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ABSTRACT 

This study employs the Multifractal Detrended Fluctuation Analysis (MFDFA) 

methodology and the multifractal spectrum width (MSW) to assess the efficiency of the 

Lithium market. Lithium’s critical role in electric vehicle battery production underscores 

the importance of understanding its market dynamics to assess the suitability of 

investments in the commodity which reinforce its role in the global energy transition. 

Analysis of the Lithium market reveals overall market efficiency, with occasional 

deviations attributed to news-driven trend-reinforcing behaviors that quickly dissipate. 

The findings suggest market inefficiencies do not impede investment in the commodity, 

offering reassurance to private and public investors, regulators, and society. Promising 

results yielded using the multifractal spectrum width have yet to be validated, as the latter 

presents similar conclusions, albeit with some discrepancies, relative to the Hurst 

coefficient. Overall, this research pioneers the application of the MFDFA to analyze 

lithium’s long-term memory and introduces the multifractal spectrum width as a potential 

efficiency measure, contributing to a deeper understanding of lithium market dynamics, 

the global energy transition, and advancing developments in the field of financial asset 

efficiency testing.   

Key Words: Lithium market, efficiency testing, energy transition, critical minerals, 

MFDFA, multifractal spectrum width, Efficient Market Hypothesis (EMH), Hurst 

exponent.   
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RESUMEN 

Este estudio utiliza la metodología del Análisis Multifractal de Fluctuación sin Tendencia 

(MFDFA) y la amplitud del espectro multifractal (MSW) para evaluar la eficiencia del 

mercado del litio. El papel crítico que desempeña el litio en la producción de baterías para 

vehículos eléctricos, destaca la importancia de comprender las dinámicas de este mercado 

para así evaluar la viabilidad de inversiones en la materia prima, que refuercen su papel 

en la transición energética global. El análisis realizado sobre el mercado del litio 

demuestra en líneas generales, un comportamiento eficiente de este, con desviaciones 

ocasionales hacia la persistencia, impulsadas estas por noticias cuyo efecto se disipa 

rápidamente. Los hallazgos sugieren que al no existir ineficiencias latentes en este 

mercado, estas no suponen un impedimento de cara a posibles inversiones en la materia 

prima, ofreciendo seguridad a inversores privados y públicos, reguladores y a la sociedad. 

Los resultados prometedores obtenidos mediante el uso del ancho del espectro 

multifractal aún deben ser validados, ya que este último presenta conclusiones similares, 

aunque con algunas discrepancias, a las obtenidas mediante el coeficiente de Hurst. En 

general, esta investigación es pionera en la aplicación del MFDFA para analizar la 

memoria a largo plazo del litio, e introduce el ancho del espectro multifractal como una 

medida potencial para la medición de eficiencia, contribuyendo así a una mejor 

comprensión de las dinámicas subyacentes del mercado del litio, de la transición 

energética global, y avanzando en el desarrollo de la disciplina del estudio de la eficiencia 

de los precios de activos financieros.  

Palabras Clave: Mercado del litio, medición de eficiencia, transición energética, mineral 

crítico, Análisis Multifractal de Fluctuación sin Tendencia (MFDFA), amplitud del 

espectro multifractal, hipótesis del mercado eficiente (EMH), exponente de Hurst.   
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CHAPTER 1. INTRODUCTION  

1.1 Motivation and justification of the topic  

Lithium is currently considered one of the critical minerals of the climate transition due 

to its widespread use in electric vehicle (EV) batteries. These batteries are expected to 

play a significant role in reducing global CO2 emissions in the future. Several studies 

suggest that there is a supply gap in the market for this commodity, and this gap is 

expected to widen as demand for EVs, and consequently, lithium, continues to grow. If 

the supply cannot keep up with the increasing demand, the price of the commodity may 

rise, potentially hindering the adoption of EVs and thus endangering the climate 

transition. To ensure an adequate supply to meet the growing demand, public and private 

investments in this commodity are necessary. 

Market efficiency is a paramount precondition for the efficient allocation of resources 

(Pagan, 1996). As such, the efficient behavior of the lithium market is a crucial 

prerequisite for attracting the needed investments in the asset. Studying the compliance 

of this market with the Efficient Market Hypothesis (EMH) using the Multifractal 

Detrended Fluctuation Analysis (MFDFA) methodology will thus help identify potential 

risks to the climate transition and inform potential investors in the commodity. 

The MFDFA methodology serves as one of the available approaches to calculate the Hurst 

exponent (H) for a given time series. The Hurst exponent is a statistical metric that 

measures the long-term correlation, indicating the level of persistence within time series 

data. When a time series of financial returns exhibits long-term memory, it implies the 

potential for achieving above-average returns through the use of technical trading rules, 

as it enables accurate predictions based on past behavior. The presence of such persistence 

contradicts the assumptions of the weak-form Efficient Market Hypothesis and designates 

the series as informationally inefficient. Unlike other methodologies, the MFDFA allows 

for the accurate identification of non-constant Hurst exponents throughout different 

segments of a stochastic process. This makes it particularly relevant for the analysis of 

financial series, which often display distinct behaviors depending on the specific time 

intervals under study.  

As an alternative measure of long-term memory and thus, presence of inefficiency within 

the series, this study will be, to the best of our knowledge, one of the firsts to consider the 

multifractal spectrum plot, and width. Given that white-noise processes generally present 
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consistent monofractal behavior, multifractality within the series as evidenced by a large 

multifractal spectrum width will be taken as an indication of inefficiency. To complement 

the static estimation of the Hurst Exponent and the multifractal spectrum width, a rolling-

window approach will be conducted for both metrics, to further explore the time-varying 

efficiency dynamics of the series.  

We observe evidence of overall weak-form efficiency within the Lithium market, marked 

by three distinct periods of trend-reinforcing behavior. These three periods generally 

coincide with the outbreak of events and news, which had a considerable effect on the 

expected future performance of the commodity and its key players and thus led the market 

to enter states of panic and/or euphoria, which translated into a persistent behavior.   

