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Abstract 
 

The complex architecture of artificial intelligence models generates very accurate outcomes, however these are 

then very difficult to interpret. This "black box" problem poses a significant challenge to the acceptance and 

trust of AI systems. Explainable Artificial Intelligence (XAI) techniques are essential for making AI's decision-

making processes transparent and understandable, ensuring AI can be applied in sensitive decision-making 

areas. The importance of XAI lies in its ability to unveil the complexity of AI models, allowing users to gain 

insights into how and why decisions are made, generating trust in AI while also complying with recent policy. 

To address this issue, this final degree thesis focuses on the development of a sensitivity analysis method for 

Recurrent Neural Networks (RNNs). This method has already been successfully applied to MLPs and focuses 

on the analytical calculation of partial derivatives of output variables with respect to their inputs, providing 

interpretable insights into the decision-making processes of RNNs.  

This study also reviews existing XAI techniques applied to RNNs. These techniques are evaluated both 

theoretically and through practical implementation on RNN models. Each method's strengths and limitations 

are discussed, highlighting the need for more effective and efficient interpretability solutions. 

The sensitivity analysis method developed in this thesis offers several advantages over traditional XAI 

techniques. It provides more comprehensive and easily interpretable explanations. This makes the method more 

robust and reliable, especially when dealing with complex, non-linear relationships in data. Additionally, the 

sensitivity analysis method is more computationally efficient, making it suitable for large datasets with 

numerous samples and variables. This efficiency ensures quicker and more accessible interpretability, which is 

crucial for practical applications. 

Validation of the sensitivity analysis method was conducted through three different cases. The first case used a 

synthetic simple regression model with known derivatives to confirm the correctness of the calculated partial 

derivatives. This initial validation ensured the method's accuracy and reliability. The method was then applied 

to two additional use cases: predicting the sine function and forecasting electric demand. In the sine function 

case, the method demonstrated its ability to capture and explain the periodic nature of the data, providing clear 

insights into the model's decision-making process. For the electric demand forecasting case, the method 

highlighted the significance of various time lags and their non-linear effects on the output, offering a detailed 

understanding of the model's behaviour. 
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Resumen 
 

La compleja arquitectura de los modelos de inteligencia artificial contribuye a la generación cada vez más 

precisa de predicciones, sin embargo, también dificulta la comprensión de cómo el modelo ha llegado a esas 

predicciones. Este problema, conocido como “black box” o “caja negra” plantea un serio reto para la aceptación 

y la confianza en los sistemas de IA. Las técnicas de Inteligencia Artificial Explicable (XAI) son esenciales para 

hacer más transparentes y explicables los procesos de toma de decisión de la IA. La importancia de XAI reside 

en su capacidad para descubrir la complejidad de los modelos de IA, permitiendo a los usuarios obtener insights 

de cómo se toman las decisiones, fomentando la confianza en la IA, a la vez que cumpliendo con la regulación 

existente. 

Para abordar este problema, este trabajo de fin de grado tiene como objetivo el desarrollo de un método de 

análisis de sensibilidad para las redes neuronales recurrentes (RNN). Este método ya se ha aplicado con éxito a 

los MLP y se centra en el cálculo analítico de derivadas parciales de las variables de salida con respecto a sus 

variables de entrada, proporcionando información fácilmente interpretable sobre los procesos de toma de 

decisiones de los RNN. 

Este estudio también hace una revisión de las técnicas de XAI  ya existentes aplicadas a los RNN. Estas técnicas 

se evalúan tanto teóricamente como a través de la implementación práctica en varios casos de aplicación. Se 

discuten las ventajas y desventajas de cada método, destacando la necesidad de soluciones de explicabilidad 

más efectivas y eficientes. 

El método de análisis de sensibilidad desarrollado en este trabajo ofrece varias ventajas sobre las técnicas 

tradicionales de XAI. Proporciona explicaciones más completas y fáciles de interpretar, esto hace que el método 

sea más robusto y fiable, especialmente cuando se trata de relaciones complejas y no lineales en los datos. 

Además, el método de análisis de sensibilidad es más eficiente desde el punto de vista computacional, lo que lo 

hace adecuado para grandes conjuntos de datos con numerosas muestras y variables. Esta eficiencia garantiza 

una interpretabilidad más rápida y accesible, lo que es crucial para las aplicaciones prácticas. 

La validación del método de análisis de sensibilidad se llevó a cabo a través de tres casos diferentes. El primer 

caso utilizó un modelo de regresión simple sintético con derivadas parciales conocidas para validar los cálculos 

realizados. A continuación, el método se aplicó a dos casos de uso adicionales: predecir la función seno y 

predecir la demanda eléctrica. En el caso de la función seno, el método demostró su capacidad para capturar y 

explicar la naturaleza periódica de los datos, proporcionando información clara sobre el proceso de toma de 

decisiones del modelo. Para el caso del pronóstico de la demanda eléctrica, el método destacó la importancia de 

varios lags temporales y sus efectos no lineales en la salida, ofreciendo una comprensión detallada del 

comportamiento del modelo. 
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1 Introduction 

Artificial intelligence (AI) is a technical and scientific field devoted to the engineered system that generates 

outputs such as content, forecasts, recommendations, or decisions for a given set of human-defined objectives. 

It is a field of research in computer science that develops and studies methods and software that enable machines 

to perceive their environment and use learning and intelligence to take actions that maximize their chances of 

achieving defined goals. 

Machine learning (ML), a subset of artificial intelligence, combines the computational discipline dedicated to 

the analysis and comprehension of patterns and structures inherent in data (Mahesh, 2020). Its aim is to facilitate 

autonomous learning, reasoning, and decision-making processes, mirroring the complexity of intelligent human 

behaviour.  

Machine learning can be broadly classified into three types: 

1. Supervised Machine Learning: This type involves supervision, where machines are trained on labelled 

datasets and enabled to make predictions based on the patterns learned. 

2. Unsupervised Machine Learning: This type involves no supervision, where machines are trained on 

unlabelled datasets and enabled to identify patterns and group data points based on similarities. 

3. Semi-supervised Machine Learning: This type involves a combination of supervised and unsupervised 

learning, where machines are trained on both labelled and unlabelled datasets. 

In today’s world, machine learning holds immense importance, playing a crucial role across various aspects of 

our daily routines and industries. As part of artificial intelligence, machine learning empowers systems to learn 

and adapt based on data, allowing them to decipher intricate patterns and make informed decisions. Whether it's 

delivering personalized recommendations on online platforms (Sarma, 2020), optimizing manufacturing 

processes through predictive maintenance, or revolutionizing medical diagnostics (Deo, 2015) and autonomous 

vehicles (Min, 2019), machine learning has proven to be an excellent tool to model reality from data. Its ability 

to analyse extensive datasets and derive meaningful insights has not only boosted efficiency and accuracy but 

has also paved the way for innovation in fields spanning healthcare (Esteva et al., 2019), finance (Ngai et al., 

2009), and beyond. The ongoing integration of machine learning into diverse sectors highlights its essential role 

in shaping the present and future landscape of technological advancements and societal progress. 

1.1 Artificial Neural Networks 

Artificial Neural Networks (ANN) are one of the most prominent models among Machine Learning. ANNs 

mimic the behaviour of biological nervous systems through mathematical modelling (Abraham, 2005). ANNs 

models consist of interconnected neurons, also called nodes, which are organized in layers. Each neuron receives 

input data which is processed using a mathematical function, called activation function. The neuron then passes 

the result onto the next layer. Each connection between neurons in different layers is weighted to optimize the 

performance of the model. The superiority of Artificial Neural Networks lies in their ability to capture complex, 

non-linear patterns inherent in the data, presenting a more adaptive and nuanced approach to modelling intricate 

relationships. 

There are many types of Artificial Neural Networks, each one varying in the complexity of its architecture and 

its applicability. The simplest models are the feedforward neural networks (FNN) (Rosenblatt, 1958), which 

consists of layers of nodes through which information is passed forward. Recurrent Neural Networks (RNNs) 

(Rumelhart et al., 1986) are another class of artificial neural networks specifically designed to process sequential 

data, i.e., time series data; by introducing the concept of memory. Unlike traditional feedforward neural 

networks, RNNs possess internal memory that enables them to retain information about previous inputs in the 

sequence. This memory mechanism makes RNNs particularly well-suited for tasks involving sequential or time-
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dependent data, such as natural language processing, speech recognition, and time series forecasting. More 

complex forms of ANNs, such as Convolutional Neural Networks (CNNs) (LeCun et al., 1998), Long Short-

Term Memory (LSTM) Networks (Hochreiter & Schmidhuber, 1997), Generative Adversarial Networks 

(GANs) (Goodfellow et al., 2014) or Transformer Networks (Vaswani et al., 2017) serve very different purposes 

but will not be discussed in this project. 

1.1.1 Time series Forecasting 

One of the most important fields where machine learning is playing a key role is forecasting new values of a 

time series based on past values (Menon, 2022). Forecasting time series is indispensable for several reasons. 

Primarily, it facilitates the extraction of meaningful insights from historical data, enabling the identification of 

underlying patterns and correlations. These insights empower decision-makers to anticipate future changes and 

make well-informed choices. Furthermore, forecasting time series is vital in mitigating risk and optimizing 

resource optimization (Box, Jenkins, & Reinsel, 2015), allowing to make decisions with enhanced information 

and preventing potentially unwanted situations. 

Time series analysis encompasses several steps: 

• Describing the data through statistical measures or graphical representations. 

• Constructing a model that explains historical and current variations in the variables. 

• Utilizing the model to forecast future values and creating diverse scenarios. 

Before Machine Learning, traditional models such as AutoRegressive Integrated Moving Average (ARIMA) 

(Contreras, 2003) were commonly used to forecast time series in scenarios where historical values show 

autocorrelation. An evolution of this model, Seasonal ARIMA (SARIMA) (Vagropoulos, 2016) was specially 

designed for time series data exhibiting seasonality, where the autocorrelation is shown between values between 

fixed periods of time. These models are effective when there are repeating patterns at regular intervals of time 

and have been proven effective when forecasting time-series data with linear relationship, but they fail at 

handling non-linear dynamic time series structures. 

