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Resumen

El Deep Learning ha experimentado un enorme crecimiento en el campo de la inves-
tigación de predicción de ventas en los últimos años, ya que modelos más complejos
impulsados por redes neuronales parecen capaces de superar a los modelos tradicionales
en la previsión. A través de este proyecto, se examina un conjunto de datos sobre ventas
en tiendas para realizar un análisis de previsión de ventas utilizando modelos LSTM
de última generación. El objetivo de la investigación es dilucidar si los mecanismos
de atención mejoran la previsión de ventas. Se implementará el modelo LSTM con
Mecanismos de Atención y se comparará con los modelos LSTM tradicionales (Vanilla
LSTM, Stacked LSTM, Bidirectional LSTM y Convolutional LSTM).

A través de nuestros experimentos, el modelo más preciso al comparar a través de
RMSE fue el Convolutional LSTM, seguido por el LSTM con Mecanismos de Atención,
el Bidirectional LSTM y el Vanilla LSTM en último lugar. Esto nos mostró que
la técnica recientemente propuesta de incluir mecanismos de atención a un modelo
LSTM tradicional es muy comparable a los modelos anteriores de última generación e
incluso supera a la mayoría de las otras técnicas en nuestro experimento con la segunda
volatilidad de error más baja también.

Palabras clave: Predicción de series temporales, Predicción de ventas, Redes
neuronales, Aprendizaje profundo, LSTM
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Abstract

Deep Learning has seen a huge growth in the field of sales prediction research over the
last years, as more complex models driven by neural networks seem able to outperform
traditional models in forecasting. Through this project, a dataset regarding store sales
is examined in order to perform a sales forecasting analysis regarding state-of-the-art
LSTM models. The aim of the investigation is to elucidate whether attention mech-
anisms improve sales forecasting. The LSTM model with Attention Mechanisms will
be implemented and compared to traditional LSTM models (Vanilla LSTM, Stacked
LSTM, Bidirectional LSTM and Convolutional LSTM).

Through our experiments, the most accurate model when comparing through RMSE
was the Convolutional LSTM, followed by the LSTM with Attention Mechanisms, the
Bidirectional LSTM and the Vanilla LSTM coming at last. This showed us that the
newly proposed technique of including attention mechanisms to a vanilla LSTM model
is very comparable to state-of-the-art previous models and even outperforms most other
techniques through our experiment with the second lowest error volatility.

Keywords: Time-series Forecasting, Sales Forecasting, Neural Networks, Deep
Learning, LSTM
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Chapter 1

Introduction

1.1 Motivation

In today’s fast-paced and increasingly competitive business environment, the ability to
accurately forecast product demand is more critical than ever. Effective demand predic-
tion not only ensures optimal inventory management, reducing the risk of overstocking
or stockouts, but also facilitates more informed strategic planning and resource allo-
cation (Blum, 2020; Tadayonrad & Ndiaye, 2023). Accurate demand forecasts enable
businesses to predict their production schedules, manage supply chain logistics effi-
ciently, and optimize their financial planning (de Carvalho Lima, Firmino, & Rocha,
2023; Makridakis, Hyndman, & Petropoulos, 2020). This, in turn, enhances customer
satisfaction by ensuring product availability while simultaneously controlling costs.
In industries where trends and consumer preferences evolve rapidly, such as fashion,
technology, and consumer goods, the agility provided by precise demand forecasting
becomes a significant competitive advantage.

Despite these advantages, current industry practices reveal significant gaps in the
effective use of sales forecasting models. Surveys indicate that only 40% of sales fore-
casting opportunities actually result in closure, suggesting ample room for improvement
in this domain (Rotenberg & Lindquist, 2013). In addition, the study carried out by
(G. Research, 2020) further reveals that a staggering 90% of sales companies may prefer
intuition over data analytics in their forecasting processes, indicating a reluctance to
fully embrace advanced technological solutions for navigating uncertain futures. Fur-
thermore, even among those employing sales forecasting models, (Blum, 2020) reports
that about 50% of sales leaders lack confidence in these forecasts. This lack of confi-
dence often leads to a reversion to intuition-based methods, which, while familiar, do
not provide the reliability needed for accurate forecasting (Xu, Tang, & Rangan, 2017).
The inherent biases in expert judgments, such as over-confidence, anchoring, illusory
patterns, and group thinking, further compound these challenges.

Consequently, the development of robust and reliable demand prediction models
has become a pivotal focus for businesses seeking to thrive in an ever-changing market
landscape. However, achieving high precision in demand forecasting remains chal-
lenging due to the unique demand characteristics of each product. The variability in
consumer preferences, market trends, and external factors like economic conditions or
seasonal changes means that demand patterns can be highly idiosyncratic (Padilla,
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García, & Molina, 2021). Furthermore, the complexity increases when considering the
diverse range of products a company might offer, each with its own demand cycle and
influencing factors. This complexity requires the development of advanced models that
can capture and analyze these nuances, thereby enabling more accurate predictions.

In this research, a dataset covering retail store sales from 2014 to the end of 2017
has been analyzed. This dataset is composed of three distinct product segments:
office supplies, technology, and furniture. Among these, the furniture category has
been specifically selected for a comprehensive analysis focused on sales forecasting.
This selection is primarily due to the unique seasonal sales patterns evident in the
furniture category, a feature not commonly found in publicly accessible datasets. With
the global furniture market evaluated at USD 630.55 billion in 2022 and expected
to reach approximately USD 1,051.77 billion by 2032, growing at a CAGR of 5.3%,
the sector’s analysis is particularly pertinent (see Figure 1.1). The historical data’s
seasonality provides a solid foundation for future demand predictions, offering crucial
insights into consumer behavior in both residential and commercial realms (Bednárik
& Pakainé Kováts, 2010). The analysis of this category, therefore, holds significant
potential for enhancing the understanding of market trends and customer preferences.
The findings from this study are anticipated to be instrumental in shaping effective
strategies for inventory management, marketing, and comprehensive business planning.
This is particularly relevant for products that demonstrate similar seasonal trends and
market behaviors, thereby allowing businesses to make more informed decisions in these
key operational areas.

Figure 1.1: Furniture Market Size, 2022 to 2032. From: Precedence Research
(P. Research, 2023). Own Elaboration

Considering that seasonal time-series forecasting is pivotal for strategic decision-
making and planning future activities, different forecasting strategies have been pro-
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posed. As such, traditional models like Seasonal Autoregressive Integrated Moving
Average (SARIMA), Autoregressive Integrated Moving Average (ARIMA), and the
Holt-Winters Triple Exponential Smoothing model have been extensively employed in
this area. In contrast, modern methods such as Light Gradient Boosting Model (Light-
GBM), Facebook Prophet, Random Forest, and Long-Short Term Memory models
(LSTM) models (Ali & Nakti, 2023; Fierro Torres, Castillo Pérez, & Torres Saucedo,
2022; Hasan, Kabir, Shuvro, & Das, 2022) are acknowledged for their superior handling
of non-linear data (da Fonseca Marques, 2020). In this context, the focus of this study
is on using past sales data for future furniture sales forecasting, rather than analyzing
the performance of the retail store itself. This research aims to investigate the capabil-
ities of neural network models with attention mechanisms in seasonal sales forecasting,
where LSTM models with attention mechanisms have been identified as particularly
effective in other time series forecasting applications (Hollis, Viscardi, & Yi, 2018; Wen
& Li, 2023). A comparison of this proposed approach with various deep learning (DL)-
based forecasting methods is undertaken, aiming to conclude about the most effective
approach. To our knowledge, this specific methodology has not been previously applied
to sales forecasting, offering potential benefits for business operations.

1.2 General and Specific Objectives

1.2.1 General Objective
The main goal of this thesis is to propose and evaluate a product demand predic-
tion model, based on neural networks with attention mechanisms, and compare its
performance with other Deep Learning (DL) time series prediction algorithms. The
study seeks to provide a deeper understanding of the effectiveness of attention models
in demand prediction and offer practical recommendations for its application in real
business scenarios.

1.2.2 Specific Objectives
• Contextualize the importance of product demand forecasting in business plan-

ning, highlighting its role in improving efficiency and profitability.

• Analyze current methodologies for product demand forecasting, with a focus on
DL techniques, identifying and comparing the most common techniques for time
series forecasting in this field of application.

• Understand neural network strategies with attention mechanisms, addressing
their performance and applicability in time series forecasting.

• Implement a recurrent neural network model with attention mechanisms in the
context of cabinet demand prediction.

• Propose a product demand prediction model based on neural networks with at-
tention mechanisms and validate its performance through comparative experi-
ments with other DL time series prediction techniques.

Product Demand Prediction using Neural Networks with Attention Mechanisms 3



1.3 Document Structure and Organization
This document is organized into seven chapters. Chapter 2, the state-of-the-art review,
presents a comparison of significant sales forecasting methodologies, contrasting results
from traditional and DL techniques. Chapter 3 is dedicated to elucidating modern
DL models, including various LSTM Recurrent Neural Network architectures. The
methodology for applying these models to the dataset is detailed in Chapter 4. Chapter
5 discusses the performance of these models within the specific context of this research.
Finally, conclusions drawn from the study are summarized in Chapter 5.

Product Demand Prediction using Neural Networks with Attention Mechanisms 4



Chapter 2

Literature Review

Sales forecasting is a key component of a company’s operational strategy, providing
essential insights that significantly improve the accuracy of future outcome predictions.
This ability to foresee upcoming trends is critical in guiding investment decisions,
optimizing inventory management, and impacting various other core aspects of business
operations. However, despite its significance, many companies still predominantly rely
on the intuitive judgments of their sales staff for forecasting. To address this gap,
various strategies have been proposed, encompassing traditional models such as the
Box and Jenkins model, Autoregressive Integrated Moving Average (ARIMA), linear
regression (LR), and Holt-Winters (HW), each offering a structured approach to predict
sales more accurately and systematically.

In the specific domain of sales forecasting, two predominant methodologies emerge
as focal points: Monte Carlo (MC) simulations and time series regression analysis.
A detailed study by (Paixão & da Silva, 2019) provides an in-depth comparison of
these methodologies, analyzing a historical dataset of mechanical components sales
from 2011 to 2018. Monte Carlo simulations, efffective in predicting highly variable
and unpredictable factors, offer a unique approach in the unpredictable realm of sales
forecasting. This method employs stochastic simulations generated through random
variables, a technique beneficial in scenarios where the independent variable is inher-
ently uncertain.