1.2 Objectives and methodology 

As lithium is not a tradable financial asset, in this study, the adherence to the weak form 

of the EMH of the return series of the Global X Lithium & Battery Tech ETF and the 

Lithium Carbonate Future (as traded in the Guangzhou Futures Exchange), are tested by 

applying the MFDFA and multifractal spectrum width (MSW) methodologies. Both 

financial assets under study represent suitable alternatives for investors looking to gain 

an exposure to lithium.  

The MFDFA and MSW methodologies are predominantly quantitative and as such, the 

approach to be followed in this investigation is deductive where the initial hypothesis is 

that the return series of lithium futures and the Lithium ETF are informationally efficient. 

To the author’s knowledge, the market efficiency of lithium and its related assets hasn’t 

yet been tested making this investigation novel in that sense. However, as Corzo, Martin-

Bujack, Portela & Saénz-Diez ‘s (2022) study demonstrates, the field concerning 

efficiency testing of critical minerals, is starting to gain larger academic awareness. This 

thesis is also innovative in the use of the proposed methodology. Although several 

investigations such as Syed Aun R. Rizvi’s (2014), have applied MFDFA to test the price 

efficiency of various financial assets, none have yet considered a rolling-window 

approach of the multifractal spectrum width in their analysis, as a plausible measure of 

the series’ efficiency.  

The relevance of lithium in the climate transition will also be studied through a qualitative 

and quantitative approach, which will involve a thorough review of the extensive 
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literature on the subject, focusing on the potential applications and limitations of the 

current and prospective supply of lithium as a mineral for the climate transition.  

1.3 Work scheme 

The remainder of this paper is organized as follows. Chapter 2 delves into the role of 

lithium, its significance in the climate transition, and the current as well as expected 

conditions of its supply and demand. The literature review conducted within this chapter 

considered academic articles and research papers retrieved from the Scopus database, the 

dissemination portal Dialnet, and Google Scholar amongst others. Chapter 3 introduces 

the theoretical foundations of the MFDFA and multifractal spectrum width 

methodologies, which will be applied later.  Additionally, this chapter outlines the two 

series that will serve as sample data for the subsequent analysis. Chapter 4 applies the 

MFDFA & multifractal spectrum width methodologies to the data and provides the results 

of the analysis, and Chapter 5, summarizes the final conclusions drawn from the study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

CHAPTER 2. CONCEPTUAL FRAMEWORK 

2.1 Lithium and relevance to climate transition 

Lithium is currently one of the crucial raw materials in the production process of electric 

vehicle (EV) batteries and grid-scale energy storage systems for renewable electricity 

(Graham, Rupp, & Brungard, 2021). As such, lithium is widely regarded as one of the 

critical minerals in the upcoming global energy transition (Sprott Asset Management LP, 

2023). 

The worldwide adoption of EVs is intended to combat the greenhouse gas emissions of 

one of the largest global contributing sectors, transport. In 2023, the latter accounted for 

8.4 Gigatons of global C02 emissions, thus representing 14.1% of the annual total global 

greenhouse gas emissions (World Data Lab, 2023). As such, the EV’s role in driving the 

energy transition is recognized by the global powers as one of the pillars in the fight 

against global warming.  

In the 28th meeting of the Conference of the Parties (COP28) in November 2023, the 

member organizations agreed that in order to align with the target of achieving net-zero, 

there’s a need to reduce road transport emissions by one-third by the year 2030 (United 

Nations Framework Convention on Climate Change, 2023). EVs currently stand as the 

foremost tool to achieve this planned reduction in C02 emissions. This has been 

acknowledged by several policymakers who have recently drawn up large new public 

investments into this technology and its related infrastructure. In the US alone, $7.5 

billion in funding have been channeled through the Infrastructure Investment and Jobs 

Act in November 2021, for the purpose of construction of EV charging stations, to thus 

achieve the established goal of making half of all new vehicles sold in the U.S. in 2030, 

zero-emissions vehicles (U.S. Department of Transportation, 2022).  

As more countries commit to reaching net-zero targets in their carbon emissions to 

combat global warming, the pivotal role EVs will play in the future economy becomes 

clearer. The Energy Information Administration (EIA) forecasted in 2023, that EV sales 

will account for between 29% and 54% of global new vehicle sales by 2050 (Energy 

Information Administration, 2023). This entails an approximate threefold growth from 

the 2022 levels where electric vehicles accounted for 14% of new vehicle sales 

(International Energy Agency, 2023). In terms of the global light-duty vehicle fleet, the 

EIA projected that the latter will increase from 1.31 billion in 2020 to 2.21 billion vehicles 



5 
 

in 2050, and that the percentage of the fleet represented by electric vehicles will grow 

from 0.7% to 31% thus anticipating the incorporation of 672 million new EVs into the 

current fleet (Energy Information Administration, 2021). This widespread adoption of 

EVs as a mode of transportation is not however, without its limitations. 

One of the key challenges that EVs and the consequent energy transition face is related 

to supply shortages in the sourcing of raw materials for the production process of the 

batteries. Although there are several available battery types, each dependent on different 

minerals, lithium-ion (Li-ion) batteries are the prevalent kind out of them all due to the 

performance advantages they offer over other alternatives (Egbue & Long, 2012). As its 

name suggests, Li-ion batteries are highly reliant on lithium as a raw material of the 

cathode of the latter, thus making it one of the denominated critical minerals of the energy 

transition.  

To accommodate for the forecasted increased adoption of EVs, necessary to reach the 

established net-zero emissions targets, the sourcing capacity of lithium, and other critical 

minerals, will have to grow (Energy Tranistions Commission, 2023). According to 

Industry experts consulted by The Economist, under current conditions lithium will 

“foresee a shortfall of … 50,000-100,000 tons, [which represents] a 2-4% deficit by 2030” 

(The Economist, 2023). To address this supply crunch, and thus avoid the destruction of 

demand of EVs that would ensue, which would potentially endanger the energy transition, 

public and private investments in current and new mining sources are imperative (Sprott 

Asset Management LP, 2023). Under these conditions, the study of financial barriers and 

specifically, the determination of efficiency in the lithium market becomes a valuable 

source of information for potential investors and public policymakers. 

