

Facultad de Ciencias Económicas y Empresariales

ICADE

MULTI-FIDELITY BAYESIAN
OPTIMIZATION FOR DEEP

REINFORCEMENT LEARNING FOR
PORTFOLIO MANAGEMENT

Autor: Beatriz Díaz Nameth

Director: Eduardo César Garrido Merchán

MADRID | Abril 2024

2

ABSTRACT

The financial landscape is constantly evolving, presenting challenges to traditional

methodologies that struggle to adapt to the dynamic nature of markets. Markowitz's Modern

Portfolio Theory (MPT) assumes stability in market conditions, overlooking the inherent

volatility and rapid changes that characterize real-world financial environments. This

inconsistency highlights the need for innovative approaches capable of addressing the non-

stationary nature of markets. Deep Reinforcement Learning (DRL) emerges as a promising

solution, leveraging its adaptability to changing conditions and its ability to learn from

historical data and real-time feedback. By leveraging the power of DRL, this thesis aims to

revolutionize portfolio management, offering a more dynamic and responsive framework to

navigate today's complex financial landscapes.

This thesis explores the intersection of Multi-Fidelity Bayesian Optimization (MFBO) and

Deep Reinforcement Learning (DRL) to improve portfolio management strategies. The

research explores how MFBO can optimize hyperparameters within DRL algorithms,

particularly focusing on their adaptability to non-stationary market conditions. By

challenging the assumptions of traditional portfolio optimization models like Modern

Portfolio Theory (MPT), this study aims to utilize the dynamic nature of DRL to overcome

the limitations of static approaches. Through experimentation and comparative analysis with

established methods such as Bayesian Optimization and Random Search, the study not only

seeks to validate the efficacy of MFBO-DRL techniques but also aims to uncover new

insights into portfolio optimization.

By combining theoretical principles with empirical evidence, this research contributes to the

wider understanding of financial decision-making, offering potential paths for the progress

of portfolio management practices.

Key words: Deep Reinforcement Learning, Multi-fidelity Bayesian Optimization, Portfolio

Optimization, Modern Portfolio Theory, Bayesian Optimization, Random Search and

Hyperparameters.

3

RESUMEN EJECUTIVO

El mundo financiero está en constante evolución, lo que presenta desafíos para las

metodologías tradicionales que luchan por adaptarse a la naturaleza dinámica de los

mercados. La Teoría Moderna de Carteras de Markowitz (MPT, por sus siglas en inglés)

asume la estabilidad en las condiciones del mercado, no teniendo en cuenta la volatilidad

inherente que caracteriza a los entornos financieros. Esta inconsistencia destaca la necesidad

de enfoques innovadores capaces de abordar la naturaleza no estacionaria de los mercados.

El Deep Reinforcement Learning (DRL) surge como una solución, aprovechando su

capacidad de adaptación a condiciones cambiantes y su habilidad para aprender de datos

históricos y retroalimentación en tiempo real.

Este TFG profundiza en la intersección de la Optimización Bayesiana de Multi-Fidelidad

(MFBO) y el DRL para mejorar las estrategias de gestión de carteras. La investigación

explora cómo MFBO puede optimizar hiperparámetros dentro de los algoritmos de DRL,

centrándose particularmente en su capacidad de adaptación a condiciones de mercado no

estacionarias. Este estudio tiene como objetivo aprovechar la dinámica del DRL para superar

las limitaciones de los enfoques estáticos al desafiar los supuestos de los modelos

tradicionales de optimización de carteras como la MPT. A través de experimentos y análisis

comparativos con métodos como la Optimización Bayesiana y la Búsqueda Aleatoria, el

estudio no solo busca validar la eficacia de las técnicas MFBO-DRL, sino que también tiene

como objetivo descubrir nuevos conocimientos sobre la optimización de carteras.

Al combinar fundamentos teóricos con evidencia empírica, esta investigación contribuye a

la comprensión general de la toma de decisiones financieras, ofreciendo posibles vías para el

progreso de las prácticas de gestión de carteras.

Palabras clave: Deep Reinforcement Learning, Optimización Bayesiana de Multi-Fidelidad,

Optimización de carteras, Teoría Moderna de Carteras, Optimización Bayesiana, búsqueda

aleatoria e hiperparámetros.

4

INDEX

1. INTRODUCTION .. 8

2. STATE OF ART ... 10

2.1. Deep Reinforcement Learning in finance .. 13

2.1.1. Applying DRL to financial problems .. 14

2.3. Benefits in utilizing Deep Reinforcement Learning for Financial Challenges ... 19

2.4. Obstacles in utilizing Deep Reinforcement Learning for Financial Challenges 20

3. SCOPE OF THE THESIS ... 24

3.1. Objectives ... 24

3.2. Hypothesis .. 25

3.3. Assumptions ... 26

3.4. Restrictions ... 27

4. METHODOLOGY ... 28

5. THEORICAL FRAMEWORK ... 30

5.1. Introduction to Reinforcement Learning (RL) ... 31

5.1.1. The Reinforcement Learning process ... 33

5.1.2. Policy: on policy and off policy .. 34

5.2. Introduction to Deep Learning (DL) ... 36

5.3. Introduction to Deep Reinforcement Learning (DRL) .. 37

5.3.1. Model-based and Model-free algorithms ... 40

5.4. Markowitz's Modern Portfolio Theory vs. Deep Reinforcement Learning 43

5.5. Bayesian Optimization for Hyperparameter Tuning ... 46

5.6. Multi-Fidelity Optimization in DRL .. 49

6. EXPERIMENT ... 52

6.1. Experiment description ... 52

5

6.1.1. Problem Definition ... 54

6.1.1. Python Packages Load ... 55

6.1.2. Data Download ... 55

6.1.3. Preprocess Data ... 56

6.1.4. Environment Building ... 60

6.2. Results ... 62

7. CONCLUSIONS AND FURTHER WORK ... 66

8. GENERATIVE ARTIFICIAL INTELLIGENCE TOOLS STATEMENT 70

9. BIBLIOGRAPHY ... 72

10. APPENDIX ... 80

6

FIGURE INDEX

Figure 1. Summary of State of Art. .. 13

Figure 2. Application of DRL in financial problems. ... 16

Figure 3. Future Opportunities for DRL in financial applications. 19

Figure 4. Future Opportunities for DRL in financial applications. 22

Figure 5. Reinforcement Learning Process. ... 31

Figure 6. The value function. .. 32

Figure 7. The reinforcement learning control loop. .. 34

Figure 8. On-policy vs Off-policy representation. ... 36

Figure 9. Deep Learning Representation. ... 37

Figure 10. Deep Reinforcement Learning Process. .. 38

Figure 11. RL, Deep Learning and Deep RL. .. 39

Figure 12. Reinforcement Learning. ... 40

Figure 13. Types of model-free algorithms. ... 43

Figure 14. Modern Portfolio Theory Efficient Frontier. .. 43

Figure 15. Benefits and Obstacles of Deep Reinforcement Learning (DRL) Compared to

Modern Portfolio Theory (MPT) .. 46

Figure 16. Bayesian Optimization Process. .. 47

Figure 17. Variables used for the experiment. .. 56

Figure 18. All variables used for the experiment. .. 60

Figure 19. Sharpe ratio’s result for each method. ... 63

Figure 20. Time results for each method. ... 64

Figure 21. Dow Jones' constituents. ... 80

7

EQUATIONS INDEX

Equation 1. Main Hypothesis. .. 25

Equation 2. Bellman Equation. ... 39

Equation 3. Upper Confidence Bound. ... 48

Equation 4. Probability of Improvement. ... 48

Equation 5. Expected Improvement. .. 48

Equation 6. Moving Average Convergence Divergence. ... 57

Equation 7. Upper and Lower Bollinger Band. .. 57

Equation 8. Relative Strength Index. .. 58

Equation 9. Commodity Channel Index. .. 58

Equation 10. Directional Movement Index. ... 58

Equation 11. Simple Moving Average. .. 59

Equation 12. Simple Moving Average. .. 59

Equation 13. Sharpe Ratio. ... 62

8

1. INTRODUCTION

The financial industry is continuously challenged by the ever-changing landscape of

markets, characterized by volatility, emerging trends, and unpredictable shifts in sentiment.

Traditional portfolio optimization approaches, particularly Markowitz's Modern Portfolio

Theory (MPT) which consists of constructing diversified portfolio in order to optimize the

returns of risk averse investors, often struggle to navigate these non-stationary market

conditions effectively (Durall, 2022). However, some authors such as Eric Benhamou, David

Saltiel, Sandrine Ungari, and Abhishek Mukhopadhyay (2020) have shown the growing

potential of Deep Reinforcement Learning (DRL) in finance, offering insights into the future

of portfolio management. However, the combination of DRL and multi-fidelity optimization

techniques remains a less-explored territory.

The financial sector faces difficulties as market conditions keep changing, and traditional

methods struggle to adjust to these changes. The adaptability and learning capability of DRL

models directly address the limitations of MPT, which assumes static market conditions. The

inherent volatility and constantly changing nature of markets weaken the effectiveness of

these traditional methodologies. The challenge lies in finding approaches to deal with the

rapid fluctuations and non-stationary nature of financial markets (Benhamou et al., 2020).

This thesis aims to critically assess and address the limitations of conventional portfolio

optimization methods by evaluating the applicability and efficiency of utilizing Deep

Reinforcement Learning (DRL) in portfolio optimization (Benhamou, 2023). By leveraging

DRL's adaptability to non-stationary market conditions, this thesis aims to introduce

innovative solutions that exploit DRL's ability to learn from historical data and real-time

feedback, opening doors to a more robust and dynamic approach for portfolio management.

The research will focus on investigating how DRL, known for its adaptability and learning

capabilities, can be used in optimizing portfolios. It will focus on how DRL can adapt to

evolving market trends using historical data and real-time feedback. Additionally, the study

will explore the integration of multi-fidelity optimization techniques to fine-tune DRL

parameters effectively for portfolio management.

9

Multi-fidelity optimization is an approach that balances computational cost and optimization

accuracy, and it is introduced to fine-tune the parameters of DRL models (Li & Li, 2024).

This exploration aims to improve the existing knowledge and offer a promising path for

innovative portfolio management practices. It involves using varying levels of accuracy to

efficiently search for optimal hyperparameters, balancing computational costs and

optimization accuracy, ensuring adaptability to dynamic financial markets needs and

boosting both the efficiency and quality of portfolio optimization.

This document is structured as follows: we commence with an introduction which provides

an overview of the research objectives and context. Following that, the second section

explores the current state of the art in multi-fidelity Bayesian Optimization and Deep

Reinforcement Learning (DRL) for portfolio management. The third section explains the

scope of this thesis, presenting the specific areas and challenges addressed. Following this,

the methodology used to achieve the objectives set is exposed. Subsequently, the theoretical

framework is elaborated, providing an understanding of the methodologies and models

behind the research. The fifth section covers the application and empirical analysis of multi-

fidelity Bayesian Optimization and DRL in portfolio management. The sixth section presents

the empirical results obtained from the analysis carried out and, finally, the document

concludes with a summary of key findings, implications, and suggestions for future work.

The bibliography section offers references and supporting materials for a better

understanding of the research.

10

2. STATE OF ART

In today's financial landscape, multi-factor models, such as Fama-French Three-Factor

Model, have emerged as a promising path in delivering superior returns in the stock market

(Chen, 2024). However, as research on these models advances, their limitations have arisen.

For instance, Hou et al. (2020) discovered that a significant number of identified anomalies

failed to meet strict statistical thresholds, questioning the validity of the established factors.

Additionally, concerns arise regarding the statistical foundations of these models, such as

the misapplication of p-values in significance testing and limitations in traditional

econometric analysis (Huang et al., 2020).

To address these limitations, a data-driven approach offers an alternative to traditional

econometric methods. While the traditional approach involves predetermining a linear

relationship between asset returns and factors, the data-driven concept seeks to derive rules

directly from data. Mullainathan and Spiess (2017) highlighted the breakthrough achieved

by shifting the focus from deducing rules to letting the data reveal optimal rules.

The concept of data-driven strategies dates back to the 1990s, when academic interest arose

in artificial neural networks. However, early neural network technologies faced challenges

dealing with gradient-related issues, resulting in a decade of slowness in AI research. The

application of AI in finance primarily relies on machine learning, categorized into

supervised, unsupervised, and reinforcement learning (Bengio et al. 1994).

There has been a significant transformation in the world of financial decision-making driven

by the huge amount of data and the later evolution in data processing and analysis techniques.

Traditional methodologies, which rely on model assumptions from stochastic control theory

and other analytical approaches, often fall short in capturing the complexities of financial

environments. These limitations have driven the emergence of Reinforcement Learning (RL)

approaches in finance, utilizing extensive financial data with fewer model assumptions to

improve decision-making in complex financial scenarios (Hambly, Xu & Yang, 2023).

Reinforcement Learning stands out for its interaction-based data generation and learning of

optimal strategies by agents from this data. While early applications of RL primarily used

11

Q-learning and Policy Gradient algorithms for asset management, these models faced

limitations with increased complexity and local optimality issues (Bengio et al. 1994). The

breakthrough came in 2015 when Mnih et al. successfully applied deep reinforcement

learning (DRL) in playing computer games, displaying its potential in AI.