Conversely, time series regression analysis adopts a deterministic method, leverag-
ing historical data to forecast future trends. The research reported by (Paixão & da
Silva, 2019) examines various time series analysis techniques, including moving average
(MA), weighted moving average (WMA), least squares estimate (LSE), and HW, and
compares them with Monte Carlo simulations. The results demonstrate a consistent
superiority of time series regression analysis techniques over Monte Carlo simulations,
with MA and WMA emerging as especially effective. This outcome shows the effective-
ness of deterministic approaches, which are based on historical data, over the random
and stochastic processes of Monte Carlo simulations in the sales forecasting field.

In addition, a notable study proposed by (Demir & Akkaş, 2018) researches the
use of models for a dataset containing the daily sales of a feed company, using real-
world data. This research conducts an extensive comparison between traditional sales
forecasting methods, such as MA, Exponential Smoothing (ES), Holt’s Linear Method
(HLM), and Winter’s Method (WM), and modern approaches like Artificial Neural
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Networks (ANN) and Support Vector Regression (SVR). Surprisingly, these research
works, including that proposed by (Green & Armstrong, 2015), suggest the efficacy
of simpler models, raising the question of whether complex models truly surpass the
accuracy of simpler ones. Analyzing sales data from May 2014 to March 2015 across
five different products, the last study evaluates the distinct benefits of each forecasting
method, acknowledging that no single methodology is universally applicable to all
scenarios. However, the study reveals that while there is no single best-performing
traditional model, as their effectiveness varies across different products, they generally
underperform compared to non-traditional methods employing machine learning-based
algorithms like ANN and SVR.

Building on ANNs, (Ansuj, Camargo, Radharamanan, & Petry, 1996) focuses on
predicting the sales of a medium-sized enterprise in Brazil from 1979 to 1989. This
study was groundbreaking as it highlighted the superior performance of ANNs, par-
ticularly in outperforming the ARIMA model in a dataset characterized by noise,
seasonality, non-stationarity, and randomness. The capacity of ANNs to capture non-
linearities, as emphasized in further studies (Adya & Collopy, 1998) and (Zhao et al.,
2009), proves fundamental for capturing data patterns. This ability not only enhances
predictability (Tkáč & Verner, 2016) but also showcases their remarkable adaptability
and learning capabilities when confronted with real-world datasets marked by noise
(Livieris, Kiriakidou, Kanavos, Vonitsanos, & Tampakas, 2019).

Expanding on previous research on ANNs, the field of sales forecasting really im-
proved predictions with Deep Neural Networks (DNNs). Unlike traditional ANNs,
DNNs are distinguished by their multiple hidden layers and a specialized memory
block that retains prior input data, facilitating a deeper extraction data across var-
ious levels of complexity (Rafi & Karim, 2020). DL models, especially DNNs, have
shown their effectiveness in handling complex networks and executing sophisticated
prediction calculations more efficiently. Their core strength lies in adeptly identify-
ing and learning from complex patterns within extensive datasets, a key advantage
highlighted in (LeCun, Bengio, & Hinton, 2015). Moreover, a critical aspect of DNNs
is their exceptional ability to perform feature extraction. They excel at transforming
unstructured data into structured, coherent vectors of information, a process that is
particularly challenging for traditional ARIMA models, as noted in (Murray, Du Bois,
Hollywood, & Coyle, 2023).

In this research line, a pioneering study by (Das & Chaudhury, 2007) introduces
a DNN architecture for predicting weekly footwear sales. Specifically, it employs a
Recurrent Neural Network (RNN),as detailed in (Lipton, Berkowitz, & Elkan, 2015).
Reported results have demonstrated RNNs ability to accurately predict footwear sales
for the upcoming week or month and a half, achieving an impressive Mean Absolute
Percentage Error (MAPE) of 9% for short-term forecasts within this dataset. Specif-
ically, RNNs are particularly adept at processing information sequentially, managing
data one element at a time while adeptly capturing dependencies and patterns across
time sequences. This characteristic makes them exceptionally suitable for modeling
sequences where inputs are interdependent and vary over time. An added benefit of
RNNs, as emphasized in (Eddy & Allman, 2000), is their parallelization capability,
which significantly reduces the training time. Extensive studies across diverse fields
that utilize RNNs consistently confirm their effectiveness in not just short, but also
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medium and long-term forecasts, highlighting the critical role of hidden layers that re-
tain memory of past inputs (Yasdi, 1999). This factor is instrumental in RNNs’ ability
to outperform traditional ANNs in time series analysis, reinforcing their significance
in this domain (Rafi & Karim, 2020).

Considering the advancements in models based on RNNs, further research efforts
have shifted their focus towards a specialized variant known as Long Short-Term Mem-
ory (LSTM) networks. LSTMs are distinguished by their capacity to retain and pro-
cess large amounts of data over prolonged periods, a feature extensively discussed in
(Staudemeyer & Morris, 2019). Their unique ability to manage long-term dependen-
cies, which includes recalling data from earlier stages in the time series, plays a crucial
role in significantly enhancing the accuracy of predictions, as highlighted in (Q. Yu,
Wang, Strandhagen, & Wang, 2018).

A notable example of this is the study by (Q. Yu et al., 2018), where LSTMs were
used to predict sales figures for 66 products across a 45-week dataset. The model uses
data from the latter four weeks to forecast sales in the fifth week. Despite achieving
low forecasting errors for only 25% of the products, this was attributed to data scarcity
rather than any inherent limitations of the LSTM architecture. Their superior perfor-
mance comes from the fact that, unlike traditional models, LSTM networks effectively
model long-term dependencies and patterns in sequential data, making them exception-
ally well-suited for time-series forecasting (Beheshti-Kashi, Karimi, Thoben, Lütjen,
& Teucke, 2015). This capability allows companies to enhance the robustness of their
forecasting models, making for easier adaptation to seasonal variations and evolving
data trends. Additionally, LSTM models avoid the vanishing gradient problem, a big
issue in other machine learning approaches (Almqvist, 2019).

However, it is important to recognize that the implementation of LSTM RNNs is
associated with challenges, notably their complexity and computational requirements.
In response, recent research efforts have been directed towards evaluating the compara-
tive effectiveness of modern and traditional forecasting models. These studies highlight
the necessity of balancing accuracy with practicality in forecasting models (Haselbeck,
Killinger, Menrad, Hannus, & Grimm, 2022; Quevedo, 2020).

A study by (Elmasdotter & Nyströmer, 2018) conducted a comparative analysis of
the LSTM model with the ARIMA model, using a sales dataset from an Ecuadorian
grocery chain. It was found that LSTMs outperformed the ARIMA model in cap-
turing the complexity of sales forecasting problems, demonstrating superior predictive
capabilities by addressing the nonlinearities inherent in sales data. The iterative opti-
mization algorithm used in the LSTM approach was a contributing factor to its efficacy
compared to other models (Siami-Namini, Tavakoli, & Namin, 2018). However, it was
noted that the successful implementation of LSTM networks requires hyperparameter
optimization, as a universally applicable set of hyperparametersparameters may not
exist for all forecasting problems (Elmasdotter & Nyströmer, 2018).

Regarding studies researching LSTM models further than the Vanilla LSTM model,
a study conducted by (Murugesan, Mishra, & Krishnan, 2021) is highlighted, in which
time series analysis is performed on various LSTM architectures. These include the
basic LSTM, Bidirectional LSTM, Stacked LSTM, and Convolutional Neural Network
(CNN) LSTM. A historical dataset including agricultural commodities prices is used
in this research, forecasting prices for commodities such as wheat, gram, banana, rice,
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and groundnut. The research achieves high forecasting accuracy, with a 95% confi-
dence interval demonstrated across all LSTM-based models. Notably, the CNN-LSTM
variant exhibits slightly superior forecasting results compared to other LSTM tech-
niques, highlighting its efficacy in this context.CNN-LSTMs combine the strengths of
CNNs and LSTMs, making them highly effective for tasks involving spatial-temporal
data. The CNN layers are great at extracting spatial features within the data, while
the LSTM layers capture temporal dependencies, resulting in a robust model that can
understand complex, multi-dimensional datasets (Wang, Cao, & Philip, 2020).

Additional studies have conducted comparative analyses between traditional meth-
ods and modern DL-based technologies. A significant study by (Ensafi, Amin, Zhang,
& Shah, 2022) compares classical models like ARIMA and SARIMA against advanced
forecasting models, including LSTM and CNN, using a retail sales dataset focused on
furniture. The findings reveal the Stacked LSTM’s superior performance, with the
CNN model also showing notable success. The main advantage of Stacked LSTM,
which underpins these findings, lies in its ability to effectively layer multiple LSTM
units This layered structure and enhanced memory capability are key to the model’s
predictability (Pavlyshenko, 2019) This is shown in the 156.15% reduction in Root
Mean Square Error (RMSE) when comparing the best traditional model (SARIMA 1)
to the top machine learning model (Stacked LSTM).

Initially renowned for its remarkable achievements in image synthesis, in which
it demonstrates a high-fidelity replication of inputs, the Autoencoder has undergone
successful adaptations for the domain of sales forecasting. Within this context, the
model distinguishes itself by because of being great at representing abstract data rep-
resentations (great for feature extraction) (W. Yu, Kim, & Mechefske, 2021). This
can be great for models in other fields such as anomaly detection (Meng, Catchpoole,
Skillicom, & Kennedy, 2017). The Autoencoder’s capacity for abstraction comes from
its training, where reward mechanisms are used. This methodological approach has
yielded promising outcomes, as evidenced by its application to a dataset originating
from an Ecuadorian pharmacy, thereby substantiating its practical utility and efficacy
in real-world scenarios (Chang et al., 2017).

Furthermore, the application of attention mechanisms in time series prediction has
gained notable attention in recent researches. Attention mechanisms have proven to
be crucial in enhancing the forecasting accuracy of various models. Notably, a study
conducted by (Li, Yang, Zhu, & Zhang, 2021) proposes a sales forecasting model using
a historical dataset of clothing sales. The study demonstrated that the integration of
attention mechanisms led to improved predictions compared to traditional individual
models such as Prophet, Vanilla Gated Recurrent Unit (GRU), Vanilla LSTM, Vanilla
RNN, and ARIMA. The research specifically highlighted the superior performance of
both the composite GRU-Prophet model with attention mechanisms and the GRU
model with attention mechanisms. These models outperformed invidual models, show-
casing the efficacy of attention mechanisms in capturing complex patterns within sales
data. However, despite these promising results, there remains a gap in comprehensive
comparative analysis to evaluate other LSTM variants, some of which have reported
even better performances. This indicates a need for further exploration and validation
across a broader range of LSTM-based models.