Throughout history, several authors have explored the potential risks and benefits 

associated with investments in lithium. For example, firms like AuAg and DeGiro have 

facilitated exposure to this commodity through various funds, advocating for a bullish 

stance on the asset (AuAg, 2024; Degiro, 2024). They highlight its promising future due 

to increasing demand driven by the energy transition, societal electrification, and its 

diversification capabilities with respect to other financial securities. Most existing studies 

related to investments in this commodity, have however, predominantly focused on 

explaining and predicting price movements in the latter (Wulandari, 2022; Sanin, 2022; 

Restrepo, Uribe, & Guillen, 2023).   
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Moreover, despite the growing interest in lithium as an investment, the market efficiency 

and adherence to the Efficient Market Hypothesis (EMH) of the commodity hasn’t yet 

been tested. Thus, our study aims to fill this gap by employing the Multifractal Detrended 

Fluctuation Analysis (MFDFA) and multifractal spectrum width methodologies, whereby 

studying the Hurst exponent and multifractal spectrum plots and widths on two prominent 

lithium-related financial series, we seek to shed light on the efficiency of the lithium 

market and identify potential financial barriers hindering investment in this asset. 
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CHAPTER 3. METHODOLOGY REVIEW & SAMPLE DESCRIPTION 

3.1 MFDFA & MSW Methodology 

In his seminal paper “Random Walks in Stock-Market Prices”, Eugene Fama developed 

the idea of weak-form market efficiency. A market is said to be weak-form 

informationally efficient if successive price changes of each individual security traded in 

it are independent from one another.  As such, these price changes exhibit no memory 

and therefore, the historical performance of the series is not indicative of its future 

behavior in any meaningful manner (Fama, 1965) .  

This idea stems from the belief that in efficient markets, future developments and the 

information conveyed by them are random and instantaneously reflected in the prices of 

securities, which thus make price changes of the latter behave in a ’random-walk’ like 

manner. Weak-form efficient markets, therefore, don’t allow mechanical trading rules 

applied to them to attain above-average, consistent returns which thus show that long-

term memory dependence is inconsistent with the weak-form of the efficient market 

hypothesis (Sadique & Silvapulle, 2001).  

In 1951, Harold Hurst introduced a statistical measure called the Hurst Exponent (H) 

which he developed through the study of the flow of the river Nile (Hurst, 1951). The 

latter attempts to quantify in a single measure the long-term memory of a time series. 

Although there are several estimators available to calculate the H parameter (Mielniczuk 

& Wojdyllo, 2007), the rescaled range statistic (R/S) method continues to be the 

traditional one.  

To calculate the H coefficient using the R/S method, we follow the steps detailed in 

Weron (2002): 

Step 1. Given a time series of returns Zt, of length L, we divide the latter into d subseries 

of length n.  

Step 2. For each subseries, m = 1,…,d, calculate the mean Em and standard deviation Sm.  

Step 3. Normalize the data by subtracting the sample mean Xt,m = Zt.m – Em ( m = 1, … , d ; 

t = 1, … , n) 

Step 4. Calculate the cumulative time series Yt,m = ∑ 𝑋𝑗,𝑚
𝑡
𝑗=1  for j = 1,2,… n 

Step 5. For each subseries m, compute the rescaled range the following way: 
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(
𝑅

𝑆
)

𝑚
=  

max(𝑋1,𝑚 … 𝑋𝑛,𝑚 ) − min (𝑋1,𝑚 … 𝑋𝑛,𝑚 )

𝑆𝑚
 

Step 6. Calculate the mean value of the rescaled range for all subseries of length n, which 

will thus give us the R/S(n) statistic. 

Step 7. The R/S(n) statistic follows the asymptotical relationship R/S(n) ≈ CnH  

(Mandelbrot B. B., 1975). As such, the value of H can be obtained by fitting a linear 

regression, under ordinary least squares and taking log (n) as our independent variable 

and log (R/S(n)) as our dependent variable. The slope of the resulting fitted line 

corresponds with the Hurst exponent (H) of the observed time series.  

The Hurst coefficient (H) measures the long-term correlation and persistence of stochastic 

processes. The range of H is from 0 to 1. A time series with a Hurst coefficient of 0.5, 

displays random and uncorrelated behavior, proper of a white noise process (Cannon, 

Percival, Caccia, Raymond, & Bassingthwaighte, 1997). A Hurst coefficient greater than 

0.5 denotes a time series with persistent, correlated, trend-reinforcing behavior where the 

values in the process increase or decrease throughout time to an extent which would be 

impossible to attain for a random walk. A Hurst coefficient smaller than 0.5 describes a 

time series with anti-persistent, negatively correlated behavior, and as such describes 

series with mean-reverting characteristics. The strength of the trend-reinforcing and 

mean-reverting behaviors of the latter series, increases as the value of the Hurst exponent 

approaches 1 and 0 respectively (Corzo Santamaría, Martin-Bujack, Portela, & Sáenz-

Diez, 2022).  

The Hurst exponent calculated trough the rescaled range statistic (R/S) method has been 

used in a variety of fields ranging from geophysics (Mandelbrot & Wallis, 1969), to 

healthcare (Díaz M & Córdova, 2022) and even ecology (Wang, Yu-Zhi; Li, Bo; Wang, 

Ren-Qing; Su, Jing; Rong, Xiao-Xia, 2011). In finance its use has been widespread being 

the statistic applied to different assets such as FOREX (Galluccio, Caldarelli, Marsili, & 

Zhang, 1997), equities (Palágyi & Mantegna, 1999), commodities (Turvey, 2007; 

Kristoufek & Vosvrda, 2014) and futures (Scalas, 1998) , mostly for financial modelling 

and predictive purposes (Qian & Rasheed, 2005). 

