

GENERAL INFORMATION

Data of the subject		
Subject name	Electric Power Systems Control	
Subject code	DIE-MII-531	
Mainprogram	Official Master's Degree in Industrial Engineering	
Involved programs	Máster Universitario en Ingeniería Industrial [First year]	
Level	Intercambio	
Quarter	Semestral	
Credits	4,5 ECTS	
Туре	Obligatoria	
Department	Department of Electrical Engineering	
Coordinator	Luis Rouco Rodriguez	
Office hours	By appoinment	

Teacher Information Teacher Name Aurelio García Cerrada Department Department of Electronics, Control and Communications Office Alberto Aguilera 25 [D-218] EMail Aurelio.Garcia@iit.comillas.edu 2421 Phone Teacher Name Luis Rouco Rodríguez Department Department of Electrical Engineering Office Francisco de Ricci, 3 [D-122] EMail Luis.Rouco@iit.comillas.edu Phone 6109 Profesores de laboratorio Teacher Name Álvaro Ortega Manjavacas Department Department of Electrical Engineering EMail aortega@comillas.edu Teacher Eduardo Lorenzo Cabrera Name Department Department of Electrical Engineering

EMail

elcabrera@icai.comillas.edu

DESCRIPTION OF THE SUBJECT

Contextualization of the subject		
Prerequisites		
Knowledge of electric power systems		

Course contents

Contents			
Theory			
I. Introduction			
 Power flows in AC systems. Series and shunt compensation DC transmission versus AC transmission 			
2. An overview on power semiconductor switches			
 Line-commutated devices vs self-commutated devices: Thyristors and IGBTs. Limitations of Si-based semiconductors. New alternatives 			
3. Line-commutated FACTS (the first generation)			
1. Thyristor Controlled Reactor (TCR).			

- 2. Thyristor Switched Capacitor (TSC).
- 3. Static Var Compensator (SVC).
- 4. Thyristor Controlled Series Capacitor (TCSC).

4. Self-commutated FACTS (the second generation)

- 1. Voltage Source Converters: voltage and current control, power-flow control and beyond.
- 2. STATic -synchronous- COMpensator (STATCOM).
- 3. STATCOM vs SVC.
- 4. Static Series Synchronous Compensator (SSSC).
- 5. Series + shunt compensator: the Unified Power Flow Controller (UPFC).

5. Power flow with control elements

- 1. Power flow with on load tap changing transformers.
- 2. Power flow with phase shifter transformers.

6. Optimal power flow

1. Problem formulation.

- 2. Objective funcions.
- 3. Euqality and inequality constraints.
- 4. Solution methods.

7. Security analysis

- 1. Contingency analysis.
- 2. Corrective actions.

8. Power flows with FACTS devices

- 1. Shunt device control in the power flow solution.
- 2. Series device control in the power flow solution.
- 3. Hybrid device control in the power flow solution.

9. Stability

- 1. Large-disturbance stability of a synchronous machine connected to an infinite bus.
- 2. Small -disturbance stability of a synchronous machine connected to an infinite bus.

10. Stability enhancement with FACTS devices

- 1. Large-disturbance stability enhancement of a synchronous machine connected to an infinite bus by shunt and series compensation.
- 2. Small-disturbance stability enhancement of a synchronous machine connected to an infinite bus by shunt and series compensation.

11. High Voltage DC (HVDC) transmission based on line-commutated converters

- 1. Components of an LCC-HVDC link.
- 2. AC/DC conversion with thyristors.
- 3. Control of a HVDC link.
- 4. Current harmonics.
- 5. Reactive power requirements.

12. High Voltage DC (HVDC) transmission based on self-commutated converters

- 1. Components of an LCC-HVDC link.
- 2. AC/DC conversion with self-conmutated converters.
- 3. Control of a HVDC link.
- 4. Multi-terminal HVDC links.
- 5. Comparison brtween LCC-HVDC and VSC-HVDC.

13. Power flows with HVDC links

- 1. LCC-HVDC control in the power flow solution..
- 2. VSC-HVDC control in the power flow solution.

14. Stability enhancement with HVDC links

- 1. Large-disturbance stability enhancement by a parallel LCC-HVDC link.
- 2. Small-disturbance stability enhancement by a parallel LCC-HVDC link.
- 3. Large-disturbance stability enhancement by a parallel VSC-HVDC link.
- 4. Small-disturbance stability enhancement by a parallel VSC-HVDC link.

Laboratory

Session 1: Dynamic simulation of a STATCOM using Simulink

Modeling and simulation of a STACOM Matlab-Simulink. Control loops. Performance analysis of a STACOM.

Session 2: Power flow solution with control elements using PSS/E

Power flow with a STACOM. Power flow with a phase shifter transformer. Power flow with a SSSS.

Session 3: Dynamic simulation using PSS/E

Steps of dynamic simulation with PSS/E. Dynamic simulation with PSS/E using Python scripts.

Session 4: Dynamic simulation with shunt FACTS devices using PSS/E

EVALUATION AND CRITERIA

Evaluation activities	Evaluation criteria	Weight
Exams	 30% Mid-term exam 70% Final exam	75
Laboratory	70%: Laboratory sessions30%: Laboratory exam	25

Grading

Ordinary call

Theory: 75%

-30% Mid-term exam

-70% Final exam

Laboratory: 25%

-70%: Laboratory sessions

-30%: Laboratory exam

Grades of both theory and laboratory must be greater than 5 out of 10

Class attendance is mandatory according to Article 93 of the General Regulations (Reglamento General) of Comillas Pontifical University and Article 6 of the Academic Rules (Normas Académicas) of the ICAI School of Engineering. Not complying with this requirement may

have the following consequences: students who fail to attend more than 15% of the lectures may be denied the right to do the final exam (and even the retake exam)

Extraordinary call

Theory: 75%

-30% Mid-term exam

-70% Final exam

Laboratory: 25%

-70%: Laboratory sessions

-30%: Laboratory exam

Grades of both theory and laboratory must be greater than 5 out of 10

If the grade of the laboratory is greater than 5 in the ordinary call, laboratory has not to be retaken

BIBLIOGRAPHY AND RESOURCES

Basic References

P. Kundur, Power System Stability and Control. Mc Graw Hill, 1993.

Advanced References

- N.G. Hingorani and L. Gyugui. Understanding FACTS. Concepts and technology of flexible AC transmission sytems, IEEE Press. 1999
- P. García Gonzalez and A. García Cerrada. Transporte flexible de la energía eléctrica en corriente alterna. Anales de Mecánica y Electricidad, Nov-Dic. 2004. pp 59-66.
- A. Yazdani and R. Iravani. Voltage-Sourced Converters in Power Systems. Wiley-IEEE Press, 2010.
- N.R.Chaudhuri, B. Chaudhuri, R. Majumder and A. Yazdani. Multi-terminal Direct-Current Grids: modelling, analysis and Control. Wiley-IEEE Press, 2014.
- Cigre Study Committee B4, "HVDC and Power Electronics", http://b4.cigre.org/

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data <u>that you have accepted on your registration form</u> by entering this website and clicking on "download"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792