Moreover, an alternative approach within the domain of sales forecasting involves
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the deployment of ensemble methods, in which multiple models operate independently,
and their predictions are subsequently combined during the forecasting phase. Ensem-
ble methods have demonstrated high effectiveness by harnessing the unique strengths
of underlying individual models. A case in point is the study conducted by (Fleurke,
2017) which explores the application of ensemble techniques in predicting automobile
sales data. This comprehensive study encompasses datasets spanning total sales in
the USA from 1992 to 2017 and new car registrations in the Netherlands from 2012
to 2017. By combining the predictive capabilities of five uncorrelated models (HW,
ANN, Theta, Random Forest (RF), and a Generalized Linear Model (GLM)) through
a straightforward averaging approach, significant results were achieved. Impressively,
the ensemble consistently outperforms the individual forecasting models, highlighting
its potential despite its relative simplicity.

Another remarkable research related to ensemble methods combines ARIMA and
ANNs to enhance forecasting accuracy for retail clothing sales prediction (S. Yu, Dong,
Chen, He, & Shi, 2019). This model strategically leverages the linear information
learned by ARIMA and the non-linear insights acquired by ANNs. In contrast to the
straightforward averaging approach used by (Fleurke, 2017), this study incorporates
the expected error to determine model weights. The combined model, when compared
to standalone models, consistently exhibits superior performance.

In addition to this approach, stacking strategies have also been explored as ensem-
ble methods for generating forecasts. Unlike ensemble strategies that simply average
the outputs of different models, stacking strategies integrate diverse learners as se-
quential layers within the model. A notable application of this approach is in the
study by (Jiang, Fan, Sun, & Liu, 2021), where ARIMA, LSTM, and XGBoost are
used as base models and LightGBM as the final prediction model. This study con-
cludes that stacking effectively consolidates the strengths of each individual model,
resulting in enhanced forecasting performance beyond what ARIMA and LSTM could
achieve alone. However, it is important to acknowledge that stacking models can lead
to longer training times and increased computational costs due to the integration of
multiple layers.

Considering the literature previously reviewed, this project is dedicated to a com-
parative analysis of various DL architectures, placing special focus on different LSTM
variations and the integration of attention models. The inclusion of attention mech-
anisms, as informed by the literature review, is expected to exhibit enhanced perfor-
mance compared to many existing DL frameworks. Moreover, the comparison will
consider various state-of-the-art LSTM network variations. This methodology seeks
to achieve an ideal balance between computational burden and performance efficiency.
The objective of this analysis is to identify the most efficient and effective approach
for complex data, with the potential to set new benchmarks in the product demand
forecasting field.
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Citation Goal Dataset Models Results
(Paixão & da
Silva, 2019)

Comparing sale forecasting perfor-
mance between a time series analysis
approach (deterministic) and a Monte-
Carlo simulation approach (stochas-
tic).

Specific mechanic
component sales from
September 2011 to
August 2018.

MA, WMA, HW, LSE
and Monte-Carlo Esti-
mation.

The most effective models were the MA and the WMA, based on time-
series analysis. MAPE for the last tested month was 14% for MA, 14%
for WMA, 19% for HW, 18% for LSE and 18% for MC, showing the
effectiveness for MA and WMA.

(Demir &
Akkaş, 2018)

Comparing sales forecasting perfor-
mance of traditional models against
modern machine learning-based mod-
els

Feed company’s sales
from May 2014 to
March 2015

MA, ES, HLM, and
SVR.

The results show no clear traditional best-performing model. When com-
pared to non-traditional models (SVR and ANN), non-traditional models
clearly outperform traditional models. As an example, for product 5,
MAPE was 25% for MA, 35% for ES, 32% for HLM, 32% for WM, 13%
for ANN and 6% for SVR, showing outperformance from modern models
(SVR and ANN).

(Loureiro,
Miguéis, & da
Silva, 2018)

Evaluating the performance of Deep
Neural Networks in sales forecasting.

Product sales of 684
types of women bags.

DNN, DT, RF, SVR,
ANN, and LR.

Performance metrics showed modern models outperforming, with the DF
being the best-performing model, as we can see through MAPE (0.38 for
DNN, 0.38 for DT, 0.35 for DF, 0.39 for SVR, 0.39 for ANN, and 0.45 for
LR).

(Lakshmanan,
Vivek Raja, &
Kalathiappan,
2020)

Comparing a basic LSTM model fore-
casting to a baseline of other more tra-
ditional models. This is done for four
different prediction ranges: one week,
two weeks, three weeks and four weeks.

Store and sales infor-
mation from 2013 to
2015.

LSTM, KR, ANNs. For all the prediction ranges, the LSTM model outperformed all of the
other models. MSE for the LSTM model was 2.89 while it was 4.52 for
the ANN, 6.72 for the MLP and 12.1 for the LR.

(Murugesan et
al., 2021)

Comparing time series forecasting per-
formance of different types of LSTM
models.

Five agricultural com-
modity prices from
January 2000 to July
2020.

Basic LSTM, bidirec-
tional LSTM, Stacked
LSTM, CNN LSTM

All models obtained good results at a 95% interval. The different com-
modities showed a different best-performing model. For Rice prices, MAE
was 0.19 for Basic LSTM, 0.26 for Bi LSTM, 0.27 for Stacked LSTM, 0.29
for CNN LSTM.

(Fleurke, 2017) To evaluate whether employing an en-
semble approach can enhance the ac-
curacy of forecasting

Car registration in the
Netherlands from 2012
to 2017 and total ve-
hicle sales in the USA
from 1992 to 2007

ES, ARIMA, ANN,
VAR, Theta, RF,
GLM, and Ensembles.

Performance metrics show that the combination of models with a MAPE
of 10.3% and the GLM with a MAPE of 10% are the most effective models
for this set of data.

(S. Yu et al.,
2019)

The study investigates the efficacy of
integrating ARIMA models with BP
ANNs in enhancing the precision of
sales forecasting.

Sales of a clothing
seller from March 2014
to December 2018

ARIMA, BP Neural
Network and ARIMA-
BP

Metrics showed outperformance by the ensemble model, with a 7.3%
MAPE. Individual models ARIMA and BP have MAPEs of 27.7% and
15.5% respectively.

(Jiang et al.,
2021)

This research delves into the potential
of enhancing sales forecasting by em-
ploying a composite model that syner-
gizes ARIMA, LSTM, and XGBoost as
foundational models, with LightGBM
serving as the mechanism for final pre-
dictions

Pharmaceutical sales
of a certain company
in 2020

ARIMA-LightGBM,
LSTM-LightGBM and
XGBoost-LightGBM

MAPE for 5.7% for ARIMA, 5.2% for LSTM, 5.4% for XGBoost and 4.9%
for Stacking. Stacking techniques such as this one improve accuracy but
have a higher computational cost.
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Citation Goal Dataset Models Results
(Li et al., 2021) Implementing attention mechanisms

in a composite GRU- Prophet model
and comparing the performance to the
baseline of other models.

Daily sales of a product
from September 2016
to February 2019

GRU-Prophet with
Attention Mechanisms,
GRU with Attention
Mechanisms, Prophet,
GRU, LSTM, RNN,
and ARIMA

The best-performing models are those that include attention mechanisms,
with the GRU-Prophet with Attention Mechanisms and the GRU with
attention mechanisms. Attention mechanisms appear to drop MAE from
0.091 to 0.09. This paper provides insights into how models including
attention mechanisms can improve the forecast’s accuracy.

Table 2.1: Comparison of research papers related to sales forecasting techniques.
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Chapter 3

Theoretical background

DL, a subset of machine learning, is a rapidly evolving field that has significantly
transformed the landscape of artificial intelligence. Characterized by its ability to learn
from and interpret complex data structures through layered computational models, DL
has found applications across diverse domains ranging from natural language processing
to image recognition. At the core of DL are ANNs, which are great at interpreting
complex data. These networks, which we can see in Figure 3.1, are structured in layers
comprising interconnected nodes or ‘neurons’. The input layer receives the initial data,
which is then processed through one or more hidden layers (LeCun et al., 2015). Each
neuron in these layers transforms the input, extracting features and identifying patterns
before passing the information to the subsequent layer. The process culminates in the
output layer, where the final analysis or prediction is generated. This architecture
allows ANNs to learn from high-dimensional data, enabling sophisticated applications
such as image and speech recognition, and complex time series forecasting.

...

... ...

Input
layer

Hidden
layer Output

layer

Figure 3.1: Neural network architecture from own elaboration

The widespread adoption DL can be attributed to several overarching advantages
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(Sarker, 2021). DL models have proved unparalleled proficiency in capturing nonlin-
ear relationships within datasets. Their ability to self-learn feature representations
(bypassing the need for manual feature engineering) streamlines model development
and enhances scalability. Additionally, the continuous advancements in computational
power, alongside the increasing availability of large datasets, have fueled their ascen-
dancy. These factors, combined with DL’s versatility in handling a variety of complex
tasks, from vision systems to natural language understanding, render it a powerful tool
in the modern AI toolkit.

3.1 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are distinguished by the presence of backward con-
nections between neurons, which enables them to effectively process sequential data
(Oliver-Muncharaz, 2020). As it can be seen in Figure 3.5, each recurrent unit within
an RNN, composed of multiple neurons, calculates an output at every time step. This
output, designated as yt, is dependent on the next temporal process. As the network
goes onto the next time step, each neuron receives a new input vector xt and also
considers the output from the previous time step, yt−1, which serves as the recurrent
input. This streamlined architecture of RNNs facilitates the network’s ability to draw
upon previously acquired information, which is essential for managing long short-term
dependencies. The neuron then employs an activation function, denoted as θ, to com-
pute the output vector based on both the current input vector (xt) and the recurrent
input (yt−1). Common choices for θ include linear, sigmoidal, or hyperbolic tangent
(tanh) functions, with the tanh function often preferred in time series applications due
to its efficacy in handling temporal data (Oliver-Muncharaz, 2020).