Compared to other methods available for calculating the H parameter (namely Detrended 

Fluctuation Analysis (DFA) and Variance Time Plot), several studies show that the R/S 

statistic has the smallest Mean Square Error for different sample sizes which makes it the 
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most efficient estimator of them all (Ceballos & Largo, 2017). However, the latter was 

found by Anis and Lloyd (1976) to be biased for small values of n, which thus led to the 

creation of the Adjusted Rescaled Range Statistic (R/S-AL) which takes this limitation 

into account.  

Furthermore, the R/S statistic assumes that the persistence of the time series under study 

can be represented using a single power law exponent and as such, that the scale 

invariance of the process is independent on the passage of time. Stochastic processes 

which behave in the previous manner are referred to as possessing a monofractal 

structure. However, some series do see their scale invariant structure affected by temporal 

variations (multifractal structures). These processes call for a more robust analysis that 

can consider these changes in the power law exponent across the series (Ihlen, 2012). The 

method thus chosen in this study to calculate the time-varying Hurst Exponent of the 

stochastic processes is the Multifractal Detrended Fluctuation Analysis (MFDFA).   

To calculate the H coefficients using the MFDFA procedure, we follow the steps detailed 

in Ihlen (2012): 

Step 1. Given a time series of returns Zt,, of length L, convert the latter into a white noise 

process Xt by subtracting the mean value Em and integrating the time series.  

Step 2. Divide the series into equal-sized non-overlapping segments Xt,d of length n. Do 

so for different values of n. 

Step 3. For each value of n, compute the Root-Mean-Square (RMS) variation of each 

segment Xt,d where 𝑅𝑀𝑆𝑑 =  √1

𝑛
∑ (𝑋𝑡,𝑑 − 𝐸𝑚,𝑑)𝑛

𝑡=1

2
.  

Some series display slow varying trends across them which therefore makes detrending 

of the process necessary to determine the scale invariant structure around these trends. To 

do so, a polynomial of order m is fitted to each segment Xt,d , and the RMS variation 

formula is adjusted so that it calculates the variation between the data points of the series 

and the fitted polynomial Pm,d .  

 𝑅𝑀𝑆𝑑 =  √1

𝑛
∑ (𝑋𝑡,𝑑 − 𝑃𝑚,𝑑)𝑛

𝑡=1

2
   

Step 4. In monofractal time series, the Detrended Fluctuation Analysis (DFA) 

methodology (on which MFDFA is built on) would follow by computing the average 
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fluctuation F(n) of the different segments for each different scale n. This average 

fluctuation, in monofractal time series, follows the relationship F(n) = CnH  hence, by 

fitting a regression line to the (log) average fluctuation (as was done in the R/S 

methodology) we would be able to determine the value of the Hurst exponent H.  

However, multifractal time series display non-constant Hurst exponents throughout 

different segments of the stochastic process. As such, these series have local fluctuations 

with both extreme and small magnitudes. Therefore, in the MFDFA methodology, we 

compute the q-order RMS calculated as   𝑞𝑅𝑀𝑆𝑑 =  𝑅𝑀𝑆𝑑
𝑞(𝑛𝑞) for the different segments 

d and for a set of different pre-defined q-orders. The q-order will weight segments with 

large and small fluctuations differently (positive and negative q’s will weigh more heavily 

segments with large and small fluctuations (RMS), respectively).   

Step 5. Once the q-order RMSd has been calculated for all segments with different lengths 

n, we can calculate the q-order Hurst exponent as the slope of the regression line for each 

q-order RMS. Multifractal time series, will display q-dependent Hurst exponents whilst 

monofractal and white noise time series will display a constant q-order coefficient.  

The multifractal spectrum plot is a visual tool that allows to differentiate between 

monofractal & white noise series, and multifractal processes. The spectrum gives an 

approximation of the different q-order Hurst exponents present in the series under study. 

Due to monofractal & white noise series having constant q-order Hurst exponents, their 

multifractal spectrum plot displays the shape of a small arc. Meanwhile, multifractal 

stochastic processes have q-dependent Hurst coefficients and as such, their multifractal 

spectrum plot resembles the shape of a large arc.  

Given that white noise processes are generally monofractal (Ihlen, 2012), the presence of 

multifractality in a time series, suggests the presence of non-random behavior in it, which 

in financial series translates to weak-form inefficiency. The multifractality spectrum 

width, calculated as the difference between the maximum and minimum q-order Hurst 

exponents of the series will therefore be considered as a measure of the informational 

efficiency of the process.  

A large width is considered as evidence of multifractality and thus inefficiency in the 

series whilst a small width will be taken to indicate monofractality or white noise 

behavior, which will thus call for further analysis though consideration of the value of the 

traditional Hurst exponent (2nd-order Hurst coefficient). Right and left – side truncations 
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in the spectrum plot also show whether the series is insensitive to local fluctuations of 

small or large magnitudes respectively, thus giving insights on the scale invariant 

structure of the process (Ihlen, 2012).  

To determine how the long-term dependence of the series has evolved throughout time, 

we’ve conducted a rolling-window analysis with a period length of 252 days (number of 

trading days in a year) of the 2nd-order Hurst exponent and the multifractal spectrum 

width.  

To evaluate the statistical significance of the results, we generated distinct confidence 

intervals for each assessed metric. This was achieved by computing the 5th or/and 95th 

percentiles of each metric across 10,000 simulations of a white noise process. The length 

of the white noise series was adjusted based on the number of observations in the data 

under examination, as well as whether the metric was calculated over the entire dataset 

or using a moving window.  

The characteristics of the financial series which are considered in this study are now 

presented.  

3.2 Sample Description 

Unlike other commodities, lithium isn’t listed in any financial exchange. Therefore, to 

assess the efficiency of the lithium market, this study has considered two financial assets 

which best serve as proxies for the behavior of the commodity.    

