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RESUMEN DEL PROYECTO

1 Introducción

Se espera que los sistemas de almacenamiento eléctricos se conviertan en
un elemento clave para compensar la volatilidad e incertidumbre de las
energías renovables. Dentro de los sistemas de almacenamiento, desta-
can las baterías de ion de litio por su versatilidad y coste competitivo.
Además, estas baterías son clave para la electrificación del sector auto-
movilístico, actualmente están presentes en la mayoría de vehículos eléc-
tricos y su cuota de mercado no se espera que disminuya en el futuro.

Por lo tanto, las baterías de ion de litio son consideradas elementos
fundamentales para la descarbonización de los sistemas eléctricos y el
sector automovilístico. Debido a ello, el desarrollo de modelos precisos
de esta tecnología es clave para su integración y operación óptima.

Este trabajo se centra en el modelado de las baterías de ion de litio en
el contexto de una microrred compuesta por un panel fotovoltaico, una
batería y un generador diesel. Se propone el uso de la técnica ZigZagIn-
teger para la linealización de la función de perdidas de la batería, junto
a dos métodos para modelar el funcionamiento de la misma. En el caso
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de estudio se compara esta técnica frente a otras alternativas, haciendo
especial hincapié en los tiempos de resolución.

2 Metodología

2.1 Modelo de baterías de Ion de Litio

El modelo usado para caracterizar las baterías de Ion de Litio está basado
en [4], donde el profesor Javier García González propone una modifi-
cación al modelo descrito en [5]. Para el contexto de análisis de sistemas
estáticos, las perdidas de energía durante el ciclo de descarga y carga de
este tipo de baterías son caracterizadas por funciones bivariables depen-
dientes del estado de carga de la batería y la potencia de descarga/carga.

Debido la relación no lineal que presentan ambas expresiones, su im-
plementación en modelos de optimización clásica se hace complicada y
poco práctica, ya que los solucionadores actuales todavía no permiten la
optimización no lineal a gran escala. Por lo que el uso de técnicas de
linearización es necesario.

2.2 Zig-Zag Integer formulation

El enfoque más popular para linealizar una función matemática genérica
en el contexto de la optimización clásica es su descomposición en fun-
ciones lineales a tramos. Estas técnicas aproximan la función matemática
como la combinación convexa de un conjunto de puntos de la función no
lineal original. La selección de los distintos tramos de la función lin-
ealizada suele modelarse con variables binarias. Por ejemplo, la formu-
lación clásica para una función no lineal bivariante, como la expresión de
las pérdidas de Li-Ion, se presenta en [1]. La principal limitación de estos
enfoques es el elevado número de variables binarias necesarias, que ha-
cen que los problemas de programación entera mixta sean muy difíciles
de resolver con los solucionadores matemáticos actuales.

[3] propone la formulación Zig-Zag Integer como modelo prometedor
para la linealizacion de funciones, reduciendo drásticamente la compleji-
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dad matemática en comparación con métodos alternativos.

3 Modelo de la microred

La microrred implementada consta de un generador diésel, un panel fo-
tovoltaico, una batería de iones de litio y una demanda dependiente del
tiempo. Su caracterización procede de [2].

El modelo de gestión propuesto se basa en un modelo de optimización
determinista clásico que busca minimizar los costes de operación, su-
jeto a un conjunto de restricciones. Una de las restricciones modeladas
son las pérdidas de los ciclos de carga y descarga de las baterías Li-Ion.
Combinando la expresión de pérdidas de [4] y diferentes técnicas de lin-
ealización como el Zig-Zag Integer. En cuanto al modelo de la batería,
se proponen dos alternativas, un enfoque directo en el que las pérdidas
de carga y descarga de la batería se modelan como funciones separadas,
denominado "enfoque separado" y un modelo alternativo en el que ambas
funciones se combinan, denominado "enfoque combinado", que conduce
a un menor número de variables discretas y reduce potencialmente la
carga computacional.

4 Caso de estudio

Con el fin de evaluar la idoneidad de la técnica del Zig-Zag Integer para
el modelado de las pérdidas de las baterías Li-Ion, se estudiaron difer-
entes escenarios, que representaban el verano y el invierno. Para com-
probar el rendimiento y la escalabilidad de las técnicas de linealización,
se analizaron diferentes granularidades y diferentes patrones de triangu-
larización.

En cuanto al rendimiento de los modelos comparados, podemos con-
cluir que el patrón de triangulación afecta considerablemente al tiempo de
convergencia. El método Zig-Zag Integer con triangulación J1 (ZZI-J1)
es superior al resto de métodos estudiados, en cambio, con triangulación
K1 (ZZI-K1) el rendimiento es equivalente al método BM con triangu-
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lación J1, cuando en teoría éste necesita más variables discretas y, por
tanto, se esperaba un peor rendimiento.

En los casos con una granularidad de 16x16 el método ZZI-J1 es el
único modelo que Gurobi es capaz de resolver en menos de 1 hora. Lo
que demuestra la superioridad de este método para casos con granulari-
dad alta.

Por último, al analizar los enfoques "enfoque combinado" y "enfoque
separado" para la modelización, los resultados de la batería son contrain-
tuitivos. A pesar de la reducción de variables discretas que presenta el
modelo, los tiempos de convergencia son generalmente peores.

Figure 1: Puntos de operación de la batería para el caso (ZZI-J1 8×8).
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Table 1: Rendimiento Computacional

Caso Granularidad Método Optimizador Obj.[e] Tiempo[s] Rel.Gap
168h_W

8x8

ZZI-J1-Sep

gurobi

19.1052 40.83 0.38%
168h_W ZZI-K1-Sep 19.1188 272.77 0.48%
168h_W C-K1-Sep 19.1277 3150.87 0.49%
168h_W BM-J1-Sep 19.1022 94.33 0.38%
168h_W BM-K1-Sep 19.1270 333.26 0.50%
168h_W

16x16

ZZI-J1-Sep

gurobi

19.0596 224.11 0.26%
168h_W ZZI-K1-Sep - - -
168h_W C-K1-Sep - - -
168h_W BM-J1-Sep - - -
168h_W BM-K1-Sep - - -
168h_S

8x8

ZZI-J1-Sep

gurobi

4.8732 133.61 0.29%
168h_S ZZI-K1-Sep - - -
168h_S C-K1-Sep 4.8806 374.41 0.43%
168h_S BM-J1-Sep 4.8777 97.32 0.40%
168h_S BM-K1-Sep 4.8755 257.80 0.33%
168h_S

16x16

ZZI-J1-Sep

gurobi

4.8712 267.63 0.45%
168h_S ZZI-K1-Sep - - -
168h_S C-K1-Sep - - -
168h_S BM-J1-Sep - - -
168h_S BM-K1-Sep - - -
168h_W 8x15 ZZI-J1-Com gurobi 19.070269 61.234 0.20%
168h_W BM-J1-Com 19.103467 109.031 0.37%
168h_S 16x31 ZZI-J1-Com gurobi 19.081705 334.625 0.37%
168h_S BM-J1-Com - - -
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(b) Operación horaria (ZZI-J1 8×8, Invierno).

5 Conclusiones

Este trabajo estudia la aplicación del método de linealización Zig-Zag
Integer presentado en [3] para modelar las funciones de pérdidas de una
batería de iones de litio en el contexto de una microrred. Se puede con-
cluir que el método de linealización Zig-Zag Integer emparejado con la
triangulación J1 presenta una considerable mejora de tiempo, mientras
que mantiene con precisión un bajo error. En cuanto al método de "en-
foque combinado" propuesto para modelizar las baterías, los resultados
no son concluyentes y es necesario un análisis más exhaustivo.

6 Referencias

[1] Djangir A. Babayev. “Piece-wise linear approximation of functions of two vari-
ables”. In: Journal of Heuristics 2.4 (1997), pp. 313–320. DOI: 10.1007/bf00132502.
URL: https://doi.org/10.1007/bf00132502.

[2] David Domínguez-Barbero, Javier García-González, and Miguel Á. Sanz-Bobi.
“Twin-delayed deep deterministic policy gradient algorithm for the energy man-
agement of microgrids”. In: Engineering Applications of Artificial Intelligence 125
(2023), p. 106693. ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.
engappai.2023.106693. URL: https://www.sciencedirect.com/science/
article/pii/S0952197623008771.

[3] Joey Huchette and Juan Pablo Vielma. Nonconvex piecewise linear functions: Ad-
vanced formulations and simple modeling tools. 2017. DOI: 10.48550/ARXIV.
1708.00050. URL: https://arxiv.org/abs/1708.00050.

6



[4] Salvador Guerrero García Javier García-González. “Optimal Management of A
Microgrid Li-Ion Battery Considering Non-Linear Losses Using The Integer Zig-
Zag Formulation”. In: PSCC (2024). URL: https://pscc.epfl.ch/modules/
request.php?module=oc_proceedings&action=view.php&id=643&file=
1/643.pdf&a=Accept.

[5] Olivier Tremblay and Louis-A. Dessaint. “Experimental Validation of a Battery
Dynamic Model for EV Applications”. en. In: World Electric Vehicle Journal 3.2
(June 2009), pp. 289–298. ISSN: 2032-6653. DOI: 10.3390/wevj3020289. URL:
https://www.mdpi.com/2032-6653/3/2/289 (visited on 03/28/2022).

7





OPTIMAL MANAGEMENT OF A MICROGRID LI-ION
BATTERY CONSIDERING NON-LINEAR LOSSES US-
ING THE INTEGER ZIG-ZAG FORMULATION.

Author: Salvador Guerrero García.
Director: Javier García González.
Collaborating Entity: Instituto de Investigación Tecnológica.

PROJECT BRIEF

1 Introduction

Electric storage systems are expected to become a key element to offset
the volatility and uncertainty of renewable energies. Within storage sys-
tems, lithium-ion batteries stand out for their versatility and competitive
cost. Moreover, these batteries are key to the electrification of the au-
tomotive sector; they are currently present in most electric vehicles and
their market share is not expected to decrease in the future. Therefore,
lithium-ion batteries are considered fundamental elements for the decar-
bonization of electrical systems and the automotive sector. Because of
this, the development of accurate models of this technology is key to its
optimal integration and operation.

This work focuses on the modeling of lithium-ion batteries in the con-
text of a microgrid composed of a photovoltaic panel, a battery and a
diesel generator. The use of the Zig-Zag Integer technique for the lin-
earization of the battery loss function is proposed, together with two
methods for modeling the battery operation. In the case study, this tech-
nique is compared with other alternatives, with special emphasis on the
resolution times.
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2 Methodology

2.1 Li-Ion battery modelling

The model used to characterize Li-Ion batteries is based on [4], where
Professor Javier García González proposes a modification to the model
described in [6]. For the context of static system’s analysis, the proposed
formulation for the losses of the batteries during the discharge and dis-
charge cycles is a bivariate non-linear function dependent on the battery
state of charge and the discharge/charge power.

Due to the nonlinear relationship presented by this model, its imple-
mentation in classical optimization models becomes complicated and im-
practical, since current solvers do not yet allow large-scale nonlinear opti-
mization. This makes the use of linearization techniques such as Zig-Zag
Integer an imperative.

2.2 Zig-Zag Integer formulation

The most popular approach to linearize a generic mathematical function
in the context of classical optimization is its decomposition in pice-wise
linear functions (pwlf). These techniques approximate the mathematical
function as the convex combination of a set of points from the original
non-linear function. The selection of the different pieces of the pwlf is
usually modeled with binary variables. For example, the classical formu-
lation for bivariate non-linear function, such as the Li-Ion losses expres-
sion, was presented in [1]. The main limitation of these approaches is the
high number of binary variables needed, which make the mixed integer
programming problems very difficult to solve with current mathematical
solvers.

[3] propose the Zig-Zag Integer formulation as promising model appli-
cable to pwlf that reduces drastically the mathematical complexity com-
pared to the alternatives.
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2.3 Microgrid model

The implemented microgrid consists of a diesel generator, a photovoltaic
panel, a lithium-ion battery and a time-dependent demand. Its character-
ization was sourced from [2].

The proposed management model is based on a classical deterministic
optimization model which seeks to minimize the operating costs, subject
to a set of constraints. One of the modeled constraints is the losses of the
Li-Ion battery charge and discharge cycles. Combining the loss expres-
sion from [4] and different linearization techniques such as the Zig-Zag
Integer. Regarding the model of the battery, two alternatives are pro-
posed, a direct approach where the charge and discharge losses of the
battery are modeled as separate functions, referred to as the "separate
approach" and an alternative model were both functions are combined,
referred to as the "combined approach" which leads to lower number of
discrete variables and potentially reducing the computational burden.

3 Results

In order to assess the suitability of the Zig-Zag Integer technique to the
modeling of the Li-Ion battery losses, different scenarios were study, rep-
resenting summer and winter. To test the performance and scalability of
the linearization techniques, different granularity and different triangu-
larization patterns were analyzed (J1 y K1). The different linearization
methods studied were the Zig-Zag Integer and the techniques proposed
in [1] and [5] referred as C-K1 and BM.

Regarding the performance of the compared models, we can conclude
that the triangulation pattern considerably affects the convergence time.
The Zig-Zag Integer method with J1 triangulation (ZZI-J1) is superior to
the rest of the methods studied, on the other hand, with K1 triangulation
(ZZI-K1) the performance is equivalent than the BM method with J1 tri-
angulation, when in theory this one needs more discrete variables and,
therefore, a worse performance was expected.
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In cases with a granularity of 16x16 the ZZI-J1 method is the only
model that Gurobi is able to solve in less than 1 hour. Showing the supe-
riority of this method for cases with high granularity.

Finally, when analyzing the "combined approach" and "separate ap-
proach" approaches for modeling, the battery results are counterintuitive.
Despite the reduction of discrete variables that the model presents, the
convergence times are generally worse.

Figure 1: Battery operating points for the case: (ZZI-J1 8×8).
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(a) Hourly operation (ZZI-J1 8×8, Summer).
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(b) Hourly operation (ZZI-J1 8×8, Winter).
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Table 1: Computational results

Case Granularity Linearization method Solver Obj.[e] Solving Time[s] Rel.Gap
168h_W

8x8

ZZI-J1-Sep

gurobi

19.1052 40.83 0.38%
168h_W ZZI-K1-Sep 19.1188 272.77 0.48%
168h_W C-K1-Sep 19.1277 3150.87 0.49%
168h_W BM-J1-Sep 19.1022 94.33 0.38%
168h_W BM-K1-Sep 19.1270 333.26 0.50%
168h_W

16x16

ZZI-J1-Sep

gurobi

19.0596 224.11 0.26%
168h_W ZZI-K1-Sep - - -
168h_W C-K1-Sep - - -
168h_W BM-J1-Sep - - -
168h_W BM-K1-Sep - - -
168h_S

8x8

ZZI-J1-Sep

gurobi

4.8732 133.61 0.29%
168h_S ZZI-K1-Sep - - -
168h_S C-K1-Sep 4.8806 374.41 0.43%
168h_S BM-J1-Sep 4.8777 97.32 0.40%
168h_S BM-K1-Sep 4.8755 257.80 0.33%
168h_S

16x16

ZZI-J1-Sep

gurobi

4.8712 267.63 0.45%
168h_S ZZI-K1-Sep - - -
168h_S C-K1-Sep - - -
168h_S BM-J1-Sep - - -
168h_S BM-K1-Sep - - -
168h_W 8x15 ZZI-J1-Com gurobi 19.070269 61.234 0.20%
168h_W BM-J1-Com 19.103467 109.031 0.37%
168h_S 16x31 ZZI-J1-Com gurobi 19.081705 334.625 0.37%
168h_S BM-J1-Com - - -

4 Conclusions

This paper studies the application of the Zig-Zag Integer linearization
method presented in [3] for modeling the loss functions of a Lithium-ion
battery in a context of a microgrid. It can be concluded that the Zig-
Zag Integer linearization method pair with the J1 triangulation presents
a considerable time improvement, while accurately maintaining a low
error. Regarding the proposed "combined approach" method to model the
batteries, the results are not conclusive and a more exhaustive analysis is
necessary.
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Chapter 1

Introduction

1.1 Motivation

Electric power is distinctive among energy sources due to several defining char-
acteristics. Among these, the most critical is the instantaneous balance of supply
and demand. Power system operators must match demand with generation in
real time, mainly by adjusting the production of generators. This requirement
necessitates a diverse mix of generation technologies to ensure the capacity to
ramp production up or down while maintaining a cost-effective and reliable dis-
patch.