The operational principle of an RNN can be summarized by the following equation:

yt = θ(hx · xt + hy · yt−1 + b) (3.1)

where hx and hy represent the weight matrices for the input and the recurrent input,
respectively, and b is the bias term. The function θ acts upon the linear combination
of the inputs and their corresponding weights, plus the bias, to generate the output yt
for each time step

RNNs present significant advantages for time series forecasting due to their unique
ability to process sequential data. Unlike traditional ANNs, RNNs can retain informa-
tion from previous inputs, enabling them to understand temporal dynamics and con-
textual dependencies. This memory component allows for more accurate predictions in
scenarios where historical data is the focus. RNNs also accommodate variable-length
input sequences, a notable advantage over ANNs which require fixed-size inputs (Hewa-
malage, Bergmeir, & Bandara, 2021). However, while RNNs are adept at processing
sequential data for time series forecasting, they face challenges like the vanishing gra-
dient problem, where training becomes ineffective over long sequences. This limitation
slow their ability to capture long-term dependencies. Additionally, RNNs can struggle
with overfitting, especially in complex models with large datasets. To overcome these
issues, advanced variants such as LSTM networks GRU have been developed. These
new approaches collectively make RNNs a more effective choice for complex time series
forecasting tasks
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Figure 3.2: RNN Arquitecture from own Elaboration.

3.2 Vanilla LSTM Recurrent Neural Networks
LSTM networks, a specialized type of RNNs, are adept at handling long-term depen-
dencies in sequential data due to their distinctive architectural design. The structure of
an LSTM unit, as illustrated in Figure 3.3, includes various gates (the input gate, for-
get gate, output gate, and a cell state), each playing important roles in the information
processing. The forget gate, governed by the equation:

ft = σ(Wf · [ht−1, xt] + bf ), (3.2)

determines which information should be discarded from the cell state. Here, ft repre-
sents the forget gate’s output, σ denotes the sigmoid function, Wf is the weight matrix
associated with the forget gate, ht−1 is the previous hidden state, xt is the current
input, and bf is the bias term for the forget gate. Similarly, the input gate, described
by

it = σ(Wi · [ht−1, xt] + bi), (3.3)

and the equation
C̃t = tanh(WC · [ht−1, xt] + bC), (3.4)

decides what new information is added to the cell state. The variables it and C̃t

represent the input gate’s output and the candidate cell state, respectively, with Wi

and WC as their corresponding weight matrices, and bi and bC as biases. In addition,
the cell state update is captured by

Ct = ft ∗ Ct−1 + it ∗ C̃t, (3.5)

where Ct is the current cell state, and ∗ denotes element-wise multiplication. Finally,
the output gate, another critical component of the LSTM unit, is governed by:

ot = σ(Wo · [ht−1, xt] + bo), (3.6)

where ot is the output gate’s activation, Wo is the corresponding weight matrix, and
bo is the bias. This gate controls the extent to which the cell state influences the final
output. It works together with the previously described gates to refine the LSTM’s
ability to make precise predictions. The LSTM’s proficiency in managing sequential
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Figure 3.3: LSTM cell architecture from own elaboration

data, bolstered by these mechanisms, makes it suitable for tasks where understanding
past context is key to predicting future events.

LSTM networks stand out due to their specialized architecture, which offers sev-
eral advantages in processing sequential data (Staudemeyer & Morris, 2019). Firstly,
their ability to effectively handle long-term dependencies allows them to retain crucial
historical information over lengthy sequences, a task where traditional RNNs often fall
short. This feature is particularly beneficial in applications like language modeling
and time series forecasting, where past context significantly influences future predic-
tions. Secondly, LSTMs mitigate the vanishing gradient problem, common in standard
RNNs, through their complex gating mechanism. This ensures more stable and ef-
fective training over extended periods (Kelleher, 2019). Furthermore, LSTMs’ unique
gating system, including forget, input, and output gates, allows for more control over
the flow of information. This results in a further ability to model complex patterns
and relationships in data, leading to more accurate predictions.

While LSTM networks offer substantial benefits in handling sequential data, they
are not without limitations, prompting the development of more advanced architectures
such as Stacked LSTM and Bidirectional LSTM. One primary drawback of standard
LSTMs is their computational complexity and time-consuming training process, which
can be prohibitive, especially with large datasets. This complexity also translates into
challenges in tuning hyperparameters and the need for substantial computational re-
sources (Granata & Di Nunno, 2023). Additionally, while LSTMs are proficient at
capturing long-term dependencies, they might not efficiently extract and use all avail-
able information in the input sequence, particularly in cases with very complex patterns
or long sequences (Zhang et al., 2021). Stacked LSTMs address this by layering multi-
ple LSTM layers to improve feature extraction capabilities, while Bidirectional LSTMs
process data in both forward and backward directions, offering a more comprehen-
sive understanding of context. These evolved architectures aim to refine the LSTM’s
predictive power and efficiency, tackling constraints in processing sequential data.
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Figure 3.4: Stacked RNN architecture. Own Elaboration from (How do I draw a simple
recurrent neural network with Goodfellow’s style? — tex.stackexchange.com, n.d.)

3.3 Stacked LSTM Recurrent Neural Networks

Stacked LSTM networks, an advanced variant of the basic LSTM architecture, were de-
veloped to improve the model’s ability to capture more complex patterns in sequential
data. Unlike a simple LSTM that consists of a single layer of LSTM units, a Stacked
LSTM incorporates multiple layers of LSTM units stacked one after the other (Y. Yu,
Si, Hu, & Zhang, 2019). This structure allows the network to learn at various levels of
abstraction, as information is processed through multiple layers, adding depth to the
model’s learning capability.

Figure 3.4 illustrates the difference between a simple LSTM architecture and a
Stacked LSTM architecture. In the simple LSTM, each LSTM unit passes its output
directly to the next time step in the sequence. On the other hand, the Stacked LSTM
has several layers of LSTM units, where the output of one layer of LSTMs serves as the
input to the next layer. This creates a hierarchy of layers where higher levels can learn
to recognize more abstract features in the data sequence, potentially improving the
network’s predictive performance on complex time series forecasting tasks. However,
these benefits come at the cost of increased computational complexity and the risk of
overfitting due to the added layers, which may also complicate model tuning. Con-
sequently, alternative architectures like Bidirectional LSTMs have been proposed to
address these challenges by processing data in both forward and backward directions,
aiming to enhance performance without excessively complicating the model structure.
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Figure 3.5: Bi-directional LSTM Arquitecture. Own Elaboration from (How to draw
BiLSTM neural network in latex? — tex.stackexchange.com, n.d.)

3.4 Bidirectional LSTM Recurrent Neural Networks
Bidirectional Long Short-Term Memory (BiLSTM) networks are an advanced iteration
of LSTMs designed to improve upon the ability to capture dependencies in sequence
data (Schuster & Paliwal, 1997). BiLSTMs process data in both forward and backward
directions, employing two separate hidden states to integrate both past (backward) and
future (forward) information at each point in the sequence. Based on this considera-
tion, Equations 3.7, 3.8 and 3.9 define forward and backward information flows, which
directly impact the model’s predictive performance. For the forward sequence, the
hidden state at each time step t, denoted by

−→
ht is updated based on the current input

Xt and the previous hidden state
−−→
ht−1:

−→
ht = σ(W−→

xh
Xt +W−→

h
−→
h

−−→
ht−1 + b−→

h
). (3.7)

In the backward sequence, the hidden state
←−
ht is similarly updated, but uses the future

state
←−−
ht+1 instead:

Ht = (W−→
xh

−→
h +W←−

h yh

−→
h + by) (3.8)

The final output Ht at each time step is a combination of both forward and backward
states, ensuring the model captures information from the entire sequence:

Ht = (W−→
xh

−→
h +W←−

h yh

−→
h + by) (3.9)

This dual processing structure allows BiLSTMs to effectively model complex de-
pendencies in time series data, and preserve information over a longer period than uni-
directional LSTMs (Baldi, Brunak, Frasconi, Soda, & Pollastri, 1999; Siami-Namini,
Tavakoli, & Namin, 2019). In summary, they can provide additional context to the
model, which can be particularly beneficial for tasks where understanding the entire
sequence is the focus, such as in language translation or time series forecasting. How-
ever, despite their advantages, the complexity of BiLSTMs can make them prone to
overfitting, especially with smaller datasets. Therefore, while they can offer superior
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performance in certain applications, it’s essential to consider the trade-offs between
performance gains and computational efficiency.

3.5 Convolutional LSTM Neural Networks
Convolutional Neural Networks (CNNs) represent an important architecture in DL,
particularly good at processing data with a grid-like topology, such as images or multi-
dimensional time series. Through the use of convolutional layers, CNNs apply various
filters to input data, efficiently identifying spatial hierarchies and patterns such as
edges, textures, and shapes. These filters, or kernels, slide across the input data to
produce feature maps, highlighting important features without the need for manual
feature extraction. The architecture of CNNs, characterized by alternating convolu-
tional and pooling layers, progressively reduces the dimensionality of the data while
retaining critical information. This layered approach allows CNNs to capture complex,
high-level features in the data by building upon simpler, low-level features identified
in earlier layers (Adler, 2017). The final stages of a CNN typically include one or
more fully connected layers, which interpret the high-level features extracted by the
convolutional layers to perform classification or regression tasks.

Combining CNNs with LSTM networks takes CNNs’ spatial feature extraction
for grid-like data and LSTMs’ temporal dependency modeling in sequences. This
approach is particularly effective for analyzing sequential data with inherent spatial
properties, offering a comprehensive understanding of both spatial and temporal di-
mensions (Adler, n.d.). The process involves initial data preprocessing, followed by
spatial feature extraction through convolutional and pooling layers as it can be seen
in Figure 3.6. LSTM layers then process these features to capture temporal dynamics,
with a softmax classifier employed for final classification tasks, demonstrating a robust
method for complex sequence data analysis (Zhou, Sun, Liu, & Lau, 2015).
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Figure 3.6: CNN LSTM Neural Network Architecture. Own Elaboration.

In extending the capabilities of CNNs for temporal data, convolutional LSTM
(Conv LSTM) networks are introduced, which modify the traditional LSTM structure
to handle high- dimensional spatial input. ConvLSTMs replace the matrix multipli-
cations in the LSTM’s state-to-state transitions with convolution operations, enabling
the model to make use of spatial correlations effectively. As outlined by (Shi et al.,
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2015), the ConvLSTM’s forward update formula is adapted to include these convo-
lutional operations, improving the network’s ability to learn from both spatial and
temporal dimensions. This is reflected in the modified update equations, such as the
state update: Ct = ft∗Ct−1+it∗C̃t described in Equation 3.5, where the standard mul-
tiplications are now convolutions, allowing for spatial feature maps to be integrated
over time. The ConvLSTM architecture then becomes particularly adept for tasks
that require an understanding of both spatial features and temporal sequences, such
as video frame prediction or weather pattern forecasting.

In this context, Conv LSTM networks offer precision advantages by effectively
capturing spatial-temporal patterns, a critical aspect for tasks such as video frame
prediction and weather forecasting. They are particularly good at handling data where
both spatial features and temporal progression are important. However, these networks
are computationally intensive due to the combined complexity of convolutional and
recurrent operations. This can lead to longer training times and the need for more
computational resources (Wang et al., 2020).