The first of these assets is a lithium future quoted in the Guangzhou Futures Exchange 

(GFE) in China. The underlying asset of this future is Lithium Carbonate 99.5% which 

corresponds to lithium readily available to be used in electric car batteries and thus makes 

this price series especially relevant for the study at hand. The data available for analysis 

corresponds to daily closing spot prices of Lithium Carbonate 99.5% futures, ranging 

from January 3rd, 2019, (earliest available date of the retrieved series) to February 1st, 

2024, and quoted in Chinese Yuan (CNH).  

The second of these assets is an Exchange Traded Fund (ETF) which includes the most 

relevant listed companies dedicated to the lithium industry. As was demonstrated by 

Corzo et al. (2022) in their investigation, the companies which conform a given industry 

serve as good proxies of the behavior of the underlying asset of the latter. As such, the 
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consideration of the price series of an ETF for this study was deemed a valid approach 

towards studying the efficiency of the lithium market.     

There are several ETFs available that provide investors with exposure to lithium and to 

the complete production chain of electric batteries. These include, Global X Lithium and 

Battery Tech (LIT), Amplify Lithium and Battery Technology ETF (BATT), 

WisdomTree Battery Solutions UCITS ETF (CHRG), ARK Autonomous Tech & 

Robotics ETF (ARKQ) and First Trust Nasdaq Clean Edge Smart Green Energy ETF 

(QCLN) amongst others. Out of them all, Global X Lithium and Battery Tech has been 

designated by the author as the most representative ETF for investing in lithium and li-

ion batteries. This choice is underpinned by the ETF’s global, exclusive focus on lithium 

and electric battery production, along with it having the most extensive time series data 

of the available indices (July 2010 to January 2024).   

The Global X Lithium and Battery Tech ETF replicates the performance of the Solactive 

Global Lithium Index (SGLI) (Moreno & Gil-Alana, 2018; Gomes, 2022). The latter is 

denominated in US$ and “tracks the performance of the largest and most liquid listed 

companies active in exploration and/or mining of lithium or the production of lithium (Li-

Ion) batteries” (Solactive German Index Engineering, 2024, p. 1). The positions forming 

the index must comply certain rules and guidelines to form part of the latter and are 

rebalanced on a semi-annual basis.  

The index constituents are initially selected based on their adherence to predefined 

guidelines, thereby establishing the "Index Universe” (Solactive AG, 2023). To be 

included in this universe, equities must meet various criteria, including significant 

revenue generation from lithium mining or production of lithium batteries and a free float 

market capitalization of at least 50 million USD$. Additionally, to be included in this 

universe, companies not currently part of the index must have a 3-month average traded 

value of at least 200,000 USD, while those already included in the index should have a 

minimum average traded value of 100,000 USD.  

Following the determination of the index universe, the companies within it are ranked in 

descending order based on their market capitalization. The largest companies are 

subsequently selected to constitute the new index. The index is designed to include a 

minimum of 20 positions and a maximum of 40.   
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As of February 1st, 2024, the ETF contained 40 positions, shown in Table 1, and had 

generated a return of 4.03% (p.a.) since 2010. The data used for the analysis of the ETF 

price series corresponds to the daily closing prices of the Global X Lithium and Battery 

Tech ETF since July 19th, 2010 (date of ETF inception) to February 1st, 2024, thus 

considering 3521 observations.  

Table 1. Solactive Global Lithium Index composition as of February 1st, 2024  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration 



14 
 

Figure 1 shows a graphical representation of both price series.  

Figure 1. Graphical representation of the price series of the Global X Lithium & Battery 

Tech ETF and the Lithium Carbonate Future  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration 

The MFDFA and multifractal spectrum width methodologies however consider time 

series of returns as their input. As such, before conducting our analysis, we’ve computed 

the daily returns of the Global X Lithium and Battery Tech ETF and Lithium carbonate 

future price series. The results represent the data that will effectively be used in our 

analysis. The main statistics of the latter are presented in Table 2.  
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Table 2. Main statistics of the return series of the Global X Lithium & Battery Tech ETF 

and the Lithium Carbonate Future  

 

Source: Own elaboration 

Table 2 shows both series have similar mean and standard deviation metrics. However, 

the Global X Lithium & Battery Tech ETF displays a broader range of values within the 

data due to having both a larger maximum and a smaller minimum value.  

In terms of skewness, this coefficient serves as a measure of the symmetry within the 

distribution of returns. When the mean of the latter is close to 0, a positive skewness 

indicates that the distribution has a higher concentration of the mass of returns located to 

the right, suggesting more days with positive returns. Conversely, a negative skewness 

indicates a higher concentration of returns to the left, indicating more days with negative 

returns. As such, the Global X Lithium & Battery Tech ETF demonstrates a positive skew, 

indicating more days with positive returns, while the Lithium Carbonate Future exhibits 

a negative skew, suggesting more days with negative returns.  

Additionally, the kurtosis coefficient measures the 'tailedness' of the distribution, and 

therefore the concentration of data within the latter, relative to the mean. Both series have 

a similar kurtosis coefficient, greater than three, thus indicating that most of their returns 

are concentrated around their average value. 

A closer examination of the Lithium future data revealed that, in a considerable number 

of periods (65%) throughout the series, the asset's price level remained unchanged, 

resulting in a 0% return between those dates. This established a horizontal trend in the 

series and thus made the latter unsuitable for potential investments and for the correct 

application of the multifractal methodology on it. As such, Chapter 4 of the study presents 

the results of the conducted analysis for the Global X Lithium and Battery Tech ETF, 

whilst the results of the fractal analysis for the Lithium Carbonate Future are presented in 

the appendix.   
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CHAPTER 4. FINANCIAL DATA ANALYSIS  

4.1 Fractal Analysis  

The second-order Hurst coefficient calculated using the MFDFA methodology, for the 

Global X Lithium and Battery Tech ETF is displayed in Figure 2. This coefficient 

represents the Hurst exponent derived from applying DFA to the series, offering insights 

into the average fractality of the process.  