Traditionally, financial decision-making problems have been approached through stochastic

processes and techniques from stochastic control (Singh et al., 2022). However, these models

often face a trade-off between viability and realism. On the one hand, simpler models offer

straightforward strategies but oversimplify market behavior, potentially leading to less

optimal strategies and financial losses. On the other hand, models trying to replicate real

market behavior are exceptionally complex and computationally challenging (Huang et al.,

2020).

The finance sector's data explosion has revolutionized data processing and statistical

modeling. RL strategies enable agents to learn optimal decision-making through interactions

with a system, finding successful applications in order execution, market making, and

portfolio optimization, especially in scenarios with limited market information.

In the rapidly changing environment of portfolio management, the advancements in machine

learning, particularly Deep Reinforcement Learning (DRL), have demonstrated significant

potential in optimizing investment strategies. The integration of DRL into portfolio

management aligns with the fundamental objective of maximizing cumulative rewards,

specifically returns, while interacting with the dynamic financial market environment (Wang

et al., 2021). The adaptability and sequential learning capabilities of DRL make it an ideal

candidate for addressing the complexities of financial markets, where it can autonomously

learn from past experiences and adapt to new market conditions (Bartram et al., 2021).

Various studies have investigated the application of DRL in portfolio management. Jiang,

Xu, and Liang (2016) demonstrated the use of DRL in forming cryptocurrency portfolios,

achieving significant returns over short periods, despite the market's inherent volatility (Wu

et al., 2021). This highlights DRL's effectiveness in navigating complex and dynamic

markets.

12

Integrating DRL into portfolio management introduces a set of challenges inherent to the

complex nature of financial markets. These markets demand sophisticated models capable

of effectively understanding and leveraging market dynamics. Traditional methodologies,

although effective in specific scenarios, often fail to adapt to the changing market landscape

(Wang et al., 2021). In contrast, DRL-based models, for example the ones utilizing Deep Q-

Networks (DQN), show potential in managing multi-asset portfolios by improving trading

strategies through experiential learning (Gao et al., 2020). However, these methods face

certain limitations, including being susceptible to overfitting and the complexity of

managing hyperparameters.

Recent efforts to optimize DRL models in portfolio management focus on leveraging multi-

fidelity Bayesian Optimization. This methodology involves utilizing diverse data sources

with varying levels of accuracy and costs. By doing so, it minimizes the overall optimization

cost, moving beyond an exclusive reliance on costly high-fidelity data (Foumani et al.,

2022). The multi-fidelity Bayesian Optimization framework presented by Foumani et al.

exhibits significant improvements in efficiency, consistency, and robustness compared to

traditional single-source Bayesian Optimization. This shows the promising potential of

multi-fidelity Bayesian Optimization in optimizing expensive black-box function within

portfolio management contexts.

Despite the advancements achieved, the application of DRL in portfolio management

remains an active area of investigation, presenting numerous opportunities for future

exploration. Conducting studies on volatility and experimenting across diverse markets

could refine DRL frameworks, enhancing their adaptability in various financial landscapes

(Lucarelli et al., 2020).

In summary, DRL and multi-fidelity Bayesian Optimization represent revolutionary

methodologies within portfolio management, offering advanced tools for navigating

uncertain markets. The continuous improvements in these approaches, along with the

integration of multi-fidelity data, suggest the potential for creating more robust and effective

strategies for optimizing portfolios.

13

Figure 1. Summary of State of Art.

Source: Own elaboration

2.1. Deep Reinforcement Learning in finance

Deep reinforcement learning (DRL) combines reinforcement learning with deep learning's

power (Benhamou, 2023). DRL is for great use when dealing with complex tasks in dynamic

environments, like financial markets. It works by learning from interactions with the

environment, using rewards and sanctions to adjust its strategies. DRL has a wide range of

applications in finance, like managing portfolios, handling risks, and trading using algorithms

(Hambly, Xu & Yang, 2023). Furthermore, it can optimize various goals, including returns,

diversification, and transaction costs and can adapt to different scenarios by processing lots

of data, even when it's noisy, like market prices and news. Finally, it can also learn efficiently

14

from limited data using techniques like experience replay and data augmentation

(Osterrieder, J., 2023).

There are several components that come into play in the world of Reinforcement Learning

(RL). There is the state space, which includes factors like stock market conditions and asset

portfolio ratios. In finance, it's tough to describe the entire state space due to its complexity,

so we often use simplified versions. The action space involves trading decisions, which can

be as simple as buying, selling, or holding assets (Hu & Lin, 2019).

RL also considers transition probabilities, which are the chances of moving from one state to

another based on an action (Benhamou et al., 2023). The reward function is essential because

it provides a measure of how well things are going. To make RL work, agents learn to choose

actions that maximize expected rewards based on feedback from the environment. It involves

determining which actions are effective and which are not. This feedback assists in refining

their strategies and improving their performance in their tasks (Osterrieder, J., 2023).

2.1.1. Applying DRL to financial problems

DRL has found application in diverse areas of finance, which has enabled the development

of intelligent systems to tackle portfolio optimization, risk management, and algorithmic

trading challenges. This technology allows these systems to make data-driven decisions,

adapt to changing market conditions, and enhance their performance (Osterrieder, J., 2023).

A. Portfolio optimization

In the context of portfolio optimization problems, DRL algorithms have been applied in order

to maximize the risk-adjusted return of a portfolio including various assets. This optimization

process takes into account budget, risk, and liquidity restrictions. A DRL algorithm can be

trained to efficiently select and rebalance a portfolio of stocks by using a neural network to

represent the Q-value function. This function quantifies the expected discounted sum of

future rewards based on the state and action taken. These algorithms store transitions in an

experience replay buffer and learn from them through mini-batch sampling, driven by the

loss function and the optimization algorithm (Osterrieder, J., 2023).

15

In managing portfolios involving multiple assets, it becomes essential to determine how to

allocate resources among these assets. An investing strategy plays a crucial role in selecting

the most promising assets, and the frequency of portfolio rebalancing stands out as an

essential parameter in this process. Portfolio rebalancing involves making decisions about

the distribution of resources among the most attractive assets. In the world of trading,

especially when employing DRL, a significant focus is placed on optimizing these elements

of portfolio management (Khamis & Wang, 2021).

B. Risk management

Risk is an inherent part of financial investments, but using advanced techniques can help

minimize it while still yielding profits. Each investor has its risk preferences, with some being

cautious and others seeking more risk.

Deep reinforcement learning is used in risk management to minimize losses or portfolio risks

while considering objectives like return, liquidity, and diversification. To hedge a portfolio

efficiently, the DRL algorithm can take actions to eliminate the risks, like trading derivatives

or changing the portfolio's exposure to underlying assets. It gets feedback through rewards

and penalties based on how well the hedge performs, allowing the algorithm to adapt its

strategies and value functions. This learning process involves saving transitions in a replay

buffer and using loss functions and optimization algorithms. Overall, DRL helps manage

investment portfolio risks while improving performance and returns (Osterrieder, 2023).

C. Algorithmic trading

Algorithmic trading in stock markets aims to maximize returns by exploiting market

volatility through frequent buying and selling of shares. However, this approach faces

increasing challenges given the dynamic and complex nature of stock markets. In response,

strategies based on DRL have emerged as a possible solution to address these challenges.

Algorithmic trading leverages DRL to automate trade executions based on signals and rules.

This involves the use of technical indicators, fundamental analysis, and news to inform

trading decisions. DRL algorithms learn to trade securities or baskets of securities using

neural networks to represent the Q-value function or policy (Dulac-Arnold et al., 2019). To

enhance the learning process, techniques such as experience replay, recurrent neural

16

networks, and proximal policy optimization are utilized to ensure stability and efficiency in

decision-making (Pricope, 2021).

One significant challenge in algorithmic trading is the numerous technical indicators, some

of which may yield inaccurate signals and show correlations with each other. DRL is used to

address this challenge through techniques such as dimensionality reduction, feature selection,

and extraction. These methods aim to minimize noise and enhance the reliability of trading

signals (Osterrieder, 2023).
Figure 2. Application of DRL in financial problems.

Source: Own elaboration

2.2. Future Opportunities for Deep Reinforcement Learning in Financial

Applications

In the changing landscape of financial services and market dynamics, Deep Reinforcement

Learning algorithms have made significant advances in automating investment guidance,

market making and multi-exchange trading. These advances provide new paths to improve

the efficiency and adaptability of financial practices.

17

A. Robo- Investment guiding

In the world of financial guidance, there is a rising trend regarding automated investment

managers, often referred to as robo-advisors. These digital financial advisors have become

increasingly popular due to their ability to offer online financial guidance and in management

with minimal human intervention. By using the power of mathematical algorithms and

incorporating a wide range of data sources, including news, social media insights, sentiment

data, and earnings reports, automated investment managers have emerged as a modern

alternative to traditional human advisors. This shift was stimulated by the loss of trust in

financial services institutions after the 2008 financial crisis (Hambly, Xu & Yang, 2023).

One significant challenge faced by automated investment managers is accurately determining

and adapting to clients' risk preferences over time. A client's risk preference can change due

to various factors, including market returns and economic conditions. As a result, robo-

advisors need to establish a suitable interaction frequency with clients to maintain

consistency in risk preference when adjusting portfolio allocations. Additionally, automated

investment managers often face the dilemma of balancing client preferences with the pursuit

of better investment performance. There is a delicate balance between how often a client is

engaged and the accuracy of the information obtained. It is important to consider that

collecting real-time data might not always accurately represent the client’s true risk aversion

due to behavioral biases (Tao et al., 2021).

In this world of robo-advisors, DRL algorithms have shown promise. These algorithms learn

from various data sources, including prices, volumes, returns, risk, and sentiment, while

optimizing for objectives like return, risk, liquidity, and diversification. They engage with

investors to understand their preferences, risk tolerance, and financial goals and suggest

portfolios or strategies aligned with their profiles and constraints. DRL algorithms also adapt

and update their advice based on investor feedback and behavior, offering a data-driven

approach to automated investment management (Osterrieder, 2023).

B. Automated market creation

Market makers act as traders or institutions that provide liquidity by placing buy and sell

limit orders for a particular financial instrument. Their primary goal is to profit by earning

18

the bid-ask spread, rather than predicting price movements. They utilize state variables

including bid and ask prices, current asset holdings, order-flow imbalance, volatility, and

sophisticated market indices. Actions include adjustments in bid/ask prices for posting limit

orders and the sizes of limit buy/sell orders. The reward function combines profit

maximization, inventory risk minimization, and the improvement of market qualities in a

linear combination (Hambly, Xu & Yang, 2023).

DRL algorithms offer a promising approach for market making activities by leveraging data

such as prices, spreads, volumes, and order book data to optimize profitability, liquidity, and

risk. These algorithms actively interact with the market, placing and modifying orders, and

adapting their inventory and exposure to underlying assets. They also learn from market

dynamics and competitors' strategies, allowing them to adapt and update their policies and

value functions. Furthermore, DRL algorithms have proven their effectiveness in solving

high-dimensional control problems in market making, even in situations with changing

incentives in a fully informed environment.

C. Multi-Exchange trading

Deep reinforcement learning algorithms have the potential to revolutionize trading across

multiple exchanges. By analyzing a great amount of data, including prices, trading volumes,

transaction fees, and order book information, these algorithms can be customized to optimize

various objectives. This includes incrementing liquidity, maximizing profitability, and

mitigating risk.

These intelligent algorithms actively interact with multiple exchanges, placing and adjusting

orders, and even using arbitrage strategies to profit from price differences between

exchanges. Their ability to adapt and regularly update their value functions help them remain

competitive in diverse exchange environments.

19

Figure 3. Future Opportunities for DRL in financial applications.

Source: Own elaboration

 2.3. Benefits in utilizing Deep Reinforcement Learning for Financial Challenges

According to Benhamou et al. (2023), DRL brings several significant advantages over

traditional methods. These benefits make it a promising approach for portfolio management

and investment decision-making (Benhamou, 2023).

A. Flexibility in Response to Shifting Conditions

The DRL model outperforms in adapting to dynamic market conditions. It can rapidly adjust

its strategies and policies in response to shifting investment environments. This adaptability

results in higher average Sharpe ratios compared to traditional methods, potentially

capitalizing on emerging opportunities.

20

B. Independence from Conventional Financial Risk Assumptions

Unlike traditional methods that depend on specific risk assumptions and basic statistics about

portfolio assets, such as average returns and variance, DRL is not restricted by these norms.

It can consider a wider range of data and factors in its decision-making process. This

adaptability allows the DRL model to uncover new insights from the data, eventually

boosting its performance. By escaping from these traditional risk restrictions, DRL can easily

adapt to varying market conditions and make more informed decisions about portfolio

allocation.

C. Integration of Additional Data and Multi-Input Capability

One of DRL's distinctive features is its capacity to incorporate additional data that goes

beyond the conventional financial metrics. This adaptability allows the model to take into

account various inputs, such as macroeconomic indicators, market sentiment, or other

pertinent data, which allows the model to effectively capture complex relationships and

patterns that influence asset returns. This improved ability to handle multiple inputs improves

the model's decision-making capacity and overall performance.

