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Resumen

Introducción

El siguiente resumen dará una breve explicación del trabajo realizado por Alberto
Quintana Criado durante su tesis de Máster, en el cual el proyecto se entrelazó
con un proyecto general en el contexto de una colaboración entre el Hospital Uni-
versitario de Getafe y el Departamento de Electrónica y Automática de ICAI.
En este proyecto se concibió, diseñó, fabricó y probó con éxito un prototipo 3 de
un dispositivo grabador de sEMG, así como versiones más avanzadas del mismo.
El mismo conjunto de prototipos se utilizó como grabador de sEMG e implantado
respectivamente en los sujetos animales con éxito. Después de eso, se probó un
modelo de DL donde el conjunto de datos era un conjunto de datos de sEMG
disponible públicamente de amputados transhumerales, demostrando aún más y
comparando modelos ligeros para ver cuál podría usarse más adelante en el desar-
rollo.

Objetivos:

Los principales objetivos de este proyecto son los siguientes:

1. Desarrollo de un dispositivo de grabación de sEMG según las especificaciones
necesarias para el proyecto y los actores principales, así como emplear las
habilidades de diseño electrónico e IoT aprendidas durante el MEng.

2. Desarrollo de un banco de pruebas de DL de modelos simples para la com-
paración y también para determinar la usabilidad en futuros casos, así como
en este proyecto más adelante.

3. Idear aplicaciones futuras potenciales o caminos de investigación para esta
tecnología, así como servir como base para futuros desarrollos.

Con estos simples objetivos, el proyecto completo se dividió en 3 capítulos
correspondientes, cada uno enfocado en la ejecución del objetivo en cuestión.
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Figure 1: Aspecto final de la parte de grabación analógica del dispositivo de
grabación sEMG diseñado en este proyecto.

Solución:

Capítulo 1: Contexto del Proyecto, Diseño y pruebas de una
Interfaz Hombre-Máquina

La naturaleza del sEMG y otras bioseñales proviene del uso del cuerpo humano
de medios eléctricos y químicos de comunicación. Estas señales se llaman Po-
tenciales de Acción y, en esencia, son una descarga causada por la polarización-
deshpolarización de las membranas. Las soluciones ideadas al diseñar el dispositivo
de grabación de sEMG fueron las siguientes:

1. Maximizar la relación señal-ruido: La señal EMG es muy pequeña (0-10
mV pico a pico o 0-1.5 mV RMS) en comparación con las fuentes de ruido
potenciales. Las principales fuentes de ruido incluyen ruido inherente de
componentes electrónicos, ruido electromagnético ambiental (por ejemplo,
50/60 Hz de las líneas eléctricas), artefactos de movimiento de los electrodos
y cables, e interferencia de otros biopotenciales como el ECG. Solucionamos
esto utilizando componentes electrónicos de alta calidad y una fase de am-
plificación, seguida de una fase de filtrado.

2. Evitar la distorsión de la señal EMG: La contribución relativa de difer-
entes componentes de frecuencia en la señal EMG no debe ser alterada por
el proceso de grabación. La señal EMG tiene energía utilizable de 0-500 Hz,
con energía dominante entre 50-150 Hz. Los filtros utilizados para reducir el
ruido deben ser diseñados cuidadosamente. La distorsión debido al retraso es
inevitable. Además, este retraso depende de la naturaleza de la amplificación



Figure 2: Plano de la fase de amplificación. Muestra una fase de amplificación
analógica de sEMG de dos canales. Se tomó la decisión de diseño de incluir dos
canales de grabación para aprovechar al máximo la capacidad de doble canal del
ADALM-2000.

no lineal en la frecuencia, lo que significa que aparecerá una "distorsión de
forma de onda" con diferentes niveles de fase aplicados a diferentes armóni-
cos. Para evitar esto, afinamos las frecuencias en la fase de filtrado para
eliminar las bandas innecesarias.