Figure 2. Second-order Hurst coefficient and Confidence Interval (5%,95%) for the 

Global X Lithium and Battery Tech ETF for the period spanning July 2010- February 

2024.  

 

 

 

 

 

 

Source: Own elaboration 

The results obtained indicate that, over its lifespan, the Global X Lithium & Battery Tech 

ETF has exhibited predominantly random behavior, aligning with the Efficient Market 

Hypothesis (EMH).  

4.2 Rolling window Fractal Analysis 

To determine how efficient has the Global X Lithium & Battery Tech ETF price series 

behaved throughout time, we’ve estimated the second-order Hurst coefficient on a 

moving window of 252 days (1 year in trading days). The considered confidence interval 

has also been recalculated considering only 252 observations as opposed to the total 

number of data points in the entire series. This has returned a wider confidence interval 

than the one displayed in Figure 2, as lower number of observations leads to a wider range 

of possible values for the calculated metrics.    
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Figure 3 shows the results obtained for the rolling window analysis. The graph shows that 

the series has remained for most of its lifetime, inside the realms of efficiency. However, 

in certain periods, the process has moved from efficient behavior to persistency.  

 

Figure 3. Evolution of the second-order Hurst coefficient throughout time, of the log-

returns of the Global X Lithium and Battery Tech ETF.  

 

Source: Own elaboration 

 

The first period of persistency occurred from July 2013- July 2015. During this time span, 

the technology underlying Li-ion batteries underwent a process of continuous 

improvement (Anthony, 2013) and the viability of electric cars started to take shape as 

more economies began to adopt this mode of transportation and to finance the 

construction of related infrastructure (Evarts, 2015; Wald, 2013).  

These positive developments signaled to external economic agents the significant role Li-

ion batteries were expected to play in the future. However, they also introduced an 

element of uncertainty into the market regarding the precise consequences these events 

would have on lithium prices and related players.  

In the previous years to the 1st persistency period, the volatility of returns for the Global 

X Lithium and Battery Tech ETF surpassed its historical average of 0.6%, by 
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approximately 0.4% portraying the aforementioned increased uncertainty. However, once 

these growth expectations started to materialize, the standard deviation of the returns 

rapidly decreased, as the series underwent successive trading days with positive constant 

returns which translated into trend-reinforcing behavior. Figure 4 illustrates the 

fluctuations in the volatility of the series, depicted by the standard deviation of returns for 

the Global X Lithium and Battery Tech ETF, tracked under a 252-day moving average. 

 

Figure 4. Evolution of the standard deviation throughout time, of the log-returns of the 

Global X Lithium and Battery Tech ETF.  

 

Source: Own elaboration 

Overall, these developments led the Global X Lithium and Battery Tech ETF to exhibit 

long-term memory and thus persistent behavior. However, efficiency was soon restored 

by August 2016, a situation that continued until July 2017, when the ETF began to display 

long-term memory again. 

From July 2017 - July 2020, the ETF entered its second period of persistency with the 

series’ Hurst coefficient approaching and surpassing the upper limit of the confidence 

interval. To better understand the fractal dynamics of the series during this period, we’ve 

conducted a complementary rolling window fractal analysis, for this specific period.  The 

motivation behind the latter was that, compared to the other persistency periods, from 

1st period of persistency 
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2017-2020 the series’ Hurst coefficient behaved in a more random manner, consistently 

surpassing the upper limit of the confidence interval and then rapidly reverting within 

efficiency realms. As such, a closer look was warranted to better understand the 

underlying behavior of the series   The results obtained for this specific time period are 

shown in Figure 5.  

 

Figure 5. Evolution of the second-order Hurst coefficient between 2017-2020, of the log-

returns of the Global X Lithium and Battery Tech ETF.  

 

Source: Own elaboration 

Figure 5 illustrates that between 2017 and 2020, the Global X Lithium and Battery Tech 

ETF exhibited persistent behavior on several occasions.  

During this timeframe, the prices of ETFs followed a constant slow-varying upward trend, 

beginning in 2017 and continuing into early 2018, ultimately surging by 70% in value. 

The subsequent 2 years however, ETF prices reversed, causing the series to relinquish 

most of its gains and experience a cumulative -40% return by the time it reached its trough 

in October 2019. Figure 6 visually portrays this price evolution of the series, over the 

mentioned period. 
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Figure 6. Graphical representation of the price series of the Global X Lithium & Battery 

Tech ETF from 2017-2020 

  

Source: Own elaboration 

These price developments, occurred as a direct consequence of a speculative boom fueled 

by optimistic projections on the various applications of lithium, and the emergence of 

oversupply concerns as the announcement of forthcoming investments in the extraction 

process of the commodity increased.  

To begin with, in 2017, the long-term prospects of lithium as a commodity, and lithium 

related players was becoming increasingly optimistic. This was due to double digit 

growth in electric vehicle sales (Global X Research Team, 2018), supported by 

government subsidies, and a deflationary trend in renewable energy costs (Saefong, 

2018), which seemed to mark the start of a growth cycle for lithium. This favorable 

demand backdrop was accentuated by some of the most prominent institutional investors, 

such as Blackrock, who began to invest in companies involved in the extraction and 

processing processes of the commodity (Sanderson, 2017). Altogether, this contributed 

to a herding behavior (Banerjee, 1992) amongst investors and the consequent price hike 

and speculative boom experienced by lithium prices and lithium related players within 

that period.  

70% 40% 
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However, in January 2018, Australia, seeking to capitalize on the positive outlook of the 

commodity, announced an upcoming expansion of great scale, of mineral mines across 

the country, aided by Chinese investments (Jamasmie, 2018). At the time, this forecasted 

growth in capacity would effectively make Australia the largest global lithium supplier, 

closely followed by Chile. Therefore, the market anticipated the outbreak of a potential 

oversupply of lithium, (Jamasmie, 2018) which caused the commodity price to decline 

sharply by 16% (Smith, 2019) and eventually reversed the totality of the gains achieved 

by the ETF throughout 2017.   