3.6 Attention Mechanisms
The attention mechanism was originally introduced in the context of neural machine
translation, with the primary objective of automating the translation of text across
languages. In the conventional sequence-to-sequence model, input sentences are en-
coded into fixed-length vectors, which are subsequently decoded to generate output
sentences. However, this fixed-length encoding can be problematic, particularly when
dealing with longer inputs, potentially resulting in the loss of pertinent information and
leading to inaccuracies in translations. To address this issue, the attention mechanism
enables the decoder to selectively focus on different segments of the input sentence.
During the decoding process, this mechanism computes a weighted sum of the input
sentence encoding vectors, with the model autonomously learning the weights (Maru-
landa, Cifuentes, Bello, & Reneses, 2023).

In the context of time series forecasting, attention mechanisms have demonstrated
efficacy in capturing intricate dependencies and patterns within data (Abbasimehr &
Paki, 2022; Fu, Zhang, Yang, & Wang, 2022). Similar to machine translation, time
series forecasting often involves managing lengthy input sequences. Here, attention
mechanisms offer the potential to better model temporal dependencies by prioritizing
the most relevant segments of the series throughout the prediction process. When
integrating attention with LSTM, the model undergoes training on a time series of a
certain length to capture the hidden state at each time step. The attention mechanism
then uses these hidden states from previous steps H = h1, h2, ..., ht−1 to calculate
a context vector vt that encapsulates relevant information for the current prediction
(Bahdanau, Cho, & Bengio, 2014). This context vector is a weighted sum where the
weights are learned during training, allowing the model to focus on the most influential
factors at each time step. It is calculated through functions 3.10 3.11 by using a scoring
function f : Rm × Rm → R, which evaluates the significance of the input vectors:

αi =
exp(f(hi, ht))∑t−1
j=1 exp(f(hj, ht))

(3.10)
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vt =
t−1∑
i=1

αihi. (3.11)

in which αi is computed from the exponential nonlinear transformation. Increasing
the parameter α will result in the model allocating a greater degree of attention. As
the value of α increases, the model’s focus intensifies on that part of the data.

Attention mechanisms within LSTM networks offer significant benefits for time
series forecasting. These mechanisms enhance the network’s ability to discern and pri-
oritize the most impactful features within a time series, thus refining the prediction ac-
curacy. By focusing on the relevant time steps and discarding extraneous information,
attention-augmented LSTMs provide a nuanced understanding of demand patterns
(Qiu, Wang, & Zhou, 2020). Such capabilities are instrumental for accurately fore-
casting product demand, which is often subject to complex temporal dynamics. Given
these advantages, this final project will focus on leveraging LSTM networks with atten-
tion mechanisms to forecast product demand, aiming to harness their superior pattern
recognition and predictive performance.

Figure 3.7: LSTM with Attention Mechanisms Architecture, own elaboration from
Linkedin (2023)

3.7 Evaluation Metrics
In the field of predictive modeling, the selection and application of evaluation metrics
are fundamental for objectively assessing the performance of algorithms. This section
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is dedicated to discussing key measures that will gauge the accuracy and effectiveness
of the predictive models under consideration. They provide essential insights into
the strengths and limitations of the models, ensuring the optimal choice for specific
forecasting scenarios. In time series forecasting, errors are calculated as the difference
between the prediction and the real value (Botchkarev, 2018).

Aj − Pj, (3.12)

where Aj represents the actual value observed at time j, while Pj denotes the prediction
made by the proposed model for the same time point.

3.7.1 Root Mean Squared Error (RMSE)
The RMSE is a widely used metric in predictive modeling, particularly valued for its
ability to quantify the magnitude of prediction errors. It calculates the square root
of the average squared differences between the predicted values and the actual values
(Botchkarev, 2018), as it can be seen in the following equation:

RMSE =

√∑n
j=1 e

2
j

n
(3.13)

The main concern with RMSE as a metric is its tendency to be influenced by
outliers. This sensitivity is explained by the normal distribution, which underpins
RMSE’s application. In cases of pronounced model biases, it’s often necessary to
correct for systematic errors prior to computing RMSE(Chai & Draxler, 2014).

3.7.2 Mean Absolute Error (MAE)
The MAE is calculated as the sum of the absolute value of the errors divided by the
number of observations:

MAE =
1

n

n∑
j=1

|ej| (3.14)

MAE offers computational simplicity and uniformity in evaluating model accuracy.
It is particularly robust against outliers, minimizing their impact on the overall error
metric. However, by assigning equal weight to all errors, MAE’s simplicity might
not always capture the nuanced performance of predictive models. Additionally, its
linear nature could complicate optimization efforts, particularly in gradient descent
scenarios, potentially leading to challenges in achieving the algorithm’s minimum error
rate (Jadon, Patil, & Jadon, 2022; Qi, Du, Siniscalchi, Ma, & Lee, 2020).

3.7.3 Mean Absolute Percentage Error (MAPE)
The Mean Absolute Percentage Error (MAPE) is considered a relevant metric for
evaluating the accuracy of prediction models by comparing experimental results to
benchmarks in current state-of-the-art projects. By calculating the MAE divided by
the number of observations (see Equation 3.15), MAPE offers a normalized measure,
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enabling a direct comparison of model performance across different datasets. This
passive approach ensures an objective assessment of a model’s accuracy,facilitating the
identification of improvements or advancements over existing models.

MAPE =

√∑n
j=1 e

2
j

n
(3.15)

This metric has several advantages for its error normalization across varying scales
and for providing percentage-based error estimates. Nonetheless, it faces challenges
because of the possibility of undefined values when predictions hit zero and its tendency
to unevenly penalize discrepancies, potentially skewing precision assessment across
prediction algorithms (de Myttenaere, Golden, Le Grand, & Rossi, 2016; Jadon et al.,
2022)
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Chapter 4

Time Series Forecasting of Product
demand using Deep Learning

Our study will aim to use an LSTM with attention mechanisms to produce sales fore-
casts, something that has not been yet proposed to our knowledge. Our study will
answer the predictability of this model as well as how our approach compares to the
methodologies of other LSTMs: Vanilla LSTM, Stacked LSTM, Bidirectional LSTM,
and Convolutional LSTM.

4.1 Methodology
Through this thesis, we will use a dataset (Martin, 2022) with product sales data from
2014 to 2017 divided into three categories: Furniture, Office Supplies and Technology.
The thesis aims to produce a model that will better allow companies to produce sales
forecasts. Coding used for the different models’ implementation can be found under
(Brizuela, 2024), which is mainly based on Ensafi (2020) , and GitHub - AinhoaGalle-
go/TGF: TFG predicción de acciones — github.com (n.d.). Several steps were followed
for the experimental part of this research. For the context of representation purposes,
4.1 sums up this part of the research.

1. Acquisition and data pre-processing: Sales data was compiled from a database
of superstore (large supermarket) sample data. In this case, a database with
provinces changed to Canadian provinces was obtained via a Tableau repository
(Martin, 2022). They were then utilized in the Python file for further data pre-
processing. This included separating data by category, setting index for original
datasets, excluding irrelevant columns such as row id and order id, and separating
data into months instead of daily data.

2. Descriptive data analysis: Data analysis techniques were conducted in order
to understand the structure of our dataset. Distribution, seasonality, and evo-
lution was analyzed to make a preliminary understanding of the shape of our
data.

3. Model implementation Having performed a state-of-the-art analysis of the
data, a series of models were selected to be executed in our environment. Our
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Figure 4.1: Methodological Approach used in this project

study will implement and compare five models: CNN , Vanilla LSTM, Stacked
LSTM, Bidirectional LSTM, and LSTM with Attention Mechanisms. The code
may be found under (Brizuela, 2024), the author’s GitHub page, which is in
turn based on (GitHub - AinhoaGallego/TGF: TFG predicción de acciones —
github.com, n.d.) and (Ensafi, 2020) We will change the lookback and the number
of neurons hyperparameters to find the optimal combination of hyperparameters.

4. Evaluation and comparison of models After the implementation of the mod-
els, we will compare and observe whether the LSTM with Attention Mechanisms
ends up performing better, which is this research’s initial thesis. Final model
election will be chosen based upon the selected evaluation metrics.

4.2 Acquisition and data pre-processing
The dataset utilized in this study comprises Superstore Sales data spanning from 2014
to the conclusion of 2017, containing nearly 10,000 observations and featuring 21 vari-
ables. It covers sales information across three primary categories: furniture, technology,
and office supplies. This study specifically focuses on examining furniture sales due
to the presence of seasonal trends. This dataset, publicly available, offers essential
elements for univariate forecasting, including sales figures and order dates for each
data point. Additionally, it incorporates other variables such as Order ID, Order Date,
Ship Date, Ship Mode, Customer ID, Customer Name, Segment, Country, City, State,
Postal Code, Region, Category, Sub-Category, Product Name, Quantity, Discount, and
Profit. A concise overview of the dataset pertinent to this research can be found in
Figure 4.1.Ensafi (2020)

Through this table 4.2 we can observe a description of each of the columns in the
processed dataset that has 9994 rows, each representing the sale of a product. Data
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Postal Code Sales Quantity Discount Profit Furniture Technology
count 9994.0 9994.0 9994.0 9994.0 9994.0 9994.0
mean 55190.4 229.9 3.8 0.2 28.7 74.2
std 32063.7 623.2 2.2 0.2 234.3 272.4
min 1040.0 0.4 1.0 0.0 -6600.0 0.0
25% 23223.0 17.3 2.0 0.0 1.7 0.0
50% 56430.5 54.5 3.0 0.2 8.7 0.0
75% 90008.0 209.9 5.0 0.2 29.4 0.0
max 99301.0 22638.5 14.0 0.8 8400.0 4416.2

Table 4.1: Main Statistics of the Dataset

was later grouped into months so the predictions could be monthly, something more
stable than daily predictions.

Value Description Type of Value
Ship mode Defines the Mode of shipment. Categorical
Segment Defines the type of customer ordering. Categorical
Country Defines the country in which the sale is produced. Categorical
Region Defines where in the US the sale was produced. Categorical

Category Defines what category the product sold is in. Categorical
Sub-category Defines what sub-category the product sold is in. Categorical

Quantity Defines how many products were sold in that sale. Discrete
Discount Defines what discount percentage was applied to the sale. Continuous

Average_volatility Defines the main table statistics. Continuous
Furniture Defines furniture sales. Continuous

Office supplies Defines office supply sales. Continuous
Technology Defines technology product sales. Continuous

Table 4.2: Description of Data Columns

4.3 Exploratory Data Analysis
Through this section, a series of data analysis techniques will be performed in order to
achieve a better understanding of the dataset.