3. Seleccionar los electrodos apropiados para la aplicación: Los electrodos
superficiales son no invasivos pero tienen limitaciones: solo pueden registrar
músculos superficiales, se ven afectados por el tejido subcutáneo y tienen
riesgo de interferencia de músculos adyacentes. Los electrodos intramuscu-
lares de hilo fino o aguja pueden registrar de músculos profundos y unidades
motoras específicas, pero son invasivos. El material, tamaño, forma y distan-
cia entre electrodos afectan la selectividad y calidad de la señal. La elección
de electrodos superficiales o intramusculares depende de la aplicación clínica
o de investigación específica. [6]



Modelo Pérdida Precisión F1 Precisión
Puño 2.28 0.937 0.937 0.937

Mano Abierta 1.20 0.966 0.966 0.966
Flexión de Muñeca 1.10 0.969 0.969 0.969

Extensión de Muñeca 1.12 0.968 0.968 0.968
Desviación Radial 1.13 0.968 0.968 0.968
Desviación Cubital 1.17 0.967 0.967 0.967

Table 1: Resultados de la prueba del experimento C en la clasificación de 6 eti-
quetas

Capítulo 2: Clasificación del comportamiento del EMG en
amputados transhumerales a través de aplicaciones de DL

La aplicación particular para este proyecto garantizará la capacidad de los amputa-
dos y personas que sufren lesiones traumáticas de no estar limitados en movimiento
mediante la aplicación de los descubrimientos del capítulo 1 anterior. Sin embargo,
como se explicó, los neuromas representan un problema significativo cuando se
realizan análisis debido a la naturaleza especial y a menudo traumática de su
aparición. La señal en sí experimentará cambios en su forma, lo que significa
propiedades cambiantes tanto en el dominio del tiempo como en el dominio de la
frecuencia.

Se eligió y entrenó un conjunto de modelos ligeros de DL capaces de clasi-
ficar con precisión y aún tener un tamaño lo suficientemente pequeño como para
ejecutarse en la mayoría de los dispositivos tipo IoT.

• Las redes neuronales LSTM, GRU y LSTM bidireccional fueron ca-
paces de inferir parte de la abstracción relacionada con la activación de los
diferentes movimientos de la mano con éxito, por otro lado, esta arquitec-
tura de red neuronal no mostró suficiente consistencia en los experimentos.
La secuencialidad en la arquitectura demuestra ser ventajosa al procesar los
datos, ya que puede ser una ventaja en una aplicación en tiempo real.

• Los modelos basados en CNN son más fuertes cuando se trata de mane-
jar la abstracción en señales de sEMG de bajo a medio ruido, demostrando
ser ventajosos como el clasificador de elección para este proyecto. Muchos
dispositivos IoT hoy en día tienen redes neuronales basadas en visión por
computadora capaces de mucho más, lo que habla del potencial de esta tec-
nología.



Conclusión y bibliografía:

1. Utilización y Preprocesamiento de Datos: La investigación enfatiza la
importancia de la naturaleza secuencial de las señales de sEMG, empleando una
técnica de ventana deslizante para segmentar los datos de manera efectiva.

2. Arquitectura y Entrenamiento del Modelo: El modelo basado en CNN
fue seleccionado por su robustez en el manejo de dependencias espaciales y tempo-
rales inherentes a los datos de sEMG. La extracción y aumento de características
jugaron un papel significativo en la mejora del rendimiento de la clasificación, ya
que estos pasos permitieron que el modelo se centrara en patrones críticos dentro
de los datos.

3. Rendimiento y Evaluación: Aunque el modelo logró una precisión
encomiable, permanecieron ciertos desafíos, particularmente en la distinción de
movimientos con patrones de activación muscular similares.

4. Desafíos y Direcciones Futuras: La transición a un enfoque basado en
características destacó varios desafíos, en particular la necesidad de una mayor
optimización para mejorar la robustez del modelo contra el ruido y la variabilidad
en las señales.

5. Enfoques Innovadores: La introducción de un conjunto adicional de vari-
ables para mejorar la robustez del modelo contra el ruido es un enfoque novedoso
que merece una mayor exploración.

Implicaciones Prácticas

Los hallazgos de esta investigación tienen implicaciones significativas para el desar-
rollo de tecnologías asistenciales, particularmente en el campo de las prótesis y la
rehabilitación. La clasificación precisa de los movimientos de la mano y la muñeca
utilizando señales de sEMG puede llevar a sistemas de control más intuitivos y
receptivos para las extremidades protésicas. Los avances en la extracción de car-
acterísticas y el entrenamiento de modelos presentados en esta tesis contribuyen
al creciente cuerpo de conocimientos destinado a mejorar la calidad de vida de las
personas que dependen de dispositivos asistenciales.

