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Abstract:  

 

This study examines the market efficiency of the semiconductor industry using the 

VanEck Semiconductor UCITS ETF (SMGB.L) and its constituent stocks as proxies. 

Using the Rescaled Range (R/S) methodology, the research aims to understand the fractal 

properties and long-term dependencies in the semiconductor market as captured by the 

Hurst exponent. The R/S methodology is critical in identifying patterns of persistence or 

mean reversion, providing insight into whether the price movements of these assets are 

consistent with the Efficient Market Hypothesis (EMH). Our analysis covers daily 

adjusted closing prices from December 2020 to June 2024 for the ETF and its 25 

constituents. The results reveal divergent behaviour: while some stocks exhibit random 

walk characteristics, suggesting market efficiency, others show significant mean-

reverting tendencies, suggesting deviations from the EMH. Rolling window analysis 

further reveals the temporal evolution of these behaviours, highlighting periods of both 

efficiency and inefficiency in response to changing market conditions. Notably, major 

stocks such as NVIDIA, ASML and AMD closely follow the EMH, while others such as 

Texas Instruments and Microchip Technology exhibit mean-reverting patterns. This study 

highlights the complexity of market dynamics within the semiconductor sector and 

provides valuable insights into its fractal characteristics. The application of the R/S 

methodology in this context is particularly significant, as it not only assesses market 

efficiency, but also helps investors and analysts understand the predictability of stock 

returns in this rapidly evolving industry. Future research could extend these findings by 

exploring multifractal behaviour and integrating advanced machine learning models to 

improve predictive capabilities in financial markets. 

 

Key Words: Semiconductor Industry, Efficient Market Hypothesis (EMH), VanEck 

Semiconductor UCITS ETF, Fractal Analysis, Hurst Exponent, R/S Methodology, 

Market Efficiency, Mean-Reversion, Rolling Window Analysis, Stock Returns. 
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1. Introduction 

1.1. Semiconductor Industry and Efficient Market Hypothesis rationale 

The semiconductor industry is experiencing exponential growth due to its increasing 

involvement in society and its critical role in future developments. This growth is being 

driven by many factors, including the Social Development Agenda for 2030, which 

emphasises climate action (, 2023), the trend towards digitalisation, and advances in 

telecommunications and infrastructure. 

Since late 2020, the semiconductor industry has faced unprecedented challenges due to a 

global chip shortage (Zhang & Zhu, 2023). This shortage has highlighted the complex 

interdependencies within global supply chains (Mohammad et al., 2022). The situation 

was initially caused by the COVID-19 pandemic and has been further intensified by 

increased demand for electronic devices, changes in consumption patterns, and the rapid 

acceleration of digital transformation across various sectors (Voas et al., 2021). 

The semiconductor industry's crucial role in technological advancement and innovation 

has been highlighted by a combination of factors. This has led to a revaluation of 

strategies to strengthen supply chains, diversify production sources, and increase 

international cooperation to reduce the risk of future disruptions. Consequently, the 

semiconductor sector faces significant challenges and opportunities in this landscape 

(Ramani et al., 2022). To ensure the industry's resilience and adaptability to dynamic 

demands, it is necessary to revaluate production strategies, invest in advanced 

manufacturing technologies, and develop innovative solutions (Zhang & Zhu, 2023). 

In this study, we will conduct a comprehensive analysis of the characteristic and the 

returns of both the VanEck Semiconductor UCITS ETF and the individual stocks within 

it to serve as a proxy for the semiconductor industry. This ETF has only been trading 

since December 2020, which is a relatively short time series, but as Kirichenko et al. 

(2020) show in their HITS study, even short time series can provide valuable insights.  

Through this analysis, we aim to assess whether the semiconductor industry, as 

represented by the ETF and its components, aligns with the Efficient Market Hypothesis 

. According to the Efficient Market Hypothesis , if the market is efficient, prices will be 

unpredictable and subject to random fluctuations based solely on the available 

information (Fama, 1970, 1991). This hypothesis suggests that asset prices fully reflect 
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all available information, making it challenging to consistently outperform the market 

through stock timing or selection (Fama, 1970, 1991; Malkiel, 1989). 

 

1.1.1. Motivation of the study 
 
The motivation for this study lies in the semiconductor industry's crucial contribution to 

scientific and economic progress (Adams et al., 2013). It is instrumental in the 

advancement of a diverse array of contemporary technologies, such as sophisticated 

computational systems and consumer electronics (SIA, 2023). It is essential to 

comprehend the market efficiency in this industry due to its cyclical and volatile nature, 

which is influenced by fluctuating demand, rapid technological advancements, and global 

supply chain modifications (Pan et al., 2024). This analysis holds great importance for 

portfolio managers and investors who seek to invest in the sector's growth potential and 

enhance their risk management strategies, specifically in relation to semiconductor 

equities as the market's efficiency is a crucial factor, as it enables industry growth and 

ensures proper of capital allocation. Additionally, assessing the Efficient Market 

Hypothesis  in this scenario offers policymakers, regulators, financial institutions and 

investors valuable insights into the influence of regulatory actions and information 

dissemination on the evaluation of stock value in a strategically significant industry 

(Jennings & Barry, 1983). Given that the semiconductor industry has been rapidly 

evolving in recent years, this analysis can also establish patterns of similarity with other 

semiconductor-related or even semiconductor-dependent industries that have also had 

recent buoyant episodes and may suffer from potential inefficiencies as analysed by Wu 

(2024). 

1.2.  Objective and Methodology of the Study 

The objective of this work is to determine the efficiency of the market industry according 

to the Efficient Market Hypothesis (Fama, 1970, 1991) in the semiconductor industry by 

analysing the returns of the ETF "VanEck Semiconductor UCITS " and its proxy 

components.  

For this purpose, a comprehensive analysis of the ETF and its components will be carried 

out and then, to determine its efficiency, an analysis will be carried out using fractal 

methodology with the Hurst coefficient. The fractal methodology which going to be used 
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is the R/S methodology in combination with Rolling window analysis and Gaussian white 

noise creation for the Intervals of confidence.  

1.3. Structure of the Study 

The Introduction presents a comprehensive explanation of the semiconductor industry's 

importance and states the study's goal of analysing market efficiency. The article 

establishes the background by examining the expansion of the sector, developments in 

technology, and the justification for utilising the VanEck Semiconductor UCITS ETF as 

a representative of the market. 

The Semiconductor Industry Overview examines the distinctive features, major 

participants, and market prospects of the industry. This chapter explores the various uses 

of semiconductors, ranging from computing to automotive technology. It also provides 

detailed information about important firms in the field, which is crucial for 

comprehending the ensuing analysis. 

The EMH chapter introduces the fractal methodology, which serves as the analytical basis 

for this investigation. This text elucidates the utilisation of fractal analysis and the Hurst 

exponent to assess market efficiency. This chapter additionally examines prior research 

that has utilised fractal techniques in different markets, placing the topic within a wider 

academic discussion. 

The primary examination is outlined in the chapters on Data Collection and Preparation 

and Analysis and Results. This study outlines the methodology used to gather and process 

data pertaining to the ETF and its individual components for the purpose of analysis. 

Subsequently, the study provides its findings by employing the Hurst exponent to 

evaluate whether these assets adhere to the random walk behaviour proposed by the 

Efficient Market Hypothesis . The study finishes by providing a concise summary of the 

observations about the market efficiency of the semiconductor business and emphasising 

the consequences for investors and regulators. 
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2. Semiconductor Industry 

2.1. Definition and characteristics of semiconductors 

A semiconductor is a material whose conductivity falls between that of a conductor and 

an insulator, allowing it to act as either depending on certain conditions such as the 

presence of impurities, the application of external electric fields, temperature, and light 

exposure (Singh, 2003). Semiconductors are a fundamental component of diodes, 

transistors, and integrated circuits. Semiconductors have a dual operation capability, 

which makes them extremely valuable components for precise control over the flow of 

electricity in various electronic devices, including computers and smartphones (Siu, 2022; 

Yu & Cardona, 1997). Semiconductors are inherently pure; however, they can be doped 

by introducing impurities. 

According to Yu & Cardona (1997), when the material is in its pure form, free from 

impurities and at low temperatures, it is more likely to demonstrate insulating qualities 

rather than low conductivity. Yu & Cardona (1997) attribute the absence of electrical 

conductivity in the material to the inadequate energy of the electrons to transition from 

the valence band to the conduction band, leading to a scarcity of free charge carriers.  

When impurities are added, the conductivity increases. According to Cohen et al. (1988), 

depending on the type of impurity added, the semiconductor becomes either n-type, 

having an excess electron, or p-type, meaning an excess of holes or positive charge 

carriers. In addition, as Bube (1992) and Brillson (1982) expose, increasing the 

temperature can also increase the conductivity of a semiconductor by providing the 

energy for more electrons to jump from the valence band to the conduction band, where 

they are free to conduct electricity. 

2.2. Primary applications of semiconductors 

In the report published by McKinsey & Co, Burkacky et al. (2022) explore the crucial 

role of semiconductors in powering various technologies that shape our modern digital 

world. They emphasise the importance of semiconductors in the functioning of common 

devices like smartphones, computers, and medical equipment. Additionally, the report 

highlights the significant role of semiconductors in the automotive industry, particularly 

in the advancement of electric and autonomous vehicles. Moreover, the research explains 

how the semiconductor sector supports the development of the Internet of Things (IoT), 
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which in turn improves everyday life by increasing ease and efficiency through the use 

of smarter, interconnected devices. According to the authors, the semiconductor industry 

is actively seeking strategic innovation and intensifying its research and development 

endeavours in order to adapt to the growing digital and intelligent society. Lastly, the 

research also exposes how these efforts are vital for the continuous evolution of 

semiconductor technologies and their ability to keep up with the rapid progress in digital 

innovation. 