The integration of renewable energy sources into the energy mix presents
new challenges. In contrast to traditional dispatchable energy sources such as
gas and coal, the majority of renewable sources are non-dispatchable, relying
on meteorological stochastic factors for their production. As the proportion of
renewable energy increases, the system’s capacity to follow demand decreases,
leading to both technical and economic issues.

Storage solutions, particularly lithium-ion (Li-ion) batteries, are anticipated
to facilitate a higher proportion of renewable energy by providing the dispatch-
able capacity that renewables sources are not able to provide. Storage technolo-
gies would facilitate arbitrage of power, whereby energy would be stored during
periods of high renewable energy availability and released during periods of
low availability. Combined withe hydropower, li-ion batteries are anticipated
to provide the future dispatchable capacity, particularly from 2030 onwards, in
alignment with net-zero CO2 emission targets by 2050 [1]. This is illustrated in
figure 1.1.

Given the ambitious renewable energy targets set by many Western countries,
power systems are expected to incorporate a significant proportion of renewable
energy in the near future. For example, in 2021, 23% of the European Union’s
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Figure 1.1: Dispatchable power capacity by technology in the Net Zero Emission Scenario, 2022,
2030 and 2050 according to the IEA [1].

electrical energy consumption was derived from renewable sources, with the
target for 2030 having increased from 32% in 2018 to a minimum of 42.5% [5].
Consequently, the development of effective power storage solutions has become
a crucial necessity for future power grids.

The significance of power storage extends beyond the power sector. Its im-
portance is magnified in other industries. For instance, the transport sector is
regarded as the primary contributor to CO2 emissions. Electric vehicles (EVs)
will assume two roles in the decarbonisation agenda. They will directly replace
internal combustion vehicles with electric power motors and, in a secondary role,
facilitate the decarbonisation of the power sector. The integration of EVs with
smart chargers could be employed as a distributed battery in modern power sys-
tems, as well as a smart demand that could be dynamically adapted to the prices
of electricity. This would mitigate the stochastic effect of renewable energies.

When analyzing various power storage technologies, several alternatives are
available. The oldest form is pumped storage hydropower (PSH), which dates
back to 1904 in Switzerland. This technology exploits the potential energy stored
in water at different heights in reservoirs connected by a pump and a turbine.
PSH offers rapid response capacity without the potential generation of CO2 emis-
sions. However, this technology has significant limitations, including high infras-
tructure costs and location constraints, as it requires sites with sufficient eleva-
tion difference and reservoir capacity.

A less common form of energy storage is Compressed Air Energy Storage
(CAES). These systems store energy by compressing air and storing it in un-
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derground caverns or large tanks. During periods of excess energy production,
typically from renewable sources like wind or solar, air is compressed and stored
under high pressure. When energy is needed, the compressed air is released,
heated, and expanded through turbines to generate electricity. CAES systems
are capable of providing large-scale energy storage, which helps to balance sup-
ply and demand on the electrical grid. They are valued for their ability to store
energy over long durations and to rapidly dispatch power when required. How-
ever, as in the case of PHP, the main limitation of this technology is its high
infrastructure costs and location limitations.

Redox flow batteries (RFB) are a type of rechargeable battery where energy
is stored in chemical form, in liquid electrolytes contained in tanks. The elec-
trolytes, which typically consist of vanadium or other metals dissolved in solu-
tion, are pumped through an electrochemical cell that converts chemical energy
into electrical energy. The unique design allows for the separation of energy
storage and power generation, offering scalability in terms of both capacity and
output. This makes redox flow batteries particularly suitable for large-scale en-
ergy storage applications, such as grid stabilisation and renewable energy inte-
gration, due to their long cycle life, quick response times, and the ability to be
easily recharged by replacing the electrolyte.

PSH, CAES and RFB are limited to stationary industrial scale use cases and
therefore not suitable for the transportation sector or other small-scale uses.
Other forms of storage, such as lead-acid or lithium-based batteries, offer the
versatility to be used both for stationary and mobile applications.

Lead-acid batteries are a storage form of energy based on chemistry that is
widely used. They are used for small-scale applications compared to CAES or
PSH. Used for powering small electric vehicles (e.g. golf carts, forklifts) and in
redundancy systems (e.g. UPS). Due to its low energy density and shorter cycle
life compared to newer battery technologies, its application is limited. However,
it requires lower infrastructure costs compared to other technologies.

Lithium-based batteries operate under the same principle as lead-acid batter-
ies but present higher energy density and a longer cycle life. Their capacity to
provide rapid response in conjunction with their modularity renders them suit-
able for power systems. Furthermore, their high energy density and suitability
for mobile applications while maintaining a competitive cost have made them
the dominant technology in the transport sector. Currently, over 90% of all elec-
tric vehicles are powered by Li-Ion batteries [2].

Furthermore, hydrogen is regarded as a prospective alternative for the stor-
age of power. The conversion of electricity to hydrogen can be achieved through
electrolysis, with the subsequent conversion of hydrogen back to electricity be-
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ing possible through the use of hydrogen cells. Alternatively, hydrogen can be
utilized directly as a fuel.

In order to assess the suitability of the different storage technologies avail-
able, both technical and economic factors must be taken into account. [16]
examines the competitiveness of the different technologies across various use
cases within the power grid infrastructure. The study predicts that the economic
viability of Li-Ion technologies will be strengthened in the future, particularly as
power systems adopt higher levels of renewable energy generation.

The report posits that Li-Ion batteries and hydrogen storage will emerge as
dominant technologies, displacing CAES from the market and potentially dimin-
ishing the role of hydropower. Li-Ion batteries are expected to excel in short-term
storage applications, characterized by capacities under 16 hours and frequent
discharge cycles. They will play a pivotal role in exploiting the volatility of solar
and wind generation. Conversely, hydrogen storage is anticipated to be particu-
larly suited to long-term requirements, mitigating the seasonality of demand to
derive value.

For these reasons, understanding the behavior of Li-Ion based batteries and
developing control algorithms that accurately model this technology is key to
harness its full potential. Both for optimal operation and expansion of power
systems.

1.2 Objectives

This master thesis centers on the modeling of Li-Ion batteries. The characteri-
zation of these batteries is an area of research with great interest, both for the
importance of this technology and the lack of consensus on how to model them.
The focus will be placed on considering the non-linear behavior incurred during
the charge and discharge cycles of Li-Ion batteries. Assessing if the promising
Zig-Zag Integer linearization technique is applicable to the Li-Ion charge and
discharge losses.

The objectives of this master thesis can be summarized as follows:

• To deepen the understanding of the Zig-Zag formulation: One of the key
objectives of this research endeavor is to foster a comprehensive under-
standing of the Zig-Zag method to enable its integration into any alge-
braic modeling software, such as GAMS. This adaptability will empower re-
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searchers to exercise precise control over the model, facilitating fine-tuning
to better align it with their specific requirements.

• Develop the mathematical formulation adapted to the optimal manage-
ment of a Li-Ion battery: The second aim of this research pertains to uti-
lizing the Zig-Zag method for linearizing the charge and discharge battery
losses in the modeling of a microgrid. This involves refining the model to
ensure both efficient and accurate problem-solving. Furthermore, the re-
search holds the potential to surpass its predefined objectives if it manages
to introduce novel enhancements to the existing state-of-the-art method-
ologies.

• Develop a prototype in GAMS to analyze the performance of the method:
The Zig-Zag method can be readily employed in the Julia programming
language, thanks to a dedicated library offered by the Zig-Zag method au-
thors. The last objective is focused on the implementation of the optimal
management model in GAMS, and its verification using the off-the-self im-
plementation of the ZigZag method that Julia Lang offers as a reference.

1.3 Organization of the document

To present the results of the research project, this document is divided into 4
chapters, each focused on different areas that, when combined, lead to the re-
search objectives.

Chapter 2 explores the literature regarding the characterization of Li-Ion bat-
teries. The chapter concludes with two bivariate, nonlinear expressions that
model the operational losses of these batteries.

Given the mathematical complexities involved in optimizing nonlinear func-
tions, chapter 3 explores the state-of-the-art in linearization techniques for bi-
variate functions, such as the characterized battery losses function. A particular
focus is placed on the Zig-Zag Integer technique.

Lastly, the Li-Ion characterization explored in 2 and the Zig-Zag Integer lin-
earization technique explored in 3 are applied in a management model of a
residential microgrid, presented in 4. The accuracy and performance of the pro-
posed model are tested through various scenarios and optimization horizons to
evaluate the scalability of the methods and their suitability.
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Finally, the master thesis concludes in chapter 5, describing the results of this
research project.
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Chapter 2

Li-Ion batteries

In this chapter, chemical batteries are introduced, specially focusing on the mod-
elling of Li-Ion batteries. Firstly the chemical batteries operating principle is
presented, next Li-Ion are characterized, and lastly the mathematical model for
the Li-Ion loss functions that will be used in the following chapters is developed.

2.1 Chemical Batteries

Chemical batteries are a type of energy accumulator where electrical energy is
stored in chemical form. Chemical batteries are based on the electrochemical
potential of metals, which is the tendency of a metal to lose and gain electrodes.
The inventor that realized this behavior was Alessandro Volta, who in 1790 in-
vented the first battery using Zinc and Silver.

A battery consists un multiple voltaic cells. Each voltaic cell is composed of a
cathode, a metal with a tendency to gain electrons, and an anode, a metal with a
tendency to lose electrons. When there is an available path connecting the anode
and the cathode, the anode loses electrons, which are absorbed by the cathode.
The flow of electrons is the electrical current that can be used to power devices.

As the number of electrons builds in the cathode, the repelling forces of ele-
ments with the same electrical charge would slow the flow of electrons, for that
reason an electrolyte submerges both the anode and the cathode. The electrolyte
allows the ions, the atoms from the cathode with missing electrons, to flow to
the cathode, equalizing the repelling forces and facilitating the flow of electrons.
This chemical reaction ends when the anode is depleted from ions and the flow
of electrons stops.

In some batteries, such as Li-Ion batteries, the reaction can be reversed. A
source of energy can move electrons backward, from the cathode to the anode,
leading to a negative charge buildup in the anode and the movement of the ions
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Figure 2.1: Electron flow diagram for chemical batteries.

from the cathode to the anode, which recharges the battery. In 2.1 the flows of
electrons (blue bubbles) and ions (red bubbles) can be observed.

The main limitation of chemical batteries is their low energy density com-
pared to other energy storage forms such as fuels, making them unsuitable for
storing large quantities of energy. For reference, gasoline has an energy density
of 47.5MJ/kg, while a Li-Ion battery has a density of 0.5MJ/kg [7]. Even consid-
ering the higher efficiency in electric machines, Li-Ion batteries energy density
is still an order of magnitude lower than alternatives such as diesel. Despite
this disadvantage, advancements in battery technologies and the current electri-
fication trends are pushing the usage of Li-Ion batteries for large energy storage
applications such as cars or power systems.

2.2 Li-Ion batteries

Li-Ion batteries have become the most used chemical battery technology. They
started to gain popularity in small electronic devices such as smartphones or
laptops due to their high energy density, but their usage was limited to small
capacity batteries due to the high cost per stored Ah. As the technology evolved
and the cost per Ah decreased, Li-Ion batteries began to be used for high-energy
cases such as electric vehicles and battery packs for homes. Due to its increased
usage in the electric power industry, modeling its dynamics has become a key
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Figure 2.2: Constant Resistance model (left) SoC dependent resistance (center) & Third-order
Thevenin model (right).

area of research.

2.2.1 Li-Ion Model

In order to characterize the behavior of chemical batteries such as Li-Ion, Lead-
Acid, or NiMH different three main approaches can be considered, experimental,
electrical and electrochemical models.

Experimental approaches are abstract models based on statistics, artificial
intelligences or other analytical tools, whose accuracy depends on the amount
and quality of data used to characterize the battery. Its limitation are the lost of
the interpretability as well as the volume of data needed [15].

Electrical models represent batteries with an equivalent electric circuit. The
most basic model would be an ideal battery in series with a constant resistance.
This model yields reasonable accuracy for Lead Acid or nickel-cadmium batter-
ies, but lacks precision with lithium based batteries. This model can be improved
by making the resistance dependent on the state of charge of the battery. More
advance electrical models includes a network of capacitors and resistances to
model the transient effects of the batteries, referred to as Thevenin models [15].

Lastly, electrochemical models consider both the electrical and the chemical
behavior of the batteries, which leads to models with higher detail. [18] pro-
posed 2.2 to model Li-Ion batteries electrochemically. Where Vbatt (V) express
the voltage difference between the battery terminals at any given time. Eo (V) is
the constant potential of the cell, that is, the theoretical potential corresponding
to the anode and the cathode. R (Ω) is the internal resistance, i (A) is the current
drawn from the battery, it (A·h) is the integral of the charge at time t drawn from
the battery since a discharge started. K (Ω) is the polarization coefficient, and
A (V) and B (dimensionless) are empirical constants. The value of the different
parameters can be obtained by fitting the curved to experimental results.
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Rpol(i) =

{
K Qm

Qm−it
if i > 0

K Qm

it+0.1·Qm
if i ≤ 0

(2.1)

Vbatt = Eo −R · i−Rpoli
∗ −K

Qm

Qm − it
it+ A · e−B·it (2.2)

2.2.2 Li-Ion loss function

During the process of charge and discharge, small power losses occur, mainly
from inefficiencies in the electrochemical reactions and the joule effect due to
the internal resistance of the battery. The loss expression 2.3 can be derived
from 2.2

(Eo − Vbatt)i = R · i2︸ ︷︷ ︸
Term1

+Rpol · i∗ · i︸ ︷︷ ︸
Term2

+ (
Qm

Qm − it
it)i︸ ︷︷ ︸

Term3

− (A · e−B·it)i︸ ︷︷ ︸
Term4

(2.3)

Professor Javier García Gonzalez proposed not to consider Term3 & Term4 as
they lead to instances where the power loss is negative, indicating that energy is
generated instead of lost [13].

In the context of high-power energy management systems, such as a micro-
grid operation, the transient effects are usually not considered as the problems
are simplified to steady-state models. In addition, in this context current tends
not to be modeled, instead power is used directly. For these two reasons, in high
power management systems [13] proposed to model Li-Ion batteries as 2.4 &
2.5 for modeling discharge and charge cycles. Where soc is the State of charge,
defined as soc = Qm−it

Qm
.

pdiscloss,t = 103(R +
K

soct
)(
pdisct

Vr

)2 (2.4)

pcharloss,t = 103(R +
K

1.1− soct
)(
pchart

Vr

)2 (2.5)

As it can be observed, 2.4 & 2.5 are non-linear expressions, which their in-
tegration challenging in classical optimization power system models. In the fol-
lowing chapters, these expressions are going to be linearized for its integration
in an optimal management mathematical model for an isolated microgrid.
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Chapter 3

Piecewise Linear approximation

In this chapter, the state of the art in the modeling of non-linear, non-convex
functions as piecewise linear approximations is presented. First, the linearization
problem is developed, and its modeling issues are highlighted. Next, the current
literature is explored and lastly, the final formulation is presented.

