. Additionally, we explored various aspects of DRL models, including their
applications, model selections, and available resources.

After understanding DRL Portfolio Management research, we formulated hypothe-
ses and research objectives. Subsequently, we highlight the foundational technology
behind DRL models, emphasizing the transformative influence of deep learning and re-
inforcement learning on financial analysis. We provided a deep explanation behind the
theoretical background of the PPO model, along with the technical indicators integrated
into our analysis.

In our methodology, we implemented the PPO model and applied descriptive data
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analysis to understand the dataset. Through multiple experiment with various entropy
coefficients, we observed no significant deviations in performance, underscoring the
model’s consistency across different scenarios.

Looking forward, we recommend exploring other hyperparameters such as learning
rate and batch size . Furthermore, we encourage other scholars to research other DRL
models for Portfolio Management, because of their proven efficacy.
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Declaración de Uso de Herramientas de Inteligencia Artificial Generativa en Trabajos Fin de Grado 

ADVERTENCIA: Desde la Universidad consideramos que ChatGPT u otras herramientas similares son 
herramientas muy útiles en la vida académica, aunque su uso queda siempre bajo la responsabilidad 
del alumno, puesto que las respuestas que proporciona pueden no ser veraces. En este sentido, NO 
está permitido su uso en la elaboración del Trabajo fin de Grado para generar código porque estas 
herramientas no son fiables en esa tarea. Aunque el código funcione, no hay garantías de que 
metodológicamente sea correcto, y es altamente probable que no lo sea.  
 
Por la presente, yo, [Nombre completo del estudiante], estudiante de [nombre del título] de la 

Universidad Pontificia Comillas al presentar mi Trabajo Fin de Grado titulado "[Título del trabajo]", 

declaro que he utilizado la herramienta de Inteligencia Artificial Generativa ChatGPT u otras similares 

de IAG de código sólo en el contexto de las actividades descritas a continuación [el alumno debe 

mantener solo aquellas en las que se ha usado ChatGPT o similares y borrar el resto. Si no se ha usado 

ninguna, borrar todas y escribir “no he usado ninguna”]: 

1. Brainstorming de ideas de investigación: Utilizado para idear y esbozar posibles áreas de 

investigación. 

2. Crítico: Para encontrar contra-argumentos a una tesis específica que pretendo defender. 

3. Referencias: Usado conjuntamente con otras herramientas, como Science, para identificar 

referencias preliminares que luego he contrastado y validado. 

4. Metodólogo: Para descubrir métodos aplicables a problemas específicos de investigación. 

5. Interpretador de código: Para realizar análisis de datos preliminares. 

6. Estudios multidisciplinares: Para comprender perspectivas de otras comunidades sobre 

temas de naturaleza multidisciplinar. 

7. Constructor de plantillas: Para diseñar formatos específicos para secciones del trabajo. 

8. Corrector de estilo literario y de lenguaje: Para mejorar la calidad lingüística y estilística del 

texto. 

9. Generador previo de diagramas de flujo y contenido: Para esbozar diagramas iniciales. 

10. Sintetizador y divulgador de libros complicados: Para resumir y comprender literatura 

compleja. 

11. Generador de datos sintéticos de prueba: Para la creación de conjuntos de datos ficticios. 

12. Generador de problemas de ejemplo: Para ilustrar conceptos y técnicas. 

13. Revisor: Para recibir sugerencias sobre cómo mejorar y perfeccionar el trabajo con diferentes 

niveles de exigencia. 

14. Generador de encuestas: Para diseñar cuestionarios preliminares. 

15. Traductor: Para traducir textos de un lenguaje a otro.  

 

Afirmo que toda la información y contenido presentados en este trabajo son producto de mi 

investigación y esfuerzo individual, excepto donde se ha indicado lo contrario y se han dado los 

créditos correspondientes (he incluido las referencias adecuadas en el TFG y he explicitado para que 

se ha usado ChatGPT u otras herramientas similares). Soy consciente de las implicaciones académicas 

y éticas de presentar un trabajo no original y acepto las consecuencias de cualquier violación a esta 

declaración. 

Fecha: 23/04/2024 

Firma: Roberto Gozalo Brizuela 
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