Nowadays, with the evolution of ML, Neural Networks have surpassed the traditional methods previously 

described. The superiority of neural networks, specially RNN, lies in their ability to capture complex, non-linear 

patterns inherent in the data, presenting a more adaptive and nuanced approach to modelling intricate 

relationships and therefore, have been proven very effective to model complex scenarios that involve time-series 

forecasting (Tokgöz, 2018). The architecture of Recurrent Neural Networks is a crucial feature when forecasting 

involves understanding patterns that span extended periods, providing a distinct advantage over methods like 

SARIMA that may struggle to capture such temporal intricacies. Furthermore, neural networks do not require 

feature engineering nor a prior functional specification, allowing to capture intricate relationship directly from 

the data without the need of prior knowledge about the relationship between inputs and outputs. 

1.1.2 The Black Box Problem: Interpretability vs Performance 

The rapid developing of Neural Network models has facilitated the creation of extremely accurate models. 

However, these models, due to their high accuracy, often possess complex architectures that are difficult to 

understand. The “Black Box” problem refers to this lack of transparency or interpretability of the neural 

networks, where the model is a black box that is fed with data and returns predictions without giving information 

on how it has calculated these predictions. The Black box problem is even more important when the neural 

networks are used for decision making in sensitive matters. Without a clear understanding of its inner workings, 

neural networks cannot be fully trusted by people, even if they excel at predicting an outcome (Doshi-Velez & 

Kim, 2017).  
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To address this problem, different government organizations have passed laws to regulate AI. The European 

Union proposed in April 2021 its AI act (Veale, 2021) The proposed legal framework focuses on the specific 

utilization of AI systems, as well as including provisions for transparency and explainability of AI systems. 

Moreover, the General Data Protection Regulation (GDPR) (Regulation, 2018) recognizes the right to 

explanation of individuals about decisions made by automated systems. Therefore, it is imperative to develop 

methods that allow us to obtain information about the inner workings of Neural Networks in order to use them 

in decision making processes. 

1.2 Explainable Artificial Intelligence (XAI) 

Before getting into the objectives of this project, it must be understood how a model can be classified as 

understandable. Three terms are prevalent in academic literature: interpretability, explainability and 

transparency. There is no consensus on the definition of the first two terms, and they are often treated as 

synonyms in academic literature. However, this project will use the following definitions for these terms: 

• Interpretability is seen as a passive characteristic of a model that refers to the level at which a given 

system makes sense to a human observer. A model can be classified as interpretable if a cause-and-

effect relationship between the inputs and the output can be stablished. Interpretability has to do with 

how the model make their decisions (Ali et al., 2023). 

• Explainability on the other hand is an active characteristic of the model. It’s about how well a model 

can convey to a human how it arrived at a particular decision. It refers to the understanding of what 

each node of the model represents and its importance on the overall model’s performance. According 

to Ali et al. (2023), explainability has to do with why the model make their decisions. 

• Transparency in AI is a broader concept that encompasses both interpretability and explainability. It 

refers to the extent to which all stakeholders can clearly understand the workings of an AI system, 

including how it makes decisions and processes data. Transparency also involves being open about data 

handling, model training, and evaluation processes. It is crucial for building trust in AI systems, 

particularly in high-risk applications. Without transparency, there is a risk of creating AI systems that 

could inadvertently perpetuate harmful biases, make inscrutable decisions, or even lead to undesirable 

outcomes. 

In this project we will focus on making recurrent neural networks more explainable via developing new 

techniques based on the analysis of partial derivatives, which has been successfully stated as a powerful neural 

network explainability technique in recent literature (Pizarroso et al. (2022), Pizarroso et al. (2023a), Pizarroso 

et al. (2023b)). These techniques, as well as all the different techniques and methods used to explain the 

decision-making process and the output of a model (Schwalbe, Finzel, 2023), are part of what is known as 

Explainable Artificial Intelligence or XAI. 

Explainable Artificial Intelligence has four main goals according to Meske (2022): 

1. Build a sufficient understanding about the system’s behaviour to detect unknown vulnerabilities and 

flaws of the model. 

2. Provide a better understanding of the inner workings of the model, allowing the developer to improve 

the model’s accuracy and value. 

3. Discover unknown correlations with causal relationships in data. 

4. Provide explanations about how the model works, accomplishing the requirements from existing 

regulations.  

Various criteria can be employed to categorize the diverse methods and techniques constituting XAI. 



10 

 

 
Figure 1: XAI method's classification.  

1.2.1 Model inherent interpretability 

Models can be broadly categorized into interpretable and non-interpretable models. Interpretable models are 

those where the internal workings are understandable by design. These models, such as linear regression or 

decision trees, are inherently interpretable, and do not require additional methods to explain them unless the 

structure is too complex to be humanly processed (Schwalbe, Finzel, 2023).  

Interpretable models offer several advantages in various domains. Firstly, they foster trust and transparency by 

allowing users to comprehend the decision-making process, enhancing trust and facilitating regulatory 

compliance while also leading to increased acceptance and adoption of these models. Moreover, the architecture 

of inherent interpretable models aids in model debugging, enabling the identification and correction of errors, 

biases and overfitting. However, interpretable models also come with certain disadvantages. One notable 

drawback, as described in Figure 2, is the trade-off between interpretability and accuracy, with simpler models 

often sacrificing predictive performance by not capturing complex patterns as effectively as the non-

interpretable counterpart. 

 
Figure 2: The relation between performance and explainability across different types of models.                      

Source: https://www.borealisai.com/research-blogs/explainability-i-local-post-hoc-explanations/  

Non-interpretable Models, also referred to as black box models, are those where the internal workings are not 

directly understandable. These models often deliver higher accuracy due to the capacity to capture intricate 

patterns. Nevertheless, the main drawback of non-interpretable models is their inherent lack of transparency. 

This opacity challenges the understanding of the decision-making process, undermining trust and potentially 

impeding adoption of these models, especially in sensitive matters. To unveil the complexity of these models, 

post-hoc explainability methods are often used. Post-hoc explainability refers to the application of interpretation 

methods after a model has been trained (Madsen, Reddy, Chandar, 2022). 
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1.2.2 Specific vs Agnostic methods 

This categorization refers to whether the method can explain just a particular type of model or many types of 

models.  

 

Model-agnostic methods possess a versatility that extends beyond the specific characteristics of any given AI 

algorithm (Ribeiro et al., 2016). The main advantage is that they serve as a generic tool, enabling developers to 

unveil the decision-making processes of any black-box model without being constrained by the intricacies of 

its underlying algorithm, typically by analysing changes on the outputs based on changes on the inputs. 

However, model-agnostic methods can be less insightful and accurate since they do not take advantage of the 

specific workings of the black-box model.  

On the other hand, model-specific methods are tailor-made to scrutinize the distinctive characteristics of a 

particular algorithm, offering a deeper understanding and more accurate insights (Lundberg & Lee, 2017). While 

offering a more in-depth comprehension of how a specific algorithm enhances decision-making within a model, 

these methods demand a higher level of proficiency from developers during the analysis. Moreover, it is more 

challenging to compare the interpretability of different models if each requires a unique model-specific method. 

1.2.3 Local vs Global explanations. 

The subsequent categorization in XAI’s taxonomy addresses whether the method explains a specific sample (or 

region of the input space) or gives information of the model as a whole. Local explainers focus on detailing how 

a model arrives at a specific decision for an individual case, while global explainers examine the broader patterns 

in the model’s behaviour. 

Local explanations offer one main advantage: they provide specificity by offering detailed insights into 

individual decisions made by the model (Du, 2019). However, local explanations have their limitations. They 

offer only a limited scope, providing insights into individual predictions but not necessarily offering a 

comprehensive understanding of the model’s overall behaviour. Furthermore, local interpretations may be 

misinterpreted without a global context, leading to incorrect conclusions (Du, 2019). 

On the other hand, global explanations aim to provide a comprehensive understanding of how the model 

operates across all inputs, contributing to a greater understanding of the model internal mechanism. However, 

there’s a risk that global explanations might oversimplify the model’s operations, leading to a loss of critical 

details about how specific decisions are made (Du, 2019). 

1.2.4 Contrastive vs non-contrastive methods. 

Following up with XAI’s taxonomy, methods can be classified as contrastive or non-contrastive. Contrastive 

methods clarify why an output was obtained in contrast to another (Jacovi et al., 2021). These methods usually 

generate an explanation comparing the actual output with a reference value, which leads to a more robust 

explanation against noise and variations in the data (Balestriero, 2022; Yang, 2023). Nevertheless, contrastive 

methods are often computationally expensive and memory-intensive due to the large memory banks needed to 

store negative pairs. Furthermore, contrastive explanations vary if the reference value varies, hence making 

more difficult the comparison between different explanations. 

On the contrary, non-contrastive methods focus on explaining the actual outcome without contrasting it with 

other potential outcomes. By eliminating the need for a reference sample, non-contrastive methods simplify the 

explanation process and can reduce the computational burden (Garrido, 2022). Nevertheless, non-contrastive 

methods might result in less discriminative explanations. 
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1.3 Motivation 

Current XAI methods, although effective, have limitations in terms of computational efficiency and specificity 

when applied to complex models like RNNs. The proposed research aims to explore and develop an 

interpretability method based on sensitivity analysis. This method will focus on analysing the changes in the 

output of an RNN with respect to small variations in its inputs. By adapting sensitivity analysis to RNNs, we 

aim to provide a more intuitive and direct way to interpret the decision-making process of these networks. 

This approach is expected to offer several advantages: 

• Direct Interpretability: By examining how changes in input affect output, it provides a straightforward 

way to understand the model's behaviour. 

• Model Specificity: Tailored specifically for RNNs, this method promises deeper insights into their 

unique architecture and functioning. 

• Efficiency: It aims to be less computationally intensive than existing methods, facilitating quicker and 

more accessible interpretability. 