3.1 Problem Statement

Developing algorithms for finding the optimal solution of a linear program (LP)
is a problem that was solved in the previous century. In the case of Mixed Integer
Programming (MIP), although the research is not as advanced as in LP, modern
solvers can handle very complex MIP problems. The situation is different when
the optimization problem contains non-linearities and non-convexities, as trace-
ability is lost and optimality is not guaranteed. One of these examples is found in
the modeling of Li-Ion batteries, due to their non-linear dynamics, as highlighted
in chapter 2.

In order to exploit the advances in MIP, the traditional approach for modeling
non-linear functions is its linearization. The original non-linear function can be
approximated as a piecewise linear function (pwlf) where each sub-function is
the convex combination of a set of points from the original function. With the
help of auxiliary binary variables, each linear segment can be activated, convert-
ing a non-linear problem into a Mixed Integer Linear Program (MILP).

The issue with this approach is the high number of auxiliary binary variables
needed. The traditional textbook approach uses n binary variables for modeling
a n segment’s univariate pwlf. This dramatically affects the required computa-
tion time specially for functions with high number of segments, as the number
of binary variables can be used as a proxy for the complexity of the problem.
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Figure 3.1: PieceWise Linear Approximation of a generic. non-linear univariate function.

3.1.1 Uni-Variate functions

In figure 3.1 it can be observed a generic non-linear function with a 3 segment
piecewise linear approximation, defined in equations 3.1 & 3.2

f(x) ≈ ŷ =


y0θ0 + y1θ1, if x0 ≤ x ≤ x1

y1θ1 + y2θ2, if x1 ≤ x ≤ x2

y2θ2 + y3θ3, if x2 ≤ x ≤ x3

(3.1)

x̂ =


x0θ0 + x1θ1, if x0 ≤ x ≤ x1

x1θ1 + x2θ2, if x1 ≤ x ≤ x2

x2θ2 + x3θ3, if x2 ≤ x ≤ x3

(3.2)

The text-book modeling approach [17] for unidimensional picewise linear
functions (y = f(x)) is presented in equations 3.3 and 3.4. The first set of
equations is responsible for approximating x̂ and ŷ as the convex combination of
the parameters xi and yi that are real points of the function f(x). The weights
assigned to each of the points are θi, a positive continuous variable that represent
the weights of the convex combination.

The second set of constraints (3.4) ensures that only two adjacent θi have
a value different from 0, leading to the selection of a segment, that is the "if
statement" from 3.1 & 3.2. Each segment has associated a binary variable zi that
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will be set to 1 if the segment is selected.

x̂ =
n+1∑
i=1

θi · xi (3.3a)

ŷ =
n+1∑
i=1

θi · yi (3.3b)

1 =
n+1∑
i=1

θi (3.3c)

n+1∑
i=1

zi = 1 (3.4a)

θi ≤ zi−1 + zi ∀i ∈ 2..n (3.4b)

θn+1 ≤ zn (3.4c)

θ1 ≤ z1 (3.4d)

0 ≤ θi ≤ 1 (3.4e)

θi, x̂, ŷ ∈ R (3.4f)

zi ∈ {0, 1} (3.4g)

For example, for the modeling of a 3 segment function such as the presented
in figure 3.1 the developed equations are presented in 3.5.

ŷ = y0θ0 + y1θ1 + y1θ1 + y2θ2 + y2θ2 + y3θ3 (3.5a)

x̂ = x0θ0 + x1θ1 + x1θ1 + x2θ2 + x2θ2 + x3θ3 (3.5b)

1 = θ0 + θ1 + θ2 + θ3 (3.5c)

θ0 ≤ z0 θ1 ≤ z0 + z1 θ2 ≤ z1 + z2 θ3 ≤ z2 (3.5d)

z1 + z2 + z3 = 1 (3.5e)

θ0, θ1, θ2, θ3 ∈ R≥0 z1, z2, z3 ∈ {0, 1} (3.5f)
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As stated previously, this approach is limited because of the high number of
binary variables and constraints that it introduces to the problem. For an n-
segment piecewise linear approximation, n auxiliary binary variables and n+1
binary constraints are used to model the selection of a segment.

The complexity of the problem lies in the combinatorial nature of choosing
the optimal segment, that is, ensuring that at most two adjacent θ have a value
different from zero. A set of ordered variables, where at most 2 adjacent vari-
ables has a value different from zero, is usually referred to in the literature as a
Special Ordered Set of type 2 (SOS2) and extensive research has been focused
on improving the formulation of SOS2 constraints due to its application in a wide
range of problems.

3.1.2 Bi-Variate functions

For the case of modeling bivariate functions z = g(x, y), a similar approach as
in the univariate case can be applied. The function g is approximated as a pwlf,
here each sub-function is the convex combination of 3 points of the original
function g(x, y), therefore defining a plane. This approach can be visualized
in figure 3.2. The domain of g(x, y) is divided into triangles embedded in an
(n+1)x(m+1) grid, where a convex combination weight (θ) is assigned to each
triangle vertices.

The base for bivariate pwlf modeling are the equations that represent the
convex combination of the functions points, depicted in equation 3.6.

x̂ =
n+1∑
i=1

m+1∑
j=1

θij · xi (3.6a)

ŷ =
n+1∑
i=1

m+1∑
j=1

θij · yj (3.6b)

ẑ =
n+1∑
i=1

m+1∑
j=1

θij · f(xi, yj) (3.6c)

n+1∑
i=1

m+1∑
j=1

θij = 1 (3.6d)

0 ≤ θij ≤ 1 (3.6e)

θij, x̂, ŷ ∈ R (3.6f)

As in the univariate case, the convex combination should be limited, as the
approximation will be valid only if three adjacent θi,j have a value different from
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Figure 3.2: PieceWise Linear Approximation of a generic. non-linear bivariate function.

zero. If no additional constrains are used, 3.6 will model the convex hull of all
the points [xi, yi, zi]. The desired approximation will just represent the convex
hull of three adjacent points, representing a triangle. Additional constraints have
to force the rest of the θi,j to zero. This process will be referred to as triangle
selection.

Babayev Approach
A simple approach to model the triangle selection is to assign a binary vari-

able to each triangle and allowing only one binary variable to be 1. This ap-
proach is described in [4] and can be modeled with the equation 3.7.

∑
i∈1..n+1

∑
j∈1..m+1

ζui,j + ζ li,j = 1 (3.7a)

θij ≤ ζui,j + ζ li,j+1 + ζui−1,j

+ ζ li,j + ζui,j−1 + ζ li+1,j ∀i ∈ 1..n+ 1,∀j ∈ 1..m+ 1
(3.7b)

where it is assumed that the binary variables with subscripts i − 1, j − 1,
(i + 1, j + 1) are null for the first (last) elements of I and J . In addition,
ζ l1,j = ζun+1,j = 0,∀j ∈ 1..m+ 1, and ζ li,1 = ζui,m+1 = 0,∀i ∈ 1..n+ 1.
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If the variable ζ li,j is set to 1, all θ but θi,j, θi−1,j, θi,j−1 will be set to 0. In the
other hand, if ζui,j is set to 1, θi,j, θi+1,j, θi,j+1 could have a value different from 0.

Combining equations 3.6 & 3.7 a non-convex bi-variate function could be
represented just by binary and continuous variables, that is, a MILP. The limita-
tion of this approach is the high number of variables need, one for each triangle,
which can make problems insolvable in practical times.

Text Book Approach
An improved approach for modeling the triangle selection is based on lever-

aging SOS2 constraints, as in the univariate case.
If an (n+1) x (m+1) grid is plotted and each node of the grid is linked to

a θ (i.e. node (1,1) → θ1,1 node (1,2) → θ1,2) The selection of a triangle could
be broken down into first selecting two adjacent columns of θ and two adjacent
rows of θ 1. That is, the sum of all the θ corresponding to 2 adjacent columns
equal 1. And the sum of all the θ corresponding to 2 adjacent rows equal 1. The
overlap of the selection would lead to just the 4 adjacent θ that are both in the
selected column and row to add up to 1, that is, selecting a rectangle (figure
3.4).

The selection of the adjacent columns/rows can be understood as a SOS2
constraint, as there is an ordered set of elements (i.e. columns or rows) and only
two adjacent elements can have values different from 0.

Lastly, the triangle will be selected by limiting the upper bound of a prede-
fined set of θ to 0. This set is defined in a way that it contains at least one of the
θ inside the selected rectangle. Therefore, narrowing down the θ that are not
limited to zero from four to three. This selection can be modeled with auxiliary
binary variables, which sets to 0 or to 1 a given set of θ.

The combination of the rectangle and triangle selection will lead to three ad-
jacent θ to have a value different from 0. Therefore, 3.6 will represent just the
convex combination of three adjacent points, not the full set.

To translate this approach to equations, 4 sets of equations are needed. Equa-
tions 3.6 are responsible for the convex combination. Equations 3.8 and 3.9 are
the textbook approach for SOS2 constraints applied to the columns and rows
of, θ respectively. Lastly, the final selection of a triangle is modeled with equa-
tions 3.10 or 3.11, extracted from [21]. Choosing one set of triangle selection
equations over the other will lead to different triangulation patterns, as can be
visualized in figure 3.3. It is interesting to mention that the method described in
[4] will lead to the triangulation pattern pictured in 3.3a named, K1 triangula-
tion.

1Column i:
∑

j∈1..m+1 θi,j . Row j:
∑

i∈1..n+1 θi,j
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This method present a considerable lower number of binary variables com-
pared to the Babayev approach, presumable leading to lower computing time.

Column selection Equations:

n+1∑
i=1

ζcoli = 1 (3.8a)

m+1∑
j=1

θij ≤ ζcoli−1 + ζcoli ∀i ∈ 2..n (3.8b)

m+1∑
j=1

θn+1,j ≤ ζcoln (3.8c)

m+1∑
j=1

θ1,j ≤ ζcol1 (3.8d)

ζcoli ∈ {0, 1} (3.8e)

Row selection Equations:
m+1∑
j=1

ζrowj = 1 (3.9a)

n+1∑
i=1

θij ≤ ζrowj−1 + ζrowj ∀j ∈ 2..m (3.9b)

n+1∑
i=1

θi,m+1 ≤ ζrowm (3.9c)

n+1∑
i=1

θi,1 ≤ ζrow1 (3.9d)

ζrowj ∈ {0, 1} (3.9e)

Triangle selection Equations:∑
(i,j)∈S1

θi,j ≤ z1
∑

(i,j)∈S2

θi,j ≤ 1− z1∑
(i,j)∈S3

θi,j ≤ z2
∑

(i,j)∈S4

θi,j ≤ 1− z2

z1, z2 ∈ {0, 1}

(3.10)
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S1 = {(i, j) : i+ j ≡ 2( mod 4)2}
S2 = {(i, j) : i+ j ≡ 0( mod 4)}
S3 = {(i, j) : i+ j ≡ 1( mod 4)}
S4 = {(i, j) : i+ j ≡ 3( mod 4)}

∀i ∈ [1..n+ 1]

∀j ∈ [1..m+ 1]∑
(i,j)∈S1

θi,j ≤ z1
∑

(i,j)∈S2

θi,j ≤ 1− z1

z1 ∈ {0, 1}
(3.11)

S1 = {(i, j) : i is even and j is odd}
S2 = {(i, j) : j is even and i is odd}

∀i ∈ [1..n+ 1]

∀j ∈ [1..m+ 1]

(a) K1 triangulation (b) Union Jack or J1 triangulation

Figure 3.3: Triangulations

2a ≡ b( mod n) −→ a is congruent with b module c if a− b is divisible by n.
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(a) Column Selection (b) Row Selection (c) Triangle Selection

(d) Final Triangle Selection

Figure 3.4: Final Selection

3.2 Literature Review

As stated in the previous section, SOS2 type of constraints are essential for mod-
eling non-linear function as a piecewise linear function, but SOS2 constraints are
also used in a wide range of problems such as scheduling, or warehouse sizing.
Due to its importance, it is an area of research with great contributions.

There are two main approaches for solving optimization problems with SOS2
constraints, using dedicated algorithms or leveraging integer decision-making
variables with commercial MIP solvers. Inside the MIP category, the formula-
tions can be classified into combinatorial and geometric approaches.

The goal of this research is to find a formulation that is easy to use, scalable,
and platform independent. For this reason, the literature review is focused on
the combinatorial and geometric approaches as dedicated algorithms are usu-
ally "black-box" algorithms restricted to certain solvers or modeling languages,
making their application limited.
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Figure 3.5: Branch & Bound tree.

To assess the different alternatives for modeling SOS2 constraints, 3 quality
measurements are defined based on [12] and [20]. These measurements are
empirically related to the computational performance of the MIP problems, and
therefore applicable to the SOS2 constraints explored in this master thesis.

Branching behavior: Modern MILP solvers are based on a branch and bound
algorithm. This algorithm can be visualized as a tree that begins by solving the LP
relaxation of a MILP problem, imposing different bounds in the integer variables.
Through each branch, opposite bounds are set, for example in a binary problem
two opposing branches could be x1 ≤ 0 and x1 ≥ 1. After the LP relaxation is
solved, the objective function is analyzed, and poor-performance branches are
pruned. Problems with good branching behavior will lead to trees where in each
level the size of the LP relaxation is reduced and branches are balanced, in the
sense that both sub-problem’s solutions change substantially and therefore the
decision to prune a branch is straight forward.

Size: The number of relaxations that the branch and bound algorithm has to
solve scales exponentially with the number of discrete variables in the problem.
Therefore, the number of discrete variables can be used as a proxy for the prob-
lem’s complexity.

Strength: As a MIP problem is solved by finding the optimal solution of its
relaxed version, the characteristics of the LP relaxation is determinant for finding
an optimal integer solution efficiently. A strong or ideal MIP formulation is one
whose extreme points are integer.
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- Modeling disjunctive constraints with a logarithmic number of
binary variables and constraints [21].

- A geometric way to build strong mixed-integer programming
formulations [11].

- Embedding Formulations and Complexity for Unions of Poly-
hedra [19].

- A combinatorial approach for small and strong formulations of
disjunctive constraints [10].

- Nonconvex piecewise linear functions: Advanced formulations
and simple modeling tools [9].

TIMELINE 1: ZigZag Method evolution

3.2.1 Combinatorial Independent Branching approach

A method commonly used by ad-hoc approaches is to use constraint branching,
replacing the binary auxiliary variables used traditionally in SOS2 constraints
with constraints that are dynamically added to an LP problem. These methods
are usually based on variations of the Branch & Bound algorithm where instead
of branching over different values of the integer variables, the branch is done
over independent sets of constraints. This method is either computed internally
in some solvers or based on the branching callback options in some comercial
solvers (i.e. CPLEX).

The Combinatorial Independent Branching approach exploits the idea of con-
straint branching but instead of using callback options in solvers, it uses a MIP
formulation. The main advantage of this method is reducing the technical expe-
rience needed in implementing the Ad-hoc approaches.

An example of this method is found in the triangle selection equations 3.1.2
and 3.10. Following the Branch & Bound algorithm, a different set of constraint
will be added to the problem depending on whether the binary variable z1 is set
to 0 or 1.

[21] proposes LogIB, a formulation for SOS2 constraints based on indepen-
dent branching. This formulation uses log2(n) binary variables for an SOS2 con-
straints of n elements. A considerable improvement in the quality of the problem
regarding its size when compared to the Text Book approach.

