

GENERAL INFORMATION

Course information				
Name	Deep Learning			
Code	DOI-MIC-524			
Main program	Master's Degree in Smart Industry			
Offered in	Máster Universitario en Ingeniería Industrial + Máster en Industria Conectada [2 nd year]			
Level	Master's Degree			
Semester	2 nd (Spring)			
Credits	3.0 ECTS			
Туре	Compulsory			
Department	Industrial Organization			
Coordinator	Abrán Yiu-Sen Yuen Durán			

Instructor		
Name	Abrán Yiu-Sen Yuen Durán	
Department	Industrial Organization	
Office		
e-mail	ayyuen@comillas.edu	
Phone		
Office hours	Arrange an appointment through email.	

COURSE SPECIFIC INFORMATION

Contextualization of the course

Contribution to the professional profile of the degree

Currently, artificial intelligence (AI) techniques are found in all types of applications, among which those related to industry stand out. Their implementation and development involve a relatively low cost and minimum time provided that you have the appropriate knowledge and, therefore, the demand for professionals with this profile is growing at a rate that cannot be satisfied today.

This subject prepares the student to develop, implement, and analyze some of the most advanced Al systems currently available, including image classifiers, as well as forecasting models based on time series. This knowledge is presented in three major blocks: learning with shallow and deep neural networks, convolutional neural networks, and recurrent neural networks.

Python is the vehicular programming language and is mainly supported by PyTorch. Complementarily, counterpart implementations in other frameworks such as TensorFlow and Keras will be shown.

Prerequisites

This subject requires solid foundations of machine learning as well as statistics, calculus, and algebra. Knowledge of Python, Git, and data science environments is desirable but not mandatory.

Competences ¹ - Objectives					
Competences					
Gener	al				
CG1.	Have acquired advanced knowledge and demonstrated, in a research and technological or highly specialized context, a detailed and well-founded understanding of the theoretical and practical aspects, as well as of the work methodology in one or more fields of study. Haber adquirido conocimientos avanzados y demostrado, en un contexto de investigación científica y tecnológica o altamente especializado, una comprensión detallada y fundamentada de los aspectos teóricos y prácticos y de la metodología de trabajo en uno o más campos de estudio.				
CG2.	Know how to apply and integrate their knowledge, understanding, scientific rationale, and problem- solving skills to new and imprecisely defined environments, including highly specialized multidisciplinary research and professional contexts. Saber aplicar e integrar sus conocimientos, la comprensión de estos, su fundamentación científica y sus capacidades de resolución de problemas en entornos nuevos y definidos de forma imprecisa, incluyendo contextos de carácter multidisciplinar tanto investigadores como profesionales altamente especializados.				
CG3.	Know how to evaluate and select the appropriate scientific theory and the precise methodology of their fields of study in order to formulate judgements based on incomplete or limited information, including, when necessary and pertinent, a discussion on the social or ethical responsibility linked to the solution proposed in each case. Saber evaluar y seleccionar la teoría científica adecuada y la metodología precisa de sus campos de estudio para formular juicios a partir de información incompleta o limitada incluyendo, cuando sea preciso y pertinente, una reflexión sobre la responsabilidad social o ética ligada a la solución que se proponga en cada caso.				
CG4.	Be able to predict and control the evolution of complex situations through the development of new and innovative work methodologies adapted to the scientific/research, technological or specific professional field, in general multidisciplinary, in which they develop their activity. Ser capaces de predecir y controlar la evolución de situaciones complejas mediante el desarrollo de nuevas e innovadoras metodologías de trabajo adaptadas al ámbito científico/investigador, tecnológico o profesional concreto, en general multidisciplinar, en el que se desarrolle su actividad.				
CG5.	Be able to transmit in a clear and unambiguous manner, to specialist and non-specialist audiences, results from scientific and technological research or state-of-the-art innovation, as well as the most relevant foundations that support them. Saber transmitir de un modo claro y sin ambigüedades, a un público especializado o no, resultados procedentes de la investigación científica y tecnológica o del ámbito de la innovación más avanzada, así como los fundamentos más relevantes sobre los que se sustentan.				
CG6.	Have developed sufficient autonomy to participate in research projects and scientific or technological collaborations within their thematic area, in interdisciplinary contexts and, where appropriate, with a high knowledge transfer component. Haber desarrollado la autonomía suficiente para participar en proyectos de investigación y colaboraciones científicas o tecnológicas dentro de su ámbito temático, en contextos interdisciplinares y, en su caso, con una alta componente de transferencia del conocimiento.				
CG7.	Being able to take responsibility for their own professional development and their specialization in one or more fields of study. Ser capaces de asumir la responsabilidad de su propio desarrollo profesional y de su especialización en uno o más campos de estudio.				