The ultimate goal of this research is to enhance the trust and reliability of RNNs in practical applications. By 

making RNNs more transparent and understandable, we can ensure their responsible and ethical use, particularly 

in critical areas where the stakes of decisions are high. 

This research will not only contribute to the field of machine learning but also pave the way for more 

accountable and trustworthy AI systems in the future. 

1.4 Project’s Objectives 

• Review the state of the art of explainability methods applied to simple RNNs: 

In the first phase of this research, a comprehensive review of the current state of explainability methods applied 

to Recurrent Neural Networks (RNNs) will be conducted. This involves examining various techniques and 

approaches used to interpret and understand the decision-making processes within RNN models and the 

importance of inputs in the output. This review will synthesize existing academic literature and will then take a 

more practical approach by evaluating each method. 

• Develop a new method to conduct sensitivity analysis based on the calculation of partial derivatives. 

Building upon the insights gained from the literature review, the second objective focuses on the development 

of a new method for conducting sensitivity analysis on RNNs. The proposed method involves the calculation of 

partial derivatives, providing a mathematical framework to quantify the impact of input features on the model’s 

output. The goal is to enhance interpretability by offering a more granular understanding of how individual 

features contribute to the overall decision-making process. 

• Demonstrate why the proposed method is more efficient and overall superior to the existing methods. 

The final objective seeks to demonstrate the superiority and efficiency of the newly developed sensitivity 

analysis method over existing techniques. Through empirical evaluations and comparative studies, the research 

aims to showcase the advantages of the proposed method in terms of accuracy, computational efficiency, and 

ease of interpretation. This empirical evidence will validate the practical significance of the new approach, 

establishing it as a valuable contribution to the field of explainability in RNNs. 



13 

 

1.5 Sustainable Development Goals Alignment 

The Sustainable Development Goals serve as a global blueprint for addressing pressing challenges and 

achieving a sustainable future. The research contributes significantly to these goals by advancing transparency 

and interpretability in artificial intelligence, particularly within Recurrent Neural Networks (RNNs). As we 

delve into the specific SDGs, it becomes evident that the research not only fosters technological innovation and 

education but also resonates with broader societal aspirations such as economic growth, justice, healthcare 

improvement, and the pursuit of gender equality. This alignment underscores the multifaceted impact of the 

research on global sustainability, reinforcing its relevance within a broader framework of social, economic, and 

environmental objectives. 

1.5.1 SDG 4 - Quality Education 

 By reviewing and synthesizing the state of the art in explainability methods, the research directly aligns with 

SDG 4’s aim to ensure inclusive and quality education for all. The state-of-the-art review hopes to contribute to 

disseminating valuable insights within the academic and research community, supporting the global pursuit of 

quality education. 

1.5.2 SDG 8 - Decent Work and Economic Growth 

By contributing to the technological landscape through the advancements in RNN interpretability, this study 

hopes to foster economic growth, given the wide variety of RNN applications. 

1.5.3 SDG 9 - Industry, Innovation, and Infrastructure 

The research significantly contributes to SDG 9 by advancing technology and innovation within the realm of 

artificial intelligence, particularly RNNs. Through the development of a new sensitivity analysis method, the 

study fosters advancements in industry, innovation, and infrastructure. 

1.5.4 SDG 16 - Peace, Justice, and Strong Institutions 

Transparent and interpretable AI models are essential for ensuring justice and fairness in decision-making 

processes. By providing a method for sensitivity analysis, this research contributes to the establishment of strong 

and accountable institutions, aligning with SDG 16. 

1.5.5 SDG 17 - Partnerships for the Goals 

This research promotes collaboration and partnerships within the scientific community through the empirical 

demonstration of the efficiency and superiority of the proposed method. This aligns with SDG 17, emphasizing 

the importance of global partnerships to achieve sustainable development goals. 
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2 State of the art: Explainability methods applied to RNNs 

This section will explore some common XAI techniques that have already been developed and that can be 

applied to the specific architecture of Recurrent Neural Networks. 

2.1 LIME 

Local Interpretable Model-Agnostic Explanations, or LIME, explain machine learning model predictions, 

including Recurrent Neural Networks. Introduced by Ribeiro in 2016, this model-agnostic technique involves 

approximating the model with a local, interpretable model focused on the prediction of interest.  

This method generates interpretations for individual predictions by generating simulated data proximal to the 

input of interest. These simulated points are then employed to train a simpler interpretable model, such as a 

linear regression, thereby facilitating the explanation of the original black-box model’s predictions (Linardatos, 

2020).  

The optimization problem behind LIME is described in the following equation proposed by Ribeiro in 2016. 

𝜉(𝑥(𝑗)) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔∈𝐺(𝐿(𝑓, 𝑔, 𝜋𝑥(𝑗)) + Ω(𝑔)) 

The notation 𝑔 ∈  𝐺 defines an explanation as a model, with 𝐺 representing a class of potentially interpretable 

models. Ω(𝑔)  serves as a metric for the complexity of the explanation, as not every 𝑔 ∈  𝐺  is inherently 

interpretable. The proximity measure, 𝜋𝑥(𝑧), quantifies the closeness of an instance 𝑧 to a given input 𝑥. Further, 

𝐿(𝑓, 𝑔, 𝜋𝑥(𝑗)) is a metric indicating how faithful the explanation g is in approximating the model f within the 

locality defined by 𝜋𝑥. The objective is to minimize 𝐿(𝑓, 𝑔, 𝜋𝑥(𝑗)) while maintaining Ω(𝑔) at a sufficiently low 

level to ensure interpretability for human comprehension. 

The utilization of LIME for machine learning model explanation presents several advantages: 

• Its model-agnostic nature allows LIME to provide explanations across a wide array of machine learning 

models, including RNNs. Additionally, LIME supports explanations for different types of data, 

including tabular data, text and images. In terms of usability, the implantation of LIME in popular 

programming languages ensures accessibility and ease of use. 

• LIME supports explanations for different types of data, including tabular data, text and images. 

However, the LIME method also presents some disadvantages: 

• The method is susceptible to suboptimal parameter choices, potentially leading to the oversight of silent 

features (Garreau, 2020).  

• Zafar and Khan (2019) also noted the instability of LIME-generated interpretations, as it can provide 

different interpretations for the same prediction due to the utilization of random perturbation and feature 

selection methodologies. 

• Small changes in the input can lead to significant variations in the explanations. 

2.2 SHAP 

Shapley Additive explanations (SHAP) is a model-agnostic method based on cooperative game theory based on 

Shapley values. Introduced by Lloyd Shapley in 1951, Shapley values determine the average marginal 

contribution of each feature to the model’s output, therefore explaining the prediction’s distribution among the 

individual inputs. To calculate the marginal contribution, the SHAP algorithm creates different subsets with 

every possible combination of features and then average the contribution of a feature to each subset. The 
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contribution of each feature can be calculated as the difference between the input when that feature is included 

and the input when that feature is withheld. 

The following equation describes the mathematical calculation of the Shapley value, 𝜙𝑖 , for a feature 𝑖. 

𝜙𝑖(𝑓, 𝑥) = ∑
|𝑧′|! (|𝑁| − |𝑧′| − 1)!

|𝑁|!
[𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′\𝑖)]

𝑧′⊆𝑥′

 

In this equation, f denotes the Blackbox model, x is the input datapoint, and z’ represents every combination of 

subsets which include feature 𝑖.   

The equation represents a weighted average of the difference of the model’s output with and without feature 𝑖. 

The term |𝑧′|! (|𝑁| − |𝑧′| − 1)! Represent the number of orderings that place feature i in a particular position, 

out of all the possible orderings. The term [𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′\𝑖)] represents the marginal contribution when the 

feature 𝑖 is included in the subset 𝑧′. 

The weighting is based on how many features, 𝑁, there are in each subset, giving more weight to subsets with 

both a high number of features in the subset (as that would mean the contribution of feature i is very important) 

and a very small number of features (as the features are isolated). 

SHAP has some advantages over other methods: 

• SHAP satisfies the three desirable properties that every feature attribution method should meet 

(Lundberg, 2017). The first property is local accuracy, which means that the explanation model should 

match the output produced by the original model for the simplified input. The second property is 

missingness, which requires that, given than the simplified outputs represent feature presence, features 

that are missing in the original input should have no impact. The last property is consistency, which 

requires that the contribution of an input should not vary if some simplified input contributions’ do vary 

when the model changes. 

• SHAP offers both local and global explanations (Lundberg, 2017) 

• SHAP considers feature dependencies, making the method more accurate when compared to other 

methods that assume feature independence (Lundberg, 2017) 

However, SHAP also has some drawbacks: 

• SHAP is computationally expensive. This is due to the extensive number of subsets that need to be 

calculated. For a model with n features, there are 2n possible subsets.  

To address this problem, a variation of the SHAP method called KernelShap has been developed. 

KernelShap is a combination of LIME and SHAP (Lundberg, 2017) and the general idea behind it is to 

approximate the Shapley values instead of calculating each combination. KernelShap samples features 

subsets and fits a linear regression model based on the samples. The variables on this linear regression 

represent the presence or absence of a feature. After training, the coefficients of the linear regression 

are approximations of the Shapley values. 

• SHAP values are difficult to interpret when dealing with a large number of features. 

• May not be accessible to every user. 
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2.3 Partial Dependence Plots (PDPs) 

Partial Dependence Plots (PDPs) are a model-agnostic, post hoc, explainability method that helps to visualize 

the relationship between a subset of input features and the predicted outcome of a machine learning model. 

Partial Dependence plots show the marginal effect of input variables on the predicted outcome of the model 

(Friedman, 2001). 

Mathematically, for a feature xi in a model f, the partial dependence function is given by:  

𝑃𝐷𝑃(𝑓, 𝑥𝑖) =
1

𝑛
[∑ 𝑓 (𝑥𝑖

(𝑖)
, 𝑥\𝑖

(𝑗)
) , … , 𝑓 (𝑥𝑖

(𝑛)
, 𝑥\𝑖

(𝑗)
)

𝑛

𝑗=1

] 

Where 𝑥\𝑖 represents every feature excluding 𝑥𝑖. This equation represents a curve that shows the relationship 

between feature 𝑥𝑖 and the predicted outcome. By marginalizing over the other features, the function depends 

only on 𝑥𝑖, including the interaction between 𝑥𝑖 and the other features. PDPs help visualize how the model’s 

prediction change as the feature of interest varies. 