3.2.2 Geometric approach

The geometric approach leverages the geometric characteristics that the mathe-
matical space that represent SOS2 constraints has.
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Given a set of ordered variables (i.e. {λi∀i ∈ 1..n + 1}) Each element that
composes a SOS2 constraint (i.e. λ1 + λ2 = 1, λ2 + λ3 = 1 ...) can be modeled
with the classical optimization matrix form as Ax ≤ b. Then the union of all
polyhedra (A) will represent the set of SOS2 constraints (D).

For a set of n elements:

D =
n⋃

i=1

Pi Pi = {x ∈ Rn : Aix ≤ bi} (3.12)

[19] proves that D could be embedded in a higher dimensional space where
each alternative Pi is assigned a unique code hi ∈ Zr. Where r is an integer
≥ ⌈log2(n)⌉ 3. The set of all the unique codes is going to be referred to as
the encoding matrix H = (hi)ni=1. For some encoding matrix, the convex hull
of Em(D,H) will be a strong MILP formulation of the SOS2 constraint. The
formulation would be composed of a set of LP inequalities that represent D and
a set of constraints similar to 3.4 where auxiliary integer variables ζ̄ model the
selection of only one Pi.

Em(D,H) =
d⋃

i=1

(Pi × hi) (3.13)

The main problem with this approach is the computation of the convex hull
of Em(D,H). [19] introduced a new paradigm for constructing the convex hull
of Em(D,H) for SOS2 constraints, the "Embedding Formulation" presented in
3.14.

n+1∑
i=1

λi = 1 (3.14a)

n+1∑
i=1

min{bk′hi, bk
′
hi−1}λi ≤ bj ζ̄ ≤

n+1∑
i=1

max{bk′hi, bk
′
hi−1}λi ∀k ∈ 1..r (3.14b)

ζ̄ ∈ Zr (3.14c)

where b can be defined as the spanning hyperplanes of {hi+1 − hi}ni=1

3.14 allows us to construct different formulations using the same set of equa-
tions but with different encoding matrix H. However, selecting a H that yields
an optimal formulation is not a trivial task. [19] proposed the embedded formu-
lation alongside different possible encodings.

3⌈x⌉ Ceil: represents the smallest integer that is greater than or equal to x.
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If H represents Binary Reflected Gray Codes (K) the equations 3.14 will yield
a formulation for SOS2 constraints with log2(n) binary variables. This formu-
lation is known as LogE, and if analyzed using the quality measurements in-
troduced previously, this formulation is similar and even equivalent to LogIB
formulation in some cases as described in [19] and [12].

Based on 3.14, [9] proposed two new encoding matrices, C and Z, which are
based on K and the resulting SOS2 formulations are referred to as the Zig-Zag
Integer (ZZI) and ZigZag Binary (ZZB) formulations respectively.

[12] proves that these two formulations are equivalent to LogE and LogIB re-
garding size and strength, but they have a better branching behavior, especially
the ZZI formulation. Computation results provided in [9] showcase an order
of magnitude speed-up for bivariate pwlf and 3x for hard stances of univariate
pwlf. In this master thesis, the focus is going to be placed on the Zig-Zag Integer
formulation due to its performance.

C can be defined as the number of times each row of the matrix K changes.
(Cr

i,k =
∑i

j=2 |Kr
j,k − Kr

j−1,k|). On the other hand, the encoding matrix Z is
a linear transformation of the rows of C. Zr

k = A(Cr
k) where A(z)k = zk −∑r

l=k+1 zl ∀k ∈ [r]. For simplicity matrices K, C and Z can be defined recur-
sively leading to a n x log2(n) matrix, but it has to be considered that H0 ≡ H1,
and Hn+1 ≡ Hn for K,Z and C.

In the case of using the encoding matrices K and C, b is the canonical base of
Rr (i.e. if r =3 {(1, 0, 0), (0, 1, 0), (0, 0, 1)}). In the case of Z it can be computed
by applying the inverse of the linear transformation A to the canonical base of
Rr.

Despite ζ̄ being defined as a general integer variable, due to the properties of
3.14 these variables will be naturally bounded as ζ̄ ∈ H. This means that for the
ZZB and LogE formulations, ζ̄ will behave as a binary variable and in the case of
ZZI as a positive integer. This reason alongside others is what named the Zig-Zag
Integer.

Lastly, it’s worth to mention that despite the computation advantages of the
methods described in this literature review, they are not widely used due to
difficulties with their interpretation and implementation. To bridge that gap,
commercial solvers such as Gurobi offers the modeling of SOS2 with different
methods like the Zig-Zag Integer and Zig-Zag Binary [14]. The authors of [9]
went an extra mile by providing PiecewiseLinearOpt, a library for Julia Lang that
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Formulation Constraints with Int. Variables Integer Variables
Text Book (J1 triang.) n+m+ 8 n+m+ 1
ZZI & ZZB (J1 triang.) 2(log2(n) + log2(m) + 1) + 3 log2(n) + log2(n) + 1
Babayev (n+ 1)(m+ 1) + 4 2(n+m)

Table 3.1: Models size comparative for bi-variate pwlf with a (n+1) x (m+1) grid resolution.

allows the application of all the methods described for linearization of functions.
In appendix 5 this library is explored.

K1 = C1 = Z1 = (0, 1)T

Kp+1 =

(
Kp 02

p

rev4(Kr) 12
p

)
Cp+1 =

(
Cp 02

p

Cp + 12
p × Cp

2p 12
p

)
Zp+1 =

(
Zp 02

p

Zp 12
p

)

Model Size comparative
As stated previously, the number of integer variables and constraints can be used
as an indicator of the problem complexity. And considering that it is really sim-
ple to assess, compared to other characteristics such as the problem strength
or branching behavior, it is the most used criteria to assess MIP problems com-
plexity. In table 3.1 the size of the presented methods is compared. It can be
observed how drastically different the size of the problem can be. Although the
different formulations represent the same model behavior (i.e. bivariate piece
wise linearization) the number of integer variables needed can vary in orders of
magnitude.

3.3 Zig-Zag Integer Method

Due to the promising results that the Zig-Zag Integer formulations has, it will
be explored with great detail. Given an ordered set of variables (i.e. {λi∀i ∈
1..n+ 1}) the SOS2 formulation is going to be developed in this section.

Parameters

n Number of alternatives in the ordered set

C Encoding matrix for the ZZI formulation

4rev(A) reverses the rows of the matrix A
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bC Spanning hyperplanes of matrix C

Variables

λi Ordered set of variables where the SOS2 constraint is applied.

ζzzir Auxiliary variables for the ZZI formulation

Due to the mathematical properties of the encoding matrix C, the formulation
3.14 can be simplified to 3.15.

n+1∑
i=1

Cr
i−1,kλi ≤ ζk ≤

n+1∑
i=1

Cr
i,kλi ∀ k = [1, r] (3.15)

0 ≤ ζi ≤ 2r−i ∀ i = [1, r] (3.16)
ζk ∈ Z ∀ k = [1, r] (3.17)

First 3.15 is written in scalar form, while 3.14 is defined in vector form (i.e.
ζ̄ = [ζ1, ζ2, ..., ζr]). Secondly, the vector multiplication bj by ζ̄ and by the encoding
element is computed. Lastly, the rows of matrix C are defined as the number of
times each component of the sequence of the column of K changes of value,
therefore the components of the rows of C are monotonic non-decreasing. This
leads to min{Ci−1,k, Ci−1,k} = Ci−1,k and max{Ci,k, Ci−1,k} = Ci,k.

For example, if n = 4:

C2 =


0 0
1 0
1 1
2 1

 =


C1

C2

C3

C4

 =


C1,1 C1,2

C2,1 C2,2

C3,1 C3,2

C4,1 C4,2


b2C =

(
1 0
0 1

)
=

(
b1
b2

)
min{[1, 0]′[0, 0], [1, 0]′[0, 0]}λ1+

min{[1, 0]′[0, 0], [1, 0]′[1, 0]}λ2+

min{[1, 0]′[1, 0], [1, 0]′[1, 1]}λ3+

min{[1, 0]′[1, 1], [1, 0]′[2, 1]}λ4

≤ [1, 0]′[ζ1, ζ2] ≤ −→ λ3 + λ4 ≤ ζ1 ≤ λ2 + λ3 + 2λ4

max{[1, 0]′[0, 0], [1, 0]′[0, 0]}λ1+

max{[1, 0]′[0, 0], [1, 0]′[1, 0]}λ2+

max{[1, 0]′[1, 0], [1, 0]′[1, 1]}λ3+

max{[1, 0]′[1, 1], [1, 0]′[2, 1]}λ4

(3.18)
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min{[0, 1]′[0, 0], [0, 1]′[0, 0]}λ1+

min{[0, 1]′[0, 0], [0, 1]′[1, 0]}λ2+

min{[0, 1]′[1, 0], [0, 1]′[1, 1]}λ3+

min{[0, 1]′[1, 1], [0, 1]′[2, 1]}λ4

≤ [0, 1]′[ζ1, ζ2] ≤ −→ λ4 ≤ ζ2 ≤ λ3 + λ4

max{[0, 1]′[0, 0], [0, 1]′[0, 0]}λ1+

max{[0, 1]′[0, 0], [0, 1]′[1, 0]}λ2+

max{[0, 1]′[1, 0], [0, 1]′[1, 1]}λ3+

max{[0, 1]′[1, 1], [0, 1]′[2, 1]}λ4

(3.19)

For an ordered set of 8 elements and therefore 7 possible alternatives, 3.15
yields the following set of constraints:

n = 7 −→ r = ⌈log2(7)⌉ = ⌈2.807⌉ = 3

Cr =



0 0 0
1 0 0
1 1 0
2 1 0
2 1 1
3 1 1
3 2 1
4 2 1
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ζ1 ζ2 ζ3 Selected λ
0 0 0 λ1 + λ2 = 1
1 0 0 λ2 + λ3 = 1
1 1 0 λ3 + λ4 = 1
2 1 0 λ4 + λ5 = 1
2 1 1 λ5 + λ6 = 1
3 1 1 λ6 + λ7 = 1
3 2 1 λ7 + λ8 = 1
4 2 1 λ8 + λ9 = 1

Table 3.2: Relationship between the value of ζ and λ.

0λ1 + 0λ2 + 1λ3 + 1λ4 + 2λ5 + 2λ6 + 3λ7 + 3λ8 ≤ ζ1

0λ1 + 1λ2 + 1λ3 + 2λ4 + 2λ5 + 3λ6 + 3λ7 + 3λ8 ≥ ζ1

0λ1 + 0λ2 + 0λ3 + 1λ4 + 1λ5 + 1λ6 + 1λ7 + 2λ8 ≤ ζ2

0λ1 + 0λ2 + 1λ3 + 1λ4 + 1λ5 + 1λ6 + 2λ7 + 2λ8 ≥ ζ2

0λ1 + 0λ2 + 0λ3 + 0λ4 + 0λ5 + 1λ6 + 1λ7 + 1λ8 ≤ ζ3

0λ1 + 0λ2 + 0λ3 + 0λ4 + 1λ5 + 1λ6 + 1λ7 + 1λ8 ≥ ζ3

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 = 1

λi ∈ R
ζi ∈ Z

In this example, it can be observed the advantage of this formulation. Tra-
ditionally, 7 binary variables would be used to model this SOS2 set, while with
just 3 integer variables, equation 3.15 can model the same concept. The main
disadvantage of this method is the lost interpretability of the auxiliary variables
ζ and the constraints. In the classical method, each binary variable has a clear
interpretation, while with this approach the relationship is not straightforward.

In the table 3.2 it can be observed that, as stated previously, ζ̄ ∈ C and the
relationship between the value that ζ̄ takes and the selected λ. This relationship
is the reason why H is referred to as the encoding matrix, as it defines the
correspondence between ζ̄ and λ.
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3.3.1 An illustrative example: piecewise linear functions

As demonstrated previously in section 3.1, SOS2 constraints and therefore the
ZZI formulation can be used for modeling univariate and bivariate piecewise
linear functions. The SOS2 constraints 3.4, 3.8 & 3.9 can substitute by 3.20 3.21
& 3.22 respectively, leading to a more efficient formulation for the univariate
and bivariate piecewise linear functions.

Uni-variate:

n+1∑
i=1

Cr
i−1,kθi ≤ ζk ≤

n+1∑
i=1

Cr
i,kθi ∀ k = [1, r] (3.20a)

0 ≤ ζk ≤ 2r−i ∀ k = [1, r] (3.20b)

ζk ∈ Z ∀ k = [1, r] (3.20c)

Bi-variate:
Row selection:

n+1∑
i=1

Cr
i−1,k

m+1∑
j=1

θi,j ≤ ζrk ≤
n+1∑
i=1

Ci,k

m+1∑
j=1

θi,j ∀ k = [1, r] (3.21a)

0 ≤ ζk ≤ 2r−k ∀ k = [1, r] (3.21b)

ζrk ∈ Z ∀ k = [1, r] (3.21c)

where r = ⌈log2(n)⌉

Column selection:

m+1∑
j=1

Cs
j−1,k

n+1∑
i=1

θi,j ≤ ζck ≤
m+1∑
j=1

Cs
j,k

n+1∑
i=1

θi,j ∀ k = [1, s] (3.22a)

0 ≤ ζck ≤ 2r−k ∀ k = [1, s] (3.22b)

ζck ∈ Z ∀ k = [1, s] (3.22c)

where s = ⌈log2(m)⌉

3.3.2 Implementation

The goal of this master thesis is the optimal management of a microgrid consid-
ering the non-linear losses presented in the Li-Ion batteries. As defined in the
previous chapter, this looses can be characterized as bi-variate function, for this
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reason the linearization method presented in this chapter were study to assess
the most suitable approach for optimizing bivariate functions.

In this section, a generic GAMS implementation of the different linearization
methods for bivariate functions is presented with as an illustration of how it has
been implemented in this master thesis.

The implementation was designed with versatility in mind, as it allows the
user to select between theZig-Zag Integer formulation, the Text Book or Babayev
approaches as well as the different triangulations, to select the desired grid reso-
lution and to linearize a generic mathematical function. Although in this master
thesis it was applied in a cost minimization microgrid management model, it
could be integrated in a wide range of cases such as a profit maximization mod-
els.

Declaration of Parameters, Sets & Variables: This code section includes the
declaration of parameters, sets & variables. Of those parameters, the user will
only assign the desire value to those that define the mathematical domain and
grid resolution of the desired function to be linearized. The rest of parameters
and sets will be populated automatically.

� �
* Definition of scalars

* =====================
scalars

*1:K1 triangulation 2: J1 triangulation
type_triangulation /1/

*1:ZZI 2:TextBook 3:Babayev
type_method /1/

num_columns x resolution /4/
num_rows y resolution /4/
x_u x upper limit /10/
x_l x lower limit /0/
y_u y upper limit /10/
y_l y lower limit /0/

r_max
s_max

;

* Definition of sets

* ==================

*ZigZag Sets:
\$offOrder
sets

enteros /1*100/
i(enteros)
j(enteros)
r(enteros)
s(enteros)

*K1 triang
s1(enteros,enteros)
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s2(enteros,enteros)
s3(enteros,enteros)
s4(enteros,enteros)

*J1 triang
s1_jk(enteros,enteros)
s2_jk(enteros,enteros);

* Definition of parameters

* ========================
parameters

* Convex combination points
x_grid(enteros)
y_grid(enteros)
z_grid(enteros,enteros)

;

*ZigZag:
Table cr(enteros,enteros);
Table cs(enteros,enteros);

*ZZI or benchmark
if (type_method=1,

r_max = ceil(log2(num_rows -1));
s_max = ceil(log2(num_columns -1));

);
if (type_method=2,

r_max = num_rows-1;
s_max = num_columns-1;

);

i(enteros)=yes\$(enteros.ord <= num_columns and enteros.ord >= 1);
j(enteros)=yes\$(enteros.ord <= num_rows and enteros.ord >= 1);

r(enteros)=yes\$(enteros.ord <= r_max and enteros.ord >= 1);
s(enteros)=yes\$(enteros.ord <= s_max and enteros.ord >= 1);

* Definition of variables

* =======================
positive variables

x
y
z

;
Variables

theta(enteros,enteros)
;
integer Variables

chi_r(enteros)
chi_s(enteros)

;
binary variables

z1
z2

*Babayev variables:
chi_u(enteros,enteros)
chi_w(enteros,enteros)

;� �
Sets and parameters population: In order to populate the different sets and
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parameters, a script of Python is embedded in the GAMS source code thanks to
the instructions &onEmbeddedCode Python: and &offEmbeddedCode. It is in this
section where the desired bivariate function is declared. For example, in the
presented code, the function f(x, y) = x2 + y2 is linearized. Additionally, the
auxiliary sets and parameters such as the C matrix for the ZZI formulation is
populated.