Semiconductors have evolved considerably in recent years. Some examples of the main 

uses of semiconductors and their advances are:  

Transistors  

Transistors serve as the essential components of contemporary electronics, facilitating the 

amplification and regulation of electrical signals. Transistors, are semiconductors present 

in various devices, including televisions, radios, computers, and cell phones (Burkacky 

et al., 2022). In recent years, there has been a substantial rise in the number of transistors 

incorporated into these devices, primarily as a result of advancements in circuit 

complexity, miniaturisation and high demanding computation requirements. Integrated 

circuits are the products that use the largest number of transistors, the most popular of 

which are the following: 

• Central Processing Units (CPUs): Within the domain of Central Processing 

Units, the shift towards diminutive and more proficient transistors has 

substantially enhanced processing capability (Lotfi-Kamran & Sarbazi-Azad, 

2018). Modern CPUs, including Intel's and AMD's processors, are produced 

utilising state-of-the-art techniques that involve transistors as tiny as 5 nanometres 

(Munger et al., 2023). The decrease in size enables greater transistor density on a 

single chip, resulting in improved performance and less power usage (Lotfi-

Kamran & Sarbazi-Azad, 2018).  

• Graphics Processing Units (GPUs): Are designed for parallel processing in 

graphics rendering and sophisticated computations, have made significant 

progress due to its complex architecture (Cheng & Gen, 2019). Contemporary 

graphics processing units manufactured by firms such as Nvidia and AMD are 

currently built with billions of transistors on production nodes as small as 5 nm 

(Dally et al., 2021). The GPUs, such as Nvidia's RTX 4090, have significant 

processing capacity with Ada microarchitecture (Fumero et al., 2024). They also 

support advanced features like real-time ray tracing and AI-powered apps 
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(Schillaci, 2024). The reduction in size of transistors and the augmentation of 

processing cores have facilitated GPUs in efficiently rendering high-resolution 

graphics and executing intricate computations (Cheng & Gen, 2019). 

• Random Access Memory (RAM): RAM is essential for temporarily storing data 

that is accessible by the CPU, has undergone major developments as a result of 

progress in semiconductor technology (Nair, 2015). Modern RAM modules, such 

DDR5, use thinner and more densely arranged transistors and capacitors, enabling 

faster speeds and larger storage capacity (Lehmann & Gerfers, 2017). These 

improvements are crucial for managing the demanding requirements of modern 

computer systems. 

• Solid-State Drives (SSDs): SSDs have significantly gained advantages from 

advancements in semiconductor technology, particularly by utilising NAND flash 

memory (Mielke et al., 2017). SSDs employ transistors in their memory cells to 

deliver rapid and dependable storage (Iaculo et al., 2010). The implementation of 

3D NAND technology, which vertically arranges memory cells, has greatly 

enhanced storage density and capacity in smaller dimensions (C. Liu et al., 2021). 

Diodes 

Diodes, which are essential elements in semiconductor technology, have made notable 

progress, especially in the fields of light-emitting diodes (LEDs) and high-efficiency 

power diodes (Q. Wu et al., 2021; Yam & Hassan, 2005). LED technology has made 

significant progress in terms of efficiency, resulting in the development of brighter light 

while simultaneously reducing both thermal output and energy consumption (Kusuma et 

al., 2020). The advancement in technology has made it easier to use various applications, 

such as general illumination, digital screens, and vehicle lighting systems (Zissis et al., 

2021). Moreover, the advancements achieved in silicon carbide (SiC) diodes signify a 

significant achievement in the field of power electronics (Xu et al., 2021). Silicon carbide 

(SiC) diodes have the capacity to function effectively at elevated voltages and 

temperatures, rendering them highly suitable for challenging applications like electric 

vehicles and power management in renewable energy systems (Xu et al., 2021). 

Sensors 

Sensors are employed to detect and measure physical quantities or changes in the 

environment (D’Amico & Di Natale, 2001). 
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The advancements in semiconductor technology have greatly enhanced sensor 

technology, resulting in the creation of more accurate, smaller, and energy-efficient 

sensors. MEMS sensors have revolutionised various industries by facilitating the use of 

extremely sensitive and small devices in consumer electronics, automotive systems, and 

industrial automation (Liao, 2021). For example, modern motion sensors utilised in 

smartphones possess the capability to accurately detect minuscule movements and 

changes in direction (Xing et al., 2022). The increasing number of intelligent devices and 

the Internet of Things (IoT) are continuously pushing forward the progress and integration 

of sensors with improved functionalities (Krishnamurthi et al., 2020). 

Display panels 

The field of display technology has experienced rapid and substantial expansion, mostly 

because to breakthroughs in semiconductor materials and fabrication methods. 

Significant advancements in display technology have been made with the development 

and implementation of organic light-emitting diodes (OLEDs) and micro-LEDs (Miao et 

al., 2023). These developments provide enhanced colour accuracy, brightness, and energy 

efficiency in comparison to conventional liquid crystal displays (LCDs) (Chansin, 2021). 

The small and flexible nature of OLED technology has resulted in its widespread adoption 

in high-end smartphones, televisions, and wearable gadgets. Micro-LEDs, a nascent 

technology, have the capability to offer enhanced performance characterised by increased 

luminosity and extended durability (Miao et al., 2023). In addition, the ongoing 

advancements in semiconductor technologies are enabling the development of higher 

display resolutions, such as 8K, and enhancements in refresh rates (Shin et al., 2021). 

Solar Photovoltaic panels 

Traditionally, silicon photovoltaic cells have been the predominant choice in the solar 

panel industry (Bosio et al., 2020). According to Bosio et al. (2020), renowned for their 

robustness and efficacy, these cells frequently attain efficiencies close to 22% and have 

been utilised as the foundation for solar arrays in residential, commercial, and utility-scale 

settings. Silicon has been the primary material for solar energy development for many 

years because of its dependable performance and cost efficiency (Dallaev et al., 2023). 

Perovskite materials, a recently discovered and proved types of semiconductors, have 

recently emerged as a groundbreaking advancement in solar energy (Olaleru et al., 2020). 

Perovskite solar cells, as Olaleru et al. (2020) exhibit, have quickly received acclaim for 

their capacity to attain efficiencies over 24% in controlled laboratory settings, surpassing 
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conventional silicon cells. Also, they describe how this new technology also can be 

produced at a much lower cost.  

According to Statista (2023) he solar industry has experienced substantial growth, with 

the total global capacity of solar installations surpassing 1,000 gigawatts (GW). The 

growth of the solar energy sector is additionally propelled by emerging technologies like 

bifacial panels, capable of harnessing sunlight from both sides, and tandem cells, which 

employ stacked layers to absorb a broader range of light wavelengths (Lehr et al., 2020) 

or other complementary technologies as solar trackers (Hammoumi et al., 2022). These 

developments are vital for bolstering the importance of solar energy in the transition 

towards sustainable energy sources, thus leading to an upsurge in the utilisation of 

semiconductors. 

 

2.3. Key industry players and market outlook 

The semiconductor industry is meticulously structured into several sectors based on the 

many stages of its supply chain (Khan et al., 2021). The supply chain of the 

semiconductor industry is divided into several distinct stages. The process commences 

with the design phase, wherein sophisticated tools are employed to create intricate designs 

and functional specifications for semiconductor devices (White et al., 1997). Following 

that, the production process begins, utilising sophisticated techniques such as 

photolithography and etching to produce high-quality semiconductor wafers of 

extraordinary calibre (Akcalt et al., 2001). Subsequently, these wafers go through 

assembly, packaging, and comprehensive testing, leading to their conversion into fully 

functional semiconductor products (Tummala et al., 1997). The distribution stage 

oversees the global logistics and delivery of these commodities to various markets, 

showcasing the complex and comprehensive structure of the industry's supply chain. 

According to Quart (Karlsson, n.d.), the semiconductor industry is organised into 

different segments throughout the value chain, which include:  

• Integrated Device Manufacturers (IDMs) are companies that manage the entire 

semiconductor device manufacturing process, including design, production, and 

testing. The main participants consist of Intel Corporation, Texas Instruments 

Incorporated, Samsung Electronics Co., STMicroelectronics N.V., and Infineon 

Technologies AG. 
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• Fabless semiconductor companies are enterprises that focus solely on the design 

and progress of semiconductor chips, while delegating the manufacturing process 

to external foundry partners. The indicated companies include NVIDIA 

Corporation, Qualcomm Incorporated, Broadcom Inc., Advanced Micro Devices, 

Inc. (AMD), and MediaTek Inc. 

• Foundries are dedicated facilities that manufacture semiconductor devices based 

on designs provided by customer companies. The highlighted businesses include 

Taiwan Semiconductor Manufacturing Company (TSMC), Samsung Electronics 

Co., GlobalFoundries Inc., United Microelectronics Corporation (UMC), and 

Semiconductor Manufacturing International Corporation (SMIC). 

• Semiconductor equipment manufacturers are companies that fabricate the 

complex apparatus and tools required for the production of semiconductors. The 

highlighted businesses include Applied Materials, Inc., ASML Holding N.V., 

Lam Research Corporation, Tokyo Electron Limited, and KLA Corporation. 

• Outsourced Semiconductor Assembly and Test (OSAT) companies are 

businesses that provide semiconductor assembly and test services to external 

entities. The mentioned firms include ASE Technology Holding Co., Amkor 

Technology, Inc., JCET Group Co., Ltd., Siliconware Precision Industries Co. 

(SPIL), and Tianshui Huatian Technology Co., Ltd. 

• EDA firms are organisations that provide specialised software tools and services 

for the construction and development of electronic systems and circuits. The cited 

businesses include Cadence Design Systems, Inc., Synopsys, Inc., Siemens 

(Mentor Graphics), ANSYS, Inc., and Keysight Technologies, Inc. 