It’s imperative to choose the variable with the highest seasonality to be able to
capture said seasonality in our model. Capturing these repeated patterns throughout
the years will surely be very valuable for businesses that need to adapt their inventories
to said patterns. Within Figure 4.2, discernible fluctuations in sales are apparent
across all three product categories. Notably, the Furniture category exhibits the most
pronounced seasonality. It is due to this seasonality that Furniture has been identified
as the subject of investigation for this thesis.

To extract the trend and seasonal components, the time series is decomposed using
the STL (Seasonal-Trend decomposition using LOESS) decomposition approach. In
Figure 4.3, we can observe a decomposition of the Furniture Sales data points in which
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Figure 4.2: Sales Evolution by Category

Figure 4.3: Decomposition of Time Series Using an Additive Model

seasonality is demonstrated. We can clearly observe a pattern over the analyzed years,
with a spike in the end of the year, where more furniture is being sold.

We now proceed to make a deep analysis of the furniture sales distribution. In the
table 4.3, we can observe the main statistics of Furniture. We can observe that 2,121
sales of the furniture category were completed between 2014 and 2017. We can also
confirm the distribution findings made with the 75th percentile, as 75% of the sales
totaled less than 436 dollars. We can as well see a very significant standard deviation,
in which results close to the maximum sales value of 4416 dollars.

Statistic Value
Count 2121
Minimum 1.9
25th Percentile 47.04
Average 349.67
75th Percentile 435.17
Maximum 4416.2
Standard Deviation 503.06

Table 4.3: Main Furniture Sales Statistics
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4.4 Model Implementation

4.4.1 Train-Test Split
The dataset was divided into a train-test split of 60/40.

4.4.2 LSTM Model Hyperparameters
Details on the model’s hyperparameters are now provided. These hyperparameters will
be repeated for all the LSTM networks throughout this study.

The model starts compilation with the Adam optimizer employed as the stochastic
gradient descent method. This optimizer offers various advantages, including ease of
implementation, computational efficiency, minimal memory usage, invariance to diag-
onal gradient rescaling, and suitability for large-scale data and parameter problems
Kingma and Ba (2014). Subsequently, the model employs Mean Squared Error (MSE)
as the loss function, a widely favored choice due to its properties of making all bi-
ases positive and amplifying the influence of outliers. This characteristic renders it
particularly appropriate for scenarios where observation noise follows a normal distri-
bution (Ciampiconi, Elwood, Leonardi, Mohamed, & Rozza, n.d.). Both Adam and
MSE are extensively applied in time-series forecasting using Deep Learning (Helmini,
Jihan, Jayasinghe, & Perera, 2019; Terven, Cordova-Esparza, Ramirez-Pedraza, &
Chavez-Urbiola, 2023). Additional key hyperparameters are informed by previous
studies (GitHub - AinhoaGallego/TGF: TFG predicción de acciones — github.com,
n.d.). Batch size, defined as the number of training samples used to update network
parameters in a single iteration (Radiuk, 2017), was set to 16. Epochs, which denote
the number of times the training set is iterated over during training (Afaq & Rao,
2020), were set to 500. Other hyperparameters specific to each model include using
the tanh activation function for LSTM with attention mechanisms and using a pool
size equal to 1 and a kernel size equal to 1 for the Convolutional LSTM model.

During the training process, neural network algorithms initialize random weights,
resulting in different outcomes even when the same network is trained on identical data.
To achieve stable results, models were run five times, and the performance metrics were
averaged for the final model results (Ensafi et al., 2022).

4.5 Evaluation of results
In the previous section, a comprehensive overview of various model architectures was
provided. Based on these architectures, the ensuing section will analyze the results to
identify the most accurate model.

Multiple metrics will be used to evaluate what the optimal model is: Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE). Each metric provides insights into the type of errors incurred by the
methods. To sum up the latter parts of this paper, both MSE, and RMSE are beneficial
when prioritizing the spread of forecast values and penalizing larger discrepancies.
However, interpreting MSE can sometimes pose challenges due to its squared error
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values. Conversely, MAPE is valuable when comparing different forecast models or
datasets, as it yields a percentage value.

In determining the best-performing model, the ideal candidate will exhibit low
values for MSE, RMSE, and MAPE. MAPE is particularly useful for benchmarking this
study against others employing diverse datasets. We have obtained all volatilities, we
will be comparing through the MAPE volatility as it is a relative measure of volatility.

We will be changing the lookback and the number of neurons per layer. The
lookback is the number of months at which the model is looking for predicting each
moment(Lee, Lin, & Gran, 2021). The number of neurons is changed to obtain the
best combination

4.5.1 Vanilla LSTM
As outlined in the theoretical background, the Vanilla LSTM comprises a solitary hid-
den layer of LSTM and one output layer. For this model, we can see a comparison
between prediction and reality in performance metrics in table 4.4. Every single it-
eration was run 5 times to obtain standard deviation and the average of each pair of
lookback and number of neurons. Highlighted in green is the combination of lookback
and neurons that obtains the lowest RMSE performance metric. The best-performing
hyperparameters for the Vanilla LSTM were a lookback of 1 month and 64 neurons
per layer when ranking through the test RMSE metric. This combination of hyperpa-
rameters has also the lowest MAPE volatility, which is a indication of stability.

4.5.2 Stacked LSTM
Unlike the simple LSTM configuration, which features a solitary layer of LSTM units, a
Stacked LSTM incorporates multiple layers of LSTM units stacked sequentially (Y. Yu
et al., 2019). We can see performance metrics for this model in table 4.5. Every single
iteration was run 5 times in order to obtain standard deviation and the average of each
pair of lookback and number of neurons. Highlighted in green is the combination of
lookback and neurons that obtains the lowest RMSE performance metric. It should be
noted that when changing the Lookback, the Lookforward parameter was too changed
in the same manner. The best performing hyperparameters for the Stacked LSTM
were a lookback of 1 month and 32 neurons per layer when ranking through the test
RMSE metric.

4.5.3 Bidirectional LSTM
Bidirectional Long Short-Term Memory (BiLSTM) networks represent an enhanced
version of LSTMs crafted to enhance the capability of capturing dependencies in se-
quential data (Schuster & Paliwal, 1997). BiLSTMs handle data in both forward and
backward directions, utilizing two distinct hidden states to amalgamate past (back-
ward) and future (forward) information at every stage in the sequence. For this model,
we can see performance metrics in table 4.6. Every single iteration was run 5 times
in order to obtain the standard deviation and the average of each pair of lookback
and number of neurons. Highlighted in green is the combination of lookback and neu-
rons that obtains the lowest RMSE performance metric. It should be noted that when

Product Demand Prediction using Neural Networks with Attention Mechanisms 28



changing the Lookback, the Lookforward parameter was too changed in the same man-
ner. The best performing hyperparameters for the Bidirectional LSTM were a lookback
of 1 month and 32 neurons per layer when ranking through the test RMSE metric.

4.5.4 Convolutional LSTM
The ConvLSTM neural network, stemming from LSTM (Hochreiter & Schmidhuber,
1997), is distinguished by its incorporation of a convolution operation within the LSTM
cell. To capture spatial similarity, the ConvLSTM employs a fully-connected (FC-
LSTM) extension, integrating convolutional structures in transitions both from input
to state and from state to state (Chao, Pu, Yin, Han, & Chen, 2018; Nazir, Ab Aziz,
Hosen, Aziz, & Murthy, 2021). For this model, we can see performance metrics in table
4.7. Every single iteration was run 5 times in order to obtain standard deviation and
the average of each pair of lookback and number of neurons. Highlighted in green is
the combination of lookback and neurons that obtains the lowest RMSE performance
metric.It should be noted that when changing the lookback, the lookforward parameter
was too changed in the same manner.The best performing hyperparameters for the
Convolutional LSTM were a lookback of 2 month and 32 neurons per layer when
ranking through the test RMSE metric.

4.5.5 LSTM with Attention Mechanisms
The LSTM with attention mechanisms essentially upgrades the Vanilla LSTM model
by integrating an attention mechanism layer, as discussed in the theoretical background
section. This attention mechanism allows each input element to selectively focus on
other elements, establishing its own distinct context vector. Unlike RNNs, which must
consider the entire context, the attention mechanism only needs to focus on the lo-
cal context, leading to a more accurate context vector (Mehta, 2023). Significantly,
attention mechanisms enable the distinction between past times, as applying uniform
attention to all information can result in sub-optimal predictions (Pantiskas, Verstoep,
& Bal, 2020). Performance metrics are presented in Table 4.8. The best performing
hyperparameters for the LSTM with Attention mechanisms were a lookback of 1 month
and 64 neurons per layer when ranking through the test RMSE metric. The prediction
seems not so volatile when compared to other hyperparameter combinations.

4.5.6 Comparative of the Best Performing Models models
In figure 4.9 below, we can observe a performance comparison between the different
deployed best-performing (looking at the Test Sample RMSE Test performance met-
ric) models. In the table, we can see the best performing model is the Convolutional
LSTM with Lookback=2 months and Neurons=32, as it obtained the lowest RMSE
with the lowest Standard Deviation as well. The order of performance would be Con-
volutional LSTM, LSTM with Attention Mechanisms, Stacked LSTM, Bidirectional
LSTM, and Vanilla LSTM. In order of RMSE volatility, we have (from least volatile
to most volatile): Convolutional LSTM, LSTM with Attention Mechanisms, Vanilla
LSTM, Bidirectional LSTM, and Stacked LSTM. The Stacked LSTM being the most
volatile is probably due to the fact of implementing more than one LSTM in the model.
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From this research, we can also get some insights into the most useful hyperparam-
eters. We can tell that neither 3 months as a lookback nor 16 neurons ever became part
of the most accurate models. 1 month as a lookback and either 32 or 64 neurons as
the layer were the most common hyperparameter combinations in the most predictive
models in this research.
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Lookback Neurons Dataset Split Measure RMSE MAPE MAE