� �
$onEmbeddedCode Python:
import numpy as np

def f(x,y):
return x**2 + y**2

for i in gams.get("num_columns"):
num_columns = int(i)

for i in gams.get("num_rows"):
num_rows = int(i)

for i in gams.get("x_u"):
x_u = i

for i in gams.get("x_l"):
x_l = i

for i in gams.get("y_u"):
y_u = i

for i in gams.get("y_l"):
y_l = i

##################### AUX Functions #####################
def range_plus(start, stop, num_steps):

range_size = stop-start
step_size = float(range_size)/(num_steps-1)
for step in range(num_steps):

yield round(start + step*step_size,3)

def congruent_modulo(a,b,n):
return a%n == b%n

def iseven(num):
if num % 2 == 0:

return True # Even
else:

return False # Odd

def S_1(I,J):
S1 = []
for i in I:

for j in J:
if congruent_modulo(i,j,2) & congruent_modulo(i+j,2,4):

S1.append((i+1,j+1))
return S1

def S_2(I,J):
S2 = []
for i in I:

for j in J:
if congruent_modulo(i,j,2) & congruent_modulo(i+j,0,4):

S2.append((i+1,j+1))
return S2

def S_3(I,J):
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S3 = []
for i in I:

for j in J:
if (not congruent_modulo(i,j,2)) & congruent_modulo(i+j,3,4):

S3.append((i+1,j+1))
return S3

def S_4(I,J):
S4 = []
for i in I:

for j in J:
if (not congruent_modulo(i,j,2)) & congruent_modulo(i+j,1,4):

S4.append((i+1,j+1))
return S4

def S_1_jk(I,J):
S1 = []
for i in I:

for j in J:
if ((iseven(i) == True) & (iseven(j) == False)):

S1.append((i+1,j+1))
return S1

def S_2_jk(I,J):
S2 = []
for i in I:

for j in J:
if ((iseven(i) == False) & (iseven(j) == True)):

S2.append((i+1,j+1))
return S2

def C_matrix(R):
C = {}
C[1] = np.array([[0], [1]])
for r in range(1, int(R)+1):

C[r+1] =
np.vstack((

np.hstack((C[r], np.zeros((2**r, 1)))),
np.hstack((C[r] +

np.ones((2**r, 1)) * C[r][2**r-1],
np.ones((2**r, 1))
))

))
return C

##################### End AUX Functions #####################

I = list(range(1,num_columns+1))
J = list(range(1,num_rows+1))

s1 = []
s1 = S_1(I,J)
gams.set("s1",s1)

s2 = []
s2 = S_2(I,J)
gams.set("s2",s2)

s3 = []
s3 = S_3(I,J)
gams.set("s3",s3)

s4 = []
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s4 = S_4(I,J)
gams.set("s4",s4)

s1_jk = []
s1_jk = S_1_jk(I,J)
gams.set("s1_jk",s1_jk)

s2_jk = []
s2_jk = S_2_jk(I,J)
gams.set("s2_jk",s2_jk)

x_grid = list(range_plus(x_l,y_u,num_columns))
aux = []
for i,val in enumerate(x_grid):

aux.append((i+2,val))
gams.set("x_grid",aux)

y_grid = list(range_plus(x_l,x_u,num_rows))
aux = []
for j,val in enumerate(y_grid):

aux.append((j+2,val))
gams.set("y_grid",aux)

auxZ = []
for i,x_val in enumerate(x_grid):

for j,y_val in enumerate(y_grid):
z_val = f(x_val,y_val)
auxZ.append( (i+2,j+2,z_val) )

gams.set("Z_grid",auxZ)

r = int(np.ceil(np.log2(num_rows - 1)))
s = int(np.ceil(np.log2(num_columns - 1)))
CRm1 = list(range(1, 2**r+1))
CSm1 = list(range(1, 2**s+1))
C = {}
C = C_matrix(max(r,s))

aux = []
for i in CRm1:

for j,val in enumerate(C[r][ i-1 ]):
aux.append((i+1,j+2,val))

gams.set("cr",aux)

aux = []
for i in CSm1:

for j,val in enumerate(C[s][ i-1 ]):
aux.append((i+1,j+2,val))

gams.set("cs",aux)
$offEmbeddedCode s1 s2 s3 s4 s1_jk s2_jk x_grid y_grid z_grid cr cs� �

Convex Combination Equations: Implementation of the equations 3.6, in
charge of approximating the non-linear function. The GAMS variables x,y and
z should be used in other constraints to model the desired behavior, (i.e. Li-Ion
losses).

� �
Optimal management of a microgrid Li-Ion battery considering non-linear losses
using the Zig-Zag-Integer formulation.
Salvador Guerrero García

33



eq_SOS2_1 ..
x =E= sum((i,j), x_grid(i)*theta(i,j) )

;
eq_SOS2_2 ..

y =E= sum((i,j), y_grid(j)*theta(i,j) )
;
eq_SOS2_3 ..

z =E= sum((i,j), z_grid(i,j)*theta(i,j) )
;
eq_SOS2_4 ..

1 =E= sum((i,j),theta(i,j) )
;� �

Column & Row selection: This section declares the Zig-Zag Integer equa-
tions 3.21 and 3.22 as well as the Text Book equations 3.8 and 3.9. This code
section could be replaced for the ZZB method, or other SOS2 alternatives.

� �
*Row Selection

*ZigZag Integer formulation:
eq_zigzag_a1(r)..
sum((i) , cr["1" ,r] *theta(i,"1")) +
sum((i,j), cr[j-1 ,r]$(not j.first )*theta(i, j )) =l= chi_r(r)
;
eq_zigzag_a2(r) ..
sum((i,j), cr[j ,r]$(not j.last )*theta(i,j)) +
sum((i,j), cr[j-1,r]$( j.last )*theta(i,j)) =g= chi_r(r)
;

*TextBook formulation:
eq_zigzag_a1_bm..
sum(j, chi_r(j) ) =e= 1
;
eq_zigzag_a2_bm(j)..
sum(i, theta(i,j) ) =l= chi_r(j)$(not j.last) + chi_r(j-1)$(not j.first)
;

**************************************************
*Column Selection

eq_zigzag_b1(s) ..
sum((j) , cs["1",s] *theta("1",j)) +
sum((i,j), cs[i-1,s]$(not i.first )*theta(i ,j)) =l= chi_s(s)
;
eq_zigzag_b2(s) ..
sum((i,j), cs[i ,s]$(not i.last )*theta(i,j)) +
sum((i,j), cs[i-1,s]$( i.last )*theta(i,j)) =g= chi_s(s)
;

*TextBook formulation:
eq_b1_bm..
sum(i, chi_s(i) ) =e= 1
;
eq_b2_bm(i)..
sum(j, theta(i,j) ) =l= chi_s(i)$(not i.last) + chi_s(i-1)$(not i.first)
;� �
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Triangle Selection Equations: The triangle constraint equations are imple-
mented. In this case, both the K1 & J1 triangulation methods are defined, but
when solved only the desired equations should be included.

� �
*K1 triangulation
eq_trian1..
z1 =g= sum(s1(i,j),theta(i,j) )
;
eq_trian2..
1-z1 =g= sum(s2(i,j),theta(i,j) )
;
eq_trian3..
z2 =g= sum(s3(i,j),theta(i,j) )
;
eq_trian4..
1-z2 =g= sum(s4(i,j),theta(i,j) )
;

**************************************************
*J1 triangulation
eq_trian1_jk..
z1 =g= sum(s1_jk(i,j),theta(i,j) )
;
eq_trian2_jk..
1-z1 =g= sum(s2_jk(i,j),theta(i,j) )
;� �

Babayev constraints: Lastly, the set of constraints responsible for modeling
the Babayev method are presented.

� �
eq_babayev_a1(i,j)..
theta(i,j) =l= chi_w(i ,j ) + chi_u(i ,j) +

chi_w(i ,j+1)$(not j.last) + chi_u(i ,j-1)$(not j.first) +
chi_w(i+1,j )$(not i.last) + chi_u(i-1,j )$(not i.first)

;
eq_babayev_a2..
sum((i,j), chi_u(i,j) + chi_w(i,j) ) =E= 1
;� �
3.3.3 Verification of the Implementation

Due to the large amount of parameter, set and constraints used for the model
implementation, testing is crucial. To verify the implementation, 3 tests were
conducted. The first one was comparing the GAMS equations with the equations
generated by the Julia Lang library PiecewiseLinearOpt. Ensuring that the con-
straints that modeled the column and row selection as well as the triangulation
selection are correctly implemented. In listing 3.1 the Julia Lang script equiv-
alent to the GAMS implementation for the ZZI formulation is presented. And
thanks to the "print" instruction, the constraint generated by the "piecewiselin-
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ear" function are display in the terminal for its comparation with the with those
generated by GAMS. In Appendix 5 Julia and PiecewiseLinearOpt is presented
with more detail.

The second test conducted was by forcing the value of the variables x and y
and analyzing the values that the variables ζ,z1,z2 took. Lastly a visual analy-
sis was conducted, by plotting the bi-vatiate non-linear function, the linearized
version as well as the GAMS variables results of x, y and z.

Listing 3.1: Bivariate pwlf implementation with Julia & PiecewiseLinearOpt.� �
using JuMP, Gurobi, PiecewiseLinearOpt

#Function and domain declaration
num_columns = 4
num_rows = 4
x_u = 10
x_l = 0
y_u = 10
y_l = 0
x_range = range(x_l,x_u,num_columns)
y_range = range(y_l,y_u,num_rows)
f(x) = xˆ2 + yˆ2

#Model inicialization
model = Model(Gurobi.Optimizer)

#Variable declaration
@variable(model, x)
@variable(model, y)

#K1 Triangulation
z = piecewiselinear(m, x, y, BivariatePWLFunction(x_range, y_range, f, pattern=:
K1),method=:ZigZagInteger)

#J1 Triangulation
z = piecewiselinear(m, x, y, BivariatePWLFunction(x_range, y_range, f, pattern=:
UnionJack),method=:ZigZagInteger)

print(model)� �
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Chapter 4

Optimal microgrid management

In this chapter, the concepts described in chapters 2 & 3 are going to be applied
to model the optimal management of an electric power microgrid leveraging
classical optimization. The goal of this chapter is to devise the performance
of the linearization methods described in chapter 3 and assess the viability of its
application in the accurate modeling of the losses of a Li-Ion battery as described
in chapter 2.

4.1 Problem Statement

Renewable sources of energy based on solar or wind energy have become crucial
for the decarbonization of the electric power industry, but the stochastic nature
of its power production is limiting its integration into the energy mix. During
peak renewable generation periods, excess energy leads to curtailment, while
during periods of low renewable energy leads to procure the energy from other
sources such as gas or coal power plants. Energy storage solutions are expected
to solve this issues by storing excess solar and wind energy and offloading it to
the grid during high energy demand periods, acting as a buffer and therefore
reducing the stochastic impact of solar and wind power generation. Therefore,
the correct modeling of energy storage is crucial for their integration into the
energy grid and the consequent decarbonization of the electrical sector.

The current technologies available for energy storage are widely diverse, but
the most relevant at power system level are Pumped Storage Hydropower, and
Li-Ion batteries. Pumped Storage Hydropower has been available since the 20th
century, being the firstly used in Switzerland in 1907. Literature for modeling
this technology is extensive, as it presents non-linearities that make finding an
optimal solution complex. For example, [23] explore the application of the Zig-
Zag Integer formulation presented in 3 to linearize the relationship between the
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Figure 4.1: Microgrid diagram.

power generated/consumed and the water flow and level of the reservoir.
The goal of this model is the optimal schedule for a residential isolated mi-

crogrid comprising a solar panel, a diesel generator, and a Li-Ion battery. The
approach taken to tackle this problem is a deterministic MIQP classical optimiza-
tion problem, were given a set of operation constraints (i.e. maximum power
outputs) the operation cost of the system is minimized.

4.2 Mathematical Model

4.2.1 Variables

et Energy stored at the end t [kWh]

ppvt Power produced by the PV panel in t [kW]

pdt Power produced by the Diesel generator in t [kW]

ppnst Non-served power in period t [kW]

ud
t Commitment of the diesel generator in t {0,1}

udisc
t Battery discharge decision in t {0,1}

ucha
t Battery charge decision in t {0,1}

soct Battery state of charge in t {0,1}
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Separate Charge & Discharge model variables

pchart Power consumed by the battery in t [kW]

pdisct Power generated by the battery in t [kW]

pchaloss,t Power losses when charging in t [kW]

pdiscloss,t Power losses when discharging in t [kW]

Combined Charge & Discharge model variables

pbattt Power generated & consumed by the battery in t [kW]

pbattloss,t Power losses during the battery charge and discharge cycles in t
[kW]

4.2.2 Sets

t ∈ T time periods {1 to T}

4.2.3 Parameters

Dt Demand at each time period t, [kW]

∆t Duration of each time period t, [h]

a, b, c Quadratic, linear, and constant terms of the diesel cost function,
[e/h/(kW)2], [e/kWh], [e/h]

Eo Initial energy stored at the battery, [kWh]

P
d

Maximum capacity of the diesel generator, [kWh]

P
disc

Maximum discharge power of the battery, [kW]

P
cha

Maximum charge power of the battery, [kW]

E, E Maximum and minimum stored energy [kWh]
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4.2.4 Equations

Objective Function

The only costs taken into consideration in this problem are the fuel and the start-
up costs associated with the diesel generation, as well as the non-served energy
cost. The fuel cost as it can be observed in equation 4.1 is a quadratic function
dependent on the unit commitment of the generator and the produced power.
Although the linearization techniques described in chapter 3 could be applied to
model this quadratic function, it is going to be solved directly with a non-linear
solver.

min
∑
t

[a · (pdt )2 + b · pdt + c · ud
t + cpns · ppnst ] ·∆t (4.1)

Generation

The model for the diesel generation is a continuous positive variable whose only
limitation is its upper bound, which will be controlled by a binary variable (ud

t )
that represents whether the diesel generation is on or off. Regarding the solar
generation, the modeling approach will be similar to the diesel generator. A
continuous positive variable represents the power injected in the system (ppvt ).
This variable has a parametric upper bound whose value varies over time and
represents the maximum available solar energy (P pv

t ).

pdt ≤ ud
t · P

d
,∀t ∈ T (4.2)

0 ≤ ppvt ≤ P pv
t ,∀t ∈ T (4.3)

Li-Ion Operation

For modeling the Li-Ion operation, two alternative models are going to be con-
sidered, Separate Charge & Discharge Model and Combined Charge & Discharge
Model. Both models are based in the Li-Ion loss functions presented in chapter
2 and the linearization methods described in chapter 3.