¹ Competences in English are a free translation of the official Spanish version.

Specific

CE3. Be able to design and train systems that learn automatically, mastering both supervised and unsupervised learning techniques. Understand the potential application of these systems in the improvement of industrial processes, relations with clients, etc. Ser capaces de diseñar y entrenar sistemas que aprendan de manera automática, dominando tanto las técnicas de aprendizaje supervisado como no supervisado. Entender el potencial de aplicación de estos sistemas en la mejora de procesos industriales, relación con clientes, etc.

Learning outcomes

- RA1. Understand the mathematical foundations that support deep learning algorithms.
- RA2. Be able to implement shallow and deep neural networks with PyTorch.
- RA3. Be familiar with the basic TensorFlow and Keras features for deep learning and determine when they are a better choice than PyTorch.
- RA4. Apply convolutional neural networks to solve image classification problems, both building the model from scratch and through transfer learning from a pretrained model.
- RA5. Design and implement advanced time series forecasting systems and apply them to different fields of knowledge.
- RA6. Know the main steps and technologies that allow deploying a deep learning model in production.
- RA7. Be aware of the latest trends in deep learning.

CONTENTS

Contents
Theory
Unit 1. Introduction
1.1 History of neural networks1.2 Simplification of the general problem statement1.3 Basics of deep learning
Unit 2. Fundamentals
 2.1 Types of neural networks 2.2 General problem statement 2.3 foundations 2.4 Linear regression vs linear perceptron 2.5 Torch fundamentals 2.6 CPU and GPU
Unit 3. Shallow and deep neural networks with PyTorch
 3.1 Implementing a neural network with PyTorch 3.2 Activation functions 3.3 Loss functions 3.4 Binary sorting networks 3.5 Multi-class networks 3.6 Neural network capabilities 3.7 Building a pipeline

Unit 4. Convolutional neural networks (CNN)

4.1 Introduction

- 4.2 Image ingestion
- 4.3 Convolution
- 4.4 Regularization

4.5 Data augmentation

4.6 Transfer learning

Unit 5. Recurrent neural networks (RNN)

- 5.1 Introduction
- 5.2 Basic concepts
- 5.3 Architectures
- 5.4 Applications
- 5.5 Gated recurrent unit (GRU)
- 5.6 Long short-term memory (LSTM)

Unit 6. Other deep learning techniques and tools

6.1 Other libraries

- 6.2 Keras
- 6.3 MLOps: The big picture & trends
- 6.4 Applications & current trends in deep learning

Laboratory

Lab 0. PyTorch fundamentals

In this first lab assignment, the students will learn the fundamentals of PyTorch, one of the most widely used deep learning frameworks, and compare it with NumPy. This session will also serve to introduce the template that will be used in the deliverables throughout the course.

Lab 1. Shallow and deep neural networks with PyTorch

In this assignment, two exercises will be carried out: a linear regression problem and a classification into two or more categories. The students will perform a descriptive study beforehand as well as data preprocessing if necessary. They will be required to assess the quality of the networks and suggest possible improvements. The deliverable will be a properly commented Jupyter Notebook as well as the equivalent Python script with .py extension. The results must be reproducible.

Lab 2. Convolutional neural networks (CNN)

From a set of images, the students will build a convolutional network capable of classifying or identifying images, including regularization techniques, if necessary. Afterwards, they will produce a conceptual and technical explanation and deliver it along with a Jupyter Notebook and a Python script to be able to run the code directly. If the images come from an external set, they will also have to be handed in.