 2.4. Obstacles in utilizing Deep Reinforcement Learning for Financial Challenges

According to Dulac-Arnold et al. (2021), there are a serious of obstacles which DRL faces in

the world of financial applications. There are three main challenges: high-dimensional state

spaces, long-term dependencies, and limited data (Osterrieder, 2023).

A. High-dimensional state spaces

Financial challenges often involve complex scenarios with many variables, such as prices,

volumes, and returns of numerous assets which, consequently, create high-dimensional

spaces with hundreds or thousands of dimensions. The curse of dimensionality happens when

the rapid growth in dimensions exceeds the growth in available data samples. This leads to a

decrease in sample efficiency and model generalization.

To deal with this, DRL algorithms use techniques such as feature engineering, which helps

choose the most important sections of the data; dimensionality reduction, and structured

exploration to extract relevant features and simplify the state space.

21

B. Long-term dependencies

In finance, difficulties can arise from complex long-term connections. For instance, in risk

management, it is crucial for an agent to balance short-term and long-term risks, taking into

account how present actions may impact future rewards and costs.

To address these long-term dependencies effectively, DRL algorithms use tools like

eligibility traces and recurrent neural networks, which help capture temporal dependencies

within the data.

C. Limited data

In many real-world systems, such as financial settings, collecting data can be difficult due to

system limitations like slow movement, fragility, or high operating costs. Consequently,

learning algorithms need to be highly efficient in using data. As these agents use actual

system data, they cannot take excessively aggressive exploration policies during training

since these actions have real-world consequences. Therefore, the training data tends to have

low variability and covers only a limited range of states and actions. Consequently, learning

from real systems requires algorithms that are both effective with limited samples and

capable of quick performance.

Numerous financial problems involve data limitations, making it necessary for agents to learn

and generalize from restricted datasets. These challenges include data scarcity, making it

challenging to learn from small or biased datasets, and data efficiency, where a substantial

number of samples are needed for optimal performance. To overcome these data-related

issues, DRL algorithms use different techniques. For instance, experience replay stores and

replays transitions to improve sample efficiency. Transfer learning utilizes knowledge from

other tasks to improve performance in the given financial context. Additionally, methods like

data enrichment and active learning are used to generate new data and select the most

informative samples to facilitate efficient learning.

22

Figure 4. Future Opportunities for DRL in financial applications.

Source: Own elaboration

23

24

3. SCOPE OF THE THESIS

This thesis undertakes a comprehensive analysis of portfolio management in the current

financial landscape, aiming to address emerging challenges and explore new frontiers. The

main objectives seek to understand and apply Deep Reinforcement Learning (DRL)

techniques in portfolio optimization, critically evaluating a DRL-based robotrading approach

and addressing the weaknesses of traditional models such as Markowitz's Modern Portfolio

Theory. It is proposed that the integration of Multi-fidelity Bayesian Optimization with DRL

will enhance portfolio optimization, increase efficiency, and adaptability to constantly

changing market conditions. The fundamental assumptions establish beliefs about market

behavior and the utility of artificial intelligence techniques like DRL, while the restrictions

validate temporal, technological, and data-related barriers encountered during the research

process.

3.1. Objectives

There are several objectives which I am going to pursue in this thesis:

• O1: Realization of the document of my thesis.

• O2: Investigate how DRL can be used in portfolio optimization, specifically focusing

on its ability to adapt to non-stationary market conditions and learn from both

historical data and real-time feedback.

• O3: Critically assess the applicability and effectiveness of a robotrader employing

Deep Reinforcement Learning (DRL).

• O4: Address the gap, which exits due to models such as Markowitz's Modern

Portfolio Theory (MPT) which assumes stationary market conditions that may not

hold in practice, by using DRL within the field of portfolio optimization.

• O5: Revolutionize the field of portfolio management and create substantial benefits

for investors, financial institutions, and the broader financial markets.

• O6: Execute the experiment comparing different methods.

25

3.2. Hypothesis

The integration of Multi-fidelity Bayesian Optimization with Deep Reinforcement Learning

(DRL) presents a promising path to improve portfolio management strategies in the dynamic

landscape of financial markets. This section explores the potential advantages and

improvements that this innovative approach might offer in optimizing investment strategies

and effectively handling the complexities of diverse financial environments.

There is going to be a differentiation between the main hypothesis and the secondary ones:

A. Main Hypothesis:

• H1: Multi-fidelity Bayesian Optimization combined with DRL will display increased

efficiency, reducing optimization costs and convergence time, consequently,

enabling real-time decision-making in financial markets.

The null hypothesis (H0) and the alternative hypothesis (H1) for the main hypothesis

is:
Equation 1. Main Hypothesis.

H0: μt_multifidelity < μt_normal

H1: μt_multifidelity ≥ μt_normal

B. Secondary Hypothesis:

• H2: Multi-fidelity Bayesian Optimization integrated with DRL will show superior

performance, demonstrating improved portfolio optimization compared to

conventional single-source optimization methods.

• H3: The use of Multi-fidelity Bayesian Optimization within DRL-based portfolio

optimization will exhibit improved generalization across diverse financial

environments, leading to adaptable and robust strategies in changing market

conditions.

• H4: The integration of multi-fidelity data sources using Multi-fidelity Bayesian

Optimization will improve decision-making accuracy in portfolio management,

effectively mitigating biases from low-fidelity data sources.

26

• H5: Multi-fidelity Bayesian Optimization combined with DRL will demonstrate

increased adaptability to changing market conditions, showing effective learning and

adjustment in dynamic financial environments.

3.3. Assumptions

In this section, I am going to outline the key ideas I am starting with. These assumptions

help set the boundaries for the research, showing what I am going to explore and how I am

going to do it. By introducing these assumptions, this section aims to provide transparency,

and the guiding of the study. Furthermore, the identification and comprehension of these

assumptions are key to comprehend the study's limitations, strengths, and applicability in the

landscape of portfolio management within financial markets.

• A1: We assume that financial markets present a stochastic behavior, requiring

adaptable strategies for effective portfolio management.

• A2: Assumption that market information may be incomplete, creating challenges for

accurate decision-making within portfolio management.

• A3: We need to assume that while complex models might replicate market behavior

more accurately, they can be computationally challenging for practical

implementation.

• A4: Deep Reinforcement Learning (DRL) methods can improve portfolio

optimization through sequential learning and adaptation to changing market

conditions.

• A5: Integrating Multi-fidelity Bayesian Optimization techniques offers advantages

in managing expensive, complex, and black-box functions within portfolio

optimization.

• A6: Optimization in portfolio management involves a trade-off between

computational cost and the accuracy of information used.

• A7: Artificial Intelligence (AI) and machine learning techniques, particularly DRL,

hold significant potential in addressing complex financial decision-making problems.

• A8: DRL models might face limitations such as overfitting, hyperparameter

management, and the need for adaptation to volatile market conditions.

27

• A9: The fidelities of the estimated optimal policy are linearly correlated.

3.4. Restrictions

This section indicates the diverse restrictions which I have encountered during this thesis.

These limitations come from different factors such as temporal and technological barriers

and data availability issues. It is crucial to understand these limitations in order to provide

clarity and set the boundaries within which the study operates.

• R1: Limited time to conduct research, gather data, analyze findings, and write the

thesis.

• R2: Access to specific databases and technologies. For instance, being restricted to

free versions of tools (google collab) and having limited access to certain libraries or

datasets.

• R3: Constraints in computational power or infrastructure that limit the complexity

and scale of computations and simulations.

• R4: Challenges in addressing a broad range of topics due to the need for depth and

specificity within a limited time.

28

4. METHODOLOGY

This study adopts a mixed-methods approach, combining quantitative analysis with

qualitative insights, to examine the effectiveness of Deep Reinforcement Learning (DRL) in

portfolio optimization. The research framework is designed to offer a comprehensive

understanding of the topic, covering both theoretical foundations and real-world

implementations.

The research begins with an exploration of the current state of the art, examining existing

literature and studies relevant to the topic. Platforms like Google Scholar offer an abundance

of scholarly articles and research papers that contribute to this foundational stage. Following

this, the theoretical framework is developed, illuminating the fundamental concepts critical

to the subject matter. Finally, the research progresses to the experimental phase, where real-

world data collected from the Dow Jones is utilized. This empirical approach adds depth and

practical relevance to the study, offering insights derived from tangible market data. This

methodical approach aims to connect theoretical insights with empirical evidence, facilitating

a comprehensive understanding of the subject matter.

The study involves the development of a DRL-based portfolio optimization model using

Python programming language. The flexibility and adaptability of the DRL framework allow

for dynamic adjustments and iterative improvements throughout the modeling process. An

experiment is conducted to evaluate the performance of the DRL-based portfolio

optimization model. This experiment involves training the model on historical data and

testing its effectiveness in real-time market scenarios. Performance metrics such as Sharpe

ratio and the quality of time employed are used to assess the model's performance and

compare it with baseline models.

The performance of the DRL-based portfolio optimization model is systematically compared

with traditional portfolio optimization techniques, including Mean-Variance Optimization

and Markowitz's Modern Portfolio Theory. This comparative analysis provides valuable

insights into the relative strengths and weaknesses of DRL in portfolio management,

highlighting its potential to outperform conventional approaches in certain contexts.

29

The study acknowledges certain limitations and delimitations, including constraints in data

availability, computational resources, and the inherent complexity of financial markets.

These limitations are taken into account when interpreting the research findings, providing

a balanced perspective on the scope and applicability of the study.

By following this comprehensive methodology, the study aims to generate valuable insights

into the application of Deep Reinforcement Learning in portfolio optimization, contributing

to the advancement of knowledge in the field of financial technology and paving the way for

innovative approaches to portfolio management.

30

5. THEORICAL FRAMEWORK

In order to achieve the various objectives, set in the previous section, I am going to make use

of Deep Reinforcement Learning (DRL) for portfolio optimization. Furthermore, I am going

to explore the use of multi-fidelity in the fine-tuning of parameters.

DRL is a type of machine learning that has achieved great suitability and effectiveness in

portfolio optimization. It combines deep neural networks with reinforcement learning,

enabling the robotrader to learn and adapt its trading strategy based on interactions with the

financial markets (Osterrieder, 2023).

The decision-making process is based on the concept of rewards and feedback. The

robotrader is continuously updating its strategies to maximize returns while minimizing risks.

The use of DRL in portfolio optimization is driven by its capacity to adapt to dynamic market

conditions and learn from historical data and real-time feedback.

Bayesian optimization (BO) is a technique used to optimize black-box functions

systematically (Garrido, 2021). It utilizes a sophisticated model, often referred to as a

Gaussian Process (GP), to estimate the objective function. BO progressively identifies

potential solutions, refining its estimates with each iteration based on newly acquired

information (Nguyen, 2019).

In certain scenarios, solving a problem requires information at varying levels of detail. For

instance, in simulations, using more detailed data produces more accurate results but

demands more computational resources. Multi-fidelity BO approaches manage this trade-off

by integrating both quick, approximate evaluations and slower but more precise analyses

(Li, Kirby & Zhe, 2021).

Despite their success, many methods often oversimplify the correlations between function

outputs at different fidelities. Therefore, these methods may suffer from inefficiencies and

inaccuracies, obstructing objective function estimation and, consequently, optimization

efficiency.

31

5.1. Introduction to Reinforcement Learning (RL)

Reinforcement Learning consists of a type of Machine Learning where an agent situated in

an environment, learns to make decisions by taking actions in response to each state or

situation in that environment. The agent learns through trial and error. For each action taken,

the agent is going to receive feedback from the rewards. This is going to help the agent

improve its actions in order to maximize the reward accumulated over time (Osterrieder,

2023).

The agent is going to explore different alternative actions, which are the moves made by an

agent in a precise environment. By doing this, the information of the different outcomes is

going to be accumulated. For each action taken, the agent is going to obtain rewards based

on feedback, indicating the quality of the action taken. Lastly, the agent is going to make

observations regarding what it perceives from the environment, which is going to help decide

the next action.

The primary objective of an agent in Reinforcement Learning is to learn a policy, which

consists of a function that guides its decision-making in each state it encounters. This

involves the agent being in a specific state (s) at each time step and selecting an action (a)

based on its policy. As a result of this action, the environment transitions to a new state, and

in return, the agent receives a reward (r) (Mukherjee, Deligiannis, Biswas & Lal, 2020).

Figure 5. Reinforcement Learning Process.

Source: Zürn, 2018

32

The main goal of the agent is to learn a policy that maximizes the expected return, which is

essentially the cumulative sum of rewards while considering the effects of discounting

(Mukherjee, Deligiannis, Biswas & Lal, 2020). The discounting factor (γ) aims to penalize

the rewards in the future due to the higher uncertainty in the future rewards and the fact that

future rewards will not provide immediate benefits (Owen, 2020).

Figure 6. The value function.