Separate Charge & Discharge Model

This model considers the charge and discharge of the battery as two separate
variables (pdisc,pchar). For this reason, there will be the corresponding charge
and discharge loss variables (pdiscloss,p

char
loss ) and the corresponding charge discharge

loss functions.
As an illustrative example, the linearization technique presented in the equations
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is the Zig-Zag Integer J1 method, although equations 4.7, 4.8, 4.9 & 4.11, 4.12,
4.13 could be replaced for the other linearization methods.

P disc
loss ≈ 103(R +

K

SOC
)(
P disc

Vr

)2 (4.4)

P char
loss ≈ 103(R +

K

1.1− SOC
)(
P char

Vr

)2 (4.5)

Battery Discharge Loss:

soct =
n+1∑
i=1

m+1∑
j=1

θdiscijt · SOCi ∀ t ∈ T (4.6a)

pdisct =
n+1∑
i=1

m+1∑
j=1

θdiscijt · P disc
j ∀ t ∈ T (4.6b)

pdiscloss,t =
n+1∑
i=1

m+1∑
j=1

θdiscijt · P disc
loss (SOCi, P

disc
j ) ∀ t ∈ T (4.6c)

n+1∑
i=1

m+1∑
j=1

θdiscijt = 1 ∀ t ∈ T (4.6d)

0 ≤ θdiscijt ≤ 1 ∀ t ∈ T (4.6e)

θdiscijt , soct, p
disc
t ∈ R (4.6f)

n+1∑
i=1

Cr
i−1,k

m+1∑
j=1

θdiscijt ≤ ζr,disckt ≤
n+1∑
i=1

Ci,k

m+1∑
j=1

θdiscijt ∀ k = [1, r], t ∈ T (4.7a)

0 ≤ ζr,disckt ≤ 2r−k ∀ k = [1, r], t ∈ T (4.7b)

ζr,disckt ∀ k = [1, r] ∈ Z (4.7c)

m+1∑
j=1

Cs
j−1,k

n+1∑
i=1

θdiscijt ≤ ζc,disckt ≤
m+1∑
j=1

Cs
j,k

n+1∑
i=1

θdiscijt ∀ k = [1, s], t ∈ T (4.8a)

0 ≤ ζc,disckt ≤ 2r−k ∀ k = [1, s], t ∈ T (4.8b)

ζc,disckt ∀ k = [1, s] ∈ Z (4.8c)
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∑
(i,j)∈S1

θdiscijt ≤ zdisc1t

∑
(i,j)∈S2

θdiscijt ≤ 1− zdisc1t ∀ t ∈ T

zdisc1,t , zdisc2,t ∈ {0, 1}
(4.9)

S1 = {(i, j) : i is even and j is odd}
S2 = {(i, j) : j is even and i is odd}

∀i ∈ [1..n+ 1]

∀j ∈ [1..m+ 1]

Battery Charge Loss:

soct =
n+1∑
i=1

m+1∑
j=1

θijt · SOCi ∀ t ∈ T (4.10a)

pchart =
n+1∑
i=1

m+1∑
j=1

θijt · P char
j ∀ t ∈ T (4.10b)

pcharloss,t =
n+1∑
i=1

m+1∑
j=1

θijt · P char
loss (SOCi, P

char
j ) ∀ t ∈ T (4.10c)

n+1∑
i=1

m+1∑
j=1

θcharijt = 1 ∀ t ∈ T (4.10d)

0 ≤ θcharijt ≤ 1 ∀ t ∈ T (4.10e)

θcharijt , soct, p
char
t ∈ R (4.10f)

n+1∑
i=1

Cr
i−1,k

m+1∑
j=1

θijt ≤ ζchar,rkt ≤
n+1∑
i=1

Ci,k

m+1∑
j=1

θijt ∀ k = [1, r], t ∈ T (4.11a)

0 ≤ ζchar,rkt ≤ 2r−k ∀ k = [1, r], t ∈ T (4.11b)

ζchar,rkt ∀ k = [1, r] ∈ Z (4.11c)

m+1∑
j=1

Cs
j−1,k

n+1∑
i=1

θijt ≤ ζchar,ckt ≤
m+1∑
j=1

Cs
j,k

n+1∑
i=1

θijt ∀ k = [1, s], t ∈ T (4.12a)

0 ≤ ζchar,ckt ≤ 2r−k ∀ k = [1, s], t ∈ T (4.12b)
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ζchar,ckt ∀ k = [1, s] ∈ Z (4.12c)∑
(i,j)∈S1

θcharijt ≤ z1t
∑

(i,j)∈S2

θcharijt ≤ 1− z1t ∀ t ∈ T

z1,t, z2,t ∈ {0, 1}
(4.13)

S1 = {(i, j) : i is even and j is odd}
S2 = {(i, j) : j is even and i is odd}

∀i ∈ [1..n+ 1]

∀j ∈ [1..m+ 1]

Equation 4.14 is responsible for modeling the storage of energy from one
period to the next while considering the charge and discharge of the battery and
the loss in the process.

et = et−1 + [(pchart − pcharloss,t)− (pdisct + pdiscloss,t)]∆t, ∀t ∈ T (4.14)

soct =
1
2
(et−1 + et)

E
(4.15)

Due to periods where there is excess PV energy available, and therefore the
system marginal cost is 0, the optimizer might decide to charge and discharge
the battery simultaneously. To prevent this behavior, equation 4.16 uses two aux-
iliary binary variables (udisc

t & uchar
t ) that only allows the charge or the discharge

of the battery.

pchart ≤ ucha
t · P cha

,∀t ∈ T (4.16a)

pdisct ≤ udisc
t · P disc

, ∀t ∈ T (4.16b)

udisc
t + uchar

t ≤ 1,∀t ∈ T (4.16c)

Combined Charge & Discharge Model

The proposed improvement of the model will use the continuous variable pbatt

to model the charge and the discharge of the battery simultaneously. Considering
that the battery is injecting energy to the system if pbatt < 0 and consuming
energy if pbatt > 0. The charge/discharge loss function is going to be modeled
as a piecewise function, where if pbatt ≥ 0 the function will be the charge loss
function, and if pbatt < 0 the function will be the discharge loss function. This
new combined loss function is going to be linearized using the same methods as
described in chapter 3.
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Figure 4.2: Combined Battery Loss linearization using the K1 triangulation

pbatt ≥ 0 −→ : Battery charge

pbatt < 0 −→ : Battery discharge

P batt
loss ≈

{
103(R + K

1.1−SOC
)(P

batt

Vr
)2 if pbatt ≥ 0

103(R + K
SOC

)(P
batt

Vr
)2 if pbatt < 0

(4.17)

As described in chapter 3 the number of integer variables is correlated with
the computation burden of the problem. As both the charge and discharge mode
are functions dependent on soct, there is no need to model them as a separate,
independent function. For this reason, the hypothesis is that for the presented
linearization techniques for bivariate functions, if the two pwlf for modeling the
charge and discharge loss are combined, the number of integer variables will be
reduced and, in theory, the computation time will improve.

In the case of the Zig-Zag Integer method, the reduction will be greater due
to the logarithmic relationship between the resolution of the triangulation grid
and the number of auxiliary integer variables. If the loss function is modeled as
two separate functions with the same resolution, the resulting triangulation of
the domain would be two grids of (n+ 1)× (m+ 1), and the model would have
TimeFrames∗2(log2(m)+log2(n)+1) auxiliary integer variables. If the proposed
loss function is modeled with the same resolution, the resulting domain could be
triangulated with a (n+1)×(2∗m) grid which needs TimeFrames∗(log2(2∗m−
1)+log2(n)+1) auxiliary integer variables, a considerable reduction. Additionally,

Optimal management of a microgrid Li-Ion battery considering non-linear losses
using the Zig-Zag-Integer formulation.
Salvador Guerrero García

44



the two binary variables that prevent the simultaneous charge and discharge of
the battery (udisc

t & uchar
t ) and its constraints (4.16) are no longer needed, as

the model do not allow charging and discharging simultaneously, reducing even
more the problem size.

soct =
n+1∑
i=1

m+1∑
j=1

θijt · SOCi ∀ t ∈ T (4.18a)

pbattt =
n+1∑
i=1

m+1∑
j=1

θijt · P batt
j ∀ t ∈ T (4.18b)

pbattloss,t =
n+1∑
i=1

m+1∑
j=1

θijt · P batt
loss (SOCi, P

batt
j ) ∀ t ∈ T (4.18c)

n+1∑
i=1

m+1∑
j=1

θijt = 1 ∀ t ∈ T (4.18d)

0 ≤ θbattijt ≤ 1 ∀ t ∈ T (4.18e)

θijt, soct, p
batt
t ∈ R (4.18f)

n+1∑
i=1

Cr
i−1,k

m+1∑
j=1

θijt ≤ ζrkt ≤
n+1∑
i=1

Ci,k

m+1∑
j=1

θijt ∀ k = [1, r], t ∈ T (4.19a)

0 ≤ ζrkt ≤ 2r−k ∀ k = [1, r], t ∈ T (4.19b)

ζrkt ∀ k = [1, r] ∈ Z (4.19c)

m+1∑
j=1

Cs
j−1,k

n+1∑
i=1

θijt ≤ ζckt ≤
m+1∑
j=1

Cs
j,k

n+1∑
i=1

θijt ∀ k = [1, s], t ∈ T (4.20a)

0 ≤ ζckt ≤ 2r−k ∀ k = [1, s], t ∈ T (4.20b)

ζckt ∀ k = [1, s] ∈ Z (4.20c)∑
(i,j)∈S1

θijt ≤ z1t
∑

(i,j)∈S2

θijt ≤ 1− z1t ∀ t ∈ T

z1,t, z2,t ∈ {0, 1}
(4.21)
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S1 = {(i, j) : i is even and j is odd}
S2 = {(i, j) : j is even and i is odd}

∀i ∈ [1..n+ 1]

∀j ∈ [1..m+ 1]

The battery energy balance constraint will be reduced to:

et = et−1 + [pbattt − pbattloss,t]∆t,∀t ∈ T (4.22)

soct =
1
2
(et−1 + et)

E
(4.23)

Load Balance

The load balance constraint ensures that the energy demand meets the energy
generation for all periods. In addition to the generation, a slack variable is in-
troduced (ppns) to model the non-served energy. Constraint 4.24 will model the
Li-Ion battery in the "Separate Charge & Discharge" while constraint 4.25 will be
only used in the "Combined Charge & Discharge" model.

ppvt + pdt + pdisct − pchart + ppnst = Dt,∀t ∈ T (4.24)

ppvt + pdt − pbattt + ppnst = Dt, ∀t ∈ T (4.25)

Variable Bounds

E ≤ et ≤ E ∀t ∈ T

soc ≤ soct ≤ soc ∀t ∈ T

0 ≤ pdisct ≤ P
disc∀t ∈ T

−P disc ≤ pbattt ≤ P
cha∀t ∈ T

0 ≤ pchart ≤ P
cha∀t ∈ T

0 ≤ ppnst , ∀t ∈ T

(4.26)

4.3 Data

The characteristics of the microgrid showed in table 4.1 were sourced from [8].
Regarding the battery parameters, they were estimated from [3] where the au-
thor measured the losses of a microgrid operation where an electric vehicle was
used as the battery storage of the power system. A brute force approach was
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Table 4.1: Microgrid parameters

Diesel

P d
max 1.0 [kW]

c 0.0157 [e]
b 0.1080 [e/kW]
a 0.3100 [e/kW2]

Li-Ion battery

E 2.9 [kWh]
E 0 [kWh]
soc 100 [%]
soc 10 [%]
e0 0 [kWh]
P

cha
2.9 [kW]

P
disc

2.9 [kW]
K 8.0625 [mΩ]
R 26.46 [mΩ]
Vr 51.2 [V]
cens 1 [e/kWh]

used to fit the data points provided in the paper to the battery loss equations
(2.5 & 2.4) presented in chapter 3.

Regarding the two time variant parameters, the load and the photovoltaic
available power, a winter and a summer data set will be used, referred to with
the notation _w and _s respectively.

Lastly, the simulation horizon will vary according to the case. 3 timeframes
are going to be study 48 hours, 96 hours and 168 hours all with hourly resolu-
tion.
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Figure 4.3: Hourly load and available PV.

4.4 Results

To evaluate the performance of the various models and linearization techniques
presented in this master thesis, a series of simulations were conducted. From the
perspective of the power system, models with the same grid granularity and tri-
angulation are equivalent; the only difference lies in the linearization approach.

The study will primarily focus on comparing the solving time for the different
linearization methods presented in chapter 3, the two approaches for modeling
batteries presented in chapter 4, and different commercial solvers (Gurobi 10.0.3
& Cplex 22.1.1.0).

Table 4.2: Linearization Methods analyzed.

Method Description
ZZI-J1 ZZI method with J1 triangulation
ZZI-K1 ZZI method with K1 triangulation
C-K1 Babayev [4]

BM-J1 Text Book method with J1 triangulation
BM-K1 Text Book method with K1 triangulation
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4.4.1 Operation Analysis

Since all the compared models share very similar physical characteristics, their
operations are also almost identical. Thus, this part of the study focuses solely
on simulated cases with different grid granularity.

Battery Operations Points
Figures 4.6,4.7 & 4.8 depict the operational points of the battery for various
grid granularity (4x4, 8x8, 16x16) using the J1 patterns. As anticipated, most
operation points are situated in areas with minimal losses. During charging,
there are instances where the optimizer opts to operate the battery in regions
with higher losses. This decision can be rationalized by the fact that unutilized
solar power would otherwise be lost without any cost, making it worthwhile to
operate in zones with higher losses during charging cycles. Conversely, during
discharge, energy incurs a cost at the marginal system price, therefore energy
losses has a cost for the system. The optimizer tends to minimize losses, as 1kWh
lost today in discharged losses might reduce the operational cost tomorrow. This
behavior is evident in figure 4.5, where the dispersion in losses during charging
is greater than during discharge.

When comparing the operation point with the different grid granularity, as
expected, the operation points are situated in the piecewise linear function, not
in the real loss function. When analyzing the error of the linearization, as the
grid granularity increases, the absolute error is reduced. This can be observed in
4.4, as the granularity increases the histogram of the absolute loss error becomes
more right skewed and the average frequency is reduced.
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Figure 4.4: Histogram of the absolute charge loss for the studied grid granularities
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Figure 4.5: Box plot of the charge and discharge losses.
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Figure 4.6: Charge and discharge operation points for the 4x4 grid with method ZZI-J1.

Figure 4.7: Charge and discharge operation points for the 8x8 grid with method ZZI-J1.
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Figure 4.8: Charge and discharge operation points for the 16x16 grid with method ZZI-J1.
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Hourly Operation
Regarding hourly operations, the analyzed models effectively manage the mi-
crogrid, charging during peak photovoltaic generation and discharging during
periods of lower generation to minimize reliance on diesel generation.

A notable contrast emerges when comparing summer and winter simula-
tions. In summer, with greater solar power availability, the battery predomi-
nantly charges from this source, with diesel generation activated only during
critical hours. Conversely, in winter simulations, the diesel generator is operat-
ing almost at a base load. The battery is charged by a combination of diesel and
solar energy during this season. The reason for this behavior is the quadratic
diesel cost function, which makes each additional kWh from the diesel generator
more costly.

This can behavior is easily observed in the plots of the average soc. During
the winter simulation, the soc follows the demand profile as the battery is used
for peak shaving, while in summer it follows the solar profile.
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Figure 4.9: Obtained results (ZZI-J1 8× 8, GUROBI, Winter).
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Figure 4.10: Obtained results (ZZI-J1 8× 8, GUROBI, Summer).

4.4.2 Computational performance

In this section, emphasis is placed on the solving time of the various models
introduced in this master thesis. As elucidated in chapter 3, the linearization
methods outlined are rooted in MIQP. Despite the proficiency of commercial
solvers in handling large MIQP problems, solving times can be prolonged. Given
the substantial number of integer variables employed in the presented models,
scrutinizing performance becomes paramount and constitutes the primary focus
of the master thesis.