Overall, these circumstances made the Global X Lithium & Battery Tech ETF follow 

pronounced positive and negative trends, behaving in a trend-reinforcing manner and thus 

departing from the EMH, as is shown in Figure 5.  

In July 2020, efficiency within the series was restored, and remained that way until July 

2023, when the ETF briefly displayed a persistent conduct. The latter can likely be 

attributed to the financial turmoil experienced by global markets due to the rise of 

inflation levels, interest rates, the outbreak of the Russo-Ukraine war, and the energy 

crisis which followed.   

One of the implications drawn from this analysis is that during the years that followed the 

outbreak of the SARS-CoV-19 and the ensuing economic and financial difficulties, the 

ETF continued to behave efficiently. This finding contradicts (Aslam, Mohti, & Ferreira, 

2020), who by studying the multifractal properties of the European stock market during 

the COVID-19 pandemic, found that the outbreak of this crisis caused stock prices to 

exhibit multifractality and thus weak-form inefficiency.  

4.3 Multifractal Spectrum Analysis 

Figure 7 presents the multifractal spectrum width of the Global X Lithium and Battery 

Tech ETF, for the entire sample period and the specific period of 2017-2020. Given the 

varying number of observations in both series, distinct confidence intervals have been 

constructed using white noise simulations with sample sizes equivalent to those of the 

respective data. The outcomes of these simulations are also detailed in Figure 7. 
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Figure 7. Multifractal spectrum width and Confidence Interval (95%) for the Global X 

Lithium and Battery Tech ETF for the complete time period under study (2010-2024) and 

the specific period ranging from 2017-2020.  

 

Source: Own elaboration 

These results appear to challenge those derived from the Hurst coefficient analysis. 

Specifically, the multifractal spectrum width of the Global X Lithium and Battery Tech 

ETF lies beyond its corresponding confidence interval, suggesting inefficiency 

throughout, whilst during the period 2017-2020, the multifractal spectrum width falls 

within the confidence interval, implying adherence to the Efficient Market Hypothesis.  

However, upon contrasting these findings with those of the rolling window analysis 

conducted later, the conclusions drawn from both the Hurst coefficient and the 

multifractal spectrum width align. Furthermore, the rolling window analysis reveals 

significant volatility in the Multifractal Spectrum Width results, thereby explaining the 

initial large level obtained for the aggregate metric.  

To supplement the multifractal spectrum width analysis, we’ve plotted the multifractal 

spectra of the two series, as depicted in Figure 8. These spectra provide additional 

insights, particularly highlighting the larger spectrum width of the Global X Lithium and 

Battery Tech ETF during the 2017-2020 period, consistent with the results obtained from 

the Hurst coefficient analysis. 
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Furthermore, both ETF series exhibit right truncations in their singularity spectra, 

indicating consistency with respect to small fluctuations within the series. This suggests 

that periods of persistence have primarily occurred during significant movements in the 

series' returns rather than through minor variations. 

Figure 8. Multifractal singularity spectrum of the Global X Lithium and Battery Tech 

ETF for the entirety of the series and the period encompassing the years 2017-2020.  

 

Source: Own elaboration  
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4.4 Rolling window multifractal spectrum width 

The rolling window multifractal spectrum width analysis exhibits a close resemblance to 

the results and conclusions obtained using the Hurst coefficient. Figure 9 displays the 

results of the rolling window analysis for the Global X Lithium and Battery Tech ETF. 

 

Figure 9. Evolution of the Multifractal Spectrum Width throughout time, of the log-

returns of the Global X Lithium and Battery Tech ETF.  

 

Source: Own elaboration 

Comparing the rolling window distribution of the Hurst coefficient with that of the 

multifractal spectrum width, both appear similar in shape. As such, the latter graph 

highlights how the series has predominantly stayed within efficiency levels, with the 

exception of two periods of inefficiency in July 2011 and January 2017, which align 

considerably with those identified using the Hurst coefficient. In addition, it seems that 

through the use of the multifractal spectrum width, we’re able to identify periods of 

inefficient behavior within the series, months before the rolling Hurst signals their 

existence. Consequently, this suggests the multifractal spectrum width might be a leading 

indicator of the Hurst coefficient.  
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The rolling window analysis further illustrates the multifractal spectrum width's high 

volatility when applied to the ETF, thus providing additional insights into the initial 

findings.  

The multifractal spectrum width rolling analysis for the 2017-2020 period also bears 

resemblance to the Hurst coefficient analysis.  

Figure 10 displays the results of the rolling window analysis for the Global X Lithium 

and Battery Tech ETF for the specific period ranging from 2017-2020. The figure depicts 

an initial period of inefficiency followed by a consistent approximation to the upper 

boundary of the confidence interval.  

Figure 10. Evolution of the multifractal spectrum width between 2017-2020, of the log-

returns of the Global X Lithium and Battery Tech ETF.  

 

Source: Own elaboration 

Overall, both conducted analyses indicate that the Global X Lithium & Battery Tech ETF 

has predominantly demonstrated throughout its lifetime weak-form informational 

efficiency. As such, it demonstrates that the lithium market is efficient and presents 

suitable investment opportunities for public and private investors looking to gain 

exposure to lithium and Li-ion batteries, and thus support the efforts of the upcoming 

global energy transition.  
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Furthermore, the use of the multifractal spectrum width, as a measure of efficiency 

throughout the series, yields promising results yet warrants further research. The rolling 

window analysis returns similar insights to those obtained by the Hurst coefficient and 

suggests the multifractal spectrum width might serve as a leading indicator to the latter, 

thus encouraging its use as a complementary tool, as it provides more information on the 

scale-invariant structure of the series. 