Source: Ye, 2020

In the world of Reinforcement Learning, there are a variety of algorithms for problem-

solving. These include value-based methods, which revolve around the estimation of the

value function and represent the anticipated return associated with a particular state or a pair

of state and action. On the other hand, policy-based methods take a more direct approach by

learning the policy itself, eliminating the need for estimating the value function. Moreover,

there are actor-critic methods that combine aspects of both value-based and policy-based

techniques for effective problem-solving (Osterrieder, 2023).

Reinforcement learning differences itself from other types of machine learning in that it

participates in a dynamic interaction between the agent and the environment. The agent's

actions have the power to influence and change the subsequent state of the environment. This

unique quality makes it great for situations where the agent needs to make choices over a

long time, for instance, managing financial investments.

33

5.1.1. The Reinforcement Learning process

Reinforcement Learning is a dynamic system composed of two main components: an agent

and an environment. The environment generates information that characterizes the current

condition of the system, referred to as the "state." The agent engages with the environment

by observing this state and using the information to make decisions, selecting an appropriate

"action." The environment then responds to the action, transitioning into the next state, and

providing both the new state and a "reward" back to the agent. Each time this sequence of

state → action → reward occurs, we consider it a single time step. This cycle continues until

the environment concludes its operation (Graesser & Keng, 2019). You can visualize this

entire process through the diagram in Figure 7.

We refer to the action-generating function of an agent as its "policy", which is a function that

maps states to actions. Each action taken by the agent has the power to influence the

environment, subsequently shaping what the agent perceives and how it proceeds. This

dynamic interaction between the agent and environment continues over time, similar to a

sequential decision-making process.

In Reinforcement Learning, problems are centered around a main objective: the cumulative

sum of rewards an agent receives. The agent's primary aim is to maximize this objective by

making optimal choices. It learns to do so through iterative interaction with the environment,

utilizing a trial-and-error approach and reinforcing actions that lead to positive rewards (Rao

& Jelvis, 2022).

A RL system is a feedback control loop, where the agent and the environment engage in a

dialogue, sharing signals denoted as st (state), at (action), and rt (reward), with "t" representing

the time step at which these signals occur. This control loop can continue indefinitely or

conclude when reaching a terminal state or a maximum time step, denoted as t = T. The

duration from t = 0 until the environment's termination marks an "episode" (Omran et al.,

2024). Learning a policy typically requires the agent to undergo numerous episodes, varying

from hundreds to millions, depending on the problem's complexity (Graesser & Keng, 2019).

34

Figure 7. The reinforcement learning control loop.

Source: Graesser & Keng, 2019

5.1.2. Policy: on policy and off policy

In reinforcement learning, a policy is a critical element that guides how an agent should act

in a given state. This strategy can take two different forms, the first one, a deterministic

policy, where a specific action is defined for each state; or a stochastic policy, which involves

a probability distribution over actions (Osterrieder, 2023). The main goal for the agent is to

learn an optimal policy that maximizes the expected return, which represents the cumulative

sum of rewards over time.

Reinforcement Learning also uses the value functions to calculate the expected return

associated with specific states or state-action pairs. These functions come in two types: the

state-value function (v(s)), which estimates the expected return for a particular state, and the

action-value function (q(s,a)), that estimates the expected return for a state-action pair

(Osterrieder, 2023).

In the RL control loop described earlier, a policy is crucial as it guides the agent's actions to

accomplish its main objective. It is important to remind that policies can be stochastic,

indicating that they might probabilistically generate different actions for the same state.

Additionally, value functions offer insights into the goal, helping the agent in evaluating the

desirability of states and available actions in terms of expected future returns.

35

Reinforcement Learning algorithms use feedback from rewards to adjust and improve the

policy for future decision-making. Policy updates often depend on the difference between

predicted and actual rewards, fine-tuning how the agent makes decisions. These algorithms

can be classified as either on-policy or off-policy, and this distinction has a significant impact

on how they make use of training data.

On-policy algorithms learn directly from the current policy (π). This means that during

training, they only use data generated by the current policy at that particular time. As the

training advances through various policy versions, each iteration relies only on the currently

active policy to collect training data, they are generally stable and easy to implement.

However, this approach has a drawback: all collected data becomes outdated and cannot be

reused. Consequently, on-policy methods are sample-inefficient and require more training

data (Hammami & Nguyen, 2022).

In contrast, off-policy algorithms do not have this limitation. They can make use of any

collected data in their training process. This property makes off-policy methods more sample-

efficient since data can be reused (Hammami & Nguyen, 2022). However, it is important to

mention that this advantage comes at the cost of potentially needing more memory to store

the data. While these models are data-efficient, they may be less stable and more complex to

handle.

In the on-policy scenario, the agent consistently interacts with the environment, updating its

policy and adjusting its behavior based on newly collected experiences. On the other hand,

in the off-policy scenario, an agent or multiple agents act according to a policy called the

behavior-policy. The experiences they accumulate are stored in a buffer. Consequently, this

collected experience is utilized to train a policy for action selection. Therefore, the buffer

may contain experiences from previous versions of the policy or even from a completely

different policy (Vandelaer, 2022).

36

Figure 8. On-policy vs Off-policy representation.

Source: Vandelaer, 2022

Both on-policy and off-policy models have their respective advantages and disadvantages,

making it challenging to determine the most appropriate model for a given scenario. The

choice between the two depends on the specific requirements and restrictions of the

reinforcement learning problem.

 5.2. Introduction to Deep Learning (DL)

Deep Learning is a subfield of machine learning which enables computers to acquire

knowledge from experience and comprehend the world through a hierarchical structure of

concepts. As the computer acquires knowledge through experience, there is no requirement

for a human computer operator to explicitly define all the information necessary for the

computer. The hierarchical structure enables the computer to learn complex ideas by

constructing them from simpler ones; a graph of this structure would be represented by

multiple layers of depth (Kim, K. G., 2016).

The objective of DL is to learn a function that maps inputs to outputs using labeled training

examples (Benhamou et al., 2023). This function is represented by a neural network, which

computational models designed after the architecture and operations of biological neural

networks found in the human brain (Coursesteach, 2023). DL models operate in layers, with

a typical model consisting of at least three layers. Each layer receives input from the

preceding layer and forwards it to the subsequent layer (Karunakaran, 2018).

37

Training the neural network involves adjusting the weights and biases of connections

between neurons (Osterrieder, J. 2016). Initially, these weights are assigned random values.

As the neural network gathers more information about the input data, it adjusts these weights

according to any misclassifications or errors attributed to the previous weight settings

(Karunakaran, 2018).
Figure 9. Deep Learning Representation.

Source: Garrido, 2023

The process of adjusting network parameters through gradient descent becomes essential by

utilizing a loss function to evaluate network outputs (Shrestha, A., & Mahmood, A., 2019).

Gradient descent is an iterative optimization technique used in machine learning to

minimize a loss function. The loss function provides insight into the model's performance

based on the current parameters (weights and biases). By using gradient descent, we seek to

identify the optimal set of parameters that minimizes the loss function, thus enhancing the

model's overall performance. The iterative nature of this process involves continuously

updating the model parameters through gradient descent to refine its predictive capabilities

(Liu, C., 2022).

5.3. Introduction to Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) uses the power of Deep Learning to address the

challenges of Reinforcement Learning (RL). In DRL, agents use neural networks to represent

the policy or value function, which, as previously mentioned, is a measure of expected

cumulative rewards at each state (Durall, 2016). Deep neural networks are used to connect

what the system senses to the values of actions or the chances of taking certain actions

(Dulac-Arnold et al., 2019).

38

Figure 10. Deep Reinforcement Learning Process.

Source: Vijayan PV, 2020

Deep Reinforcement Learning can be divided into three primary algorithm families: policy-

based, value-based, and model-based approaches. These approaches focus on learning

policies, value functions, and models, respectively (Hambly, Xu & Yang, 2023).

Nonetheless, DRL faces some challenges such as data volume, computational resources, and

hyperparameter tuning. These challenges have led to the creation of new methods and

techniques like off-policy learning, distributional RL, and model-based RL. These methods

are designed to make the learning process more efficient and stable.

The agent's main objective is to learn a policy that maps states to actions, aiming to maximize

the cumulative reward over time. This cumulative reward is determined by the Q-value

function, which assesses the expected return when taking a specific action, a, in a given state,

s, and following the policy, π, thereafter (Osterrieder, 2023).

To represent the Q-value function or the policy in DRL, a neural network is utilized. The Q-

value function or the policy is represented by a neural network with many layers of

interconnected nodes, called neurons. This network can understand complex patterns in the

data. The neural network is trained using Deep Q-learning, an algorithm that estimates the

Q-value for each state-action pair and adjusts the policy accordingly. This method helps the

agent learn and adapt to various situations in its environment (Rao & Jelvis, 2022).

39

Deep Q-learning, a central algorithm in DRL, follows a structured process:

1) Initialize the neural network with random weights and biases.

2) Set up a replay buffer to store and sample transitions from the environment.

3) At each time step, observe the current state, select an action, and execute it using the

current policy.

4) Record the reward and next state, storing the transition in the replay buffer.

5) Sample a batch of transitions from the replay buffer.

6) Compute the target Q-value for each transition using the Bellman equation:
Equation 2. Bellman Equation.

𝑉!(𝑠) = 𝐸![𝑅"#$ + 𝛾 ∗ 𝑉%(𝑆"#$) 𝑆𝑡 = 𝑠]

7) Update the neural network's weights and biases using Stochastic Gradient Descent

(SGD) and the mean squared error loss.

8) Repeat steps 2 – 7 until convergence.

Deep Q-learning is an off-policy algorithm, allowing it to learn from transitions generated

by different policies, making it more sample-efficient and stable compared to on-policy

algorithms that require transitions generated by the same policy (Botvinick et al., 2020).

Figure 11. RL, Deep Learning and Deep RL.

Source: Botvinick, M., et al., 2020

40

(A) On the left, we observe the Reinforcement Learning problem where the agent is tasked with

selecting actions which later need to be transmitted to the environment. In return, the environment is

going to provide the agent with observations and rewards. The goal of the agent is to choose the

actions which maximize long-term rewards, which might not yield immediate benefits but could lead

to a change in the environment’s state, which would eventually result in rewards (Botvinick et al.,

2020).

(B) On the left, we have the Supervised Learning problem where a sequence of unlabeled data

samples, such as images, are received by an agent. Later, the agent makes educated guesses about the

correct labels and immediate feedback on the correct label is provided (Botvinick et al., 2020).

On the right, we observe a Deep Leaning solution to the supervised learning problem. The

characteristics of a sample go through multiple layers of artificial neurons where each neuron’s

activity is a weighted sum of its inputs, and its output is a non-linear function of this activity. The

network’s output corresponds to an estimated label of the sample. During the learning process, the

network fine-tunes its weights to approximate the true labels. These solutions have proven effective

at generalizing to samples that were not part of the training data (Botvinick et al., 2020).

(C) Deep Reinforcement Learning, where a neural network acts as an agent to address a reinforcement

learning challenge. These solutions are really good at learning suitable internal representations which

enable effective generalization to new states and actions (Botvinick et al., 2020).

5.3.1. Model-based and Model-free algorithms

Figure 12. Reinforcement Learning.

Source: Khamis & Wang, 2021

41

Reinforcement Learning methods can be categorized into two main groups: model-based and

model-free approaches, where each offers different ways of optimizing policies.

In the model-based approach, agents try and understand the environment to later create a

model for it by using their experience and interactions with this specific environment. This

method exploits experience, as all the information from the environment is saved in a reliable

and easy-to-handle way. This approach is effective for goal-oriented actions as it allows for

swift adjustments to plans when transition conditions and outcomes change. This means that

the model-based RL system can adapt rapidly to new circumstances and optimize its actions

(Odemakinde, 2023).

Moreover, these algorithms provide agents with the capability to anticipate and simulate

scenarios, which allows them to understand the consequences of their actions without direct

interaction with the environment. This is an advantage in situations where acquiring

experiences from the environment is either time-consuming or expensive. Additionally, these

algorithms generally require fewer data samples for efficient policy learning as they can

incorporate simulated experiences at the same time that real ones (Dulac-Arnold et al., 2019).

Nonetheless, there are some challenges when models are hard to obtain, as many

environments are stochastic with unknown transition dynamics. In these cases, model-based

algorithms must learn the model. This approach is still in its early stages of development and

faces several challenges. First, representing environments with many different states and

possible actions can be very complex and might even be impossible, especially when

transitions are highly complicated. Second, the use of models depends on their capacity to

make precise predictions about how the environment will change many steps into the future.

Depending on how accurate the model is, errors in predictions can add up at each time step,

making the model less reliable (Dulac‑Arnold et al., 2019).

In the model-free approach, agents learn to optimize policies without creating a world

model. Instead, they focus on two key elements: state-action values or policies learned

directly from experience, in order to achieve optimal behavior without estimating or using a

world model. Model-free methods, like temporal difference (TD) learning, identify

prediction errors and use them to refine value estimates, minimizing inconsistencies. These

42

values guide policy improvements by selecting actions leading to higher rewards and more

valuable states. These values must satisfy a particular set of consistency conditions, with a

state’s value being high if the actions guided by the policy lead to favorable immediate

outcomes. Some model-free methods even improve policies without acquiring values

(Botvinick et al, 2020).