According to Statista (2023), the semiconductor sector is expected to have a substantial 

growth in sales of more than 30% by 2027, and the primary factor driving this rise is the 

expansion of the integrated circuits segment. The integrated circuit industry holds 

significant significance, as these devices serve as the fundamental building blocks in 

various advanced technological applications, such as computers, cellphones, and servers  

as a result of their exceptional functionality and ability to integrate (Burkacky et al., 

2022). 

The figure 1, depicts the allocation of market share among prominent semiconductor 

manufacturer companies, thereby showcasing the supremacy of key participants and the 

competitive environment within the industry. Notably, Samsung, Intel, TSMC, and 
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Qualcomm are the key participants in the business, collectively holding a 40% market 

share. 

Figure 1. Semiconductors Manufacturers Market Share 

 
Source: Own elaboration based on Statista (2023) 

The figure 2 illustrates the past and predicted worldwide sales of semiconductors, with 

integrated circuits anticipated to reach a staggering 645.9 billion units by the year 2027E. 

This increase demonstrates the fundamental importance of these elements in intricate 

electrical systems. Moreover, the data clearly shows a substantial rise in the 

manufacturing of optoelectronics as new technologies are being developed (Dong et al., 

2023), with a predicted quantity of 270.7 billion units. This technology is utilised in LED 

lighting (Pandey & Mi, 2022) and fiber-optic systems (Chen et al., 2021), as well as in 

discrete semiconductors, which are projected to increase to 508.1 billion units. The 

anticipated output of 60.35 billion units of sensors and actuators holds significant 

significance within the realm of the Internet of Things (IoT) (Krishnamurthi et al., 2020) 

and industrial automation. 
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Figure 2. Semiconductors billion units by type 

 
Source: Own elaboration based on Statista (2023) 

The figure 3 depicts the increase in revenues of several types of semiconductors, 

highlighting the rising demand for integrated circuits, optoelectronics, discrete 

semiconductors, and sensors and actuators (Statista, 2023).  

Figure 3. Semiconductors revenue by type 

 
Source: Own elaboration based on Statista (2023) 

The figure 4 illustrates the price per unit (in $) for different semiconductor categories 

spanning from 2016 to 2027E, suggesting a projected stabilization in pricing. This trend 
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signifies enhanced production efficiencies and the expanding acceptance of 

semiconductor technologies (Varas et al., 2021), which have substantial ramifications for 

worldwide technology costs and market accessibility. 

Figure 4. Semiconductors price per unit by type 

 
Source: Own elaboration based on Statista (2023) 

The 2024 Global Semiconductor Business Outlook report by KPMG predicts substantial 

expansion in the semiconductor sector. Based on a study of 172 high-ranking executives, 

83% of them expect a rise in revenue for their companies, indicating a strong and positive 

financial forecast. The cause of this positive outlook can be linked to several main factors: 

the incorporation of generative artificial intelligence (Gen AI), the increasing need for 

semiconductors in the automotive industry, and significant investments in both cloud 

computing and aerospace sectors (KPMG, 2024). 

Notwithstanding these favourable growth prospects, the research emphasises an ongoing 

and substantial obstacle: the challenge of attracting and maintaining talented personnel. 

For three consecutive years, this problem has been the main concern of the sector, 

highlighting the crucial importance of strategic talent management. Therefore, the 

industry's progress and innovation are dependent on the crucial aspect of being able to 

attract and cultivate a highly proficient workforce (KPMG, 2024). 

Hence, the sustained prosperity of the semiconductor industry in 2024 would depend not 

only on technological progress and market growth, but also on efficiently resolving the 

scarcity of skilled workforce. Effectively addressing personnel difficulties is essential for 

maintaining consistent growth and promoting future innovations (KPMG, 2024). 
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The "2024 Global Semiconductor Industry Outlook" by Deloitte forecasts a 13% increase 

in worldwide semiconductor sales, with a potential value of $588 billion. The expansion 

is fueled by a surge in demand for personal computers, smartphones, and the use of 

generative AI in diverse areas, such as automotive and industrial applications. The 

semiconductor industry's crucial position in the global economy is emphasised by these 

improvements (Deloitte, 2024). 

Nevertheless, the research cautions of substantial obstacles that could impede 

advancement. Geopolitical tensions and vulnerabilities in the supply chain are significant 

concerns, as they have the potential to disrupt commerce and operations. Deloitte 

highlights the significance of implementing adaptable solutions to respond to market 

fluctuations and suggests enhancing the robustness of supply chains by diversifying 

geographically and boosting domestic production capabilities. It is essential to tackle 

these problems in order to sustain growth and remain competitive in a continuously 

changing technology environment (Deloitte, 2024).  
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3. Fractal Methodology in the EMH 

3.1. Fractal Methodology, main uses and relation with EMH 

The Efficient Market Hypothesis  states that in its weak form, markets are efficient when 

prices fully reflect all previous trading information, making it challenging to anticipate 

future price changes merely based on historical data (Fama, 1970; 1991). As to the 

Efficient Market Hypothesis , the unpredictable nature of asset prices is a result of their 

random walk behaviour, where each price movement is independent to previous onesa 

and, therefore, it can be inferred that investors are unable to continuously attain returns 

that are higher than the average by analysing past prices (Malkiel, 1973, 1989; Jensen, 

1978). 

Fractal analysis presents a strong opposing viewpoint to this notion by emphasising the 

existence of long-term interconnections in financial time series (Hurst, 1951). Fractal 

analysis, first introduced by Hurst (1951) in his research of Nile River water levels, is a 

method used to identify self-similar patterns in time series data. This analysis reveals that 

short-term and long-term behaviours exhibit comparable characteristics. In 2005, 

Mandelbrot expanded upon these ideas in the field of finance, showing that asset values 

frequently have fractal characteristics. These characteristics can manifest as either 

persistent, long-term trends or anti-persistent, mean-reverting behaviours, which are not 

explained by classical theories (Mandelbrot, 2005). 

In order to measure these fractal characteristics, we employ the Hurst exponent (𝐻). The 

Hurst exponent is a crucial metric used in fractal analysis to quantify the extent of long-

term memory or reliance in a time series (Graves et al., 2017). Its definition by Hurst 

(1951) falls between 0 and 1: 

• A value of 𝐻=0.5 signifies a random walk, which aligns with the Efficient Market 

Hypothesis and implies the absence of long-term correlation. 

• A value of 𝐻<0.5 indicates anti-persistence, meaning that the series has a tendency 

to return to its average, suggesting a greater probability of price reversals. 

• A value of 𝐻>0.5 indicates persistence, which implies that past trends are 

expected to remain. This contradicts the Efficient Market Hypothesis by claiming 

that prior data can be utilised to forecast future movements. 

The Rescaled Range (R/S) analysis is the traditional approach for computing the Hurst 

exponent. This methodology has been extensively utilised to evaluate the effectiveness 
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of the market in many types of assets, such as commodities, energy markets, and 

cryptocurrencies (Kristoufek & Vosvrda, 2014; Sensoy & Hacihasanoglu, 2014; Jiang et 

al., 2018). These studies frequently identify deviations from the Efficient Market 

Hypothesis , indicating that markets display intricate, self-similar patterns throughout 

time. 

It is essential to comprehend these fractal aspects within the semiconductor industry. The 

semiconductor industry is distinguished by swift technical progress, cyclic demand 

patterns, and notable interruptions in the supply chain as described by KPMG (2024) and 

Deloitte. (2024). These characteristics may lead to times of inefficiency during which 

historical price information could be utilised to predict future patterns (Voas et al., 2021; 

Burkacky et al., 2022). Our objective is to use fractal analysis on the VanEck 

Semiconductor UCITS ETF and its components to see if the market demonstrates 

persistent or mean-reverting behaviours. This will help us evaluate its alignment with the 

Efficient Market Hypothesis. 

 

4.2. Previous research  

Fractal analysis has a long and significant history in financial markets, dating back to 

Hurst's pioneering research in 1951 on the storage capacity of long-term data. Mandelbrot 

(2005) applied fractal theory to finance, which enhanced our comprehension of market 

behaviours that depart from the Gaussian assumptions that underlie the Efficient Market 

Hypothesis . These fundamental works have sparked countless investigations into the 

existence of fractal patterns and long-term interdependencies in different markets. 

Di Matteo et al. (2003, 2005) showed that financial markets frequently display 

multifractal behaviour, characterised by distinct scaling rules that apply to various parts 

of the data. Kristoufek (2010) conducted a more in-depth analysis of the fractal patterns 

in financial time series, with a particular focus on the influence of long-term memory on 

asset returns. These works highlight the significance of fractal analysis in questioning the 

Efficient Market Hypothesis  by presenting evidence of enduring and opposing patterns 

in markets. 

In recent times, there has been a shift in research towards examining particular sectors 

and asset classes. New methodologies have also been introduced, such as DFA (Grivel et 

al., 2021) or GHE, which incorporate new factors in the assessment of market efficiency. 
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For example, in the fuel and energy industry, David et al. (2020), Tiwari et al. (2021), 

Ftiti et al. (2020) and Ali et al. (2021) have carefully analysed efficiency using different 

types of fractal methods such as DFA.  

Takaishi and Adachi (2019), López-Martín et al. (2021), and Mikhaylov et al. (2021) have 

used the Fractal methodology to asses if the Cryptocurrencies market is efficient or not.  

On the other hand, other studies have been carried out to try to assess whether some 

indices are efficient, e.g. Bui and Ślepaczuk (2022) try to identify mean-reverting patterns 

in the Nasdaq100, while Vogl (2023) tries to assess the efficiency of the S&P500 using 

fractal methods such as MFDFA combined with a rolling window. 