Some advantages of PDPs are: 

• PDPs offer a global perspective on the model’s behaviour, enabling users to comprehend overall trends 

and patters in the decision-making process. 

• The simplicity and ease of interpretation of PDPs make them accessible to a wide audience. They can 

effectively illustrate both linear and non-linear relationship between features and predictions. 

However, PDPs also present some disadvantages: 

• As described before, the function includes interactions between variables that could make the 

predictions difficult to explain when the model does not possess feature independence. 

• This method can become computationally expensive for modes with a large number of feature or 

instances (Goldstein et al., 2015). 

• The information provided by PDPs is merely qualitative, which makes the comparison for several 

features complicated. 

2.4 Individual Conditional Explanation (ICE) 

Individual Conditional Explanations (ICE) is another model-agnostic, post hoc, and local explanation technique 

that extends the concept of partial dependence plots (PDPs) by displaying the relationship between input features 

and predictions at an individual level (Goldstein et al,. 2015). Unlike PDP, which averages the effect of a feature 

across all instances, ICE plots describe the variation of the prediction with a single feature is varied. 

Given a dataset with n instances, a predictive model f, and a feature xi, the equation that describe the ice plot is 

given by: 

𝐼𝐶𝐸(f, 𝑥(𝑗), 𝑥𝑖) = [𝑓 (𝑥𝑖
(1)

, 𝑥\𝑖
(𝑗)

) , … , 𝑓 (𝑥𝑖
(𝑛)

, 𝑥\𝑖
(𝑗)

)] 

A curve is created for every instance j, showing how the model’s prediction changes when a feature 𝑥𝑖  is varied. 

Advantages of ICE: 

• ICE allows user to interpret individual predictions, providing deeper insights into the model’s 

behaviour. 
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Disadvantages: 

• Like PDPs, ICE plots assume feature independence, which can lead to inaccurate interpretations if the 

features are correlated. 

• ICE plots can be challenging to interpret when dealing with a large number of instances, as the plots 

can become cluttered and difficult to read. 

2.5 Permutation Importance 

Permutation importance is a model-agnostic, post-hoc explainability method used to assess the importance of 

individual features by measuring the change in model performance when the values of a feature are randomly 

shuffled (Altmann et al, 2010). This technique evaluates the decrease in model accuracy or increase in error 

when the association between the feature and the target is broken (Breiman, 2001) providing insights into the 

feature’s impact on the model’s prediction Mathematically, the permutation importance of a individual feature 

xi is calculated by first measuring the baseline performance of the model using an evaluation metric. The feature 

values are then permuted, and the performance is measured again. Permutation importance of feature xi is 

quantified as: 

𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖) = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 − 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒 𝑎𝑓𝑡𝑒𝑟 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 

Advantages of permutation importance: 

• Its implementation is very straightforward and intuitive to interpret, as it directly quantifies the effect 

of each feature on the model’s performance. 

• Permutation importance is applicable to any type of machine learning model. 

• Permutation importance considers feature interactions, as it directly measures the impact of permuting 

a feature on the final prediction. 

Disadvantages: 

• Permutation importance can be computationally expensive when working with large datasets, as it 

involves multiple performance evaluations. 

• Permutation importance provides global explanations, so interpreting local prediction is not possible 

with this technique. 
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3 Partial Derivatives of Recurrent Neural Network Models 

3.1 Introduction 

The utilization of partial derivatives to analyse ANNs dates to early studies focused on backpropagation, where 

the derivatives of the loss function with respect to the weights were computed to optimize network training 

(Rumelhart et al., 1986). This principle has been extended to sensitivity analysis, as partial derivatives serve to 

quantify the impact of individual input variables on the network’s output (Saltelli et al., 2008). Additionally, 

sensitivity analysis aids in model validation and robustness assessment by revealing the stability of the 

network’s performance against variations in input data (Gevrey et al., 2003). 

Sensitivity analysis based on partial derivatives have already been developed successfully in recent years 

(Pizarroso et al. (2022), Pizarroso et al. (2023a), Pizarroso et al. (2023b)) for MLP models. This thesis aims to 

adapt this method to RNNs, as these partial derivatives shall be able to analyse the relationship between inputs 

and outputs through time (Pascanu et al.,2013). 

3.2 Analytical Calculation of the Partial Derivatives of Recurrent Neural 

Networks 

Recurrent Neural Network (RNN) are a type of artificial neural network that incorporates the concept of memory 

through one or more loops. Unlike traditional feedforward neural networks like MLP where the information 

flows only in one direction, the information flow in a RNN is bi-directional, as the output of a node can also 

affect subsequential inputs of the same node. This model is well suited for tasks involving sequential data such 

as Natural Language processing, speech recognition, time series prediction, or image captioning 

A RNN model can have a different number of layers, which can be recurrent or not. In a not recurrent layer, the 

information is processed in the same way as in a traditional feedforward model. The outputs of the previous 

layer are multiplied by the weights and then summed together with a constant before being applied to an 

activation function that produces the output of the neuron.  

 
Figure 3: Structure of a feedforward neuron. 

In a recurrent layer, the information comes from two directions, the previous layer and from the same layer but 

at the previous timestep. The information is processed as follows: At each neuron, there is a sum of two types 

of terms and the bias or constant. The first type are the outputs of the neurons of the previous layer, multiplied 
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by the feedforward weights. The second type are the previous outputs of the neurons of that layer, which are 

multiplied by the recurrent weights. 

Regardless of the layer type, after all inputs of each unit are summed, an activation function is applied to the 

result. This result serves as both an input for the next layer and as an input in that layer in the following timestep. 

 

Figure 4: Structure of a recurrent neuron 

Figure 4 shows the scheme of a neuron in a RNN model and represent graphically the operations described in 

the following equation. 

For each neuron in a recurrent layer, the output 𝑜𝑘,𝑡
𝑙  of the 𝑘𝑡ℎ neuron in the 𝑙𝑡ℎ layer can be calculated by: 

𝑜𝑘,𝑡
𝑙 = 𝜙𝑘

𝑙 (𝑧𝑘,𝑡
𝑙 ) = 𝜙𝑘

𝑙 (∑(𝑤𝑘𝑖
𝑙

𝑛𝑙−1

𝑖=1

⋅ 𝑜𝑖,𝑡
𝑙−1) + ∑(𝑢𝑘𝑗

𝑙

𝑛𝑙

𝑗=1

⋅ 𝑜𝑗,𝑡−1
𝑙 ) + 𝑤𝑘0

𝑙 ⋅ 𝑏𝑙) 

where 𝑧𝑘,𝑡
𝑙 refers to the weighted sum of the neuron inputs, 𝑛𝑙−1 refers to the number of neurons in the (𝑙 − 1)𝑡ℎ 

layer, 𝑤𝑘𝑖
𝑙  refers to the weight of the connection between the 𝑖𝑡ℎ neuron in the (𝑙 − 1)𝑡ℎ layer and the 𝑘neuron 

in the 𝑙𝑡ℎ layer, 𝑢𝑘𝑗
𝑙

 refers to the weight of the connection between the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer in the (𝑡 − 1)𝑡ℎ 

timestep and the 𝑘𝑡ℎ neuron in the 𝑙𝑡ℎ layer in the 𝑡𝑡ℎ timestep, 𝜙𝑘
𝑙  refers to the activation function of the 𝑘𝑡ℎ 

neuron in 𝑙𝑡ℎ layer, 𝑏𝑙 refers to the bias in the 𝑙𝑡ℎ layer and ⋅ refers to the scalar product operation. For the input 

layer thus holds 𝑙 = 1, 𝑜𝑘,𝑡
𝑙=1 = 𝑥𝑘 , 𝑤𝑘𝑖

𝑙  = 1, 𝑢𝑘𝑗
𝑙

 and 𝑏𝑙 = 0 

Figure 5 shows a general RNN model. A RNN model can have 𝐿 layers and each layer 𝑙 (1 ≤ 𝑙 ≤ 𝐿)  has 𝑛𝑙 

neurons. Moreover, each layer can have either have a recurrent connection or not.  
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Figure 5: Structure of a recurrent neural network with an arbitrary number of feedforward and recurrent 

layers. 

3.2.1 Partial Derivatives 

The method of Sensitivity analysis based on partial derivatives, requires calculating the derivatives of the output 

with regards to the inputs of the neural network. 

These partial derivatives are called sensitivities, and are defined as:  

𝑃𝐷𝑠,𝑖,𝑡 =
𝜕𝑦𝑠,𝑡

𝜕𝑥𝑠,𝑖,𝑡−𝑗
 

In order to calculate them, the chain rule needs to be applied to the partial derivatives of the inner layers. 

• Derivative of 𝑧𝑘,𝑡
𝑙  with respect to 𝑜𝑖,𝑡

𝑙−1 .This derivative corresponds to the weight of the connection  

𝜕𝑧𝑘,𝑡
𝑙

𝜕𝑜𝑖,𝑡
𝑙−1 = 𝑤𝑘𝑖

𝑙  

between the 𝑘𝑡ℎneuron in the 𝑙𝑡ℎ layer and the 𝑖𝑡ℎ neuron in the (𝑙 − 1)𝑡ℎ layer: 

 

• Derivative of 𝑧𝑘,𝑡
𝑙   with respect to 𝑜𝑖,𝑡−1

𝑙   This derivative corresponds to the recurrent weight of the 

connection between the 𝑘𝑡ℎ neuron in the 𝑙𝑡ℎ  layer and the 𝑖𝑡ℎ  neuron in the 𝑙𝑡ℎ   layer in the (𝑡 − 1)𝑡ℎ 

timestep. 