This section of the study will be center on four key areas: problem size com-
parative, the solver employed, the chosen linearization method, and lastly the
battery model.

Problem Size Comparative
As stated throughout this master thesis, the number of integer variables is an ac-
curate proxy for the complexity of a problem. In table 4.3 the number of integer
variables in the microgrid model is presented for a case with just 1 time slide,
that is 1 hour. The majority of the integer variables of the model are dedicated
to model the linearization of the Li-Ion losses, except for the 2 variables that
ensure that the battery can only charge or discharge and the variable that model
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the unit commitment of the diesel generator.
As expected, the method C-K1 has the biggest number of binary variables,

specially as the grid granularity increases, reaching 1000 integer variables for a
16x16 granulation when the battery losses are modeled separated.

When comparing the "Combined" and the "Separated" battery models, the
grid of the combined model has been selected, so both models represent exactly
the same loss function. It can be observed how the number of integer variables
needed for the "Combined" model is considerable smaller than the "Separated"
battery models.

Table 4.3: Number of Integer variables comparison.

Method Grid Integer Variables
ZZI-J1-Sep 4x4 13
ZZI-K1-Sep 4x4 15
BM-J1-Sep 4x4 17
BM-K1-Sep 4x4 19
C-K1-Sep 4x4 37

ZZI-J1-Sep 16x16 21
ZZI-K1-Sep 16x16 23
BM-J1-Sep 16x16 65
BM-K1-Sep 16x16 67
C-K1-Sep 16x16 901

ZZI-J1-Com 4x7 7
ZZI-K1-Com 4x7 8
BM-J1-Com 4x7 11
BM-K1-Com 4x7 12
ZZI-J1-Com 16x31 11
ZZI-K1-Com 16x31 12
BM-J1-Com 16x31 47
BM-K1-Com 16x31 48

Solver comparison
The initial conclusion drawn from the results underscores the performance gap
between the two commercial solvers employed. In general, Gurobi exhibited
solving times an order of magnitude faster than Cplex. In certain instances,
the disparity widened to two orders of magnitude, and notably, in one case,
Cplex failed to yield a valid solution within a one-hour time limit. This disparity
in performance remained consistent across the various linearization techniques
evaluated.
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Table 4.4: Computational performance: Solver comparation

Case Grid Method. Solver Obj.[C] Time[s] Rel.Gap
48h 4x4 ZZI-J1 cplex 6.1153 44.25 0.50%
48h 4x4 ZZI-J1 gurobi 6.1283 1.37 0.40%
48h 8x8 ZZI-J1 cplex 6.0687 572.55 0.50%
48h 8x8 ZZI-J1 gurobi 6.0893 19.56 0.37%
48h 4x4 ZZI-K1 cplex 6.1134 280.08 0.50%
48h 4x4 ZZI-K1 gurobi 6.1260 3.81 0.35%
48h 8x8 ZZI-K1 cplex 6.0688 378.48 0.50%
48h 8x8 ZZI-K1 gurobi 6.0928 10.87 0.44%
48h 4x4 C-K1 cplex 6.1134 333.48 0.50%
48h 4x4 C-K1 gurobi 6.1151 2.89 0.19%
48h 8x8 C-K1 cplex 8.2120 3600.00 28.38%
48h 8x8 C-K1 gurobi 6.0952 229.33 0.48%

Linearization method comparison
The comparison between the different linearization method presented in chapter
3 is not as conclusive as in the solver comparison. A crucial observation lies in the
significance of the triangulation pattern; in the majority of cases, J1 triangulation
outperforms K1 triangulation. This trend persists even with the implementation
of ZZI-K1, which, on paper, should have outperformed the BM-J1 method.

Computation-wise, the most effective method is ZZI with J1 triangulation,
especially as grid granularity increases. In larger cases, such as those spanning
a week with a 16x16 grid granularity, Gurobi struggles to find solutions with
other methods. As anticipated, C-K1 consistently performs the poorest across all
scenarios.

In summary, the analysis indicates that ZZI-J1 and BM-J1 are the top per-
formers in terms of solving time. Considering model complexity, BM-J1 might be
as a preferable alternative to ZZI-J1, as the latter’s approach is more complex to
understand and implement.
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Table 4.5: Computational performance: method comparation

Case Grid Method. Solver Obj.[kC] Time[s] Rel.Gap
48h

4x4

ZZI-J1

gurobi

6.1283 1.37 0.40%
48h ZZI-K1 6.126 3.81 0.35%
48h C-K1 6.1151 2.89 0.19%
48h BM-J1 6.1226 2.36 0.38%
48h BM-K1 6.1138 1.40 0.25%
48h

8x8

ZZI-J1

gurobi

6.0893 19.56 0.37%
48h ZZI-K1 6.0928 10.87 0.44%
48h C-K1 6.0952 229.33 0.48%
48h BM-J1 6.0856 9.37 0.32%
48h BM-K1 6.0708 21.92 0.08%
48h

16x16

ZZI-J1

gurobi

6.0817 30.56 0.36%
48h ZZI-K1 6.0832 71.00 0.39%
48h C-K1 - - -
48h BM-J1 6.0754 49.42 0.26%
48h BM-K1 6.0706 21.92 0.37%
168h_W

8x8

ZZI-J1

gurobi

19.1052 40.83 0.38%
168h_W ZZI-K1 19.1188 272.77 0.48%
168h_W C-K1 19.1277 3150.87 0.49%
168h_W BM-J1 19.1022 94.33 0.38%
168h_W BM-K1 19.1270 333.26 0.50%
168h_W

16x16

ZZI-J1

gurobi

19.0596 224.11 0.26%
168h_W ZZI-K1 - - -
168h_W C-K1 - - -
168h_W BM-J1 - - -
168h_W BM-K1 - - -
168h_S

8x8

ZZI-J1

gurobi

4.8732 133.61 0.29%
168h_S ZZI-K1 - - -
168h_S C-K1 4.8806 374.41 0.43%
168h_S BM-J1 4.8777 97.32 0.40%
168h_S BM-K1 4.8755 257.80 0.33%
168h_S

16x16

ZZI-J1

gurobi

4.8712 267.63 0.45%
168h_S ZZI-K1 - - -
168h_S C-K1 - - -
168h_S BM-J1 - - -
168h_S BM-K1 - - -
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Battery model & scalability comparison Due to the large number of sim-
ulation analyzed, all the results are presented in appendix 5. In this section,
different simulations results are going to be extracted to draw conclusions.

The next series of simulations were focus in understanding the scalability of
the most promising linearization methods, "ZZI J1" and "BM J1" as well as the
two proposed battery models. Regarding the scalability of the models, it can
be observed, the grid granularity affects the computing performance drastically.
Highlighting the importance of selecting the lowest grid resolution that precision
allows, as well as optimize the domain triangulation to the non-linear function.
Overall, the ZZI-J1 outperformed the BM-J1 specially for problems with large
granularity.

When the two battery models are compared, conclusions are counterintu-
itive. On paper, the "Combined" model should have outperformed the "Separate"
model, as the number of integer variables of the latter is considerable larger.
In reality, that behavior is generally not absolved. Only in the 96-hour simu-
lation with the BM-J1 case the "Combined" method yields lower solving times
compared to the "Separated".

Figure 4.11: Solving Time[s] of the 48 Hours case study.
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Figure 4.12: Solving Time[s] of the 96 Hours case study.

Figure 4.13: Solving Time[s] of the 168 Hours case study.

4.4.3 Model Precision

Lastly, the analysis is focused on comparing different approaches for modeling
the nonlinearities. Three alternative method are analyzed. Firstly, a simple but
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widely used model where the battery efficiency is assumed to be constant (CTE
η), as in equations 4.27 & 4.28. The selected efficiency was the average efficiency
from the operations of the battery considering the non-linear loss expression.

Secondly, the linearization of the Li-Ion loss functions with piecewise func-
tion, which includes the presented models in this master thesis (ZZI-J1), and
lastly the complete modeling of the non-linear function directly with a non-linear
solver (NL). In this case, the solver used is Knitro (14.0.0) which was executed
with Julia.

As the piecewise linearization and constant efficiency models are approxi-
mations, the objective function value is an expectation. To evaluate the real
objective function value, the results of the battery operation was evaluated in
a model considering the Li-Ion losses, referred as CTE η-SIM and ZZI-J1-SIM.
These models were the same as NL, but the variables controlling the charge and
discharged of the battery were fixed to the control signals provided by the CTE
and ZZI-J1 models.

In table 4.6 the results of the simulations are presented, which aligns with the
expectation. The model CTE η yields the lowest objective function, but when its
operation is evaluated with the real loss function the resulted operation is slightly
infeseable as in some hours the soc is lower than 10% limit, due to higher than
expected losses in the battery. Additionally, the real objective function value is
increase a 0.71%.

Regarding the ZZI-J1 methods, the expected objective function value is the
same as the real objective function (with a 4 digits approximation) showcasing
its accuracy. Regarding its operation, it did not reach any infeasibility. When
compare the different grid granularity, the objective function value decreases as
the granularity increase. It can be justified because the linearize loss function
overestimates the losses, as it can be observed in figure 4.6.

In the 8x8 and 16x16 cases its objective function value is lower than the CTE
η showing an improvement in accuracy and optimality compared to the simpler
model.

Lastly, it’s worth mentioning that the NL model lead to the operation with
the minimum cost, but the computation burden is almost 20 times the slowest
alternative method. Additionally, the bigger case with 168 hours was simulated,
but no solution was found in a 2 hour solving time limit.

Results showcase the inverse relationship between accuracy and solving time.
Additionally, the percentage improvement in the objective function do not seem
relevant, but it has to be considered that the optimization horizon was 48 hours,
along the useful life of the battery the difference can become relevant.
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P disc
loss ≈ P disc(1− η)/η (4.27)

P char
loss ≈ P char(1− η) (4.28)

Table 4.6: Computational performance: Model precision

Case Grid Method. Solver Obj.[kC] Time[s] Diff.1

48h_W - NL Knitro 6.0562 429.056 -
48h_W - CTE η Gurobi 6.0512 0.25 0.08%
48h_W - CTE η-SIM Knitro 6.0990 - 0.71%
48h_W 4x4 ZZI-J1 Gurobi 6.1283 1.370 1.19%
48h_W - ZZI-J1-SIM Knitro 6.1283 - 1.19%
48h_W 8x8 ZZI-J1 Gurobi 6.0893 19.56 0.55%
48h_W - ZZI-J1-SIM Knitro 6.0893 - 0.55%
48h_W 16x16 ZZI-J1 Gurobi 6.0817 26.547 0.42%
48h_W - ZZI-J1-SIM Knitro 6.0817 - 0.42%

1Percentage difference compared to the NL method.
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Chapter 5

Conclusions

This master’s thesis delves into the modeling of Li-Ion batteries within the frame-
work of power systems. With the increasing penetration of intermittent energy
generation sources into modern power grids, energy storage has emerged as a
crucial tool to mitigate the stochastic nature of wind and solar power generation
and as an enabler for higher percentage of renewable energy sources in the gen-
eration stacks.

Traditionally, the primary method for large-scale electricity storage in power
systems has been pump hydropower. However, recent attention has shifted to-
wards chemical batteries due to their lower infrastructure costs and versatility.
Among chemical battery technologies, Li-Ion batteries stand out due to their high
energy density and promising cost-effectiveness. This makes the accurate mod-
eling of this technology an imperative.

The focus of this master’s thesis is placed on considering the non-linear be-
havior incurred during the charge and discharge cycles of Li-Ion batteries. As-
sessing if the promising Zig-Zag Integer linearization technique is applicable to
the Li-Ion charge and discharge losses.

The project has three primary objectives. Firstly, to explore the Zig-Zag In-
teger linearization technique and develop a comprehensive understanding of its
formulation. This objective was achieved by creating a generic platform in GAMS
that allows researchers to use the Zig-Zag Integer technique as well as alternative
methods discussed in this master’s thesis.

This platform has proven to be very useful. The research results highlight the
importance of testing different linearization techniques and fine-tuning their pa-
rameters, as performance is significantly impacted by the underlying non-linear
function that is being linearized. Integrating various configuration parameters
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and linearization techniques into one platform considerably reduces develop-
ment time and facilitates correct usage of the models.

The second objective was to assess the applicability of the Zig-Zag Integer
technique for managing Li-Ion batteries in a microgrid. This effort resulted in
two optimal management models. The first model directly linearizes the charge
and discharge losses of Li-Ion batteries, while the second approach combines
both the charge and discharge loss functions, leading to a mathematical model
with fewer discrete variables which potentially reduced mathematical complex-
ity.

Lastly, the final goal was to implement the proposed microgrid management
models in GAMS and verify their accuracy. The authors of the Zig-Zag method
provided a Julia Lang library to easily integrate linearization methods into Julia
models. This library was used to validate the correct implementation of the de-
veloped models.

By reaching these three goals, the following conclusions were drawn:

Importance of accurate energy storage modeling: In light of the results
presented in this master thesis, it is evident that to fully harness the potential
of batteries, optimal management models, such as the one proposed, operates
the batteries across its entire efficiency region. This underscores the critical im-
portance of accurate modeling across the entire operational domain, rather than
focusing solely on the high-efficiency region.

Having an accurate model of the loss profile is key to maximizing overall op-
timality from the system perspective, not just from the battery operation point
of view. That being said, at the current solver development state, optimizing
directly the non-linear efficiency of batteries is not feasible, and linearization
techniques such as those presented in this master thesis show a balance between
accuracy and performance.

Solver selection significance: The choice of the mathematical solver for
integer programming significantly impacts results, specially during the lineariza-
tion of non-linear functions. Gurobi (version 10.0.3) consistently outperforms
Cplex (version 22.1.1.0) in all studied simulations, with Cplex sometimes failing
to find a solution within the solving time limits.

Linearization approach importance: Results underscore the significance of
the triangulation pattern used for the triangulation of the Li-Ion losses functions.
For instance, opting for K1 over J1 could lead to solver inability in meeting the
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solution criteria. Across various cases, the Zig-Zag Integer formulation pair with
J1 triangulation consistently outperformed other methods. Conversely, methods
like C-K1, BM-K1 and ZZI-K1 exhibited worst results, while BM-J1, despite its
simplicity compared to ZZI-J1, showed potential.

Overall, the effectiveness of linearization methods heavily hinges on the spe-
cific problem at hand. Thus, practitioners are advised to experiment with diverse
formulations to determine the most suitable approach. Specially focusing on the
BM-J1 and ZZI-J1 models.

Finally, the proposed combined charge and discharge model did not yield the
anticipated promising results. The conclusions are nuanced, with performance
improvements noted in some simulations and reductions in others. This renders
a definitive assessment challenging. Due to the theoretical improvements of this
method, it is going to be studied with greater detail in future projects.

In conclusion, accurate modeling of Li-Ion batteries is crucial for effective en-
ergy storage management in power systems. Solver selection and modeling ap-
proaches play significant roles in achieving optimal results and warrant careful
consideration in practical applications. But overall, applying the Zig-Zag Integer
linearization technique presented in this master thesis have shown to be an ap-
propriate approach for modeling Li-Ion batteries both accurate and in reasonable
times.

Optimal management of a microgrid Li-Ion battery considering non-linear losses
using the Zig-Zag-Integer formulation.
Salvador Guerrero García

65



Optimal management of a microgrid Li-Ion battery considering non-linear losses
using the Zig-Zag-Integer formulation.
Salvador Guerrero García

66



Bibliography

[1] International Energy Agency. Batteries and secure energy transitions.