Finally, some studies have been carried out on industries that can also be classified at a 

high level as technological companies. For example, Mulligan (2004) applies the fractal 

methodology to technology companies, some of which are included in our analysis, such 

as Texas Instruments. 

Our study utilises these insights in the context of the semiconductor sector. Through an 

examination of the VanEck Semiconductor UCITS ETF and its component companies, 

our objective is to ascertain if this sector conforms to or diverges from the concepts of the 

Efficient Market Hypothesis .  

 

4.3. Data collection and preparation 

We focused our analysis on the VanEck Semiconductor UCITS ETF (SMGB.L) and its 

25 constituent stocks. The dataset contains daily adjusted closing prices spanning from 

December 11, 2020, to June 11, 2024. This time frame spans 898 trade days, which offers 

a substantial and reliable dataset for doing fractal analysis. The adjusted closing prices 

are utilised to incorporate any corporate actions, such as dividends and stock splits, in 

order to ensure that the data accurately represents the actual market worth of the assets. 

Data preprocessing refers to the steps taken to clean and transform raw data into a format 

that is suitable for analysis. In order to guarantee the precision and comprehensiveness of 

our study, we executed multiple preprocessing procedures:  

• Dealing with Missing Data: We employed linear interpolation to replace any 

absent values in the time series (Kay, 1983). This approach preserves the general 

pattern and prevents the introduction of substantial biases that could skew the 

fractal analysis.  



 21 

• Calculating Logarithmic Returns: The price data was converted into logarithmic 

returns (𝑟!), which were calculated using the formula:  

𝑟! = ln	 '
𝑃!
𝑃!"#

) 

4.4 The Hurst exponent and rescaled range (R/S) analysis. 

In our research, we employed a minimum lag (𝑛) of 10 days and a maximum lag equal to 

half the duration of the data series, which was 449 days. This range encompasses both 

immediate and prolonged interconnections while accommodating the limitations of the 

sample size. 

To investigate the long-term dependencies in the semiconductor market, we employed 

the Rescaled Range (R/S) analysis to calculate the Hurst exponent. This method involves 

several steps as Weron (2002) and Corzo Santamaría et al. (2022) exhibit: 

• Dividing the Time Series: The time series is divided into 𝑑 subseries of length 𝑛n. 

For each subseries 𝑍$,& (where 𝑖=1,...,𝑛 and 𝑚=1,...,𝑑) the sample mean (𝐸&) and 

standard deviation (𝑆&) are computed. 

• Normalization: The data points are normalized by subtracting the sample mean, 

yielding 𝑋$,& =𝑍$,& −𝐸&.  

• Constructing the Cumulative Time Series: The cumulative time series is then 

constructed as  𝑌$,& =	∑ 𝑋',&	$
'(&    𝑌𝑖,𝑚=∑𝑗=1𝑖𝑋𝑗,𝑚. 

The Rescaled Range (R/S) statistic is defined by the formula:  

𝑅	
𝑆	 = 	

max(	𝑍#,&, … , 𝑍),&) −min	(	𝑌#,&, … , 𝑌),&)
𝑆(𝑛)  

• Averaging the Rescaled Range: The mean rescaled range for all subseries of 

length 𝑛n is computed, yielding the 𝑅/𝑆(𝑛) statistic.      

• Log-Log Plotting: Finally, we plot log(𝑅/𝑆(𝑛)) against log(𝑛). The slope of the 

linear fit to this log-log plot provides the Hurst exponent 𝐻: 

𝑅/𝑆(𝑛) = 𝐶 ∗ 𝑛+ 

Where C is a constant.  

 

For our analysis, we selected a minimum lag (𝑛) of 10 days and a maximum lag of half 

the duration of the data series to be able to capture short term trends (449 days). This 
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range incorporates both short-term and long-term dependence while accommodating the 

sample size limits. 

In order to verify the accuracy of our findings, we created 10,000 artificial Gaussian white 

noise series that were of same length to the financial data as used by Corzo Santamaría et 

al. (2022). We computed the Hurst exponent for each synthetic series and determined the 

values corresponding to the 5th and 95th percentiles in order to establish confidence 

intervals. This comparison enables us to evaluate if the observed Hurst exponents depart 

significantly from those anticipated under the random walk hypothesis. 

The Hurst exponent's value ranges from 0 to 1, where 𝐻>0.5 indicates persistent behavior 

(trending), 𝐻=0.5 suggests a random walk, and 𝐻<0.5 denotes anti-persistence or mean-

reverting (Corzo Santamaría et al., 2022). 

 

4.5. Rolling window analysis 

In order to examine the changes in market efficiency over time, we conducted a rolling 

window analysis as used in several studies like Vogl (2023). This approach entails the 

computation of the Hurst exponent using a moving window of a predetermined size. In 

our analysis, we selected a window size of 252 trading days, which is roughly equivalent 

to one year. We then moved the window forward by one day at a time to provide daily 

data, ensuring a higher level of accuracy in capturing trends. 

The Hurst exponent was calculated for each window using the R/S analysis. This 

methodology offers a dynamic viewpoint on market efficiency, enabling us to see the 

evolution of persistence or mean-reversion behaviours in response to fluctuations in 

market conditions and external events. 

 

4.6. Statistical significance and confidence intervals; Gaussian white noise 

In order to determine the statistical significance of our results, we created 10,000 synthetic 

Gaussian white noise series as used by Corzo Santamaría et al. (2022). Each series had a 

length of 898 observations, which matched our dataset, allowing for a fair comparison. 

We computed the Hurst exponent for each artificial series using the identical R/S analysis 

approach. 
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The synthetic Hurst exponents were utilised to determine the lower and upper bounds of 

the 5th and 95th percentiles, thereby creating a 90% confidence interval for the Hurst 

exponent. This was done on the assumption of a random walk (H = 0.5) for our particular 

situation. The empirical Hurst exponents of the ETF and its components were 

subsequently compared to these boundaries to ascertain whether they had notable 

departures that suggest either persistent or mean-reverting behaviour.  
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4. Sample Description  

4.1. Definition and main characteristics  

While the materials that make up semiconductors can be traded as commodities, such as 

silicon and gallium, semiconductors themselves cannot be traded. In this sense, 

semiconductors can be traded through various financial instruments. The two main ways 

to invest are through the companies that produce semiconductors, companies that use 

them in their products, or through an Exchange-Traded Fund (ETF), mutual fund or index 

that includes some of the companies involved in the industry. 

At present, there are numerous indexes and mutual funds that incorporate semiconductor 

businesses in its components, such as the SP500 or Nasdaq. However, to focus just on 

analysing the semiconductor industry, the chosen index is the VanEck Semiconductor 

UCITS.  

An ETF is a financial instrument that combines multiple stocks, bonds, or commodities 

into a single entity, traded on stock exchanges and its value corresponds to the net asset 

value of the underlying assets (Gastineau, 2002). ETFs are characterized for their low 

costs, inherent diversification, and high liquidity and unlike mutual funds, ETFs trade on 

stock exchanges like individual stocks, allowing investors to buy and sell shares at market 

prices through traditional and online brokers (Abner, 2016; Hill et al., 2015). 

Based on Ferry´s (2007) study, ETFs are designed to mirror the performance of specific 

indices, commodities, or asset classes, thus offering intrinsic diversification across a 

range of assets. However, investors in ETFs must accept all assets within the fund as they 

are (Ferri, 2007). 

According to Brown et al. (2020) ETFs rely on authorized participants (APs) to maintain 

price alignment with their net asset value (NAV). APs create or redeem ETF shares by 

trading underlying assets with the ETF issuer based on market demand fluctuations and 

by process keeps the ETF's market price in line with its NAV (Brown et al., 2020). 

Depending on their specific policies, ETFs may distribute dividends or interest from the 

underlying assets, adding to the overall return along with any capital gains from asset 

value appreciation (Chen & Kien, 2019; Deville, 2008). 

The primary costs for ETF investors include commissions and the expense ratio (Ferri, 

2007). Many trading platforms now offer commission-free ETF trading, reducing this 

cost. The expense ratio, an annual fee based on a percentage of the ETF’s assets, covers 
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management and administration expenses, directly affecting returns and unlike mutual 

funds, ETFs usually do not charge "load" fees, making them more cost-effective (Angel 

et al., 2016).  

 

4.2. ETF: VanEck Semiconductor UCITS, specifications and components 

The VanEck Semiconductor ETF UCITS, denominated in USD, and with ISIN number 

IE00BMC38736, seeks to replicate the performance of an internationally diverse 

selection of semiconductor manufacturing and equipment businesses by tracking the 

“MVIS US Listed Semiconductor 10% Capped ESG Index”. The ETF allows potential 

investors to invest in a diversified portfolio of stocks from different companies within the 

industry, thereby reducing risk (Evans & Archer, 1968).  

The ETF was launched on 1 December 2020 and had a NAV of $2.4 billion with 50.4 

million outstanding shares as of 16th June 2024 (Semiconductor ETF | SMH | VanEck, 

2024). As of June 2024, the ETF is registered in 16 countries and has a total of 25 

holdings. According to the prospectus and Fact Sheet, it has a total expense ratio of 0.35% 

and is rebalanced twice a year with monthly adjustments, on selection days, each index 

component is equally weighted within specific constraints. The ETF's performance and 

that of its constituents have been tracked since its inception, and as of 16th June 2024, has 

a YTD return of 39,81%.  

Companies must fulfil strict criteria, as outlined in the ETF's prospectus and Fact Sheet, 

in order to be included in this ETF. These criteria encompass two conditions: generating 

a minimum of 50% of their income from semiconductor-related operations and being 

integrated into the semiconductor supply chain. If a company's semiconductor revenue 

falls below 25%, it may be eligible for elimination. 