1 16 Train Average 318.8 31.1% 239.0
1 16 Train Std. Deviation 15.1 2.2% 3.1
1 16 Test Average 343.9 30.4% 265.2
1 16 Test Std. Deviation 27.4 0.3% 18.7
1 32 Train Average 300.8 33.3% 235.0
1 32 Train Std. Deviation 0.8 0.7% 1.0
1 32 Test Average 313.4 30.1% 243.7
1 32 Test Std. Deviation 4.0 0.2% 4.4
1 64 Train Average 299.7 34.4% 236.3
1 64 Train Std. Deviation 0.4 0.3% 0.4
1 64 Test Average 307.7 30.3% 237.9
1 64 Test Std. Deviation 1.3 0.1% 1.1
2 16 Train Average 306.7 32.0% 236.1
2 16 Train Std. Deviation 0.7 0.5% 0.7
2 16 Test Average 328.1 32.0% 259.7
2 16 Test Std. Deviation 2.7 0.2% 2.5
2 32 Train Average 307.8 33.2% 239.0
2 32 Train Std. Deviation 9.4 0.6% 9.5
2 32 Test Average 312.4 32.9% 244.3
2 32 Test Std. Deviation 7.1 0.4% 8.5
2 64 Train Average 302.7 33.8% 233.4
2 64 Train Std. Deviation 0.9 0.5% 0.4
2 64 Test Average 316.8 32.9% 250.7
2 64 Test Std. Deviation 2.1 0.3% 1.8
3 16 Train Average 311.3 30.5% 180.2
3 16 Train Std. Deviation 3.8 1.6% 90.0
3 16 Test Average 338.9 33.4% 277.7
3 16 Test Std. Deviation 9.0 0.7% 5.1
3 32 Train Average 307.1 32.5% 229.7
3 32 Train Std. Deviation 1.4 0.7% 1.3
3 32 Test Average 326.3 34.5% 271.6
3 32 Test Std. Deviation 2.9 0.4% 2.8
3 64 Train Average 306.7 32.4% 228.4
3 64 Train Std. Deviation 2.0 0.7% 2.1
3 64 Test Average 323.0 34.7% 270.9
3 64 Test Std. Deviation 4.5 0.2% 2.9

Table 4.4: Vanilla LSTM Performance Metrics
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Lookback Neurons Dataset Split Measure RMSE MAPE MAE
1 16 Train Average 300.0 35.6% 238.4
1 16 Train St. Deviation 0.5 0.1% 0.3
1 16 Test Average 306.2 30.5% 242.0
1 16 Test St. Deviation 0.9 0.1% 0.7
1 32 Train Average 298.8 35.5% 237.5
1 32 Train St. Deviation 0.0 0.4% 1.0
1 32 Test Average 304.3 30.5% 239.8
1 32 Test St. Deviation 1.7 0.2% 0.8
1 64 Train Average 298.4 35.0% 236.1
1 64 Train St. Deviation 0.1 0.4% 0.8
1 64 Test Average 305.2 30.3% 239.0
1 64 Test St. Deviation 1.7 0.2% 1.0
2 16 Train Average 304.3 34.7% 240.4
2 16 Train St. Deviation 0.1 0.2% 0.6
2 16 Test Average 312.8 33.3% 255.4
2 16 Test St. Deviation 0.5 0.1% 0.4
2 32 Train Average 304.5 34.9% 240.7
2 32 Train St. Deviation 0.1 0.5% 1.3
2 32 Test Average 312.7 33.4% 255.6
2 32 Test St. Deviation 1.3 0.4% 0.2
2 64 Train Average 304.7 35.0% 241.2
2 64 Train St. Deviation 0.3 0.6% 1.7
2 64 Test Average 312.3 33.4% 255.4
2 64 Test St. Deviation 1.4 0.4% 0.2
3 16 Train Average 308.8 34.2% 245.0
3 16 Train St. Deviation 1.2 1.1% 3.9
3 16 Test Average 325.3 37.5% 277.2
3 16 Test St. Deviation 1.5 1.0% 2.7
3 32 Train Average 308.8 34.1% 244.3
3 32 Train St. Deviation 1.4 1.1% 3.6
3 32 Test Average 325.6 37.4% 277.3
3 32 Test St. Deviation 1.7 0.9% 2.7
3 64 Train Average 302.4 34.1% 243.2
3 64 Train St. Deviation 2.6 1.3% 4.2
3 64 Test Average 319.0 35.9% 267.4
3 64 Test St. Deviation 2.8 1.2% 3.5

Table 4.5: Performance Metrics for Convolutional LSTM
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Lookback Neurons Dataset Split Measure RMSE MAPE MAE
1 16 Train Average 301.9 33.0% 235.1
1 16 Train St. Deviation 1.8 0.8% 0.9
1 16 Test Average 315.7 30.1% 245.5
1 16 Test St. Deviation 6.0 0.1% 6.0
1 32 Train Average 299.5 34.5% 236.7
1 32 Train St. Deviation 0.6 0.3% 1.0
1 32 Test Average 307.0 30.3% 237.8
1 32 Test St. Deviation 1.3 0.2% 1.0
1 64 Train Average 300.0 34.4% 236.8
1 64 Train St. Deviation 0.7 0.8% 2.0
1 64 Test Average 308.2 30.4% 239.0
1 64 Test St. Deviation 3.1 0.3% 2.8
2 16 Train Average 308.2 35.1% 241.8
2 16 Train St. Deviation 3.0 0.5% 2.5
2 16 Test Average 308.2 32.9% 240.1
2 16 Test St. Deviation 3.8 0.5% 2.3
2 32 Train Average 309.3 35.3% 242.2
2 32 Train St. Deviation 3.1 0.4% 2.1
2 32 Test Average 309.5 33.2% 240.9
2 32 Test St. Deviation 4.5 0.4% 1.8
2 64 Train Average 308.9 35.8% 241.8
2 64 Train St. Deviation 1.9 0.8% 1.6
2 64 Test Average 307.8 33.8% 241.1
2 64 Test St. Deviation 2.0 0.9% 1.8
3 16 Train Average 300.2 31.4% 229.3
3 16 Train St. Deviation 0.7 1.2% 3.4
3 16 Test Average 319.1 38.5% 272.2
3 16 Test St. Deviation 1.0 0.9% 1.3
3 32 Train Average 301.3 31.2% 228.0
3 32 Train St. Deviation 0.7 1.1% 2.1
3 32 Test Average 321.0 38.7% 272.9
3 32 Test St. Deviation 0.4 1.2% 2.1
3 64 Train Average 305.1 33.2% 233.8
3 64 Train St. Deviation 2.7 1.2% 4.6
3 64 Test Average 324.1 40.8% 276.6
3 64 Test St. Deviation 2.2 1.1% 2.0

Table 4.6: Performance Metric for Bidirectional LSTM
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Lookback Neurons Dataset Split Measure RMSE MAPE MAE
1 16 Train Average 298.9 35.3% 237.0
1 16 Train Std. Deviation 0.3 0.1% 0.7
1 16 Test Average 305.4 30.5% 240.4
1 16 Test Std. Deviation 1.4 0.4% 1.5
1 32 Train Average 298.4 35.2% 237.4
1 32 Train Std. Deviation 0.0 0.2% 0.2
1 32 Test Average 303.1 30.2% 236.8
1 32 Test Std. Deviation 0.4 0.2% 0.6
1 64 Train Average 298.5 35.0% 236.9
1 64 Train Std. Deviation 0.1 0.2% 0.6
1 64 Test Average 304.1 30.1% 236.6
1 64 Test Std. Deviation 0.9 0.3% 0.9
2 16 Train Average 301.1 34.0% 238.8
2 16 Train Std. Deviation 1.9 1.2% 2.0
2 16 Test Average 299.5 32.5% 242.9
2 16 Test Std. Deviation 7.3 2.2% 12.5
2 32 Train Average 301.2 34.4% 238.6
2 32 Train Std. Deviation 0.2 0.1% 0.3
2 32 Test Average 294.5 31.1% 233.8
2 32 Test Std. Deviation 0.7 0.2% 0.6
2 64 Train Average 297.4 34.2% 234.9
2 64 Train Std. Deviation 0.1 0.1% 0.2
2 64 Test Average 294.3 32.1% 235.8
2 64 Test Std. Deviation 0.1 0.2% 0.2
3 16 Train Average 296.3 31.5% 233.0
3 16 Train Std. Deviation 1.9 0.6% 3.4
3 16 Test Average 311.3 36.8% 265.5
3 16 Test Std. Deviation 3.2 0.8% 3.6
3 32 Train Average 294.4 31.2% 230.6
3 32 Train Std. Deviation 0.4 0.6% 2.3
3 32 Test Average 311.3 37.4% 266.0
3 32 Test Std. Deviation 1.6 0.7% 1.6
3 64 Train Average 292.2 30.9% 226.1
3 64 Train Std. Deviation 0.3 0.3% 1.3
3 64 Test Average 312.7 37.8% 265.9
3 64 Test Std. Deviation 1.3 0.4% 1.5

Table 4.7: Performance Metric for Convolutional LSTM
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Lookback Neurons Dataset Split Measure RMSE MAPE MAE
1 16 Train Average 300.1 36.2% 240.1
1 16 Train Std. Deviation 0.8 0.3% 1.1
1 16 Test Average 304.4 30.6% 241.0
1 16 Test Std. Deviation 1.1 0.2% 1.4
1 32 Train Average 298.4 35.4% 236.6
1 32 Train Std. Deviation 1.3 1.1% 3.8
1 32 Test Average 305.6 31.3% 244.2
1 32 Test Std. Deviation 3.8 1.2% 8.4
1 64 Train Average 299.1 35.9% 238.6
1 64 Train Std. Deviation 0.3 0.3% 0.8
1 64 Test Average 303.5 30.6% 239.7
1 64 Test Std. Deviation 0.9 0.1% 0.5
2 16 Train Average 296.8 34.2% 235.5
2 16 Train Std. Deviation 1.1 0.3% 1.4
2 16 Test Average 310.1 32.2% 251.4
2 16 Test Std. Deviation 2.4 0.2% 2.2
2 32 Train Average 296.1 34.0% 234.4
2 32 Train Std. Deviation 0.5 0.3% 1.4
2 32 Test Average 309.9 32.3% 251.0
2 32 Test Std. Deviation 1.0 0.2% 1.2
2 64 Train Average 295.9 33.8% 233.7
2 64 Train Std. Deviation 0.3 0.2% 1.0
2 64 Test Average 310.0 32.3% 250.6
2 64 Test Std. Deviation 0.8 0.1% 0.9
3 16 Train Average 297.4 33.8% 233.8
3 16 Train Std. Deviation 1.6 0.5% 3.3
3 16 Test Average 315.9 33.6% 263.1
3 16 Test Std. Deviation 2.3 0.1% 1.0
3 32 Train Average 296.0 33.3% 229.7
3 32 Train Std. Deviation 0.9 0.4% 1.7
3 32 Test Average 313.8 33.5% 261.7
3 32 Test Std. Deviation 1.6 0.2% 1.5
3 64 Train Average 296.0 33.2% 229.5
3 64 Train Std. Deviation 0.6 0.2% 0.9
3 64 Test Average 313.4 33.5% 261.5
3 64 Test Std. Deviation 1.4 0.2% 1.1