However, model-free methods are statistically less efficient compared to model-based

method as they mix information from the environment with previous, and potentially

inaccurate, estimates or beliefs about state values rather than utilizing it directly. For this

reason, model-free RL are more suitable when working as a model for habitual actions

(Dayan & Niv, 2008).

 5.3.1.1. Types of model-free algorithms

We can find three types of model-free algorithms: value-based, policy-based and actor-critic

algorithms. Each algorithm offers a distinct approach to solving RL problems, with unique

advantages and limitations.

• Value-based algorithms focus on estimating state values or state-action values.

Dynamic programming approaches, such as value iteration and policy iteration, break

down the problem into subproblems and iteratively compute the value function. These

algorithms outperform in sample efficiency and data utilization. However, they do not

guarantee convergence to an optimal solution and were historically limited to discrete

action choices (Osterrieder, 2023).

• Policy-based algorithms, on the other hand, directly optimize the policy without the

need for value function estimation. Techniques like policy gradient methods use

gradient ascent to improve policy parameters based on expected returns. These methods

offer flexibility in handling various types of actions, assuring convergence to locally

optimal policies, but they require sensitive hyperparameter tuning (Osterrieder, 2023).

• Actor-critic algorithms work as a balance of both previous algorithms as it combines

aspects of both value-based and policy-based methods. They simultaneously learn a

value function to critique the policy and leverage the value function to enhance the

43

policy itself (Osterrieder, 2023). This approach maintains the strengths of both value-

based and policy-based methods, providing stability and sample efficiency (Khdoudi

et al., 2024).
Figure 13. Types of model-free algorithms.

Source: Siegel, 2020

5.4. Markowitz's Modern Portfolio Theory vs. Deep Reinforcement Learning

Portfolio optimization is a strategy used to select and trade assets in order to maximize returns

while managing risks. Diversification plays a crucial role as it offers superior returns per unit

of risk compared to investing in a single asset.

Modern Portfolio Theory (MPT) is built upon Markowitz's Mean-Variance Optimization

model, and it looks to maximize returns while maintaining an acceptable level of risk. Despite

its effectiveness, it relies on historical data which introduces uncertainties regarding future

accuracy. MPT is structured around a single-period investment model, and it quantifies risk

through volatility (Durall, 2022).

Figure 14. Modern Portfolio Theory Efficient Frontier.

Source: Baldridge, 2023

44

Deep Reinforcement Learning (DRL) introduces a new dimension to portfolio management.

While Markowitz relies on mathematical models and statistical techniques to determine an

optimal portfolio based on historical returns and variances, DRL introduces a dynamic and

learning-based methodology (Benhamou et al., 2023).

In DRL, neural networks are employed to optimize portfolios through a combination of

value-based and policy-based methods. The algorithm learns and adapts its trading strategy

by interacting with the financial markets, making it more adaptive to changing market

conditions. This is a great difference from the static nature of the Markowitz model, which

is based on fixed statistical parameters and assumes that historical trends will continue into

the future.

DRL's adaptability allows it to respond to stochastic events and market fluctuations, making

it potentially more resilient in unpredictable financial environments. While DRL introduces

challenges in terms of interpretability due to its learning from data, its stability can be

enhanced by incorporating additional data or technical indicators into the model.

There are several assumptions of Markowitz regarding the market which Deep

Reinforcement Learning does not include:

• Assumption of normal distribution: the traditional framework assumes that asset

returns follow a normal distribution, which is not always the case (FasterCapital, n.d.).

Real-world events can lead to extreme negative returns, distorting the distribution. This

can underestimate the overall risk of the portfolio (Sam Obeidat, 2018).

• Single-Period Framework: the traditional method assumes that asset allocations are

made once at the beginning of a period and cannot be modified until the end. This

single-period approach fails to accommodate multi-period objectives. Numerous

studies have examined the single-period problem and concluded that, under certain

assumptions, the multi-period problem can be addressed by a series of single-period

problems. However, this approach would yield a different optimal portfolio compared

to what is obtained using the single-period model. (Sam Obeidat, 2018).

45

• Market efficiency: the MPT assumes that the market is efficienct, implying that all

available information is already reflected into the securities’ price. Nonetheless, this

assumption has been challenged by numerous researchers who argue that the market is

not always efficient. For instance, sudden market shifts, like natural disasters or

political events, may not be quickly reflected in security prices (Mangram, 2013).

• Absence of transaction costs in markets: the MPT overlooks transaction costs,

including brokerage fees and taxes, which can notably diminish an investor's returns.

When making investment decisions, it's crucial to consider these costs, as they can

substantially impact overall profitability. Therefore, the Markowitz Efficient Set may

not accurately predict future security performance, as it fails to incorporate these

significant expenses associated with trading (Mangram, 2013).

• Independence of returns: It is assumed that securities can be chosen in a way that their

individual performance remains unaffected by the performance of other investments

within the portfolio. However, in reality, the interdependence between securities can't

always be ignored, especially during times of market volatility or economic uncertainty

(Mangram, 2013).

A transition is suggested from the traditional Markowitz method to a more dynamic and

learning-based approach using DRL. This shift involves considering returns and variances

more accurately and treating the optimization process as a sequential, step-by-step learning

challenge that adapts to evolving market conditions (Graesser & Keng, 2019).

Below is a summary figure illustrating the benefits and obstacles of DRL compared to MPT:

46

Figure 15. Benefits and Obstacles of Deep Reinforcement Learning (DRL) Compared to Modern
Portfolio Theory (MPT)

Source: Own Elaboration

5.5. Bayesian Optimization for Hyperparameter Tuning

When talking about machine learning, fine-tuning learning parameters and model

hyperparameters is a common practice, often relying on expert intuition, rule-of-thumb

guidelines, or exhaustive trial-and-error methods. Consequently, there's a growing interest in

automated techniques capable of optimizing learning algorithms to match specific problem

requirements. Here is where Bayesian Optimization comes into play as it is a framework that

models a learning algorithm's performance using a Gaussian process (GP). Selecting

appropriate GP characteristics, such as kernel type and hyperparameter treatment,

significantly impacts the effectiveness of the optimization process (Snoek, Larochelle &

Adams, 2012).

Bayesian Optimization is a strategic method used when evaluating functions is expensive,

either due to significant computational resources or financial expenses. The goal of this

method is to achieve the best possible outcome from these expensive functions while

minimizing the number of evaluations, significantly reducing both time and cost (Barsce et

al., 2017). It establishes an initial belief, or prior, regarding the optimization function and

47

incorporates information from past samples to refine this belief into a posterior. Later, a

utility function is employed to determine the next sample point, aiming to maximize the

optimization function (Wu et al., 2019).

It plays a crucial role in fine-tuning machine learning algorithms by intelligently selecting

hyperparameter values. The process begins with the initial random selection of

hyperparameters, serving as initial data points. Subsequently, a balance is stablished between

two strategic approaches (Run.ia, 2024):

• Active Learning (Exploitation): This strategy focuses on selecting points with the

highest uncertainty in each iteration, aiming to exploit regions with the potential for

optimal results.

• Best Objective Function (Exploration): This approach prioritizes selecting points from

regions currently exhibiting the best results, thus exploring areas with the potential for

further optimization.

For instance, in a maximization problem scenario, the Bayesian Optimization method

executes the algorithm with various random hyperparameter values in each iteration. It then

decides whether to prioritize exploitation, by selecting the point with the maximal result, or

exploration, by opting for the point with the highest uncertainty, indicating potential for

improved outcomes (Run.ai, 2024).
Figure 16. Bayesian Optimization Process.

Source: Gomede, 2024

48

This decision-making process is governed by several key functions (Run.ia, 2024):

- Upper Confidence Bound (UCB): This function selects the next point based on the

highest upper confidence bound, calculated using the mean (μ), standard deviation (σ),

and an exploration parameter (κ).

Equation 3. Upper Confidence Bound.

UCB(x)=μ(x)+κσ(x)

- Probability of Improvement (PI): Here, the next point is chosen based on its potential

for improvement compared to the current maximum objective function (fmax),

factoring in a trade-off parameter (ε) to balance exploration and exploitation.

Equation 4. Probability of Improvement.

PI(x)=Φ(μ(x)−fmax−εσ(x))

- Expected Improvement (EI): Quantifying the expected improvement achieved by new

points, this function selects the point with the highest expected value, while also

considering the exploration-exploitation trade-off parameter (ε) in its calculation.

Equation 5. Expected Improvement.

EI(x)=(μ(x)−fmax)Φ(μ(x)−fmax−εσ(x))+σ(x)ϕ(μ(x)−fmax−εσ(x))

Rather than directly analyzing the costly function, the approach is based on the construction

of a simpler model for the unknown objective function, known as the black-box function. An

"acquisition function" derived from this model guides the selection of the next area to

explore, balancing between exploring new regions and exploiting the promising ones. The

acquisition function drives this decision-making process, allowing for a balance between

rapid convergence and comprehensive exploration. This strategy facilitates a faster discovery

of the best outcome (Nguyen, 2019).

Overall, Bayesian Optimization acts as an intelligent approach to handling costly functions.

It involves using a simplified model to determine the next steps, proving to be a pivotal tool

in computer learning, greatly optimizing the learning process.

49

5.6. Multi-Fidelity Optimization in DRL

Multi-fidelity approaches in optimization aim to reduce computational costs by using low-

fidelity approximations for certain evaluations. This strategy involves initially using less

resource-intensive evaluations to identify promising parameters. Subsequently, more

resource-demanding evaluations focus on improving the estimations within this smaller

group (Wu et al., 2020).

These methods control fidelity by adjusting training iterations, training data points, or

validation data points during validation error approximations. This provides clear advantages

for iteratively trained machine learning models. They offer a detailed performance record

over training iterations, allowing to significantly reduce computation time. This enables the

rapid evaluation of low-fidelity approximations for different hyperparameter settings,

followed by more accurate observations for the best options by increasing iterations.

Moreover, they offer flexibility in adjusting fidelity through various methods, providing

more options compared to adjusting a single control or choosing from limited accuracy

options (Fare et al., 2022).

In order for the DRL-based robotrader to be successful, we need effective hyperparameter

tuning. There are numerous parameters involved in DRL models, so it is necessary to

optimize them in order to achieve an optimal performance. To do so, we introduce multi-

fidelity optimization. This method involves using various fidelity levels to efficiently look

for the optimal hyperparameters. It balances the trade-off between computational cost and

optimization accuracy. Hyperparameter optimization for DRL models is a crucial task as it

is critical to find a more efficient way to explore the hyperparameter space while still

achieving a high-quality solution.

Multi-fidelity optimization provides an effective solution to this challenge by offering a

structured approach to hyperparameter tuning. It starts by using lower fidelity in the early

stages of hyperparameter tuning to explore the hyperparameters more efficiently. As the

optimization process progresses, we will gradually introduce higher fidelity models to refine

the hyperparameters which are going to provide more precise evaluations of the

hyperparameters. This approach is going to speed up the optimization process without

50

affecting negatively to the quality of the final solution (Wu et al., 2020). Multi-fidelity

optimization helps the robotrader fine-tune its hyperparameters in a more effective way,

adapting to the specific needs of the financial markets. This makes the DRL-based robotrader

more flexible to the changing financial markets.

By using multi-fidelity optimization, the robustness and adaptability of the portfolio

management strategy is increased. This approach helps in the process of optimization of

hyperparameters, leading to improved trading strategy performance. Not only is the strategy

going to perform better in terms of risk-adjusted returns, but it will also result in a higher

degree of flexibility, cost-efficiency, and adaptability to market dynamics. This can

ultimately translate to more successful and sustainable portfolio management practices in the

dynamic and changing landscape of financial markets.

51

52

6. EXPERIMENT

In this chapter, some experiments will be conducted to investigate the hypotheses presented

and reach the proposed objectives. However, it is important to note that these experiments

will be limited in scope due to various restrictions such as budget limitations, time

constraints, and technological resources availability. As a result, the outcomes of the

experiments will provide a specific estimation within the limitations of these restrictions. The

data collected for the experiment will come from the 30 constituents of the Dow Jones.

 6.1. Experiment description

The experiment will consist of optimizing the hyperparameters of the Proximal Policy

Optimization (PPO), which is a reinforcement learning algorithm designed to train a

computer agent's decision-making function to address challenging tasks. The optimization is

carried out by utilizing different fidelities of the estimated optimal policy (maximization of

the Sharpe ratio in the trading period) by these algorithms. The fidelities are going to be a

function of the timesteps and, according to A9, it is assumed that these fidelities are linearly

correlated. We conduct a thorough comparison between different methods: Random Search

and traditional Bayesian Optimization against multi-fidelity Bayesian Optimization.

The key idea is that hyper-parameter tuning of DRL algorithms is a very costly process,

however, it is critical. Bad hyper-parameter values will not deliver a good policy in practice.

Moreover, the financial context differs from the robotics and videogames context where these

algorithms are usually trained, and their default values are set. Consequently, we expect that

their hyper-parameter values will change significantly. Hence, we need to design a cheaper

process to obtain those hyper-parameter values, and this process is multi-fidelity Bayesian

Optimization.