Lab 3. Recurrent neural networks (RNN)

From a sequential dataset, students will build a model to predict the following events in the series using an LSTM or similar network. The deliverable will be a Jupyter notebook and its ".py" version.

Lab 4. Keras

In this final lab assignment, Keras will be used as an alternative library to PyTorch. Both the syntax and the execution times will be compared.

TEACHING METHODOLOGY

General methodological aspects				
The methodology of this course is inspired by the "learning by doing" paradigm. All sessions will incorporate a practical component during or after the lecture. The knowledge acquired will be evaluated at the end of each unit with graded quizzes and exercises. In addition, the three main blocks of the course will be assessed with practical deliverables.				
In-class activities	Competences			
• Lectures: Theoretical sessions will introduce the fundamental aspects to be mastered in each unit. These sessions will be complemented with practical examples. Active participation is expected from the students, who will finally show their mastery of the subject by solving theoretical and practical cases.	CG1, CG3, CE3			
• Lab sessions: Organized in small groups and under the supervision of the instructor, students will learn how to build deep learning models using frameworks like PyTorch. Every individual will be required to contribute to the solution of the problem. Whenever possible, once the essence of the problem has been unraveled, the different groups will compete to achieve the best model.	CG2, CG3, CG5, CG7, CE3			
• Tutoring for groups or individual students will be organized upon request.	-			
Out-of-class activities	Competences			
• Study and understand the material covered in class and complement it with additional recommended bibliography.	CG1, CG3, CE3			
 Resolution of exercises proposed during the sessions. 	CG1, CG3, CE3			
 After every lab session, the students will write a short report explaining in detail the steps taken to build the model and the underlying theoretical concepts. 	CG4, CG6, CE3			

STUDENT WORK-TIME SUMMARY

IN-CLASS HOURS					
Lectures Lab sessions					
20	10				
OUT-OF-CLASS HOURS					
Self-study	Lab preparation and report writing				
32	28				
ECTS credits: 3.0 (90 hou					

EVALUATION AND GRADING CRITERIA

Evaluation activities	Grading criteria	Weight
Mini tests	 Understanding of the theoretical concepts. 	15%
Final exam	Understanding of the theoretical concepts.Critical analysis of numerical exercises' results.	
Lab assignments	 Application of theoretical concepts to real problem-solving. Ability to use and develop data mining and deep learning software. Attitude and effort: Initiative and proactive work will be encouraged Written communication skills. Teamwork. 	50%

Grading

Regular assessment

- Theory will account for 50%, of which:
 - Mini tests: 15%
 - Final exam: 35%
- Lab assignment will account for the remaining 50%.

In order to pass the course, the weighted average mark must be greater or equal to 5 out of 10 points, the mark of the final exam must be greater or equal to 4 out of 10 points. Otherwise, the final grade will be the lower of the three marks.

Retake

Lab marks will be preserved. In addition, all students will take a final exam. The resulting grade will be computed as follows:

- Final exam: 50%
- Lab assignments: 50%

As in the regular assessment period, in order to pass the course, the weighted average mark must be greater or equal to 5 out of 10 points, and the mark of the final exam must be greater or equal to 4 out of 10 points. Otherwise, the final grade will be the lower of the three marks.

Course rules

- Class attendance is mandatory according to Article 93 of the General Regulations (Reglamento General) of Comillas Pontifical University and Article 6 of the Academic Rules (Normas Académicas) of the ICAI School of Engineering. Not complying with this requirement may have the following consequences:
 - Students who fail to attend more than 15% of the lectures may be denied the right to take the final exam during the regular assessment period.
 - Regarding laboratory, absence to more than 15% of the sessions can result in losing the right to take the final exam of the regular assessment period and the retake. Missed sessions must be made up for credit.
- Students who commit an irregularity in any graded activity will receive a mark of zero in the activity and disciplinary procedures will follow (cf. Article 168 of the General Regulations (Reglamento General) of Comillas Pontifical University).

WORK PLAN AND SCHEDULE²

Activities	Date/Periodicity	Deadline
Mini tests	At the end of every unit	-
Final exam	After the lecture period	-
Review and self-study of the concepts covered in the lectures	After each lesson	-
Lab sessions	Weeks 2 to 7	-
Lab report writing	_	One week after the end of each session

² A detailed work plan of the subject can be found in the course summary sheet (see last page). Nevertheless, this schedule is tentative and may vary to accommodate the rhythm of the class.