𝜕𝑧𝑘,𝑡
𝑙

𝜕𝑜𝑖,𝑡−1
𝑙 = 𝑢𝑘𝑖

𝑙  

• Derivative of 𝑜𝑘,𝑡
𝑙   with respect to 𝑧𝑘,𝑡

𝑙  . This derivative corresponds to the partial derivative of the 

activation function with respect to the input of the 𝑘𝑡ℎ neuron in the 𝑙𝑡ℎ layer evaluated for the input 

𝑧𝑘,𝑡
𝑙  of the 𝑘𝑡ℎ neuron in the 𝑙𝑡ℎ layer. 

𝜕𝑜𝑘,𝑡
𝑙

𝜕𝑧𝑘,𝑡
𝑙 =

𝜕𝜙𝑘
𝑙

𝜕𝑧𝑘,𝑡
𝑙 (𝑧𝑘,𝑡

𝑙 ) 

 

With the partial derivatives of the inner layers calculated, the chain rule can now be applied to obtain the 

sensitivities. 

To illustrate the application of chain rule, we will use the following RNN model: 
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Figure 6: Recurrent Neural Network (RNN) model to be analysed in this project. 

The model shown in Figure 6 consists of an input layer, a hidden layer with recurrent neurons, and an output 

layer.  

The sensitivities needed correspond to the partial derivatives of the final output of the model (𝑦𝑘,𝑡) with respect 

to the initial inputs of the model 𝑦𝑖,𝑡−𝑗 in the (𝑡 − 𝑗)𝑡ℎtimestep. 

Applying the equations described above we can obtain: 

First, the derivative between the output of the model with regards to the input of the hidden layer is calculated. 

𝜕𝑦𝑡

𝜕𝑧𝑡
2 =

𝜕𝑦𝑡

𝜕𝑧𝑡
3 ∗

𝜕𝑧𝑡
3

𝜕𝑜𝑡
2 ∗

𝜕𝑜𝑡
2

𝜕𝑧𝑡
2 =

𝜕𝜙3

𝜕𝑧𝑡
3

(𝑧𝑡
3) ∗ 𝑊2 ∗

𝜕𝜙2

𝜕𝑧𝑡
2

(𝑧𝑡
2) 

This expression can be simplified as in most cases the activation function of the output layer corresponds to the 

identity and the weights of said layer are all equal to 1 

𝜕𝑦𝑡

𝜕𝑧𝑡
2 =

𝜕𝜙2

𝜕𝑧𝑡
2

(𝑧𝑡
2) 

Then, we can continue applying the chain rule until we get to input of the model in the desired timestep:  

𝜕𝑧𝑡
2

𝜕𝑥𝑡
=  

𝜕𝑧𝑡
2

𝜕𝑜𝑡
1 ⋅

𝜕𝑜𝑡
1

𝜕𝑧𝑡
1 ⋅

𝜕𝑧𝑡
1

𝜕𝑥𝑡
= I ⋅ I ⋅ 𝑊1 = 𝑊1 

𝜕𝑧𝑡
2

𝜕𝑥𝑡−1
=  

𝜕𝑧𝑡
2

𝜕𝑜𝑡−1
2 ∗

𝜕𝑜𝑡−1
2

𝜕𝑧𝑡−1
2 ∗

𝜕𝑧𝑡−1
2

𝜕𝑜𝑡−1
1 ∙

𝜕𝑜𝑡−1
1

𝜕𝑧𝑡−1
1 ∗

𝜕𝑧𝑡−1
1

𝜕𝑥𝑡−1
= 𝑈 ∗

𝜕𝜙2

𝜕𝑧𝑡−1
2 (𝑧𝑡−1

2 ) ∗ 𝑊1 

And as a generalization: 

𝜕𝑧𝑡
2

𝜕𝑥𝑡−𝑗
=  

𝜕𝜙1

𝜕𝑧𝑡−𝑗
2 (𝑧𝑡−𝑗

2 ) ∗ 𝑊0 ∗ 𝑊1 ∗ ∏(
𝜕𝜙2

𝜕𝑧𝑡−𝑖
2 (𝑧𝑡−𝑖

2 ) ∗ 𝑈

𝑖=𝑗

0

) 

Rationale: derivatives shall be calculated first backwards in time then backwards in layers 

Combining the two parts of the derivative: 

𝜕𝑦𝑡

𝜕𝑥𝑡−𝑗
=

𝜕𝑦𝑡

𝜕𝑧𝑡
2 ∗

𝜕𝑧𝑡
2

𝜕𝑥𝑡−𝑗
=  

𝜕𝜙3

𝜕𝑧𝑡
3

(𝑧𝑡
3) ∗ 𝑊2 ∗

𝜕𝜙2

𝜕𝑧𝑡
2

(𝑧𝑡
2) ∗

𝜕𝜙1

𝜕𝑧𝑡−𝑗
2 (𝑧𝑡−𝑗

2 ) ∗ 𝑊0 ∗ 𝑊1 ∗ ∏(
𝜕𝜙2

𝜕𝑧𝑡−𝑖
2 (𝑧𝑡−𝑖

2 ) ∗ 𝑈

𝑖=𝑗

0

) 
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3.2.2 Sensitivity analysis 

Once all the sensitivities have been obtained, the results can be analysed through the following measures. Most 

of them have been used in recent literature to analyse MLP models (Pizarroso et.al, 2022). The other measures 

are variations of the previous ones to measure the variability across time of the sensitivities in a RNN model. 

• Mean sensitivity of the final output with respect to the input 𝑖𝑡ℎ in timestep 𝑡𝑡ℎ: 

 

𝑃𝐷̅̅ ̅̅
𝑖,𝑡 =

∑ 𝑃𝐷𝑠,𝑖,𝑡
𝑛
𝑠=0

𝑛
 

 

Where n is the number of samples in the dataset 

 

• Standard deviation of the final output with respect to the input 𝑖𝑡ℎ in timestep 𝑡𝑡ℎ: 

 

𝜎(𝑃𝐷𝑖,𝑡) = √∑ (𝑃𝐷𝑠,𝑖,𝑡 − 𝑃𝐷̅̅ ̅̅
𝑖,𝑡)

2𝑛
𝑠=0

𝑛
 

• Mean squared sensitivity of the final output with respect to the input 𝑖𝑡ℎ in timestep 𝑡𝑡ℎ: 

 

𝑃𝐷𝑖,𝑡
2̅̅ ̅̅ ̅̅ = √

∑ 𝑃𝐷𝑠,𝑖,𝑡
2𝑛

𝑠=0

𝑛
 

 

• Mean sensitivity of the output with respect to the input 𝑖𝑡ℎ : 

 

𝑃𝐷̅̅ ̅̅
𝑖 =

∑ 𝑃𝐷𝑠,𝑖,𝑡
𝑇
𝑡=0

𝑇
 

 

• Standard Deviation of the output with respect to the input 𝑖𝑡ℎ : 

 

𝜎(𝑃𝐷𝑖) = √∑ (𝑃𝐷𝑖,𝑡
2̅̅ ̅̅ ̅̅ − (𝑃𝐷̅̅ ̅̅

𝑖,𝑡)
2

)𝑇
𝑡=0

𝑇
 

 

• Mean squared sensitivity of the output with respect to the input 𝑖𝑡ℎ  : 

 

𝑃𝐷𝑖
2̅̅ ̅̅ ̅̅ = √∑ (𝑃𝐷𝑖,𝑡

2̅̅ ̅̅ ̅̅ )
2

𝑇
𝑡=0

𝑇
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3.3 Implementation of the partial derivatives method 

After explaining the theorical foundations of the proposed method, this section will describe its implementation. 

The RNN_XAI package contains three functions that serve different purposes: 

• The jacobian_rnn function first calculates all the intermediate values of the RNN model, this are 

all the inputs and outputs of every neuron in the recurrent network. Then, based on the formulas of 

section 3.2.1, calculates all the partial derivatives of every output variable with respect to every input 

variable in every timestep. 

• The compute_sensitivities function calculates all the sensitivity measures described in section 

3.2.2 

• Lastly, the plot_partial_derivative_analysis generates different plots to visualize the 

previously mentioned sensitivity measures. The explanation of each graph will be discussed in the next 

section with a practical example. 

 

3.4 Synthetic Example: Predicting a simple regression model 

This section shows the application of the RNN_XAI package to a synthetic example to perform sensitivity 

analysis. The dataset used in this example will be constructed using a simple regression model with known 

derivatives. By doing this, we aim to validate the calculation of the partial derivatives used in our method. 

The are three randomly generated input variables using a normal distribution with zero mean and standard 

deviation equal to 1. The input variables have then been reshaped into the appropriate form to train the RNN 

model. After reshaping, the dataset consists of three variables, each with 9996 rows of observations and three 

columns for three timesteps. An observation of one of the three input variables will be the following: 

𝑋𝑖 = [𝑥𝑖,𝑡 , 𝑥𝑖,𝑡−1, 𝑥𝑖,𝑡−2]  

 

 The output Y is created using the following equation: 

𝑦[𝑡] = (𝑥1,𝑡)
2

+  𝑥2,𝑡−1 − 𝑥3,𝑡−2  

 

In this simple regression model the partial derivatives can be easily calculated, 

1. Partial derivative of output 𝑦𝑡 with respect to 𝑥1,𝑡: 

𝜕𝑦𝑡

𝜕𝑥1,𝑡
= 2 ⋅ 𝑥1,𝑡 

2. Partial derivative of output 𝑦𝑡 with respect to 𝑥2,𝑡−1: 

𝜕𝑦𝑡

𝜕𝑥2,𝑡−1
= 1 

3. Partial derivative of output 𝑦𝑡 with respect to 𝑥3,𝑡−2: 

𝜕𝑦𝑡

𝜕𝑥3,𝑡−2
= −1 

https://github.com/AlonsoOrtizz/RNN_XAI
https://github.com/AlonsoOrtizz/RNN_XAI
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In this example, what we expect is that the derivatives with respect to 𝑥2,𝑡−1 and 𝑥3,𝑡−2 being constant (equal 

to 1 and -1 respectively), and the derivatives with respect to 𝑥1,𝑡 depending on the value of 𝑥1,𝑡. Therefore, what 

we expect is that: 𝜎(𝑃𝐷2,𝑡−1) = 𝜎(𝑃𝐷3,𝑡−2) ≈ 0 , 𝜎(𝑃𝐷1,𝑡) ≫ 0 , 𝑃𝐷̅̅ ̅̅
2,𝑡−1 = 1  and 𝑃𝐷̅̅ ̅̅

3,𝑡−3 = −1 . The 

derivative with respect to the rest of timesteps are zero, as they do not have relationships with the output.  