In order to do so, we are going to use FinRL-StableBaselines3 for DRL and for multi-fidelity

Bayesian Optimization we will use the package Dragonfly, which contains examples of

multi-fidelity optimization.

We establish the null hypothesis (H0) that multi-fidelity should yield better results than

random search and take less time than all other methods. The alternative hypothesis (H1)

53

suggests otherwise. The main objective is to maximize the Sharpe ratio. However, the

experiments could also be made with the accumulated return or the Sortino ratio. While

traditional Bayesian Optimization prioritizes high fidelity, multi-fidelity seeks to optimize

the process by initially exploring options with lower fidelity and gradually eliminating poor-

performing ones. This approach saves computational resources by focusing on promising

options and eventually refining them with higher fidelity. Moreover, the training period

which is going to be used for the experiments is from 2008 to 2022; and the test period is

going to be 2023.

Our ideal strategy involves allocating the same amount of time to traditional Bayesian

Optimization, multi-fidelity Bayesian Optimization and Random Search methods.

Performance and time are considered as key parameters. The goal is not necessarily to

outperform the traditional Bayesian optimization method but to achieve good results in less

time.

Initially, we train all methods with a small number of timesteps. The best-performing models

from each method are then further trained with a higher number of timesteps, while the

remaining models are trained entirely with high timesteps. Each timestep represents a trading

day, and to ensure convergence, the market needs to be navigated millions of times. A

comparison of the performance of multi-fidelity Bayesian Optimization with traditional

Bayesian Optimization and with Random Search is going to be carried out. 10 iterations are

going to be considered to refine the hyperparameters and a low (relative) number of timesteps

to make the experiment possible.

However, the experiment faces constraints such as limited funding and time availability.

These constraints may impact the comprehensiveness and duration of the experiment,

potentially affecting the accuracy and reliability of the results.

Further experiments would require the comparison of these methods with respect to genetic

algorithms, more indexes (for instance, NASDAQ) more DRL algorithms (for example,

A3C) and more repetitions.

54

6.1.1. Problem Definition

This problem involves designing an automated trading system for portfolio allocation. The

approach consists of modeling the stock trading process as a Markov Decision Process

(MDP) and framing the trading objective as a maximization problem.

The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the key

components of the reinforcement learning environment include:

1. Action: The action space defines the allowed actions the agent can take in the

environment. Typically, denoted as ‘a ∈ A’, represents the weight of a stock in the

portfolio, with values ranging from -1 to 1: a ∈ (-1,1). Assuming our stock pool includes

N stocks, we can use a list [a1, a2, ... , aN] to determine the weight for each stock in the

portfolio, where ai ∈ (-1,1), a1+ a2+...+aN = 1. For instance, "The weight of AAPL in the

portfolio is 10%." is [0.1 , ...] (FinRL, 2021).

2. Reward function: it is denoted as r (s, a, s′), and it is the incentive mechanism for an

agent to learn a better action. It calculates the change of the portfolio value when action

a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v

represent the portfolio values at state s′ and s, respectively (FinRL, 2021).

3. State: The state space describes the observations received by the agent from the

environment. Similar to a human trader analyzing various information before making a

trade, the trading agent observes many different features to better learn in an interactive

environment (FinRL, 2021).

4. Environment: Dow Jones 30 constituents serve as the environment for this trading

system (FinRL, 2021).

The data of the single stock used in this case study is obtained from Yahoo Finance API,

including Open-High-Low-Close price and volume.

55

6.1.1. Python Packages Load

Before carrying out the analysis, the initial step involves installing the necessary libraries and

packages to facilitate the development and implementation of an automated trading system.

Following the library installations, the next phase involves ensuring that all essential

packages are present for the project. These include the Yahoo Finance API, pandas, numpy,

matplotlib, stockstats, OpenAI gym, stable-baselines, tensorflow, and pyfolio.

If any of these packages are missing, we install them to make sure our development

environment is complete and fully functional.

Once the packages are in place, the next step involves importing the required modules such

as pandas, numpy, and matplotlib for data manipulation and visualization. The

'YahooDownloader' and 'FeatureEngineer' modules from the 'FinRL' library are also

imported, along with modules related to environment setup, agent modeling, and result

visualization.

To organize the project and manage data, folders are created using the 'os' module. The

folders include directories for data storage, trained model output, and result summaries. This

organizational step helps maintain a structured approach, ensuring we manage data and track

results in a structured way throughout the thesis project.

6.1.2. Data Download

The data has been retrieved from Yahoo Finance, which is a website that provides stock data,

financial news, financial reports, etc. All the data provided by Yahoo Finance is free.

• FinRL uses a class YahooDownloader to fetch data from Yahoo Finance API (FinRL,

2021).

• Call Limit: by using the Public API (without authentication), you are limited to 2,000

requests per hour per IP (or up to a total of 48,000 requests a day) (FinRL, 2021).

From the downloaded data, for both the training and the test period, we obtain several

variables:

56

• Date: this column represents the date of the recorded data. For each date recorded,

there is data for every company.

• Open: it refers to the “opening” price which is the price of the stock from the first

transaction made in a business day when the market opens.

• High: the “high” price represents the highest price observed during the business hours

of trading on a specific date.

• Low: the “low” price represents the lowest price reached during the business hours

of trading on a specific date.

• Close: it refers to the “closing” price which is the last price anyone paid for a stock

trade during a business day where that stock trades, in this case the Dow Jones.

• Volume: it is the total number of shares traded during a specific trading session. It

represents the liquidity and activity in the market.

• Ticker Symbol (Tic): each company is associated with a unique ticker symbol.

Here is an example of the variables exposed:

Figure 17. Variables used for the experiment.

Source: Own elaboration

6.1.3. Preprocess Data

Data preprocessing is a crucial step for training a high-quality machine learning model. It

involves addressing missing data and performing feature engineering in order to transform

the data into a state suitable for modeling.

57

Technical indicators are added to improve the dataset, where factors such as historical stock

prices, current holding shares, and specific indicators are considered. Additionally, a

turbulence index is introduced. Risk aversion plays a key role in an investor's decision-

making process as it influences their choice to preserve the capital or not. Furthermore, it

also influences one’s trading strategy in response to varying market volatility. To manage

risk in highly volatile markets, such as the financial crisis of 2007-2008, FinRL utilizes a

financial turbulence index which measures extreme asset price fluctuation in order to

effectively assess the level of market turbulence (Liu et al., 2024).

Once the technical indicators are included, there are some new variables to analyze:

• Macd (Moving Average Convergence Divergence): A trend-following momentum

indicator that shows the relationship between two moving averages of a security's

price.
Equation 6. Moving Average Convergence Divergence.

(1)

• Boll_ub and Boll_lb: Upper and lower bands of the Bollinger Bands, respectively,

representing volatility around a moving average.

Equation 7. Upper and Lower Bollinger Band.

(1)

(2)

Where:

(3)

BOLU = Upper Bollinger Band

BOLD = Lower Bollinger Band

MA = Moving average

n = Number of days in smoothing period (typically 20)

m = Number of standard deviations (typically 2)

σ[TP,n] = Standard Deviation over last n periods of TP

58

• Rsi_300 (Relative Strength Index over 300 days): A momentum oscillator measuring

the speed and change of price movements. The calculation of this indicator is

separated in two formulas:

Equation 8. Relative Strength Index.

(1)

(2)

• Cci_30 (Commodity Channel Index over 30 days): An oscillator used to identify

cyclical trends in a security's price.

Equation 9. Commodity Channel Index.

(1)

Where:

(2)

P = Number of periods

MA = Moving Average

(3)

(4)

• Dx_30 (Directional Movement Index over 30 days): A trend strength indicator.

Equation 10. Directional Movement Index.

(1)

(2)

59

(3)

Where:

 (4)

PH=Previous high

 (5)

(6)

CDM=Current DM

ATR=Average True Range

• Close_30_sma (30-day Simple Moving Average of closing prices): A smoothed

average of the last 30 closing prices.

Equation 11. Simple Moving Average.

(1)

Where:

An = the price of an asset at period n, in this case n=30

n = the number of total periods

• Close_6_sma (6-day Simple Moving Average of closing prices): A smoothed average

of the last 6 closing prices.

Equation 12. Simple Moving Average.

(1)

Where:

An = the price of an asset at period n, in this case n=6

n = the number of total periods

60

Here is an example of the exposed variables:

Figure 18. All variables used for the experiment.

Source: Own elaboration

Furthermore, in order to better understand the stock behavior and market dynamics, two new

variables are introduced:

• Cov_list: it represents a series of covariance matrices, which is a quantitative measure

of how the returns of different assets or stocks co-move with each other. A positive

covariance suggests that the variables tend to move in the same direction, while a

negative covariance indicates that they tend to move in opposite directions. A

covariance close to zero suggests little to no linear relationship between the variables

(FasterCapital, n.d).

• Return_list: it captures the percentage returns of each stock over the same one-year

lookback period. Percentage return is a measure of how much a stock's price has

changed relative to its previous value. This information is crucial for assessing the

volatility and trends in individual stock prices (FasterCapital, n.d).

6.1.4. Environment Building

We approach the financial challenges of automated stock trading tasks by treating them as

Markov Decision Process (MDP) problems due to their stochastic and interactive nature. This

modeling framework allows us to formulate the task in a way that considers the dynamic

nature of stock price changes. During the training process, the agent observes these changes,

takes actions, and calculates rewards, enabling the adjustment of its strategy. The goal is for

the agent to iteratively refine its trading strategy by maximizing rewards through interactions

with the environment over time.

61

To create a realistic simulation of stock markets, we implement our trading environments

using the OpenAI Gym framework. This framework allows us to simulate livestock markets

with authentic market data. This approach ensures that the trading agent operates in an

environment that closely mirrors the conditions of real-world stock markets.

Moving forward, we divide the obtained dataset into two distinct sets. The first set, serving

as the training data, includes all information recorded between January 1, 2008, and

December 31, 2022. This period is crucial for teaching the trading agent and developing its

strategy. The second set, designated as the test data, covers the period from January 1, 2023,

to December 31, 2023. This data is reserved for evaluating the agent's performance on unseen

market conditions, providing insights into the model's generalization capabilities.

The reinforcement signal serves as feedback for the automated trading system, providing

insights into the change in portfolio value between the current day and the previous day. This

feedback mechanism enables the system to evaluate the effectiveness of its trading decisions

and make adjustments to its strategies accordingly. As market conditions evolve throughout

the trading day, the system's portfolio performance is influenced by various shifts and

fluctuations in the market.

Through continuous learning, the automated trading system analyzes the impact of different

trading actions on the overall value of its portfolio. By closely monitoring market trends and

assessing the outcomes of its trades, the system gradually develops a deeper understanding

of market dynamics. Over time, it learns to identify patterns and correlations among different

assets, which improves its ability to make informed trading decisions in future scenarios.

This iterative process of receiving reinforcement signals, adapting to changing market

conditions, and learning from past experiences enables the automated trading system to

navigate the complexities of financial markets more effectively. As a result, it evolves into a

more intelligent and adaptive trader, capable of optimizing portfolio performance and

maximizing returns over time.

62

6.2. Results

Once the experiment has been conducted, the obtained results are going to be analyzed. The

Sharpe Ratio obtained for each model will be compared, as well as the quality of their

respective times.

The Sharpe ratio evaluates the relationship between an investment's return and its risk. It

quantifies the idea that higher returns over a specific period might indicate increased

volatility and risk, rather than investment expertise, through the next mathematical formula

(Fernando, 2024):
Equation 13. Sharpe Ratio.

Where:

Rp = portfolio’s return

Rf = risk-free rate

sp = standard deviation of the portfolio’s excess return

The Sharpe ratio is a widely used metric in finance that evaluates a portfolio’s risk-adjusted

performance by dividing its excess returns by a measure of volatility. Excess returns refer to

profits exceeding those of an industry benchmark or the risk-free rate of return. Calculations

for the Sharpe ratio can be based on either historical returns or forecasts. Typically, a higher

Sharpe ratio is indicative of superior performance when comparing portfolios with similar

characteristics. On the other hand, a negative Sharpe ratio suggests that either the risk-free

rate or benchmark return exceeds the portfolio's historical or projected return, or that the

portfolio's return is anticipated to be negative (Fernando, 2024).

Below is a Boxplot illustrating the results obtained from the experiment. It compares the

outcomes achieved by the Multi-fidelity Bayesian Optimization (MUFIBO) method with

those of Random Search (RS) and Bayesian Optimization (BO_BASELINE). This visual

representation allows for a clear comparison of the performance of each method in the

experiment, providing insights into their respective effectiveness in optimizing the given

parameters.

63

Figure 19. Sharpe ratio’s result for each method.

Source: Own elaboration

We observe how, although the Sharpe ratio mean appears to be lower compared to the other

methods, a closer examination reveals that the best result is achieved with MUFIBO. This

apparently contradictory outcome can be attributed to the correlation in fidelity levels. While

fidelity may not consistently yield favorable results, there are instances where it proves to be

highly effective. These sporadic successes, although exceptions, demonstrate the potential of

fidelity-driven strategies like MUFIBO.