In addition, companies are required to maintain a minimum market capitalization and 

trading volume in order to guarantee the liquidity of the ETF. The ETF additionally 

screens out firms that contravene UN Global Compact Principles or get substantial 

revenue from contentious industries such as thermal coal, fossil fuels, and tobacco, 

thereby guaranteeing adherence to socially responsible investment principles. These 

conditions guarantee that the ETF precisely mirrors the semiconductor industry and 

strictly follows rigorous ethical guidelines (Semiconductor ETF | SMH | VanEck, 2024)..  
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Figure 5. Performance of the ETF and its components since ETF inception to 11-06-2024 

 
Source: Own elaboration based on historical data (11-12-2019 to 11-06-2024) 

 

The graph shown in Figure 5 illustrates the modified price paths of the VanEck 

Semiconductor UCITS ETF (SMGB.L) and its constituent parts from December 2020 to 

June 2024. NVIDIA (NVDA) and ASML (ASML) demonstrate significant increase, 

reflecting high investor interest and strong performance during the period. In contrast, 

stocks such as Intel (INTC) and Texas Instruments (TXN) exhibit relatively modest price 

gains. AMD and Micron (MU) exhibit more price volatility, which is indicative of the 

dynamic market conditions in their respective areas. The price fluctuations in the 

semiconductor industry's many segments, as outlined in Table 1, demonstrate the diverse 

performance and market responses within the industry. 
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Table 1. VanEck Semiconductor UCITS ETF and components; Data and descriptives 

 
Source: Own elaboration based on the ETF Website (Semiconductor ETF | SMH | 

VanEck, 2024). Data updated as of 16 June 2024.  
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Table 1 provides an extensive examination of semiconductor equities that are part of the 

VanEck Semiconductor UCITS ETF. The investigation spans from December 11, 2020, 

to June 11, 2024. The stocks are categorised into different segments based on their 

responsibilities in the semiconductor value chain. These segments include Integrated 

Device Manufacturers (IDMs), Fabless Semiconductor Companies, Semiconductor 

Equipment Manufacturers, EDA Firms, and Foundries (Table 1). 

In the ticker column, each stock is denoted by its distinct symbol. For instance, NVDA 

represents NVIDIA Corporation, a prominent player in the Fabless Semiconductor 

Companies sector. NVIDIA is renowned for its groundbreaking innovations in graphics 

processing and artificial intelligence (Table 1). Similarly, the name column presents the 

full names of these entities, guaranteeing clarity in their identification (Table 1). 

The sector-industry segment column classifies each company according to its role within 

the semiconductor ecosystem (Table 1). Intel Corporation (INTC) and Texas Instruments 

Incorporated (TXN) are categorised as Integrated Device Manufacturers (IDMs), 

responsible for overseeing the complete semiconductor production process. On the other 

hand, firms such as NVIDIA Corporation (NVDA) and AMD are categorised as Fabless 

Semiconductor firms. They primarily concentrate on the design aspect of semiconductor 

production and delegate the manufacturing process to external foundries like TSMC 

(Table 1). 

The "Nº observations" column represents the total number of daily price observations, 

which is consistently set at 898 for all stocks (Table 1). This uniformity enables an 

equitable evaluation. Regarding the number of shares and market value, these indicators 

provide information on the ETF's holdings in terms of the count of shares and the 

valuation in the market, respectively (Table 1). NVIDIA Corporation holds the largest 

position in the ETF, with 2,372,962 shares and a market value of $312,149,526.48. This 

highlights its substantial impact on the overall performance of the ETF (Table 1). 

The weight column represents the percentage that each stock contributes to the overall 

value of the ETF, as seen in Table 1. NVIDIA, with a significant weight of 13.31%, plays 

a crucial role in the portfolio. The mean (%) column displays the average daily 

logarithmic return. NVIDIA stands out with a mean return of 0.2493%, indicating its 

strong and consistent growth (Table 1). In contrast, equities such as Intel Corporation 

(INTC) and Universal Display Corporation (OLED) have marginal negative returns, 

indicating the presence of obstacles specific to their respective sectors (Table 1). 



 29 

The Std (%) or standard deviation column (Table 1) captures the measure of volatility. 

The ETF with the ticker symbol SMGB.L has the lowest level of volatility, measured at 

1.7546%. This indicates its ability to provide stability in the market, as seen in Table 1. 

However, businesses like Marvell Technology Inc. (MRVL) and AMD demonstrate 

greater volatility, which suggests their high-risk, high-reward characteristics in the 

industry (Table 1). 

The Max (%) and Min (%) columns provide information on the highest and lowest daily 

returns recorded (Table 1). Marvell Technology Inc. (MRVL) achieved the biggest one-

day increase of 28.0836%, while AMD suffered a severe one-day decline of -14.9299%, 

demonstrating the possibility of significant performance variations in this industry (Table 

1). 

Skewness and kurtosis offer valuable information about the distribution of returns, as seen 

in Table 1. Skewness is a statistical metric that quantifies the degree of asymmetry in a 

distribution. In the case of Intel Corporation (INTC) and ON Semiconductor Corporation 

(ON), they exhibit negative skewness, which suggests a higher frequency of drops in their 

values. This information is presented in Table 1. On the other hand, NVIDIA Corporation 

(NVDA) and Marvell Technology Inc. (MRVL) demonstrate positive skewness, 

indicating infrequent but significant profits (Table 1). Kurtosis is a measure of the extent 

to which a distribution has tails, with higher values indicating a higher likelihood of 

extreme returns for firms such as Marvell Technology Inc. (MRVL) and Entegris Inc. 

(ENTG) (Table 1). 

Finally, the Jarque-Bera test evaluates the normality of the return distributions, as shown 

in Table 1. The test decisively rejects the null hypothesis of normality for all stocks at a 

1% significance level, as indicated by the (***) notation, demonstrating substantial 

deviations characterised by skewness and kurtosis (Table 1). 

To summarise, this comprehensive evaluation emphasises the different levels of 

performance and risk associated with the semiconductor industry (Table 1). Integrated 

Device Manufacturers (IDMs) like Texas Instruments Incorporated (TXN) and 

STMicroelectronics N.V. (STM) demonstrate intermediate profitability and stability. On 

the other hand, Fabless Semiconductor Companies, such as NVIDIA Corporation 

(NVDA) and AMD, display high profitability but also higher levels of volatility (Table 

1). Semiconductor equipment manufacturers, such as Applied Materials Inc. (AMAT), 

have a stable performance with a modest level of risk (Table 1). EDA firms such as 

Cadence Design Systems Inc. (CDNS) and Synopsys Inc. (SNPS) offer stable returns 
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with less volatility, highlighting their crucial involvement in electronic design and 

development (Table 1).  

The top 5 holdings of the ETF account for more than half of its net asset value (NAV), as 

table 2 illustrates. The portfolio consists of diverse investments across different sectors 

of the industry, including Nvidia, Broadcom, ASML, TSMC, and AMD. 

• Nvidia is the dominant corporation in the Graphic Processing Unit (GPU) sector 

of the business with c.80% market share (M. Chen & Leong, 2022) and their 

products are renowned for their superior performance and remarkable power 

efficiency (Choquette et al., 2021). They are specifically engineered for graphic 

processing, with a special emphasis on video games, video processing, and 

graphic design, among other related tasks. Nvidia's CUDA technology is an 

essential platform and programming style for parallel computing (Kondratyuk et 

al., 2021). It offers developers the necessary tools to fully harness the capabilities 

of GPU-accelerated computing and its GPUs are employed for artificial 

intelligence (AI) computation (Cass, 2020; Kelkar & Dick, 2021), a factor that 

has propelled Nvidia to become one of the most valuable businesses in the market, 

boasting a market capitalization above $2 trillion (NVIDIA Corporation - 

Financial Info - 2023 Annual Report, 2024). The company's revenues exceeded 

$260 billion in both 2022 and 2023.  

• Broadcom is becoming a leading firm in the semiconductor sector, focusing on 

various technologies such as networking, broadband, storage, and wireless 

applications (Wang et al., 2017). This guarantees that its services, such as 

advanced processors for data centres and network infrastructure, maintain a 

dominant position in the technology industry (Z. Liu et al., 2023). Broadcom's 

market capitalization exceeded $600 billion as of March 2024, and it generated 

$35.8 billion in revenues during FY2023. 

• ASML is a prominent company in the semiconductor manufacturing industry that 

specialises in producing photolithography equipment (Fang & He, 2022). Fang 

and He (2022) highlight how this equipment is crucial to produce sophisticated 

semiconductor devices. The company's monopoly in supplying Extreme 

Ultraviolet (EUV) lithography systems highlights its crucial role in advancing 

chip production, namely in terms of miniaturisation and enhanced efficiency 

(Meiling et al., 2004). ASML's market capitalization exceeded €360 billion as of 

March 2024, while its revenues for FY2023 amounted to €7.2 billion. 
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• Taiwan Semiconductor Manufacturing Company (TSMC) specialises in the 

production of high-performance graphics processing units and a diverse array of 

semiconductor products (Liu et al., 2005). TSMC plays a crucial role in advancing 

computers, mobile communications, and artificial intelligence processing as a 

significant manufacturing partner to the world's leading technological businesses 

(Hao & Bu, 2022). TSMC's market capitalization exceeded $700 billion as of 

March 2024, while its revenues for the fiscal year 2023 amounted to $70.3 billion. 

• Advanced Micro Devices, Inc. (AMD) holds a strong position in the computing 

and graphics industry, especially with the launch of its Radeon series of graphics 

cards (M. Chen & Leong, 2022). AMD's dedication to leading advancements in 

the graphics processor unit industry is in line with its prominent position in the 

technology field, propelling progress in both computing and graphics rendering 

capabilities (Kondratyuk et al., 2021). As of March 2024, AMD's Market 

Capitalization exceeds $270 billion, while its revenues in FY2023 amounted to 

$6.2 billion. 