Además, a medida que se amplía el alcance de una futura colaboración entre
UHG y Comillas ICAI, este POC ha demostrado ser fructífero para determinar el
enfoque inicial de esta tecnología y las pruebas a realizar.

Trabajo Futuro

Aunque este proyecto fue definitivamente un POC para un alcance mayor, aún
logra iluminar algunas áreas que pueden tener un impacto profundo en la in-



vestigación. Por lo tanto, los próximos pasos de este POC pueden determinarse
fácilmente.

1. Consumo de energía y disipación de calor: Optimizar la eficiencia en-
ergética y la gestión térmica es fundamental para los dispositivos implanta-
bles que requieren largas horas de uso y altas cargas computacionales.

2. Telemetría y comunicaciones inalámbricas: Permitir la transmisión in-
alámbrica de datos es esencial para una telemetría sin problemas y la gestión
remota de dispositivos sin procedimientos invasivos.

3. Preprocesamiento digital: Integrar el preprocesamiento digital en el mi-
croprocesador del implante puede reducir la sobrecarga de transmisión de
datos y permitir un análisis de señales en tiempo real más eficiente.



Abstract

Introduction

The following abstract will give brief explanation to the work executed by Alberto
Quintana Criado during his final Master´s thesis, in which the project was inter-
twined with an overarching project in the context of a collaboration between UHG
(University Hospital of Getafe and the Electronics and Automation Department
at ICAI.
In this project a successful prototype 3 for an sEMG recorder device was conceived,
designed, manufactured and tested as well as more advanced versions of the same.
The same set of prototypes where used as an sEMG recorder and implanted re-
spectively on the animal subjects with success. After that a DL model was tried
and tested where the dataset was a publicly available dataset of sEMG signals
from trans-humeral amputees, further proving and comparing lightweight models
can to see which one could be used further down the line in development.

Goals:

The main goals of this project are the following:

1. Development of a sEMG recording device according to the specifications
needed by the project and the main actors as well as employing the electronics
and IoT design skills learned during the MEng.

2. Development of a DL testbench of simple models for comparison and also
to determine usability in future cases as well as in this project further down
the line.

3. Devise potential future applications or research paths for this technology as
well as serving as a stepping ground for future development.

With this simple goals the whole project was divided into 3 corresponding
chapter, each one focusing on the execution of the goal in question.

ix



Figure 3: Final look of the Analog Recording part of the prototype sEMG recording
device designed in this project.

Solution:

Chapter 1: Context of the Project, Design and testing of a
Human-Machine Interface

The nature of sEMG and other bio-signals stem from the use of the human body
of electric and chemical means of communication. These signals are called Ac-
tion Potentials and are, at the very core, a discharged caused by the polarization-
depolarization of membranes. solutions devised when designning the sEMG record-
ing device where the following:

1. Maximizing the signal-to-noise ratio: The EMG signal is very small (0-
10 mV peak-to-peak or 0-1.5 mV RMS) compared to potential noise sources.
Key noise sources include inherent noise from electronic components, ambient
electromagnetic noise (e.g. 50/60 Hz from power lines), motion artifacts from
electrodes and cables, and interference from other bio-potentials like ECG.
We solved this by using high quality electronics and a amplification phase,
followed by a filtering phase.

2. Avoiding distortion of the EMG signal: The relative contribution of
different frequency components in the EMG signal should not be altered by
the recording process. The EMG signal has usable energy from 0-500 Hz,
with dominant energy between 50-150 Hz. Filters used to reduce noise must
be designed carefully. Distortion due to delay is unavoidable. Furthermore,
this delay is dependant due to the nature of non-linear amplification on the
frequency, meaning a "waveform distortion" will appear with different levels



Figure 4: Amplification phase blueprint. It shows a two channel sEMG analog
amplifying phase. A choice was made during the design two include two recording
channels to make full use of the ADALM-2000 double channel capacity.

of phase being applied on different harmonics. To avoid this we finetuned
the frecuencies in the filtering phase to remove the uneeded bands.