Below is a Boxplot illustrating the time results obtained from the experiment. Despite the

occasional shortcomings found when analyzing the Sharpe ratio’s results obtaind, when

fidelity does lead to success, it does so significantly faster than alternative methods. This

highlights the importance of considering both the average performance and the potential

outliers when evaluating the effectiveness of different optimization approaches.

64

Figure 20. Time results for each method.

Source: Own elaboration

In conclusion, the experiment's findings analyze the comparative effectiveness of Multi-

fidelity Bayesian Optimization (MUFIBO) against Random Search (RS) and Bayesian

Optimization (BO_BASELINE) in portfolio management. While initial observations

suggested a lower Sharpe ratio mean for MUFIBO, a closer examination revealed that it

achieved the best overall result. This discrepancy highlights the variable effectiveness of

fidelity levels, where occasional failures are offset by significant successes. Moreover, the

time results demonstrated MUFIBO's efficiency, particularly when fidelity led to favorable

outcomes, highlighting its potential for faster optimization. Overall, these insights emphasize

the promising role of fidelity-driven strategies like MUFIBO in improving portfolio

management strategies, offering valuable implications for future research and practical

application in financial markets.

65

66

7. CONCLUSIONS AND FURTHER WORK

Each chapter has contributed from the fundamentals to the results and the connection with

the objectives presented. In this final chapter, the key ideas, emerging perspectives, and

fundamental reflections will be highlighted, thus offering a comprehensive view of the

journey we have undertaken during this thesis.

O1: Realization of the document of my thesis.

The finalization of the thesis document represents a significant achievement in this research

journey. Through systematic planning, drafting, and revision, the document offers a

comprehensive overview of the study's objectives, methodologies, findings, and

conclusions. The process of composing the thesis has not only facilitated the organization

and synthesis of research but has also refined critical writing and analytical skills,

contributing to personal and academic development.

O2: Investigate how DRL can be used in portfolio optimization, specifically focusing

on its ability to adapt to non-stationary market conditions and learn from both

historical data and real-time feedback.

O3: Critically assess the applicability and effectiveness of a robotrader employing Deep

Reinforcement Learning (DRL).

The investigation into the application of Deep Reinforcement Learning (DRL) in portfolio

optimization has uncovered significant insights into its adaptability and learning capabilities.

Through empirical analysis and experimentation, it was observed that DRL demonstrates

promising potential in adapting to non-stationary market conditions and leveraging both

historical data and real-time feedback to inform decision-making. These findings emphasize

the relevance of DRL as a dynamic and effective tool in portfolio management strategies.

Utilizing Deep Reinforcement Learning (DRL) for portfolio optimization involves a

systematic process. Initially, the problem of portfolio optimization is formulated, specifying

objectives, constraints, and risk measures. Afterwards, an environment is set up to simulate

the financial market, defining state and action spaces, as well as the reward function. A

67

neural network-based agent is then designed to interact with this environment, receiving

market data as input and generating portfolio allocations as output. Through training on

historical market data, the DRL agent learns to maximize a reward signal, typically based on

performance metrics like the Sharpe ratio or cumulative returns. Throughout the training

process, the agent explores various portfolio strategies to learn optimal behavior while

exploiting successful ones. Following training, the agent's performance is evaluated using

validation data or backtesting. Fine-tuning may be conducted based on evaluation results,

involving adjustments to hyperparameters, reward functions, or neural network architecture.

Once optimized, the trained DRL agent can be deployed in real-world portfolio management

scenarios, where its performance is monitored, and adjustments are made as needed to adapt

to evolving market conditions. Through this systematic approach, DRL offers a dynamic and

adaptive solution to portfolio optimization in today's complex financial landscapes.

O4: Address the gap, which exits due to models such as Markowitz's Modern Portfolio

Theory (MPT) which assumes stationary market conditions that may not hold in

practice, by using DRL within the field of portfolio optimization.

O5: Revolutionize the field of portfolio management and create substantial benefits for

investors, financial institutions, and the broader financial markets.

The utilization of Deep Reinforcement Learning (DRL) within the field of portfolio

optimization has effectively addressed the gap presented by traditional models like

Markowitz's Modern Portfolio Theory (MPT). By leveraging DRL's adaptability to non-

stationary market conditions, the study has demonstrated a more robust and flexible

approach to portfolio management.

Deep Reinforcement Learning (DRL) represents a paradigm shift in portfolio management,

offering a dynamic and adaptive approach compared to the traditional Markowitz model.

Unlike Markowitz's reliance on historical data and static statistical parameters, DRL

leverages neural networks to optimize portfolios through iterative learning from market

interactions. This learning-based methodology enables DRL to adapt to changing market

conditions and respond to stochastic events, potentially enhancing adaptability in

unpredictable financial environments. While DRL introduces challenges in interpretability,

68

its stability can be improved through the incorporation of additional data or technical

indicators. The transition from the Markowitz method to DRL suggests a more accurate

consideration of returns and variances, treating optimization as a sequential learning

challenge that evolves with market dynamics.

By demonstrating the efficacy and adaptability of DRL-based strategies, this study lays the

foundation for substantial benefits for investors, financial institutions, and the broader

financial markets. The insights gained from this research pave the way for improved

decision-making processes, improved risk management, and ultimately, greater returns on

investment.

O6: Execute the experiment comparing different methods.

The execution of an experiment comparing different methods has provided valuable

empirical evidence and insights into the effectiveness of various portfolio optimization

approaches. The experiment focuses on optimizing the hyperparameters of the Proximal

Policy Optimization (PPO), utilizing different fidelities of the estimated optimal policy. By

comparing multi-fidelity Bayesian Optimization with Random Search and traditional

Bayesian Optimization, we aim to optimize the hyperparameter tuning process for Deep

Reinforcement Learning (DRL) algorithms. Our hypothesis suggests that multi-fidelity

should outperform random search and traditional methods, achieving better results in less

time.

Through thorough analysis, we observed that while MUFIBO initially presented a lower

Sharpe ratio mean, it ultimately achieved the best overall result. This emphasizes the variable

efficacy of fidelity levels, where occasional challenges are outweighed by significant

successes. Furthermore, MUFIBO demonstrated efficiency in time results, particularly when

fidelity led to favorable outcomes, highlighting its potential for faster optimization. These

findings emphasize the promising role of fidelity-driven strategies like MUFIBO in

improving portfolio management, offering valuable insights for future research and practical

implementation in financial markets.

69

In terms of future work, conducting additional experiments is crucial. To conduct them

properly, a significantly larger number of timesteps, iterations, and seeds would be required.

This will allow to explore a wider range of scenarios and capture more complex insights into

the performance of multi-fidelity Bayesian Optimization. Additionally, it's crucial to expand

our comparative analysis by benchmarking our method against alternative approaches. By

performing thorough comparisons, deeper insights can be gained into the relative strengths

and weaknesses of different optimization strategies in the context of investment management.

This comprehensive approach to future work will not only improve the understanding of

multi-fidelity Bayesian Optimization but also contribute to the wider knowledge base in

financial decision-making.

70

8. GENERATIVE ARTIFICIAL INTELLIGENCE TOOLS
STATEMENT

I, Beatriz Díaz Nameth, a student of ADE and Business Analytics at Universidad Pontificia

Comillas, hereby submit my Bachelor's Thesis titled "Multi-fidelity Bayesian Optimization

for Deep Reinforcement Learning for portfolio management". I declare that I have used the

Generative Artificial Intelligence Tool ChatGPT or similar IAG tools only in the context of

the activities described below:

1. Code interpreter: To perform preliminary data analysis.

2. Literary style and language corrector: To improve the linguistic and stylistic quality of

the text.

3. Complicated book synthesizer and disseminator: To summarize and understand

complex literature.

4. Reviewer: To receive suggestions on how to improve and refine the work with different

levels of scrutiny.

5. Translator: To translate texts from one language to another.

I affirm that all the information and content presented in this work are the product of my

individual research and effort, except where otherwise indicated and proper credits have been

given (I have included appropriate references in the Bachelor's Thesis and have explicitly

stated when ChatGPT or similar tools have been used). I am aware of the academic and

ethical implications of submitting non-original work and accept the consequences of any

violation of this declaration.

Date: 21/04/2024

Signature: Beatriz Díaz Nameth

71

72

9. BIBLIOGRAPHY

Baldridge, R. (2023). Understanding Modern Portfolio Theory. Forbes.

https://www.forbes.com/advisor/investing/modern-portfolio-theory/

Barsce, J. C., Palombarini, J. A., & Martínez, E. C. (2017). Towards autonomous

reinforcement learning: Automatic setting of hyper-parameters using Bayesian

optimization. IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8226439

Bartram et al. (2021). Machine Learning for Active Portfolio Management.

https://www.semanticscholar.org/paper/36c63fcbf433dd5f2c7b0e522833f8ce8a4fcff6

Bayesian hyperparameter optimization. (2024). Run.ai.

https://www.run.ai/guides/hyperparameter-tuning/bayesian-hyperparameter-

optimization#optimization

Benhamou, E., Saltiel, D., Ungari, S., & Mukhopadhyay, A. (2020). Bridging the gap

between Markowitz planning and deep reinforcement learning.

https://arxiv.org/abs/2010.09108

Benhamou, E., Ohana, J. J., Guez, B., Saltiel, D., Laraki, R., & Atif, J. (2023). Comparing

Deep RL and Traditional Financial Portfolio Methods. SSRN.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4557792

Bengio, Y., Simard, P, & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Xplore.

https://ieeexplore.ieee.org/document/279181

Botvinick, M., et al. (2020). Deep reinforcement learning and its neuroscientific

implications. https://www.cell.com/neuron/pdf/S0896-6273(20)30468-2.pdf

Chen, J. (2024). Multi-factor model: Definition and formula for comparing factors.

Investopedia. https://www.investopedia.com/terms/m/multifactor-model.asp

https://ieeexplore.ieee.org/abstract/document/8226439
https://arxiv.org/abs/2010.09108
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4557792
https://www.cell.com/neuron/pdf/S0896-6273(20)30468-2.pdf

73

Courseteach (2023). Deep Learning (Part 1): Understanding Basic Neural Networks.

Medium. https://medium.com/@Coursesteach/deep-learning-part-1-86757cf5a0c3

Dayan, P. & Niv, Y. (2008). Reinforcement learning: The good, the bad and the ugly. Current

Opinion in Neurobiology.

https://www.sciencedirect.com/science/article/abs/pii/S0959438808000767

Dulac-Arnold, G., Mankowitz, D., & Hester, T. (2019). Challenges of real-world

reinforcement learning. https://arxiv.org/abs/1904.12901

Dulac-Arnold, G., et al (2021). Challenges of real-world reinforcement learning: definitions,

benchmarks and analysis. SpringerLink.

https://link.springer.com/article/10.1007/s10994-021-05961-4

Durall, R. (2022). Asset Allocation: From Markowitz to Deep Reinforcement Learning.

https://arxiv.org/abs/2208.07158

Fare, C. et al. (2022). A multi-fidelity machine learning approach to high throughput

materials screening. Nature News. https://www.nature.com/articles/s41524-022-

00947-9

Gomede, E. (2024). Bayesian Optimization: Revolutionizing Efficient Search in Complex

Spaces. Medium.

https://medium.com/aimonks/bayesian-optimization-revolutionizing-efficient-search-

in-complex-spaces-3e2cc476d2cd

Importance of covariance matrix in portfolio construction. FasterCapital. (n.d.).

https://fastercapital.com/topics/importance-of-covariance-matrix-in-portfolio-

construction.html

Single stock trading. FinRL. (2021).

https://finrl.readthedocs.io/en/latest/tutorial/Introduction/SingleStockTrading.html

https://arxiv.org/abs/1904.12901
https://link.springer.com/article/10.1007/s10994-021-05961-4
https://arxiv.org/abs/2208.07158
https://www.nature.com/articles/s41524-022-00947-9
https://www.nature.com/articles/s41524-022-00947-9

74

Fernando, J. (2024). Sharpe Ratio: Definition, Formula, and Examples. Investopedia.

https://www.investopedia.com/terms/s/sharperatio.asp

Foumani et al. (2022). Multi-fidelity cost-aware Bayesian optimization.

https://www.semanticscholar.org/paper/bc0228120a1a04bc7ce2a15f698c9b12bf56c4

e6

Gao et al. (2020). Application of Deep Q-Network in Portfolio Management.

https://www.semanticscholar.org/paper/4b53c24062edd98a7d94aabf2b427927b90e6

4ff

Garrido, E. (2021). Advanced Methods for Bayesian Optimization in Complex Scenarios.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning. Addison-

Wesley Professional. Google Libros.

https://books.google.es/books?hl=es&lr=&id=0HW7DwAAQBAJ&oi=fnd&pg=PT1

6&dq=main+definitions+of+reinforcement+learning&ots=1LiHCBpVjs&sig=2XSur

HQRoXYq9JOeruM0ltLg7Hg#v=onepage&q=main%20definitions%20of%20reinfor

cement%20learning&f=false

Hambly, B., Xu, R., & Yang, H. (2023). Recent advances in reinforcement learning in

finance. Mathematical Finance.