 

4.3 Data acquisition and preprocessing 

The data used for this analysis has been extracted from Yahoo Finance using the 

`yfinance` library. It includes information from December 11, 2020, to June 11, 2024. 

The information contains the adjusted daily closing prices for the VanEck Semiconductor 

UCITS ETF (SMGB.L) and its 25 components and covers a period of 898 trading days. 

The adjusted closing prices are essential as they accurately represent the actual market 

value of the assets, taking into account any company activities such as dividends and 

stock splits. 

We utilised linear interpolation to populate any gaps in the data as it maintains the 

dataset's durability and consistency with the minimum interpolation error (Kay, 1983). 

This technique eliminates any possible discontinuities caused by holidays or other days 

when trading is not conducted, guaranteeing a comprehensive and uniform time series for 

each stock symbol.  
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5. Analysis and Results 

Table 2. Hurst coefficients for the ETF and the components and IC 

 
Source: Own elaboration based on the Results of the Analysis. 

5.1 ETF and components Analysis 

This investigation seeks to ascertain the extent to which the semiconductor business, as 

exemplified by the VanEck Semiconductor UCITS ETF (SMGB.L) and its constituent 

stocks, conforms to the Efficient Market Hypothesis . In order to accomplish this, we 

examine the Hurst exponents of these assets. The Hurst exponent (H) is essential for 

evaluating the long-term memory and fractal properties of financial time series, offering 

insights into whether price fluctuations adhere to the Efficient Market Hypothesis  (Eom 

et al., 2008). 

 

5.1.1. Theoretical Explanation of the Hurst Exponent 

The Hurst exponent has a theoretical range of 0 to 1 and its interpretation is as follows 

according to Hurst (1951) study: 
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• A value of H = 0.5 indicates a random walk, meaning that the time series does not 

show any long-term association. This aligns with the idea of market efficiency 

according to the Efficient Market Hypothesis. In this situation, previous changes 

in price cannot be used to anticipate future changes, thus preventing the possibility 

of capitalising on trends for reliable profits. 

• If H > 0.5, it indicates persistent behaviour, meaning that trends are more likely 

to continue. This indicates that the series demonstrates positive autocorrelation, 

meaning that future price changes are affected by previous moves in the same 

direction. Consistent behaviour would indicate predictability and, hence, a 

departure from market efficiency. 

• When the value of H is less than 0.5, it suggests the presence of anti-persistent or 

mean-reverting behaviour, indicating a higher likelihood of trends reversing. This 

indicates that the series demonstrates negative autocorrelation, meaning that 

future price movements tend to go against prior moves. The presence of mean-

reverting behaviour indicates the potential for predictability and a departure from 

market efficiency. 

 

5.1.2. Analysis using confidence intervals. 

 

Figure 6. Hurst Coefficient for each Ticker 

 
Source: Own elaboration based on the Results of the Analysis. 
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In order to evaluate the effectiveness of the semiconductor stocks, we analyse their Hurst 

exponents in relation to a 95% confidence interval (CI) obtained from their empirical 

distribution. The confidence interval for these Hurst exponents is [0.4510, 0.6467] as 

described in table 2. This interval functions as a standard against which other things can 

be measured: 

• Stocks within the confidence interval [0.4510, 0.6467] exhibit random walk 

behaviour, which is indicative of market efficiency. The fluctuations of these 

equities are predominantly indeterminate, implying that previous price patterns do 

not offer dependable insights for predicting future values. 

• Stocks with a CI value greater than 0.6467 would demonstrate persistent 

behaviour. Nevertheless, none of the examined stocks fit into this category, 

suggesting that they do not possess distinct trend-following attributes that diverge 

significantly from the random walk model. 

• Stocks with a CI value below 0.4510 exhibit anti-persistent or mean-reverting 

behaviour. These stocks tend to return to their average value after deviating, which 

contradicts the concept that market movements are random in efficient markets 

and indicates the possibility of predicting their price changes. 

 

5.1.3. Examination of ETF and its components 

 

The VanEck Semiconductor UCITS ETF (SMGB.L) typically exhibits a rolling Hurst 

exponent that hovers around 0.5. This indicates that the price changes of the ETF usually 

conform to random walk behaviour, which is a sign of market efficiency. Periods of 

deviation, in this context, indicate the combined effects of the underlying components, 

which display both consistent and fluctuating behaviours at various points in time. 

Inside the context of the Confidence Interval, specifically in relation to Random Walk 

and Efficient Market Behaviour, it is observed both in figure 6 and table 2 that many 

component stocks are situated inside the 95% confidence interval. This suggests that their 

behaviour aligns with that of a random walk and so indicates market efficiency. The 

following companies have been included: - NVIDIA (H = 0.600010) - Taiwan 

Semiconductor Manufacturing (H = 0.552789) - ASML Holding (H = 0.576928) - 

Advanced Micro Devices (H = 0.574836) - Intel (H = 0.548174) - Broadcom (H = 
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0.516834) - Applied Materials (H = 0.522662) - Lam Research (H = 0.514751) - 

Skyworks Solutions (H = 0.527383) (table 2). The Hurst exponents of these stocks 

indicate that they adhere to a random walk pattern, rendering their future price movements 

unpredictable and consistent with the Efficient Market Hypothesis . 

 

Regarding the Confidence Interval (Persistent Behaviour), all equities in this study have 

Hurst exponents that are below the upper bound of the confidence interval (0.6467). The 

lack of this presence indicates that none of the stocks have noteworthy trend-following 

attributes, which would have signalled a departure from the random walk and thus market 

efficiency. 

Regarding the Confidence Interval (Anti-persistent, Mean-reverting Behaviour), in table 

2 several stocks demonstrate Hurst exponents below the lower bound of the confidence 

interval, suggesting mean-reverting or anti-persistent behaviour. These stocks include 

Texas Instruments (H = 0.437580), Analogue Devices (H = 0.433076), KLA Corporation 

(H = 0.449444), NXP Semiconductors (H = 0.420123), and Microchip Technology (H = 

0.398787). These equities exhibit a propensity to return to their long-term average values 

following deviations. This indicates that the price fluctuations of these assets contradict 

the premise of efficient markets following a random walk pattern, and may exhibit a 

certain degree of predictability. 

Regarding Mixed or Near-Efficient Market Behavioreveral, in table 2 several stocks 

exhibit a pattern where they fluctuate about the confidence interval border, displaying a 

combination of random walk with modest inclinations towards either persistence or 

mean-reversio. Qualcomm has a H value of 0.470181, Synopsys has a H value of 

0.469303, Cadence Design Systems has a H value of 0.463975, Marvell Technology has 

a H value of 0.494436, STMicroelectronics has a H value of 0.488768, Teradyne has a H 

value of 0.487309, Entegris has a H value of 0.477196, Monolithic Power Systems has a 

H value of 0.459916, and Universal Display Corporation has a H value of 0.435780. The 

Hurst exponents of these stocks indicate that, although they generally follow market 

efficiency, there are infrequent instances of minor predictability, suggesting moments of 

inefficiency. 

To summarise, the examination of the Hurst exponents for SMGB.L and its constituent 

stocks uncovers a range of patterns. Although certain stocks and the ETF demonstrate 

market efficiency, others display periods of inefficiency marked by mean-reversion. The 
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presence of this variety indicates that the semiconductor business does not consistently 

conform to the Efficient Market Hypothesis  at all times. 

5.2. Rolling Window analysis 

Figure 7. Evolution of the Hurst coefficient of the ETF 

 
Source: Own elaboration based on the Results of the Analysis. 
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Figure 8. Evolution of the Hurst coefficient of the components: NVDA, AVGO, TSM, 

ASML, AMD, QCOM, AMAT, TXN, MU, and LRCX. 

 
Source: Own elaboration based on the Results of the Analysis. 
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Figure 9. Evolution of the Hurst coefficient of the components: INTC, ADI, KLAC, SNPS, 

CDNS, NXPI, MRVL, MCHP, STM, and MPWR. 

 
Source: Own elaboration based on the Results of the Analysis. 
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Figure 10. Evolution of the Hurst coefficient of the components: ON, TER, ENTG, SWKS, 

OLED. 

 
Source: Own elaboration based on the Results of the Analysis. 

 

The rolling window study provides a dynamic perspective on the Hurst exponents for 

SMGB.L and its constituent stocks, demonstrating the evolution of their fractal properties 

and market behaviours over time as exhibit in Figures 7, 8, 9 and 10. Gaining this 

perspective is crucial for comprehending the way these assets react to fluctuations in 

market circumstances and external influences, hence offering more profound insights into 

their compatibility with the Efficient Market Hypothesis . 

SMGB.L (ETF): The rolling Hurst exponent for SMGB.L shows fluctuations around the 

0.5 level, suggesting the presence of both trend-following and mean-reversion periods. 
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These oscillations indicate that although the ETF usually follows market efficiency, it 

also goes through periods where it deviates from a completely random pattern. The 

behaviour is governed by the collective dynamics of the stocks that form its foundation. 

 

NVIDIA, ASML Holding, and Advanced Micro Devices frequently have Hurst values 

that are closer to the upper limit of the confidence interval, suggesting a tendency to 

follow trends under certain market situations. These trends may be influenced by long-

lasting investor sentiment or technological developments in the semiconductor industry. 

In contrast, Intel, Analogue Devices, and Texas Instruments often have Hurst values that 

are either close to or below the lower limit of the confidence interval, suggesting a 

tendency to return to the mean. These equities have a tendency to return to their average 

prices over the long run after deviating, especially during economic downturns or periods 

of market correction. 