[2] International Energy Agency. Global ev outlook 2021.

[3] Elpiniki Apostolaki-Iosifidou, Paul Codani, and Willett Kempton. Measure-
ment of power loss during electric vehicle charging and discharging. En-
ergy, 127:730–742, 2017.

[4] Djangir A. Babayev. Piece-wise linear approximation of functions of two
variables. Journal of Heuristics, 2(4):313–320, 1997.

[5] European Comission. Renewable energy targets.

[6] George B. Dantzig. On the significance of solving linear programming prob-
lems with some integer variables. Econometrica, 28(1):30–44, 1960.

[7] Beloit College Department of Chemistry. Energy density of different mate-
rials.

[8] David Domínguez-Barbero, Javier García-González, and Miguel Á. Sanz-
Bobi. Twin-delayed deep deterministic policy gradient algorithm for the
energy management of microgrids. Engineering Applications of Artificial
Intelligence, 125:106693, 2023.

[9] Joey Huchette and Juan Pablo Vielma. Nonconvex piecewise linear func-
tions: Advanced formulations and simple modeling tools, 2017.

[10] Joey Huchette and Juan Pablo Vielma. A combinatorial approach for small
and strong formulations of disjunctive constraints, 2018.

[11] Joey Huchette and Juan Pablo Vielma. A geometric way to build strong
mixed-integer programming formulations. Operations Research Letters,
47(6):601–606, 2019.

67



[12] Joseph Andrew Huchette. Advanced mixed-integer programming formula-
tions: Methodology, computation, and application. 2018.

[13] Salvador Guerrero García Javier García-González. Optimal management
of a microgrid li-ion battery considering non-linear losses using the integer
zig-zag formulation. PSCC, 2024.

[14] Gurobi Optimization. Gurobi 9.5 launch event presentation.

[15] Gaizka Saldaña, José Ignacio San Martín, Inmaculada Zamora, Fran-
cisco Javier Asensio, and Oier Oñederra. Analysis of the current electric
battery models for electric vehicle simulation. Energies, 12(14), 2019.

[16] Dr Oliver Schmidt and Dr Iain Staffell. Monetizing Energy Storages. Oxford
University Press, 2023.

[17] Shoudong Zhu Tianhong Tan. Cornell university computational optimiza-
tion open textbook: Piecewise linear approximation.

[18] Olivier Tremblay and Louis-A. Dessaint. Experimental Validation of a Bat-
tery Dynamic Model for EV Applications. World Electric Vehicle Journal,
3(2):289–298, June 2009.

[19] Juan Pablo Vielma. Embedding formulations and complexity for unions of
polyhedra, 2015.

[20] Juan Pablo Vielma. Mixed integer linear programming formulation tech-
niques. SIAM Review, 57:3–57, 2015.

[21] Juan Pablo Vielma and George L. Nemhauser. Modeling disjunctive con-
straints with a logarithmic number of binary variables and constraints.
Mathematical Programming, 128:49–72, 6 2011.

[22] B. V. Wagle. Mathematical Programming. Journal of the Royal Statistical
Society Series D: The Statistician, 14(2):176–177, 12 2018.

[23] Siyuan Wang, Jian Liu, Haotian Chen, Rui Bo, and Yonghong Chen. Model-
ing state transition and head-dependent efficiency curve for pumped stor-
age hydro in look-ahead dispatch. IEEE Transactions on Power Systems,
36(6):5396–5407, 2021.

Optimal management of a microgrid Li-Ion battery considering non-linear losses
using the Zig-Zag-Integer formulation.
Salvador Guerrero García

68



Extension of Computational Results

In this Appendix, the different simulations results from section 4.4.2 are pre-
sented in tables 1 & 2.
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Table 1: Computational performance results: Separate Charge & Discharge model

Case Grid Method. Solver Obj.[e] Time [s] Rel.Gap
48h 4x4 ZZI-J1-Sep gurobi 6.1283 1.37 0.40%
48h 5x5 ZZI-J1-Sep gurobi 6.107321 1.078 0.48%
48h 8x8 ZZI-J1-Sep gurobi 6.0893 19.56 0.37%
48h 9x9 ZZI-J1-Sep gurobi 6.085555 7.063 0.36%
48h 16x16 ZZI-J1-Sep gurobi 6.081719 26.547 0.36%
48h 17x17 ZZI-J1-Sep gurobi 6.072211 36.188 0.21%
48h 4x4 BM-J1-Sep gurobi 6.122561 2.36 0.38%
48h 5x5 BM-J1-Sep gurobi 6.095146 3.531 0.24%
48h 8x8 BM-J1-Sep gurobi 6.085568 9.375 0.32%
48h 9x9 BM-J1-Sep gurobi 6.092477 22.641 0.48%
48h 16x16 BM-J1-Sep gurobi 6.075384 49.422 0.26%
48h 17x17 BM-J1-Sep gurobi 6.072211 32.531 0.21%
96h 4x4 ZZI-J1-Sep gurobi 11.085198 10.813 0.30%
96h 5x5 ZZI-J1-Sep gurobi 11.06311 7.453 0.46%
96h 8x8 ZZI-J1-Sep gurobi 11.017093 32.172 0.32%
96h 9x9 ZZI-J1-Sep gurobi 11.017136 15.266 0.38%
96h 16x16 ZZI-J1-Sep gurobi 10.995312 81.609 0.24%
96h 17x17 ZZI-J1-Sep gurobi 10.983104 112.172 0.13%
96h 4x4 BM-J1-Sep gurobi 11.111537 11.532 0.50%
96h 5x5 BM-J1-Sep gurobi 11.029741 39.812 0.16%
96h 8x8 BM-J1-Sep gurobi 11.035023 69.875 0.48%
96h 9x9 BM-J1-Sep gurobi 10.99445 239.766 0.16%
96h 16x16 BM-J1-Sep gurobi 10.973862 2019.485 0.04%
96h 17x17 BM-J1-Sep gurobi 11.01592 1428.437 0.43%

168h w 4x4 ZZI-J1-Sep gurobi 19.224436 58.516 0.33%
168h w 5x5 ZZI-J1-Sep gurobi 19.15099 30.188 0.34%
168h w 8x8 ZZI-J1-Sep gurobi 19.1052 40.83 0.38%
168h w 9x9 ZZI-J1-Sep gurobi 19.084593 85.157 0.31%
168h w 16x16 ZZI-J1-Sep gurobi 19.0596 224.11 0.26%
168h w 17x17 ZZI-J1-Sep gurobi 19.046203 744.687 0.19%
168h w 4x4 BM-J1-Sep gurobi 19.250236 57.281 0.46%
168h w 5x5 BM-J1-Sep gurobi 19.160412 37.766 0.39%
168h w 8x8 BM-J1-Sep gurobi 19.102198 94.328 0.38%
168h w 9x9 BM-J1-Sep gurobi 19.083944 109.859 0.39%
168h w 16x16 BM-J1-Sep gurobi - 3600 -
168h w 17x17 BM-J1-Sep gurobi - 3600 -
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Table 2: Computational performance results: Combined Charge & Discharge model

Case Grid Method. Solver Obj.[e] Time [s] Rel.Gap
48h 4x7 ZZI-J1-Com gurobi 6.123703 1.188 0.39%
48h 5x9 ZZI-J1-Com gurobi 6.106321 12.078 0.40%
48h 8x15 ZZI-J1-Com gurobi 6.081934 10.046 0.27%
48h 9x17 ZZI-J1-Com gurobi 6.074056 4.5 0.18%
48h 16x31 ZZI-J1-Com gurobi 6.086722 40.453 0.45%
48h 17x33 ZZI-J1-Com gurobi 6.08793 68.86 0.47%
48h 4x7 BM-J1-Com gurobi 6.13757 19.563 0.43%
48h 5x9 BM-J1-Com gurobi 6.084684 2.079 0.08%
48h 8x15 BM-J1-Com gurobi 6.077588 15.234 0.20%
48h 9x17 BM-J1-Com gurobi 6.090247 22.234 0.45%
48h 16x31 BM-J1-Com gurobi 6.073538 86.516 0.23%
48h 17x33 BM-J1-Com gurobi 6.08441 61.469 0.43%
96h 4x7 ZZI-J1-Com gurobi 11.115581 11.156 0.46%
96h 5x9 ZZI-J1-Com gurobi 11.043198 10.266 0.29%
96h 8x15 ZZI-J1-Com gurobi 11.004264 38.203 0.21%
96h 9x17 ZZI-J1-Com gurobi 10.993983 35.813 0.15%
96h 16x31 ZZI-J1-Com gurobi 10.990093 355.422 0.19%
96h 17x33 ZZI-J1-Com gurobi 10.979162 179.86 0.10%
96h 4x7 BM-J1-Com gurobi 11.08584 17.766 0.21%
96h 5x9 BM-J1-Com gurobi 11.023765 19.796 0.10%
96h 8x15 BM-J1-Com gurobi 11.014901 38.579 0.30%
96h 9x17 BM-J1-Com gurobi 11.020678 57.093 0.39%
96h 16x31 BM-J1-Com gurobi 10.997086 672.719 0.25%
96h 17x33 BM-J1-Com gurobi 11.011443 270.578 0.39%

168h w 4x7 ZZI-J1-Com gurobi 19.256026 29.219 0.44%
168h w 5x9 ZZI-J1-Com gurobi 19.131402 35.531 0.24%
168h w 8x15 ZZI-J1-Com gurobi 19.070269 61.234 0.20%
168h w 9x17 ZZI-J1-Com gurobi 19.116959 51.875 0.48%
168h w 16x31 ZZI-J1-Com gurobi 19.081705 334.625 0.37%
168h w 17x33 ZZI-J1-Com gurobi 19.05362 292.734 0.22%
168h w 4x7 BM-J1-Com gurobi 19.229333 42.937 0.32%
168h w 5x9 BM-J1-Com gurobi 19.10463 42.437 0.09%
168h w 8x15 BM-J1-Com gurobi 19.103467 109.031 0.37%
168h w 9x17 BM-J1-Com gurobi 19.092153 111.516 0.40%
168h w 16x31 BM-J1-Com gurobi - 3600 -
168h w 17x33 BM-J1-Com gurobi - 3600 -
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Julia & PiecewiseLinearOpt

Julia is a high level programming language developed in the MIT. It shares sim-
ilarities with Python in terms of syntax but has higher focus on scientific com-
puting, performance and deployability. These characteristics have make Julia a
popular language for both the research community and industry.

[9] introduces the Julia library: PiecewiseLinearOpt, a complement for Ju-
lia’s JuMP, its modeling language for mathematical optimization. JuMP is the
equivalent to Pyomo in Python, GAMS or AMPL. It is a modeling language that
allows the formulation of optimization problems and their resolution with exter-
nal solvers such as Gurobi or Cplex.

Utilizing JuMP to solve mathematical optimization problems is straightfor-
ward. At its core is the JuMP Model object, to which users can assign decision
variables, constraints, the objective function, and a solver packages.

To streamline the implementation of advanced linearization techniques, Piece-
wiseLinearOpt provides the "piecewiselinear" function. This function augments
the desired JuMP model object with the auxiliary decision variables and con-
straints responsible for modeling piecewise linear functions.

The function "piecewiselinear", support the linearization of uni-variate and
bi-variate functions. It requires as inputs the jump mathematical model, the de-
cision variables to optimize, the mathematical region to optimize the function
over, and the linearization method to use. Regarding the domain of the opti-
mization, for uni-variate functions y = f(x), the user has to input the vector of
the breakpoints {x1, x2, x3...xn} and its associate y values or the function f(x).
For bi-variate expressions z = g(x, y), the PiecewiseLinearOpt function "Bivari-
atePWLFunction" establishes the domain of the optimization, its inputs are the
vector of breakpoints of x and y, the function to linearize g(x, y), and the trian-
gulation pattern to use.

PiecewiseLinearOpt significantly simplifies the usage of piecewise linear func-
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tions. It closes the gap between state-of-the-art techniques and practical appli-
cation by abstracting complex constraints to a lower level. Moreover, it greatly
improves development time.

As highlighted in the conclusions of this master thesis, testing different lin-
earization techniques is crucial, as performance varies significantly depending
on the problem. This library empowers users to experiment easy with different
formulations, supporting a wide array of linearization techniques.

Supported linearization methods: "Incremental" ([22],[6]), "LogarithmicIB" (LogIB:
[10]), "Logarithmic" (LogE: [19]), "ZigZag" (ZZB: [9]), "ZigZagInteger"
(ZZI: [9]) etc.

Supported triangulation patterns: "Upper","Lower","BestFit","UnionJack (J1)",
"K1", "Random".

In listing 1 & listing 2 two simple optimization problems (1 & 2) are imple-
mented and solved using Julia and the library PiecewiseLinearOpt. Showcasing
the simplicity of the implementation.

min y

s.t. y = f(x) = ex

0 ≤ x ≤ 3

x, y ∈ R
(1)

Listing 1: Implementation of equations 1� �
using JuMP, Gurobi, PiecewiseLinearOpt

#Model inicialization
m = Model(Gurobi.Optimizer)

#Variable declaration
@variable(m, x)

#Constraint declaration
x_range = range(0,3,3)
f(x) = exp(x)
y = piecewiselinear(m, x, x_range, f,method=:ZigZagInteger)

#Objective function
@objective(m, Min, y)

#print model
print(m)
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#Solve model
optimize!(m)� �

min z

s.t. z = f(x, y) = ex + ey

0 ≤ x ≤ 3

0 ≤ y ≤ 3

x, y, z ∈ R

(2)

Listing 2: Implementation of equations 2� �
using JuMP, Gurobi, PiecewiseLinearOpt

#Model inicialization
m = Model(Gurobi.Optimizer)

#Variable declaration
@variable(m, x)
@variable(m, y)

#Constraint declaration
x_range = range(0,3,3)
y_range = range(0,3,3)
f(x,y) = exp(x) + exp(y)
z = piecewiselinear(m, x, y, BivariatePWLFunction(x_range, y_range, f, pattern=:

K1),method=:ZigZagInteger)

#Objective function
@objective(m, Min, z)

#print model
print(m)

#Solve model
optimize!(m)� �
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Sustainable Development Goals

The Sustainable Development Goals (SDGs) comprise 17 objectives adopted by
United Nations member states in 2015, aiming to address the world’s most press-
ing challenges.

These goals encompass a broad spectrum of issues, ranging from eradicating
poverty and ensuring access to clean water to preserving nature and combating
climate change.

This master’s thesis directly aligns with three of these goals:
SDG 7: Affordable and clean energy. The primary motivation of this work

is to enhance the accurate integration of Li-Ion batteries into decision-making
models, thereby advancing the optimal management of batteries. Batteries play
a pivotal role in energy systems with high levels of renewable energy penetra-
tion. Given the inherent uncertainty associated with common renewable sources
such as wind and solar, batteries serve as crucial energy storage solutions. Thus,
improving battery models and management strategies directly contributes to the
expansion of affordable and clean renewable energy sources.

SDG 9: Industry, Innovation, and Infrastructure. This master’s thesis en-
compasses significant research components, exploring the current state-of-the-
art in linearization techniques to assess their applicability to battery models. By
bridging the gap between mathematical research and industry applications, this
work fosters innovation in battery control and infrastructure development.

SDG 11: Sustainable Cities and Communities. Li-Ion batteries find appli-
cation in urban areas at both individual household and community levels. In
such settings, decision-making processes are often automated due to the imprac-
ticality of skilled manual intervention. Consequently, contributing to decision-
making models in these contexts is vital for maximizing the usage of renewable
energy sources on urban environments and therefore becoming more self sus-
tainable.
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By addressing these SDGs, this master’s thesis endeavors to contribute to
global efforts toward sustainable development and a more resilient future.
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