 

To test the functionality of the sensitivity analysis designed, we trained a RNN model with 20 neurons in its 

only recurrent hidden layer using the previously described dataset. Figure 7 shows the plot for both the true 

values of the output and the predicted values obtained with the model. 

 
Figure 7: Comparison between true and predicted values of the simple regression model 

After training the model, the partial derivatives method was applied to the model and the sensitivities were 

computed, obtaining the following sensitivity metrics: 

 
Figure 8: Numerical results of the main sensitivity measures obtained in the simple regression model 

 

The mean sensitivities obtained are similar to what we have expected from deriving the equation of the model 

with respect to each variable, proving that the partial derivatives are well calculated. The difference between 

the expected sensitivity metrics and the obtained sensitivity metrics is caused by the inherent modelling error, 

as the RNN do not make a perfect approximation to the real function. In this case, after the training of the model 

was complete, the final value of the loss function (prediction error) was 0.0023. As presented in Figure 7, the 

predictions seem highly accurate. 

 

The values of the sensitivity measures presented in Figure 8 indicate the following information about the 

variables: 

• 𝑋1,𝑡 : its mean sensitivity(𝑃𝐷̅̅ ̅̅
𝑖,𝑡)  of approximately 2 and standard deviation (𝜎(𝑃𝐷𝑖,𝑡))  close to 1, 

suggest that this variable in this timestep has a non-linear effect on the output variable. Moreover, the 

high value of the mean squared sensitivity (𝑃𝐷𝑖,𝑡
2̅̅ ̅̅ ̅̅ ) indicates the importance of the variable. 
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• The rest of the timesteps of the first input variable (𝑋1,𝑡−1, 𝑋1,𝑡−2) all present 𝑃𝐷̅̅ ̅̅
𝑖,𝑡 close to zero, as 

well as 𝜎(𝑃𝐷𝑖,𝑡) close to zero. These suggest the variables have almost no effect, with little influence 

on the output variable. 

• 𝑋2,𝑡−1 : with 𝑃𝐷̅̅ ̅̅
2,𝑡−1 ≈ 1 and 𝜎(𝑃𝐷2,𝑡−1) ≈ 0, it suggests that this variable possess a notable linear 

effect on the output variable. 

• 𝑋2,𝑡 and 𝑋2,𝑡−2 both present a mean sensitivity close to zero and low standard deviation, which indicates 

almost no effect of these timesteps on the output. 

• 𝑋3,𝑡−2 : with 𝑃𝐷̅̅ ̅̅
3,𝑡−2 ≈ −1  and 𝜎(𝑃𝐷3,𝑡−2) ≈ 0 , it suggests that this variable possess a significant 

negative linear effect on the output variable. 

• 𝑋3,𝑡 and 𝑋3,𝑡−1 both present a mean sensitivity close to zero and low standard deviation, which indicates 

almost no effect of these timesteps on the output. 

 

For models with more variables and for a deeper analysis on the model’s predictions, we can also make use of 

the graphs produced by the plot_partial_derivative_analysis function. 

 

 

1. The scatter plot presented in Figure 9 shows the relationship between 𝑃𝐷̅̅ ̅̅
𝑖,𝑡 and 𝜎(𝑃𝐷𝑖,𝑡). This graph 

serves to rapidly analyse the linearity of the effect of every variable on the output. The extent to which 

a variable separates from the horizontal axis, representing 𝜎(𝑃𝐷𝑖,𝑡)=0, corresponds to the magnitude of 

its non-linear influence on the output. Similarly, the extent to which a variable separates from the 

vertical axis, representing 𝑃𝐷̅̅ ̅̅
𝑖,𝑡 = 0 , measures the significance of its effect on the output variable. 

As represented in this graph, 𝑋1,𝑡 presents a non-linear effect, which is the most significant effect to the 

output. 𝑋2,𝑡−1 and 𝑋3,𝑡−2 show a linear effect, the former one being a positive effect and the latter one 

being a negative effect. The rest of the variables show little effect on the output variables, but their non-

zero distances with the axis can be explained by spurious relationships found by the model due to the 

correlation between the variables and their lags. This effect would be further discussed in section 4.4 

 

2. The bar plot expands the information of the previous plot, as it shows the 𝑃𝐷𝑖,𝑡
2̅̅ ̅̅ ̅̅  for each input variable. 

Moreover, darker greens represent larger positive effects of the input variable on the outputs, while 

darker reds represent larger, negative effects. The information of this graph is aligned with the numerical 

analyses conducted before, as it shows that 𝑋1,𝑡, 𝑋2,𝑡−1 and 𝑋3,𝑡−2 are the ones with the more impact in 

the model, the former one being the most important with a positive effect. 

 

3. The density plot of Figure 9 shows the distribution of output sensitivities for each variable at each 

timestep. A narrow distribution, such as the ones for 𝑋2,𝑡−1 and 𝑋3,𝑡−2 , indicate a linear relationship 

with the output variable, while a wider distribution, like the one for 𝑋1,𝑡 , suggest a non-linear effect. 

 

4. The fourth graph of Figure 9¡Error! No se encuentra el origen de la referencia. displays the evolution 

of the partial derivatives, or sensitivities, for each input and timestep across all samples. This serves as 

a visual representation of the variability of the effect of each variable on the output feature. When 

analysing the graph, we arrive to the same results as with the other plots. 

 

5.  The last graph in Figure 9 shows the evolution of the mean sensitivity, standard deviation and the mean 

of squared partial derivatives for each variable across the different timesteps. 
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Figure 9: Sensitivity plots for the simple regression case. (a) Scatter plot. (b) Bar blot. (c) Density plot. (d) 

Partial derivatives through samples. (e)Sensitivity measures through timesteps 
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4 Use cases 

4.1 Introduction 

In this chapter, the previously described method of sensitivity analysis based on partial derivatives will be 

practically examined via two different uses cases. One of the cases being a synthetic dataset, which serve as 

further validation of the model and of the analytical calculation of the sensitivities and partial derivatives. The 

second case is a real-life dataset that serve to further analyse the performance of the partial derivative method 

as a new XAI technique. 

Moreover, the partial derivative method will be compared with the application of the existing XAI methods 

described in State of the art: Explainability methods applied to RNNs section of this project. 

The two application cases are as follows: 

1. Case 1: Predicting the sin function: In this case, a RNN model will be trained to predict the sin 

function and the different methods described previously will be applied to it. 

2. Case 2: Predicting electric demand: In this case, the methods are applied to a RNN model that predicts 

the electric demand based on two input variables 

 

4.2 Case 2: Predicting the sine function 

As previously discussed in this project, Recurrent Neural Networks excel at handling sequential data, making 

them particularly suitable for tasks involving time series and temporal patterns. One of the standard applications 

to test the advantages of RNNs is the sine function. This application is often utilized as a standard benchmark, 

because the sine function is inherently periodic and continuous, possessing a clear and predictable pattern over 

time. These characteristics make the sine function a simple, yet effective test case for demonstrating the 

capability of RNNs to capture temporal dependencies and learn from sequential data (Sherstinsky, 2020). 

Moreover, simpler models such as MLP are not well equipped to handle sequential dependencies. MLPs treat 

each input independently, lacking the internal mechanism that enables RNNs to decipher temporal 

dependencies. The inability to capture these temporal dependencies result in suboptimal performance for MLPs 

on tasks like predicting the sine function outside the training data range (Hochreiter et al., 1997). 

To construct the dataset, we generated 600 samples of equally spaced points between 0 and 2π to be taken as 

inputs and then calculated the output of the sine function. After that, the dataset was reshaped to the appropriate 

form to train a RNN model. We chose 8 timesteps for each instance ending obtaining a dataset with an input 

variable with 591 rows of observations and 8 columns (one for each timestep) and an output variable with 591 

rows of observations. 

After constructing the dataset, a simple RNN model was trained to predict the sine function. The model consists 

of a single recurrent hidden layer with 12 neurons. Figure 10 plots the generated sine wave with the predictions 

obtained from the RNN model. 
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Figure 10: Comparison between true and predicted values for the sine function 

After training the model and predicting the output values for the sine function, the following explainability 

methods were applied to the model’s predictions: 

• First, the sensitivity method based on partial derivatives developed in this thesis. 

• Second, the LIME method was applied to provide instance-specific explanations and identifying key 

features for specific predictions. 

• Third, the SHAP method offers a global understanding of feature importance and consistent individual 

predictions. 

• PDP and ICE curves help understand the effect of each variable to the model’s output and detect non-

linear interactions. 

• Lastly, Permutation importance offers a simple understanding of the importance of each variable on the 

model’s predictions. 

From the partial derivative method, as shown in the scatter and bar plot of Figure 11, we can see that the most 

influential variables are the timesteps 𝑋𝑡−3, 𝑋𝑡−4, 𝑋𝑡−2  as they present the higher absolute mean values. 

Moreover, these three variables all have a positive effect on the model’s output, as seen by the colour of the bar 

plot. By looking at the density plots, we can see somewhat wide distributions for these variables, which suggest 

the non-linearity of its effects. Other variables such as 𝑋𝑡 , 𝑋𝑡−1  have a smaller contribution on the model’s 

output, but such contributions are negative. These variables also present a non-linear effect on the model’s 

output, as presented in the density plot. On the other hand, the latter timesteps (𝑋𝑡−5, 𝑋𝑡−6, 𝑋𝑡−7) are the least 

important of all the variables, as shown by their position in the scatter plot. The relatively stable and lower 

values of their partial derivatives indicate that contribution of these variables is smaller and somewhat linear. 