During the analysis period, certain equities, including Broadcom and Applied Materials, 

constantly exhibit behaviour that closely aligns with the random walk threshold. This 

stability indicates that these equities typically conform to the Efficient Market 

Hypothesis, with price fluctuations staying mostly unpredictable and in line with market 

efficiency. 
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6. Conclusions 

6.1. Conclusions 

This study utilises fractal analysis to evaluate the market efficiency of the semiconductor 

business, specifically focussing on the VanEck Semiconductor UCITS ETF (SMGB.L) 

and its constituent companies. By utilising the Hurst exponent, we investigate whether 

these assets demonstrate behaviour that aligns with the Efficient Market Hypothesis . 

The analysis indicates that SMGB.L and its component stocks exhibit a variety of 

behaviours, ranging from mean-reversion to random walk and near-random walks. 

Multiple stocks, including NVIDIA, ASML Holding, and Advanced Micro Devices, are 

categorised within the CI, indicating a correlation with market efficiency. This indicates 

that the price movements of these assets are mostly unpredictable and adhere to the 

criteria of the Efficient Market Hypothesis  as desribed by Fama (1970, 1991). 

Conversely, equities such as Texas Instruments, Analogue Devices, and Microchip 

Technology have mean-reverting trends, suggesting deviations from the random walk 

nature of efficient markets. These indicate periods of inefficiency in which price swings 

are somewhat predictable as they tend to return to a long-term average. 

The analysis of rolling windows offers additional understanding of the ever-changing 

characteristics of these behaviours, demonstrating the temporal variations in the Hurst 

exponents for SMGB.L and its constituent elements. This dynamic perspective illustrates 

the assets' responsiveness to fluctuating market conditions and external events, 

encompassing periods of both effectiveness and ineffectiveness. 

In summary, the results indicate that although the semiconductor sector often 

demonstrates market efficiency in line with the Efficient Market Hypothesis , there are 

also notable instances of deviations from this pattern. These deviations indicate periods 

when the market is not completely efficient, influenced by mean-reverting behaviour. 

Investors and analysts rely on these insights to comprehend the fractal characteristics of 

semiconductor companies and enhance their investing strategies in this continually 

changing sector. 
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6.2. Possible future remarks 

Subsequent investigations can extend the results of this work by improving the 

multifractal analysis and investigating novel approaches. Several avenues for future 

research include: 

• Enhanced Multifractal Analysis: Expanding the analysis to include higher-order 

moments and supplementary fractal metrics should yield a more profound 

comprehension of the multifractal characteristics across different economic 

circumstances. By doing so, a more detailed examination of the multifractality 

and its consequences for financial time series can be conducted. 

• Dynamic clustering approaches involve the implementation of methodologies that 

can adapt to changing market conditions. By using these approaches, we can gain 

insights on the evolution of fractal behaviours of financial assets over time. These 

approaches could be especially valuable in comprehending the effects of sudden 

market disruptions and long-term patterns on the grouping of assets. 

• Comparative Sector Analysis: By comparing the fractal and clustering 

characteristics of the semiconductor sector with those of other sectors, we may 

gain a more comprehensive understanding of sector-specific behaviours. This 

analysis could aid in the identification of distinct fractal characteristics and their 

impact on investing strategies in various market sectors. 

• Machine learning integration: Combining fractal measurements with machine 

learning models has the potential to improve prediction powers in financial 

markets. Investigating the potential application of these indicators to enhance the 

effectiveness of trading algorithms and risk management systems holds promise 

for future research. 
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Declaración de Uso de Herramientas de Inteligencia Artificial Generativa en 
Trabajos Fin de Grado 
ADVERTENCIA: Desde la Universidad consideramos que ChatGPT u otras 
herramientas similares son herramientas muy útiles en la vida académica, aunque su uso 
queda siempre bajo la responsabilidad del alumno, puesto que las respuestas que 
proporciona pueden no ser veraces. En este sentido, NO está permitido su uso en la 
elaboración del Trabajo fin de Grado para generar código porque estas herramientas no 
son fiables en esa tarea. Aunque el código funcione, no hay garantías de que 
metodológicamente sea correcto, y es altamente probable que no lo sea.  
 
Por la presente, yo, [Nombre completo del estudiante], estudiante de [nombre del título] 
de la Universidad Pontificia Comillas al presentar mi Trabajo Fin de Grado titulado 
"[Título del trabajo]", declaro que he utilizado la herramienta de Inteligencia Artificial 
Generativa ChatGPT u otras similares de IAG de código sólo en el contexto de las 
actividades descritas a continuación [el alumno debe mantener solo aquellas en las que se 
ha usado ChatGPT o similares y borrar el resto. Si no se ha usado ninguna, borrar todas 
y escribir “no he usado ninguna”]: 

1. Interpretador de código: Para realizar análisis de datos preliminares. 
2. Estudios multidisciplinares: Para comprender perspectivas de otras 

comunidades sobre temas de naturaleza multidisciplinar. 
3. Corrector de estilo literario y de lenguaje: Para mejorar la calidad lingüística y 

estilística del texto. 
4. Sintetizador y divulgador de libros complicados: Para resumir y comprender 

literatura compleja. 
5. Revisor: Para recibir sugerencias sobre cómo mejorar y perfeccionar el trabajo 

con diferentes niveles de exigencia. 
6. Traductor: Para traducir textos de un lenguaje a otro.  

 
Afirmo que toda la información y contenido presentados en este trabajo son producto de 
mi investigación y esfuerzo individual, excepto donde se ha indicado lo contrario y se han 
dado los créditos correspondientes (he incluido las referencias adecuadas en el TFG y he 
explicitado para que se ha usado ChatGPT u otras herramientas similares). Soy consciente 
de las implicaciones académicas y éticas de presentar un trabajo no original y acepto las 
consecuencias de cualquier violación a esta declaración. 
Fecha: 21 de Junio 
Firma: ___________________________ 
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8. Appendix 

8.1. Python Code for Fractal Analysis 

import pandas as pd 

import numpy as np 

import yfinance as yf 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

def download_data(tickers, start_date, end_date): 

    data = yf.download(tickers, start=start_date, end=end_date)['Adj Close'] 

    return data 

 

def log_returns(data): 

    return np.log(data / data.shift(1)).dropna() 

 

def generate_gaussian_white_noise(length, mu=0, sigma=1): 

    return np.random.normal(mu, sigma, length) 

 

def calculate_hurst_exponent(data, min_lag=10): 
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    n = len(data) 

    max_lag = n // 2 

    lags = range(min_lag, max_lag) 

    rs = [] 

    valid_lags = [] 

    for lag in lags: 

        segment_means = [data[i:i + lag].mean() for i in range(0, n, lag)] 

        segment_rescaled_ranges = [] 

        for i in range(0, n, lag): 

            segment = data[i:i + lag] 

            if len(segment) < lag: 

                continue 

            mean_adjusted = segment - segment.mean() 

            cumulative_deviation = np.cumsum(mean_adjusted) 

            r = cumulative_deviation.max() - cumulative_deviation.min() 

            s = segment.std(ddof=1) 

            if s != 0: 

                segment_rescaled_ranges.append(r / s) 

        if segment_rescaled_ranges: 

            rs.append(np.mean(segment_rescaled_ranges)) 

            valid_lags.append(lag) 

    if len(valid_lags) > 0 and len(rs) > 0: 

        rs_log = np.log10(rs) 

        lags_log = np.log10(valid_lags) 

        slope, intercept = np.polyfit(lags_log, rs_log, 1) 

        hurst_exponent = slope 

    else: 

        hurst_exponent = np.nan 

    return hurst_exponent 

 

def generate_and_calculate_ci(length, num_series=10000): 

    synthetic_hursts = [] 

    for _ in range(num_series): 

        synthetic_series = generate_gaussian_white_noise(length) 
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        hurst = calculate_hurst_exponent(synthetic_series) 

        synthetic_hursts.append(hurst) 

    ci_lower = np.percentile(synthetic_hursts, 5) 

    ci_upper = np.percentile(synthetic_hursts, 95) 

    return ci_lower, ci_upper 

 

def generate_and_calculate_ci_rolling(length, num_series=10000): 

    synthetic_hursts = [] 

    for _ in range(num_series): 

        synthetic_series = generate_gaussian_white_noise(length) 

        hurst = calculate_hurst_exponent(synthetic_series) 

        synthetic_hursts.append(hurst) 

    ci_lower_rolling = np.percentile(synthetic_hursts, 5) 

    ci_upper_rolling = np.percentile(synthetic_hursts, 95) 

    return ci_lower_rolling, ci_upper_rolling 

 

def calculate_rolling_hurst(data, window_size, step_size, min_lag=10): 

    rolling_hurst = [] 

    rolling_dates = [] 

    for start in range(0, len(data) - window_size + 1, step_size): 

        window_data = data[start:start + window_size] 

        hurst_exponent = calculate_hurst_exponent(window_data) 

        rolling_hurst.append(hurst_exponent) 

        rolling_dates.append(price_data.index[start + window_size - 1]) 

    return rolling_dates, rolling_hurst 

 

start_date = "2020-12-11" 

end_date = "2024-06-11" 

etf_ticker = "SMGB.L" 

components_tickers = [ 

    "NVDA", "AVGO", "TSM", "ASML", "AMD", "QCOM", "AMAT", "TXN", "MU", 

    "LRCX", "INTC", "ADI", "KLAC", "SNPS", "CDNS", "NXPI", "MRVL", "MCHP", 

    "STM", "MPWR", "ON", "TER", "ENTG", "SWKS", "OLED" 

] 
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all_tickers = [etf_ticker] + components_tickers 

price_data = download_data(all_tickers, start_date, end_date) 

price_data = price_data.interpolate(method='linear') 

log_rets_data = log_returns(price_data) 

max_observations = max(len(log_rets_data[ticker].dropna()) for ticker in all_tickers) 

ci_full_lower, ci_full_upper = generate_and_calculate_ci(max_observations, 

num_series=10000) 

print(f'90% CI for Random Walk Hurst Exponent (Full Period): [{ci_full_lower:.4f}, 