 However, when considering the entire series , the findings of both metrics contradict each 

other, likely due to the significant volatility exhibited by the multifractal spectrum width 

when applied to the Global X Lithium & Battery Tech ETF series. Therefore, before 

deeming it a reliable measure of inefficiency, it's imperative to thoroughly examine the 

intricacies of this metric's construction and validate its results by applying it to other 

series.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

CHAPTER 5. CONCLUDING REMARKS 

Lithium is considered one of the critical minerals of the energy transition due to its 

widespread role in the production process of electric vehicle batteries. However, 

according to current studies, the commodity is poised to encounter supply shortages due 

to the existing supply being insufficient to meet the anticipated demand. Therefore, public 

and private investments in this commodity are considered necessary to ensure the 

adequate evolution of the energy transition.  

This investigation uses the MFDFA methodology alongside the multifractal spectrum 

width to study the efficiency of a Lithium Future, quoted on the Guangzhou Future 

Exchange (GFE), and the Global X Lithium and Battery Tech ETF, both considered 

proxies for the behavior of the Lithium commodity.  

According to the results obtained from the analysis of the Global X Lithium and Battery 

Tech ETF, the lithium market is efficient, having exhibited only some departures from 

efficiency in certain situations. The latter, correspond to moments where market reactions 

to news regarding the potential applications and possible oversupply of lithium translated 

into ETF returns in the form of trend-reinforcing behavior. However, all these departures 

were short-lived, as market efficiency was soon restored once the effect of the news had 

dissipated. Therefore, there is no reason to believe that financial barriers in the form of 

market inefficiencies pose an obstacle for public and private investments in companies 

involved in the lithium market and consequently, to the gain in exposure to the 

commodity, and the subsequent necessary development of the latter.  

Overall, these results are reassuring for private and public investors in the lithium 

commodity, as well as for regulators and society. This is mainly because market 

efficiency is a prerequisite for the efficient allocation of resources, and as such, by 

demonstrating that the lithium market is an efficient one, this study acknowledges the 

viability of potential investments in this critical mineral, which are currently paramount 

for the development of electric vehicles and consequently, for the global energy 

transition.  

Nevertheless, as the role of lithium in the modern economy solidifies, we expect more 

countries to develop and issue an independent tradable asset for this commodity, enabling 

the realization of more concrete studies of the efficiency of the market prices of the asset.  
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The investigation’s findings also suggest further research is needed to validate the 

multifractal spectrum width as a suitable efficiency metric. The latter, when applied using 

a rolling window analysis, presents similar evidence regarding market efficiency to the 

results obtained by the MFDFA methodology and may serve as a leading indicator to the 

Hurst Coefficient. Furthermore, its use is promising for it provides more information 

regarding the scale-invariant structure of the series. 

However, the volatility of the metric makes it yield different conclusions to the ones 

obtained using the Hurst coefficient when applied to the series in its entirety. As such, 

further study regarding its construction and, its validation through application to other 

processes is required before it can be considered a reliable efficiency measure. 

Regarding the lithium carbonate future, it proved inadequate for MFDFA analysis 

purposes due to illiquidity issues and measurement errors incurred when retrieving data 

from said series. The leading cause behind these issues are long-lasting financial barriers 

for foreign agents trading assets quoted in Chinese Exchanges. Hence, to attract the 

necessary investment for investors seeking exposure to the lithium commodity through 

this instrument, and thus make the series suitable for analysis, international cooperation 

and deregulation between China and foreign nations should be promoted.  

To the best of our knowledge, this study is the first to analyze the long-term memory of 

lithium using the MFDFA methodology and to expand on the latter by considering the 

multifractal spectrum width as a potential measure of efficiency.   
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APPENDIX. LITHIUM FUTURE ANALYSIS 

The second-order Hurst coefficient calculated using the MFDFA methodology, for the 

Lithium carbonate future is displayed in Figure 11.  

Figure 11. Second-order Hurst coefficient and Confidence Interval (5%,95%) for the 

Lithium Carbonate Future for the period spanning January 2019 - February 2024.  

 

 

 

 

 

 

Source: Own elaboration 

The latter shows the Hurst exponent of the lithium carbonate future is approximately 0.9, 

a value significantly outside the confidence interval of efficiency, which suggests a 

pronounced persistent behavior within it. The leading cause of these findings is the 

discussed horizontal trend within the series, which in turn is most likely a consequence 

of measurement errors and trading illiquidity in the asset, due to financial barriers. 

Trading in Chinese exchanges is restricted in several ways to foreign investors. For 

example, some securities traded in these exchanges are only made available through 

regulation, to mainland Chinese investors (Shuye Wang & Jiang, 2004). This decreases 

the liquidity of the securities traded in Chinese exchanges and poses transaction barriers 

for foreign investors who must decide whether to face these additional risk 

considerations.   

As mentioned earlier, the studied Lithium Carbonate Future is traded on the Guangzhou 

Futures Exchange (GFE) in China, and access to data from this exchange is somewhat 

restricted for foreign investors. This limitation opens the possibility of measurement 

errors in the available figures. Additionally, the aforementioned financial barriers for 

foreign agents trading on Chinese exchanges lead to market illiquidity, restricting the 

daily number of operations and consequently limiting changes in price quotes, 
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independent on the availability of new information. Such behavior causes the series to 

exhibit trend-like patterns with no return, contributing to the persistence highlighted by 

the Hurst coefficient. Notably, ample liquidity is a relevant characteristic of efficient 

markets (Chung & Hrazdil, 2010), aligning with the results obtained and the explanations 

provided. 

Figure 12 shows the results obtained for the Lithium Carbonate Future of the rolling 

window fractal analysis. As expected, the graph shows that the series has consistently 

behaved in a persistent manner returning a Hurst coefficient greater than the upper limit 

of the confidence interval, for the entirety of the period under study.  

Figure 12. Evolution of the second-order Hurst coefficient throughout time, of the log-

returns of the Lithium Carbonate Future.  

 

Source: Own elaboration 
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