Overall, the sensitivity analysis performed suggests the following: 

• The model constructs the sine function based primarily on the positive, non-linear contributions of 

intermediate timesteps (𝑋𝑡−3, 𝑋𝑡−4, 𝑋𝑡−2) and then uses the most recent timesteps (𝑋𝑡 , 𝑋𝑡−1) to correct 

the predictions. 

• The most distant timesteps (𝑋𝑡−5, 𝑋𝑡−6, 𝑋𝑡−7) are of little significance to the model’s prediction and 

show a more linear effect on the output variable. 
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Figure 11. Sensitivity plots for the sine function. (a) Scatter plot. (b) Bar blot. (c) Density plot. (d) Partial 

derivatives through samples. (e)Sensitivity measures through timesteps 

 

The explanations offered by LIME take a different approach, as the LIME method consists of creating a local, 

linear approximation of the model’s behaviour around specific instances. Therefore, the effects of each variable, 

as represented in the first graph of Figure 12 (a), are all constant across instances. In the bar plot of Figure 12(a), 

the lime coefficients of every feature are shown. LIME attributes the most significance to 𝑋𝑡−2, 𝑋𝑡 and less 
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significance to 𝑋𝑡−3, 𝑋𝑡−4 in contrast with the results obtain from the partial derivative method. However, LIME 

also considers that the most distant timesteps (𝑋𝑡−5, 𝑋𝑡−6, 𝑋𝑡−7) are the least significant to the model. 

In the last plot of Figure 12(a), we plotted the true sine values, against the RNN model predictions, and the lime 

predictions based on the lime coefficients obtained. The high inaccuracy of the lime prediction is due to the 

nature of lime explanations. As explained before, LIME tries to fit a linear model to explain individual instances, 

and is failing at capturing the smooth, periodic nature of the sine function accurately. 

The explanations offered by SHAP are similar regarding the importance of the variable. As shown in the bar 

plot of Figure 12(b), the most important variables for SHAP are 𝑋𝑡 , 𝑋𝑡−3, 𝑋𝑡−4 and the least important are again 

(𝑋𝑡−5, 𝑋𝑡−6, 𝑋𝑡−7). The beeswarm plot of Figure 12(b) indicate a linear effect for intermediate feature values. 

This linear effect is only distorted by the extreme feature values, which corresponds to the peaks of the sine 

function.  

Moreover, we can make a similar analysis to the one performed with the partial derivative methods regarding 

the direction of the contribution of each variable. (𝑋𝑡−3, 𝑋𝑡−4, 𝑋𝑡−2) seem to contribute to the creation of the 

sine function, as the SHAP values are negative for negative feature values and positive for positive feature 

values.  𝑋𝑡 , 𝑋𝑡−1 on the other hand, seem to go in the other direction, as they present positive SHAP values for 

negative feature values and vice versa. 

 
Figure 12: (a) LIME graphs for the sine case. (b) SHAP graphs for the sine case 

Continuing with the application of XAI methods to the sine case, we plotted the PDP and ICE curves for the 

input variable at every time step and are presented in Figure 13. The PDP lines, shown in red, describe the 

average effect of each feature on the model's output, while the ICE curves, in grey, show the impact on individual 



31 

 

instances. The PDP for the current timestep, 𝑋𝑡, reveals a negative slope, indicating that higher values of this 

feature generally lead to lower predictions. However, the spread in the ICE curves suggests some variability 

among individual instances. 𝑋𝑡−1 also shows a less pronounced negative slope, with less spread, indicating a 

consistent but minor negative influence. In contrast, 𝑋𝑡−2 presents a slight positive slope, and 𝑋𝑡−3, 𝑋𝑡−4 have 

the most pronounced positive slopes, indicating these features significantly increase the model output. On the 

other hand, 𝑋𝑡−5, 𝑋𝑡−7 also show positive slopes but with considerable ICE curve variability, suggesting 

moderate and less consistent influences. The least influential feature, 𝑋𝑡−6, has a flat PDP and minimal ICE 

curve variation, indicating that changes in this feature have little effect on the model’s output.  

The results of PDP and ICE curves agree with the partial derivatives and the SHAP method on the importance 

of 𝑋𝑡−3, 𝑋𝑡−4 and with those said methods and LIME in considering the most distant timesteps as the least 

significant to the model’s output. 

Lastly, the Permutation Importance method offers a simple overview of feature relevance. In this method, 

𝑋𝑡−3, 𝑋𝑡−4 are still the most relevant, but the importance of the rest variables differs from the other methods 

described. However, Permutation Importance does not give any information regarding the nature of the effect 

of the feature on model outputs, making this method just a complement for other more complete methods. 

 
Figure 13: PDPs and ICE curves for the sine case 
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Figure 14: Permutation Importance results for the sine case 

 

4.3 Case 2: Predicting electric demand 
Predicting electric demand is a crucial aspect of energy management and planning, providing benefits ranging 

from economic efficiency to enhanced grid reliability. The dataset used in this analysis contains daily records 

of electric demand, working conditions, and temperatures over a period. Understanding and predicting electric 

demand can significantly aid utility companies and grid operators in making informed decisions about energy 

production and distribution. 

The dataset contains 1980 instances, comprising records from July 1, 2007, onward and includes four main 

attributes: 

1. DATE: The date of the recorded observation. 

2. DEM: The electric demand measured in consistent units. 

3. WD: A measure of how much work is done on that day. For instance, Sundays typically have lower 

WD values compared to weekdays, indicating a less labour-intensive day. 

4. TEMP: The mean temperature recorded on that particular day. 

Therefore, this case contains two input variables (WD and TEMP), and the target variable is the electric demand 

(DEM). 

Before training the model, it is crucial to reshape the data in the appropriate form to train the RNN. We chose 

to work with three timesteps for every instance. The timesteps selected correspond to the previous day (𝑡 − 1), 

the day before (𝑡 − 2), and the same day of previous week (𝑡 − 7). The reason behind the selection of these 

timesteps is to obtain a simpler dataset, as it is a simplification of including all the timesteps that correspond to 

the whole previous week. No timesteps further than a week have been considered, because as plotted in Figure 

15, the electric demand presents 7-day-cycles. 

The model we used to predict the electric demand is a simple RNN with 32 neuron in its only hidden recurrent 

layer. Figure 15 shows the plot for the true electric demand and the predicted by the model. The model seems 

to have captured correctly the periodic nature of the electric demand and predicts quite accurately intermediate 

and values and low peaks of demand. On the other hand, prediction for high peaks show some error in the 

model. 
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Figure 15: Comparison between true and predicted values for the electric demand case 

After training the model, the same methods as the previous use case were applied, with the exception of LIME, 

which failed to produce reasonable explanations of the model. 

The Partial Derivatives Method offers a complete analysis regarding feature importance, the effects of every 

variable and the evolution across time and samples. As shown in the scatter plot in  Figure 16, 𝑊𝐷𝑡−1 exhibits 

high variability and a positive mean, indicating a significant and consistent influence on the output. 𝑊𝐷𝑡−2 and 

𝑊𝐷𝑡−7  also shows notable variability but with a lower mean compared to 𝑊𝐷𝑡−1 . Temperature variables, 

particularly 𝑇𝐸𝑀𝑃𝑡−7 and 𝑇𝐸𝑀𝑃𝑡−2 have a lower variability and near-zero mean, suggesting a weaker impact 

on the model. The squared partial derivatives graph reassures the information obtain from the previous graph, 

regarding feature importance. 𝑊𝐷𝑡−1 is the most significant, creating a positive impact on the model, followed 

by 𝑊𝐷𝑡−2 and 𝑇𝐸𝑀𝑃𝑡−1, both with negative impacts on the model. Regarding the linearity of the effects, we 

can look at the density plot in Figure 16 to see that 𝑊𝐷𝑡−1  and 𝑊𝐷𝑡−2  present very wide distributions, 

suggesting a non-linear effect. 𝑇𝐸𝑀𝑃𝑡−1 and 𝑇𝐸𝑀𝑃𝑡−2 also seems to be non-linear, while 𝑊𝐷𝑡−2and 𝑊𝐷𝑡−7 

present a narrow distribution, suggesting a more linear, though less significant effect. 

Overall, we can extract the following conclusions. 

• 𝑊𝐷𝑡−1 and 𝑊𝐷𝑡−2 are the most relevant features, with opposite non-linear effects. At first hand, one 

could expect 𝑊𝐷𝑡−7 to be the most significant, as it corresponds to the working day of the same day on 

previous week, instead it is one of the less relevant features of the model. However, the feature 

importance found by the partial derivative method makes sense. By taking another look at Figure 15, 

we can see that there are very strong low peaks, conformed by single points, attributable to Sundays, 

while high peaks are more extended, with a couple points with similar values, corresponding to central 

weekdays. This explains why the model might be focusing on the last two values of 𝑊𝐷  and 

compensating the effects of one another instead of just focusing directly in the 𝑊𝐷 of the past week. 

• The other relevant feature, 𝑇𝐸𝑀𝑃𝑡−1, presents a non-linear effect. This seems logical, as higher values 

of temperature probably increase demand, but lower values also increase demand. 

The SHAP method suggests a very similar feature importance to the sensitivity method. Looking at the bar plot 

in Figure 17, 𝑊𝐷𝑡−2 ,𝑇𝐸𝑀𝑃𝑡−1 and 𝑊𝐷𝑡−1  are the most significant variables, in that order. On the other hand, 

𝑇𝐸𝑀𝑃𝑡−7 and 𝑊𝐷𝑡−7  are considered the least important, same as the sensitivity method. Regarding the nature 

of the effects, the results are similar to the sensitivity method. The pair 𝑊𝐷𝑡−1 , 𝑊𝐷𝑡−2 presents opposite non-

linear effects. The 𝑇𝐸𝑀𝑃𝑡−1 also shows a non-linear effect, agreeing with the results of the partial derivative 

method. 
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Figure 16:Sensitivity plots for the electric demand case 

 

Figure 17: SHAP plots for the electric demand case 
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Continuing with the application of the XAI methods, Figure 18 show the PDP and ICE curves for the predictions 

of the electric demand. Regarding the WD metrics, 𝑊𝐷𝑡−1 shows a very small non-linear effects that could even 

be considered linear with a mild negative effect for some samples. 𝑊𝐷𝑡−2 on the other hand, shows a non-linear 

effect. Last 𝑊𝐷𝑡−7 shows a linear effect with very small slope, which means that the variation on the features’ 

contribution is minimal. For the temperature metrics, 𝑇𝐸𝑀𝑃𝑡−1  exhibits a negative non-linear effect, while 

𝑇𝐸𝑀𝑃𝑡−2 and 𝑇𝐸𝑀𝑃𝑡−7 show a very mild negative linear effect. 