https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12382

Hammami, N., & Nguyen, K. K. (2022). On-Policy vs. Off-Policy Deep Reinforcement

Learning for Resource Allocation in Open Radio Access Network. IEEE Xplore.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9771605

Hou, K., Xue, C., & Zhang, L. (2020). Replicating anomalies. The Review of financial

studies. OUP Academic. https://academic.oup.com/rfs/article-

abstract/33/5/2019/5236964?redirectedFrom=PDF&login=false

Hu, Y. J., & Lin, S. J. (2019). Deep reinforcement learning for optimizing finance portfolio

management. IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8701368

https://books.google.es/books?hl=es&lr=&id=0HW7DwAAQBAJ&oi=fnd&pg=PT16&dq=main+definitions+of+reinforcement+learning&ots=1LiHCBpVjs&sig=2XSurHQRoXYq9JOeruM0ltLg7Hg#v=onepage&q=main%20definitions%20of%20reinforcement%20learning&f=false
https://books.google.es/books?hl=es&lr=&id=0HW7DwAAQBAJ&oi=fnd&pg=PT16&dq=main+definitions+of+reinforcement+learning&ots=1LiHCBpVjs&sig=2XSurHQRoXYq9JOeruM0ltLg7Hg#v=onepage&q=main%20definitions%20of%20reinforcement%20learning&f=false
https://books.google.es/books?hl=es&lr=&id=0HW7DwAAQBAJ&oi=fnd&pg=PT16&dq=main+definitions+of+reinforcement+learning&ots=1LiHCBpVjs&sig=2XSurHQRoXYq9JOeruM0ltLg7Hg#v=onepage&q=main%20definitions%20of%20reinforcement%20learning&f=false
https://books.google.es/books?hl=es&lr=&id=0HW7DwAAQBAJ&oi=fnd&pg=PT16&dq=main+definitions+of+reinforcement+learning&ots=1LiHCBpVjs&sig=2XSurHQRoXYq9JOeruM0ltLg7Hg#v=onepage&q=main%20definitions%20of%20reinforcement%20learning&f=false
https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12382
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9771605
https://ieeexplore.ieee.org/abstract/document/8701368

75

Huang, G., Zhou, X., & Song, Q. (2020). Deep reinforcement learning for portfolio

management. https://arxiv.org/abs/2012.13773

Jiang et al. (2016). Cryptocurrency portfolio management with deep reinforcement learning.

https://www.semanticscholar.org/paper/632225349977400a68825405e18ae3ed927f4f

1e

Karunakaran, D. (2018). Deep learning series 1: Intro to deep learning. Medium.

https://medium.com/intro-to-artificial-intelligence/deep-learning-series-1-intro-to-

deep-learning-abb1780ee20

Khamis, A., &Wang, Y. (2021). Reinforcement Learning. Reinforcement Learning - AI

Search Algorithms for Smart Mobility.

https://smartmobilityalgorithms.github.io/book/content/LearnToSearch/Reinforcemen

tLearning.html

Khdoudi, A., Masrour, T., El Hassani, I., & El Mazgualdi, C. (2024). A deep-reinforcement-

learning-based digital twin for manufacturing process optimization. MDPI.

https://www.mdpi.com/2079-8954/12/2/38

Kim, K. G. (2016). Book review: Deep learning. Healthcare informatics research.

Healthcare Informatics Research. https://synapse.koreamed.org/articles/1075818

Li, S., Xing, W., Kirby, R., & Zhe, S. (2020). Multi-fidelity Bayesian optimization via deep

neural networks. Advances in Neural Information Processing Systems.

https://proceedings.neurips.cc/paper/2020/hash/60e1deb043af37db5ea4ce9ae8d2c9ea

-Abstract.html

Li, S., Kirby, R., & Zhe, S. (2021). Batch Multi-Fidelity Bayesian Optimization with Deep

Auto-Regressive Networks. Advances in Neural Information Processing Systems.

https://proceedings.neurips.cc/paper/2021/hash/d5e2c0adad503c91f91df240d0cd4e49

-Abstract.html

Li, K., & Li, F. (2024). Multi-Fidelity Methods for Optimization: A Survey.

https://arxiv.org/abs/2012.13773
https://smartmobilityalgorithms.github.io/book/content/LearnToSearch/ReinforcementLearning.html
https://smartmobilityalgorithms.github.io/book/content/LearnToSearch/ReinforcementLearning.html
https://synapse.koreamed.org/articles/1075818
https://proceedings.neurips.cc/paper/2020/hash/60e1deb043af37db5ea4ce9ae8d2c9ea-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/60e1deb043af37db5ea4ce9ae8d2c9ea-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html

76

https://arxiv.org/abs/2402.09638#:~:text=Multi%2Dfidelity%20optimization%20(MF

O),a%20pre%2Dtrained%20language%20model.

Liu, C. (2022). 5 Concepts You Should Know About Gradient Descent and Cost Function.

KDnuggets.

https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-

function.html#:~:text=Gradient%20descent%20is%20an%20iterative,the%20best%2

0set%20of%20parameters

Liu, Xiao Yang., Yang, H., Chen, Q., Zhang, R., Yang, L., Xiao, B., & Dan Wang, C. (2024).

FINRL: A deep reinforcement learning library for automated stock trading in

quantitative finance. ar5iv. https://ar5iv.labs.arxiv.org/html/2011.09607

Lucarelli et al. (2020). A deep Q-learning portfolio management framework for the

cryptocurrency market.

https://www.semanticscholar.org/paper/255e762a3cb9f9a2d5eb31bdcf4499997313cb

0b

Mangram, M.E. (2013) A simplified perspective of the Markowitz portfolio theory, SSRN.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2147880

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... &

Hassabis, D. (2015). Human-level control through deep reinforcement learning.

Nature. https://www.nature.com/articles/nature14236

Mukherjee, S., Deligiannis, P., Biswas, A., & Lal, A. (2020). Learning-based controlled

concurrency testing. Proceedings of the ACM on Programming Languages.

https://dl.acm.org/doi/10.1145/3428298

Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach.

American Economic Association.

https://www.aeaweb.org/articles?id=10.1257%2Fjep.31.2.87&ref=ds-econ

https://arxiv.org/abs/2402.09638#:~:text=Multi%2Dfidelity%20optimization%20(MFO),a%20pre%2Dtrained%20language%20model
https://arxiv.org/abs/2402.09638#:~:text=Multi%2Dfidelity%20optimization%20(MFO),a%20pre%2Dtrained%20language%20model
https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-function.html#:~:text=Gradient%20descent%20is%20an%20iterative,the%20best%20set%20of%20parameters
https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-function.html#:~:text=Gradient%20descent%20is%20an%20iterative,the%20best%20set%20of%20parameters
https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-function.html#:~:text=Gradient%20descent%20is%20an%20iterative,the%20best%20set%20of%20parameters

77

Nguyen, V. (2019). Bayesian optimization for accelerating hyper-parameter tuning. In 2019

IEEE second international conference on artificial intelligence and knowledge

engineering (AIKE). IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/8791696

Odemakinde, E. (2023). Model-Based and Model-Free Reinforcement Learning: Pytennis

Case Study. Neptune.ai. https://neptune.ai/blog/model-based-and-model-free-

reinforcement-learning-pytennis-case-study

Omran, I. et al., (2024). Deep reinforcement learning implementation on IC Engine Idle

Speed Control. Ain Shams Engineering Journal.

https://www.sciencedirect.com/science/article/pii/S2090447924000455?via%3Dihub

Osterrieder, J. (2023). A Primer on Deep Reinforcement Learning for Finance.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4316650

Owen, L. (2020). Bird’s-Eye View of Reinforcement Learning Algorithms Taxonomy.

Medium. https://towardsdatascience.com/birds-eye-view-of-reinforcement-learning-

algorithms-landscape-

2aba7840211c#:~:text=Value%2Dbased%20RL%20aims%20to,value%20function%

20and%20the%20policy

Pricope, T. V. (2021). Deep reinforcement learning in quantitative algorithmic trading: A

review. https://arxiv.org/abs/2106.00123

Rao, A., & Jelvis, T. (2022). Foundations of Reinforcement Learning with Applications in

Finance. https://stanford.edu/~ashlearn/RLForFinanceBook/book.pdf

Sam Obeidat, M. (2018) The practical limitations of the modern portfolio theory, LinkedIn.

https://www.linkedin.com/pulse/practical-limitations-modern-portfolio-theory-samer-

obeidat-mgm/

Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures.

IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8694781

https://ieeexplore.ieee.org/abstract/document/8791696
https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-case-study
https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-case-study
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4316650
https://arxiv.org/abs/2106.00123
https://stanford.edu/~ashlearn/RLForFinanceBook/book.pdf

78

Siegel, E. (2020). Introduction to Reinforcement Learning. Siegel.Work.

https://siegel.work/blog/PolicyGradient/

Singh, V., Chen, S.-S., Singhania, M., Nanavati, B., kumar kar, A., & Gupta, A. (2022). How

are reinforcement learning and deep learning algorithms used for big data based

decision making in Financial Industries–a review and Research Agenda. International

Journal of Information Management Data Insights.

https://www.sciencedirect.com/science/article/pii/S2667096822000374?via%3Dihub

Snoek, J., Larochelle, H. and Adams, R.P. (2012) Practical Bayesian optimization of

Machine Learning Algorithms, Advances in Neural Information Processing Systems.

https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819c

d-Abstract.html

Sun, S., Wang, R., & An, B. (2021). Reinforcement learning for quantitative trading.

https://arxiv.org/abs/2109.13851

Tao, R. et al. (2021). Robo advisors, algorithmic trading and investment management:

wonders of fourth industrial revolution in financial markets. Technological Forecasting

and Social Change.

https://www.sciencedirect.com/science/article/abs/pii/S0040162520312476

Vandelaer, C. (2022). Reinforcement Learning: An introduction (Part 3/4). Medium.

https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-

3-4-e7d883dcbba2

Vijayan PV, V. (2020). Deep reinforcement learning: Value functions, DQN, actor-critic

method, backpropagation through stochastic functions. Medium.

https://medium.com/@vishnuvijayanpv/deep-reinforcement-learning-value-functions-

dqn-actor-critic-method-backpropagation-through-83a277d8c38d

Wang et al. (2021). DeepTrader: A Deep Reinforcement Learning Approach for Risk-Return

Balanced Portfolio Management with Market Conditions Embedding.

https://arxiv.org/abs/2109.13851
https://www.sciencedirect.com/science/article/abs/pii/S0040162520312476

79

https://www.semanticscholar.org/paper/0b26cb46675c0b00483c254488c9a14d89eec

8e5.

Wu, J., Toscano-Palmerin, S., Frazier, P. I., & Wilson, A. G. (2020). Practical multi-fidelity

bayesian optimization for hyperparameter tuning. In Uncertainty in Artificial

Intelligence. PMLR. https://proceedings.mlr.press/v115/wu20a.html

Wu et al. (2021). Portfolio management system in equity market neutral using reinforcement

learning.

https://www.semanticscholar.org/paper/f24ceb1d7154934883df25411ebd830270cee9

47

Ye, A. (2020). A Crash Course in Markov Decision Processes, the Bellman Equation, and

Dynamic Programming. Medium. https://andre-ye.medium.com/a-crash-course-in-

markov-decision-processes-the-bellman-equation-and-dynamic-programming-

e80182207e85

Zürn, J. (2018). Reinforcement Learning — An introduction. Medium. https://jannik-

zuern.medium.com/reinforcement-learning-to-survive-in-a-hostile-environment-

3658624a5d83

https://proceedings.mlr.press/v115/wu20a.html
https://www.semanticscholar.org/paper/f24ceb1d7154934883df25411ebd830270cee947
https://www.semanticscholar.org/paper/f24ceb1d7154934883df25411ebd830270cee947

80

10. APPENDIX

The 30 constituents from the Dow Jones are:

Figure 21. Dow Jones' constituents.

TICKER NAME

AXP American Express Co.

AMGN Amgen Inc.

AAPL Apple Inc.

BA Boeing Co.

CAT Caterpillar Inc.

CSCO Cisco Systems Inc.

CVX Chevron Corp.

GS Goldman Sachs Group Inc.

HD The Home Depot Inc.

HON Honeywell International Inc.

IBM International Business Machines Corp.

INTC Intel Corp.

JNJ Johnson & Johnson

KO Coca-Cola Co.

JPM JPMorgan Chase & Co.

MCD McDonald’s Corp.

MMM 3M Co.

MRK Merck & Co. Inc.

MSFT Microsoft Corp.

NKE Nike Inc.

PG Procter & Gamble Co.

TRV Travelers Companies Inc.

UNH UnitedHealth Group Inc.

CRM Salesforce Inc.

VZ Verizon Communications Inc.

V Visa Inc.

WBA Walgreens Boots Alliance Inc.

WMT Walmart Inc.

81

DIS Walt Disney Co.

DOW Dow Inc.

Source: Own elaboration