{ci_full_upper:.4f}]') 

max_observations = 252 

ci_full_lower_rolling, ci_full_upper_rolling = 

generate_and_calculate_ci_rolling(max_observations, num_series=10000) 

print(f'90% CI for Random Walk Hurst Exponent (Full Period): 

[{ci_full_lower_rolling:.4f}, {ci_full_upper_rolling:.4f}]') 

hurst_exponents = {} 

observations_count = {} 

print(f"Calculating Hurst Exponent for {etf_ticker}") 

hurst_etf = calculate_hurst_exponent(log_rets_data[etf_ticker].dropna().values.flatten()) 

hurst_exponents[etf_ticker] = hurst_etf 

observations_count[etf_ticker] = len(log_rets_data[etf_ticker].dropna()) 

print(f'Hurst Exponent for {etf_ticker}: {hurst_etf:.4f}') 

for ticker in components_tickers: 

    log_rets = log_rets_data[ticker].dropna() 

    hurst_exponent = calculate_hurst_exponent(log_rets.values.flatten()) 

    hurst_exponents[ticker] = hurst_exponent 

    observations_count[ticker] = len(log_rets) 

    print(f'Hurst Exponent for {ticker}: {hurst_exponent:.4f}') 

hurst_summary_df = pd.DataFrame({ 

    'Ticker': [etf_ticker] + components_tickers, 

    'Hurst Exponent': [hurst_exponents[ticker] for ticker in [etf_ticker] + 

components_tickers], 

    'Number of Observations': [observations_count[ticker] for ticker in [etf_ticker] + 

components_tickers] 

}) 
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print(hurst_summary_df) 

hurst_summary_df.to_csv("hurst_summary_results.csv", index=False) 

plt.figure(figsize=(14, 8)) 

colors = [] 

for hurst in hurst_summary_df['Hurst Exponent']: 

    if hurst > ci_full_upper: 

        colors.append('green') 

    elif hurst < ci_full_lower: 

        colors.append('red') 

    else: 

        colors.append('dodgerblue') 

scatter = plt.scatter(hurst_summary_df['Ticker'], hurst_summary_df['Hurst Exponent'], 

c=colors, s=200) 

plt.axhline(ci_full_lower, color='purple', linestyle='--', label=f'90% CI Lower Bound = 

{ci_full_lower:.4f}') 

plt.axhline(ci_full_upper, color='green', linestyle='--', label=f'90% CI Upper Bound = 

{ci_full_upper:.4f}') 

plt.ylim(0, 1) 

plt.title('Hurst Exponent for Each Ticker') 

plt.xlabel('Ticker') 

plt.ylabel('Hurst Exponent') 

plt.xticks(rotation=90) 

legend_elements = [ 

    plt.Line2D([0], [0], marker='o', color='w', label='Hurst Exponent', 

markerfacecolor='dodgerblue', markersize=10), 

    plt.Line2D([0], [0], marker='o', color='w', label='Antipersistent (red dot)', 

markerfacecolor='red', markersize=10), 

    plt.Line2D([0], [0], color='purple', linestyle='--', lw=2, label=f'90% CI Lower Bound 

= {ci_full_lower:.4f}'), 

    plt.Line2D([0], [0], color='green', linestyle='--', lw=2, label=f'90% CI Upper Bound = 

{ci_full_upper:.4f}') 

] 

plt.legend(handles=legend_elements, loc='upper right') 

plt.tight_layout() 
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plt.grid(True) 

plt.savefig("hurst_exponent_results_with_ci_updated.png") 

plt.show() 

import matplotlib.pyplot as plt 

import seaborn as sns 

window_size = 252 

step_size = 1 

sns.set(style="whitegrid") 

def plot_rolling_hurst_subplots(tickers, num_columns=2): 

    num_tickers = len(tickers) 

    num_rows = (num_tickers + num_columns - 1) // num_columns 

    fig, axes = plt.subplots(num_rows, num_columns, figsize=(15, num_rows * 5)) 

    for i, ticker in enumerate(tickers): 

        row = i // num_columns 

        col = i % num_columns 

        ax = axes[row, col] if num_rows > 1 else axes[col] 

        rolling_dates, rolling_hurst = 

calculate_rolling_hurst(log_rets_data[ticker].dropna().values.flatten(), window_size, 

step_size) 

        ax.plot(rolling_dates, rolling_hurst, label=f'Rolling Hurst Exponent for {ticker}') 

        ax.axhline(ci_full_lower_rolling, color='purple', linestyle='--', label='90% CI Lower 

Bound') 

        ax.axhline(ci_full_upper_rolling, color='green', linestyle='--', label='90% CI Upper 

Bound') 

        ax.set_ylim(0, 1) 

        ax.set_title(f'Rolling Hurst Exponent for {ticker}') 

        ax.set_xlabel('Date') 

        ax.set_ylabel('Hurst Exponent') 

        ax.grid(True) 

        ax.xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter('%Y-%m')) 

        plt.setp(ax.get_xticklabels(), rotation=45, ha='right') 

        if row == 0 and col == 0: 

            ax.legend(loc='upper right') 

    for j in range(i + 1, num_rows * num_columns): 
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        fig.delaxes(axes.flat[j]) 

    plt.tight_layout() 

    plt.savefig(f"rolling_hurst_group_{'_'.join(tickers)}.png") 

    plt.show() 

 

plt.figure(figsize=(14, 8)) 

rolling_dates, rolling_hurst = 

calculate_rolling_hurst(log_rets_data[etf_ticker].dropna().values.flatten(), window_size, 

step_size) 

plt.plot(rolling_dates, rolling_hurst, label=f'Rolling Hurst Exponent for {etf_ticker}', 

color='blue') 

plt.axhline(ci_full_lower_rolling, color='purple', linestyle='--', label=f'90% CI Lower 

Bound = {ci_full_lower_rolling:.4f}') 

plt.axhline(ci_full_upper_rolling, color='green', linestyle='--', label=f'90% CI Upper 

Bound = {ci_full_upper_rolling:.4f}') 

plt.ylim(0, 1) 

plt.title(f'Rolling Hurst Exponent for {etf_ticker}') 

plt.xlabel('Date') 

plt.ylabel('Hurst Exponent') 

plt.legend(loc='upper right') 

plt.grid(True) 

plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter('%Y-%m')) 

plt.xticks(rotation=45, ha='right') 

plt.tight_layout() 

plt.savefig(f"rolling_hurst_{etf_ticker}.png") 

plt.show() 

num_columns = 2 

plot_rolling_hurst_subplots(components_tickers[:10], num_columns=num_columns) 

plot_rolling_hurst_subplots(components_tickers[10:20], num_columns=num_columns) 

plot_rolling_hurst_subplots(components_tickers[20:], num_columns=num_columns) 

8.1. Python Code for Sample Descriptives and Time Series 

import matplotlib.pyplot as plt 
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import seaborn as sns 

 

sns.set(style="darkgrid") 

 

plt.figure(figsize=(14, 8)) 

for ticker in all_tickers: 

    plt.plot(price_data.index, price_data[ticker], label=ticker) 

 

plt.title('Adjusted Prices of All Tickers Over Time') 

plt.xlabel('Date') 

plt.ylabel('Adjusted Price') 

plt.legend(loc='best', ncol=2, fontsize='small') 

plt.tight_layout() 

plt.show() 

 

import pandas as pd 

import numpy as np 

import yfinance as yf 

from scipy.stats import skew, kurtosis, jarque_bera 

 

def download_data(tickers, start_date, end_date): 

    data = yf.download(tickers, start=start_date, end=end_date)['Adj Close'] 

    return data 

 

start_date = "2020-12-11" 

end_date = "2024-06-11" 

 

etf_ticker = "SMGB.L" 

components_tickers = [ 

    "NVDA", "AVGO", "TSM", "ASML", "AMD", "QCOM", "AMAT", "TXN", "MU", 

    "LRCX", "INTC", "ADI", "KLAC", "SNPS", "CDNS", "NXPI", "MRVL", "MCHP", 

    "STM", "MPWR", "ON", "TER", "ENTG", "SWKS", "OLED" 

] 
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all_tickers = [etf_ticker] + components_tickers 

price_data = download_data(all_tickers, start_date, end_date) 

price_data = price_data.interpolate(method='linear') 

 

def log_returns(data): 

    return np.log(data / data.shift(1)).dropna() 

 

log_rets_data = log_returns(price_data) 

 

stats_list = [] 

 

for ticker in all_tickers: 

    log_rets = log_rets_data[ticker].dropna() 

    mean = log_rets.mean() * 100 

    std = log_rets.std() * 100 

    max_return = log_rets.max() * 100 

    min_return = log_rets.min() * 100 

    skewness = skew(log_rets) 

    kurt = kurtosis(log_rets) 

    jb_test, jb_pvalue = jarque_bera(log_rets) 

    stats_list.append({ 

        'Ticker': ticker, 

        'Num. Observ.': len(log_rets), 

        'Mean (%)': mean, 

        'Std (%)': std, 

        'Max (%)': max_return, 

        'Min (%)': min_return, 

        'Skew': skewness, 

        'Kurtosis': kurt, 

        'Jarque-Bera test': f"{jb_test:.2f} ({'***' if jb_pvalue < 0.01 else '**' if jb_pvalue < 

0.05 else '*' if jb_pvalue < 0.10 else ''})" 

    }) 

 

stats_df = pd.DataFrame(stats_list) 
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stats_df = stats_df.sort_values(by='Ticker').reset_index(drop=True) 

print(stats_df) 

stats_df.to_csv("descriptive_statistics_log_returns.csv", index=False) 