However, it is important to mention that the feature importance attributed by the PDP and ICE curves differs 

considerably from the other methods describes. As shown in Figure 18, all the features exhibit similar 

importance, as all the curves range around the same value of 0.4. 

Lastly, Permutation Importance presents a quick overview of feature significance. As shown in Figure 19, 

𝑊𝐷𝑡−1 and 𝑇𝐸𝑀𝑃𝑡−1 are the most relevant features and they exhibit the same importance. 𝑊𝐷𝑡−2 is the next 

most important feature, and the rest of the variables show very little significance in comparation with the other 

three variables. This feature importance analysis is similar to the sensitivity method and SHAP method but 

differs from the PDP and ICE curves. 

 

Figure 18: PDP and ICE curves for the electric demand case 

 

Figure 19: Permutation Importance results for the electric demand case 
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4.4 Discussion of Results 

In this chapter the sensitivity analysis method based on partial derivatives was applied to two different use cases, 

predicting the sine function and forecasting demand. In each case, besides applying the partial derivatives 

method, we also studied the explanations obtained by existing XAI methods. 

In the first use case, the sensitivity analysis offered key insights into the importance of different time lags to 

predict the sine function and the effect of each lag in the model’s output. While some of the other XAI methods 

show similar explanations regarding the importance of the time lags, sensitivity analysis provides the most 

complete and easy to interpret explanations. Moreover, the explanations provided are much more accurate than 

others such as LIME explanations, which offered a very poor prediction.  

In the second use case, the partial derivative method unveiled the relationship between inputs and outputs found 

by the model. This relationship attributed more importance to certain time lags that are not the ones that are 

supposed to be in relation with the output. In this use case, the model attributed more importance to 𝑊𝐷𝑡−1  and 

𝑊𝐷𝑡−2  instead of 𝑊𝐷𝑡−7 which should be the one bearing the most importance of all the time lags of that 

variable as it corresponds to the same day of the week before. This has to do with the correlation between the 

time lags and the original input variable, which induces the RNN to search for a relationship that predicts the 

data accurately but without being the true relationship.  

Overall, the explanations offered by the sensitivity analysis method have the following advantages against the 

other XAI methods: 

• The information offered is more complete than any other XAI method. Sensitivity analysis does not 

assume feature independence, providing more trustable explanations than the rest of the XAI methods. 

• The graphs offered by our method ensure ease of interpretation and makes the sensitivity analysis 

understandable for every user. 

• Sensitivity analysis is a more computationally efficient method, as it is much less memory intensive. 

This is crucial for datasets with higher number of samples and variables, as other methods such as LIME 

or SHAP, which require much more execution time than the sensitivity analysis method. 

• The sensitivity analysis method is easy to implement in any workflow, as it does not require any 

particular version of python. SHAP on the other hand, required a very old and outdated version of 

python to function, which makes it hard to implement in state-of-the-art architectures. 

With all these advantages, the sensitivity analysis method makes a significant contribution to the field of XAI, 

as it is a more accurate, complete, and easy to use and implement than any other existing method. 
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5 Conclusions 

5.1 Summary and Conclusions 

The aim of this project was the development and validation of sensitivity analysis on Recurrent Neural Networks 

using the partial derivatives of the output variables with respect to the input. This motivation comes from the 

pressing need of addressing the black box problem given the rapid development of artificial intelligence models. 

The opacity of artificial intelligence models often hinders their acceptance and trust, particularly in sensitive 

decision -making areas like finance or healthcare. This project therefore seeks to contribute to the development 

of Explainable Artificial Intelligence. 

Besides the development of the sensitivity analysis, this project has also reviewed the most common XAI 

techniques that are being applied to RNNs. Methods such as LIME, SHAP, PDP curves, ICE curves and 

Permutation Importance have not only been revised from a theoretical point of view but has also been practically 

implemented to RNN models. 

The development of the sensitivity analysis method consisted of two main steps. The first one being the 

analytical calculation of the partial derivatives in a Recurrent Neural Network and the selection of statistical 

measures. The theoretical framework was then implemented in the RNN_XAI package, which includes 

functions for the calculation of the Jacobian matrix of the RNN, computing the sensitivity measures, and 

providing several user-friendly plots to visualize the results. This implementation makes our method accessible 

and usable for practical applications, ensuring that it can be easily implemented into existing workflows.  

The sensitivity analysis method was then validated and put into comparison with the other XAI methods via 

three different cases. A synthetic simple regression model with known derivatives was used to validate the partial 

derivatives calculated by our method, proving its correctness. Following this, the method was applied to two 

different use cases: predicting the sine function and forecasting electric demand. These two cases highlighted 

the ease of interpretation of our partial derivatives method and the more complete information provided. 

Moreover, our method was demonstrated to be much more computationally efficient, as well as being 

compatible with more recent versions of python. 

Another key finding of this project was the tendency of RNNs to attribute importance to variables that are not 

related with the output of the dataset. This has to do with the correlation between the time lags used in RNNs 

and the original variables. However, it is important to make clear that XAI techniques do not try to validate nor 

correct the models, but instead, provide explanations for the predictions of a given model which is assumed to 

be correct. 

Overall, this project has proven the superiority of the sensitivity analysis method on both quality of the 

explanations and ease of use over more traditional methods and hope to have achieved the goals of a more 

human-friendly, understandable and regulation compliant Artificial Intelligence. 
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5.2 Future developments 

This Project has taken the developments in XAI for MLP and applied them successfully into the architecture of 

RNN. However, there are still some lines of research to be explored: 

• Generalise the partial derivatives calculation to larger RNNs: This project has only focused on RNNs 

with a single recurrent hidden layer, but now that sensitivity analysis has been proven successful for 

this type of neural networks, the calculations could be extended to RNNs with more than recurrent layer. 

However, the number of terms present in the partial derivatives grow exponentially the more recurrent 

layer are included in the model, which could difficult the notation of a general formula that can be used 

for any number an arbitrary number of recurrent layers. 

• Extend the sensitivity analysis method based on partial derivatives to other neural networks 

architecture: the partial derivatives method has already been proven successful in MLPs and RNNs but 

could still be applied to more complex networks such as LSTM or CNN. 
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Annex A: Calculation of Partial Derivatives with more than one 

recurrent layer 
 

One of the future lines of research is extending the calculation of partial derivatives of RNNs with a single 

recurrent hidden layer to RNNs with an arbitrary number of recurrent hidden layers. 

This project only focuses on RNNs with one single recurrent layer, as the aim of the project was to test the 

functionality of sensitivity analysis for these architectures. However, as a pure academic exercise, this section 

contains the calculation of the partial derivative of the output of one neuron in one layer, in one timestep, with 

respect to the output of the previous layer in the previous timestep, considering more than one recurrent layer. 

 

𝜕𝑜𝑘,𝑡
𝑙

𝜕𝑜𝑘,𝑡−1
𝑙−1 =

𝜕𝑜𝑘,𝑡
𝑙

𝜕𝑧𝑘,𝑡
𝑙 ⋅

𝜕𝑧𝑘,𝑡
𝑙

𝜕𝑜𝑘,𝑡−1
𝑙−1 =

𝜕𝜙𝑘
𝑙

𝜕𝑧𝑘,𝑡
𝑙 (𝑧𝑘,𝑡

𝑙 ) ⋅ (
𝜕𝑧𝑘,𝑡

𝑙

𝜕𝑜𝑘,𝑡
𝑙−1 ⋅

𝜕𝑜𝑘,𝑡
𝑙−1

𝜕𝑜𝑘,𝑡−1
𝑙−1 +

𝜕𝑧𝑘,𝑡
𝑙

𝜕𝑜𝑘,𝑡−1
𝑙 ⋅

𝜕𝑜𝑘,𝑡−1
𝑙

𝜕𝑜𝑘,𝑡−1
𝑙−1 ) =

=
𝜕𝜙𝑘

𝑙

𝜕𝑧𝑘,𝑡
𝑙 (𝑧𝑘,𝑡

𝑙 ) ⋅ (𝑤𝑘
𝑙 ⋅

𝜕𝑜𝑘,𝑡
𝑙−1

𝜕𝑧𝑘,𝑡
𝑙−1 ⋅

𝜕𝑧𝑘,𝑡
𝑙−1

𝜕𝑜𝑘,𝑡−1
𝑙−1 + 𝑢𝑘

𝑙 ⋅
𝜕𝑜𝑘,𝑡−1

𝑙

𝜕𝑧𝑘,𝑡−1
𝑙 ⋅

𝜕𝑧𝑘,𝑡−1
𝑙

𝜕𝑜𝑘,𝑡−1
𝑙−1 ) =

=
𝜕𝜙𝑘

𝑙

𝜕𝑧𝑘,𝑡
𝑙 (𝑧𝑘,𝑡

𝑙 ) ⋅ (𝑤𝑘
𝑙 ⋅

𝜕𝜙𝑘
𝑙−1

𝜕𝑧𝑘,𝑡
𝑙−1 (𝑧𝑘,𝑡

𝑙−1) ⋅ 𝑢𝑘
𝑙−1 + 𝑢𝑘

𝑙 ⋅
𝜕𝜙𝑘

𝑙

𝜕𝑧𝑘,𝑡−1
𝑙 (𝑧𝑘,𝑡−1

𝑙−1 ) ⋅ 𝑤𝑘
𝑙 ) 

 

This calculation still needs to be extended to calculate the final output of the model with respect to the initial 

input, considering the desired number of recurrent layers. 
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