BIBLIOGRAPHY AND RESOURCES

Basic references

- Slides prepared by the lecturer (available in Moodle).
- F. Chollet, Deep Learning with Python, 1st Ed., Manning, 2017. ISBN-13: 978-1-617-29443-3
- E. Stevens, L. Antiga, and T. Viehmann, *Deep Learning with PyTorch*, 1st Ed., Manning, 2020. ISBN-13: 978-1-617-29526-3
- I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*, 1st Ed., MIT Press, 2016. ISBN-13: 978-0-262-03561-3 [Online]. Available: <u>https://www.deeplearningbook.org/</u>

Complementary references

- S. Weidman, Deep Learning from Scratch: Building with Python from First Principles, 1st Ed., O'Reilly Media, 2019. ISBN-13: 978-9-352-13902-6
- J. Howard, Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD, 1st Ed., O'Reilly Media, 2020. ISBN-13: 978-1-492-04552-6
- A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd Ed., O'Reilly Media, 2022. ISBN-13: 978-1-098-12597-4

In compliance with current legislation on the **protection of personal data**, we inform and remind you that you can check the privacy and data protection terms <u>you accepted at registration</u> by entering this website and clicking "download".

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

	In-class activities				Out-of-class activities			Learning outcomes
Week	Time [h]	Lecture	Laboratory	Assessment	Time [h]	Self-study	Lab preparation and report writing	Code
1	2	Course overview (0.5h) Unit 1. Introduction (1.5h)			2	Review and self-study (2h)		RA7
	2	Unit 2. Fundamentals (2h)			3	Review and self-study (3h)		RA1
2	2	Unit 2. Fundamentals (1h)	Lab 0. PyTorch fundamentals (1h)	Mini test (Units 1 & 2)	4	Review and self-study (1h)	Lab preparation (1h) Report writing (2h)	RA1
2	2	Unit 3. Shallow and deep neural networks with PyTorch (2h)			4	Review and self-study (4h)		RA2
3	2		Lab 1. Shallow and deep neural networks with PyTorch (2h)	Mini test (Unit 3)	6		Lab preparation (1h) Model refinement (2h) Report writing (3h)	RA2
	2	Unit 4. Convolutional neural networks (2h)			2	Review and self-study (2h)		RA1, RA2, RA3, RA4
4	2	Unit 4. Convolutional neural networks (1h)	Lab 2. Convolutional neural networks (1h)		4		Lab preparation (1h) Model refinement (3h)	RA1, RA2, RA3, RA4
4	2	Unit 4. Convolutional neural networks (2h)			4	Review and self-study (4h)		RA1, RA2, RA3, RA4
5	2		Lab 2. Convolutional neural networks (2h)	Mini test (Unit 4)	4		Model refinement (1h) Report writing (3h)	RA1, RA2, RA3, RA4
5	2	Unit 5. Recurrent neural networks (2h)			2	Review and self-study (2h)		RA1, RA2, RA3, RA5
6	2	Unit 5. Recurrent neural networks (2h)			4	Review and self-study (4h)		RA1, RA2, RA3, RA5
0	2		Lab 3. Recurrent neural networks (2h)	Mini test (Unit 5)	4		Lab preparation (1h) Model refinement (3h)	RA1, RA2, RA3, RA5
7	2	Unit 6. Other deep learning techniques (1h)	Lab 3. Recurrent neural networks (1h)		4		Model refinement (1h) Report writing (3h)	RA1, RA2, RA3, RA5, RA6
	2	Unit 6. Other deep learning techniques (2h)			4	Review and self-study (4h)		RA6
8	2	Recap (1h)	Lab 4. Keras (1h)	Mini test (Unit 6)	3		Lab preparation (1h) Report writing (2h)	RA1, RA3, RA4, RA5, RA7
Ű				Final exam ³	6	Final exam preparation (6h)		RA1 – RA7

³ The final exam will be held the week after the lecture period.