Table 4.8: Performance Metrics for Attention LSTM
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Model Lookback Neurons Dataset Split Measure RMSE MAPE MAE
Vanilla LSTM 1 64 Train Average 299.7 34.4% 236.3
Vanilla LSTM 1 64 Train Std. Deviation 0.4 0.3% 0.4
Vanilla LSTM 1 64 Test Average 307.7 30.3% 237.9
Vanilla LSTM 1 64 Test Std. Deviation 1.3 0.1% 1.1
Stacked LSTM 1 32 Train Average 298.8 35.5% 237.5
Stacked LSTM 1 32 Train Std. Deviation 0.0 0.4% 1.0
Stacked LSTM 1 32 Test Average 304.3 30.5% 239.8
Stacked LSTM 1 32 Test Std. Deviation 1.7 0.2% 0.8
Bidirectional LSTM 1 32 Train Average 299.5 34.5% 236.7
Bidirectional LSTM 1 32 Train Std. Deviation 0.6 0.3% 1.0
Bidirectional LSTM 1 32 Test Average 307.0 30.3% 237.8
Bidirectional LSTM 1 32 Test Std. Deviation 1.3 0.2% 1.0
Convolutional LSTM 2 32 Train Average 301.2 34.4% 238.6
Convolutional LSTM 2 32 Train Std. Deviation 0.2 0.1% 0.3
Convolutional LSTM 2 32 Test Average 294.5 31.1% 233.8
Convolutional LSTM 2 32 Test Std. Deviation 0.7 0.2% 0.6
LSTM with Attention 1 64 Train Average 299.1 35.9% 238.6
LSTM with Attention 1 64 Train Std. Deviation 0.3 0.3% 0.8
LSTM with Attention 1 64 Test Average 303.5 30.6% 239.7
LSTM with Attention 1 64 Test Std. Deviation 0.9 0.1% 0.5

Table 4.9: Best Performing Models
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Chapter 5

Conclusions

This study evaluated the effectiveness of LSTM models in predicting future sales, rec-
ognizing the critical role of accurate demand forecasting for business operations. As
highlighted in the introduction, leveraging historical trends enables businesses to drive
their operations and planning effectively. Demand forecasting facilitates inventory
management, mitigates the risk of overstocking, and supports informed strategic plan-
ning and resource allocation (Blum, 2020; Tadayonrad & Ndiaye, 2023). Particularly
in dynamic industries like fashion, technology, and consumer goods, where competi-
tive advantage hinges on precise demand forecasting, maintaining product availability
and managing costs enhance customer satisfaction. Despite the evident benefits, pre-
vailing industry practices often rely on intuition rather than data-driven models for
sales forecasting, with only 40% of businesses currently implementing such initiatives
(Rotenberg & Lindquist, 2013). However, in a rapidly evolving landscape, accurate
prediction models present significant growth opportunities. Achieving high accuracy
remains challenging due to inherent demand patterns within each product category,
necessitating advanced models capable of capturing complex trends in data. The re-
markable progress that deep learning has experienced in capturing intricate data trends
suggests that advancements in technology can greatly benefit sales prediction and busi-
ness operations.

Findings during the state-of-the-art section of this research project indicate that
LSTM architectures with attention mechanisms demonstrate superior capability in
adjusting to these trends. Recent studies have suggested that LSTM models with at-
tention mechanisms are more effective for time-series forecasting compared to other
LSTM variations (Hollis et al., 2018; Wen & Li, 2023). Based on these insights, it was
hypothesized that integrating attention mechanisms into LSTM architectures could en-
hance sales forecasting accuracy. The proposed model was compared against commonly
used LSTM variations, including Vanilla LSTM, Stacked LSTM, Bidirectional LSTM,
and Convolutional LSTM to validate this hypothesis. These LSTM architectures were
selected for their diverse settings and robustness, as demonstrated in previous studies
(Ensafi et al., 2022; Padilla et al., 2021). The lookback and the number of neurons
per layer hyperparameter were changed to find the optimal combination of these vital
hyperparameters.

For this study, a sales dataset from the Tableau superstore was utilized Martin
(2022), containing orders spanning the years 2014 to 2017 and categorized into Fur-
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niture, Office Supplies, and Technology. Subsequently, preprocessing was conducted
to ensure data quality, including verifying the absence of missing values and apply-
ing various transformations such as column renaming and grouping data into months.
Furthermore, exploratory data analysis was carried out to gain a comprehensive un-
derstanding of the dataset structure. An examination of the dataset’s distribution,
through histograms and statistical analyses, revealed a left-skewed distribution. Ad-
ditionally, a yearly sales trend analysis was performed for each category, highlighting
furniture as exhibiting the highest degree of seasonality. A decomposition analysis of
furniture sales time series was conducted to validate this observation, revealing distinct
seasonal patterns within the data.

Our final results found interesting insights for this dataset, finding the Convolu-
tional LSTM as the most effective of the implemented models, with the LSTM with
Attention Mechanisms coming in second place when ranking the models by the RMSE
metric. Our proposed method was found to have very comparable performance to other
more traditional LSTM models used in sales forecasting such as the Vanilla LSTM.
It was even found to obtain better performance than the Stacked LSTM. For these
reasons, our proposed method yields good performance, not having been used for sales
forecasting as for our knowledge.

As well, our final results yield insights as to what the most optimal hyperparame-
ters were for using LSTMs. In 4 out of the 5 models, the most accurate combination
of hyperparameters had a lookback of 1 month. In 3 out of the 5 models, the most
accurate combination of hyperparameters used 32 neurons. Not one of the most effec-
tive combination of results used a lookback of 3 months or 16 neurons. This does not
mean that these hyperparameters could be used, but this does give insights into the
most useful hyperparameters for sales forecasting. Other hyperparameters such as the
batch size can be explored, but our results yield insights into how these models should
be used in the context of sales forecasting.

Regarding how the performance of our model compares to other past research
projects, we should look at MAPE from page 10 of this research. When compared to
traditional models such as the ones in (Demir & Akkaş, 2018), our model compares very
favorably. When comparing to other studies that use deep learning such as (Murugesan
et al., 2021), our performance is comparable to that research project. Perhaps the most
comparable project to ours, (Ensafi et al., 2022) has models performing at a similar
rate, with our project developing a more precise BiLSTM and them having a more
accurate Vanilla LSTM. Having said that, we need to take into consideration that
other research like (Ensafi et al., 2022) distinguishes holidays which is very meaningful
for these models. They also perform the model 20 times per iteration and they do grid
search hyperparameter optimization. This is very likely driving the differences between
our performance and the performance of (Ensafi et al., 2022)

While the models employed can be adapted to different seasonal time series, it
remains essential to fine-tune parameters and identify the most effective forecasting
model for each different forecasting problem. Every dataset has its particularities so
not one model fits all problems. Assessing these forecasting techniques across vari-
ous seasonal datasets and comparing their performance could be the focus of future
investigations. Moreover, experimenting with more intricate LSTM and CNN models
could enhance results, exploring multivariate time-series forecasting is another poten-
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tial direction, and developing hybrid models that blend classical and contemporary
forecasting methods could offer valuable predictions.(Ensafi et al., 2022)
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Declaración de Uso de Herramientas de Inteligencia Artificial
Generativa en Trabajos Fin de Grado

ADVERTENCIA: Desde la Universidad consideramos que ChatGPT u otras her-
ramientas similares son herramientas muy útiles en la vida académica, aunque su uso
queda siempre bajo la responsabilidad del alumno, puesto que las respuestas que pro-
porciona pueden no ser veraces. En este sentido, NO está permitido su uso en la
elaboración del Trabajo fin de Grado para generar código porque estas herramien-
tas no son fiables en esa tarea. Aunque el código funcione, no hay garantías de que
metodológicamente sea correcto, y es altamente probable que no lo sea.

Por la presente, yo, Roberto Gozalo Brizuela, estudiante de E-2 Analytics de la
Universidad Pontificia Comillas al presentar mi Trabajo Fin de Grado titulado “Prod-
uct Demand Prediction using Neural Networks with Attention Mechanisms’, declaro
que he utilizado la herramienta de Inteligencia Artificial Generativa ChatGPT u otras
similares de IAG de código sólo en el contexto de las actividades descritas a contin-
uación:

1. Brainstorming de ideas de investigación: Utilizado para idear y esbozar posibles
áreas de investigación.

2. Crítico: Para encontrar contra-argumentos a una tesis específica que pretendo
defender.

3. Referencias: Usado conjuntamente con otras herramientas, como Science, para
identificar referencias preliminares que luego he contrastado y validado.

4. Metodólogo: Para descubrir métodos aplicables a problemas específicos de inves-
tigación.

5. Interpretador de código: Para realizar análisis de datos preliminares.

6. Estudios multidisciplinares: Para comprender perspectivas de otras comunidades
sobre temas de naturaleza multidisciplinar.

7. Constructor de plantillas: Para diseñar formatos específicos para secciones del
trabajo.

8. Corrector de estilo literario y de lenguaje: Para mejorar la calidad lingüística y
estilística del texto.

9. Generador previo de diagramas de flujo y contenido: Para esbozar diagramas
iniciales.
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10. Sintetizador y divulgador de libros complicados: Para resumir y comprender
literatura compleja.

11. Generador de datos sintéticos de prueba: Para la creación de conjuntos de datos
ficticios.

12. Generador de problemas de ejemplo: Para ilustrar conceptos y técnicas.

13. Revisor: Para recibir sugerencias sobre cómo mejorar y perfeccionar el trabajo
con diferentes niveles de exigencia.

14. Generador de encuestas: Para diseñar cuestionarios preliminares.

15. Traductor: Para traducir textos de un lenguaje a otro.

Afirmo que toda la información y contenido presentados en este trabajo son pro-
ducto de mi investigación y esfuerzo individual, excepto donde se ha indicado lo con-
trario y se han dado los créditos correspondientes (he incluido las referencias adecuadas
en el TFG y he explicitado para que se ha usado ChatGPT u otras herramientas simi-
lares). Soy consciente de las implicaciones académicas y éticas de presentar un trabajo
no original y acepto las consecuencias de cualquier violación a esta declaración.

Fecha: Junio 2024

Firma: Roberto Gozalo Brizuela
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