3. Selecting appropriate electrodes for the application: Surface electrodes
are non-invasive but have limitations - they can only record superficial mus-
cles, are affected by subcutaneous tissue, and risk cross-talk from adjacent
muscles. Intramuscular fine-wire or needle electrodes can record from deep
muscles and specific motor units but are invasive. Electrode material, size,
shape and inter-electrode distance affect selectivity and signal quality. The
choice of surface or intramuscular electrodes depends on the specific clinical
or research application. [6]

Chapter 2: Classifying the behaviour of EMG in trans-humeral
amputees through DL applications

The particular application for this project will guarantee the ability for amputees
and people suffering from traumatic injuries to not be limited in movement via
the application of the discoveries from the previous chapter 1. Nevertheless, as
explained, Neuroma pose a significant issue when analysis are performed due to
the special and often traumatic nature of their appearance. The signal itself will



Model Loss Acc F1 Prec
Fist 2.28 0.937 0.937 0.937

Open Hand 1.20 0.966 0.966 0.966
Wrist Flexion 1.10 0.969 0.969 0.969

Wrist Extension 1.12 0.968 0.968 0.968
Radial Deviation 1.13 0.968 0.968 0.968
Ulnar Deviation 1.17 0.967 0.967 0.967

Table 2: Test results of experiment C on 6 label classification

experience changes in it s shape meaning shifting properties both in the time-
domain and frequency-domain

A set of lightweight DL models capable of classifying accurately and still having
a small enough footprint to run in most IoT-like devices was chosen and trained.

• LSTM, GRU and Bidirectional LSTM neural networks where capable
of inferring some of the abstraction relating to the activation of the different
hand movements successfully, on the other hand this neural net architecture
did not show enough consistency across experiments. Sequentiality in the
architecture proves advantageous when processing the data, as it may be
and advantage in a real time application.

• CNN-based models are stronger when it comes to handling abstraction in
low to medium noise sEMG signals, proving advantageous as the classifier
of choice when it comes to this project. Multiple IoT devices nowadays hold
Computer Vision CNN-based nets capable of much more, speaking to the
potential of this technology.

Conclusion and bibliography:

1. Data Utilization and Preprocessing: The research emphasizes the im-
portance of the sequential nature of sEMG signals, employing a sliding window
technique to segment the data effectively.

2. Model Architecture and Training: The CNN-based model was selected
for its robustness in handling spatial and temporal dependencies inherent in sEMG
data. Feature extraction and augmentation played a significant role in improving
classification performance, as these steps allowed the model to focus on critical
patterns within the data.

3. Performance and Evaluation: Although the model achieved commend-
able accuracy, certain challenges remained, particularly in distinguishing move-
ments with similar muscle activation patterns.



4. Challenges and Future Directions: The transition to a feature-based
approach highlighted several challenges, notably the need for further optimization
to enhance the model’s robustness against noise and variability in the signals.

5. Innovative Approaches: The introduction of an additional variable set
to improve the model’s robustness against noise is a novel approach that merits
further exploration.

Practical Implications

The findings from this research have significant implications for the development of
assistive technologies, particularly in the field of prosthesis and rehabilitation. Ac-
curate classification of hand and wrist movements using sEMG signals can lead to
more intuitive and responsive control systems for prosthetic limbs. The advance-
ments in feature extraction and model training presented in this thesis contribute
to the growing body of knowledge aimed at improving the quality of life for indi-
viduals relying on assistive devices.

Additionally, as the scope for a future collaboration between UHG and Comillas
ICAI broadens, this POC has proven fruitful to determine the initial approach to
this technology and the tests to be performed.

Future Work

While this project was definitely a POC for a bigger scope, it still manages to light
up some areas that can have a profound impact in research. Thus, next steps from
this POC can be easily determined.

1. Power consumption and heat dissipation: Optimizing power efficiency
and thermal management is critical for implantable devices that require long
usage hours and high computational loads.

2. Telemetry and wireless communications: Enabling wireless data trans-
mission is essential for seamless telemetry and remote device management
without invasive procedures.

3. Digital pre-processing: Integrating digital preprocessing on the implant’s
microprocessor can reduce data transmission overhead and enable more effi-
cient, real-time signal analysis.
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Chapter 1

Context of the Project, Design and
testing of a Human-Machine
Interface

In this initial chapter of the thesis the original overarching project surrounding
this thesis will be presented and the part from which this research avenue stems
explained.
This project complies with the ethical guidelines stated by UHG ethical
board as seen in the ethical annex.
The core of this project derives from a collaboration that took place between the
University Hospital of Getafe "peripheral nerve and brachial plexus unit" and the
electronics and automations department at Comillas ICAI. In these regard the
leading coordinator of this unit at UHG, Dr.Andrés A. Maldonado and his team
contacted Prof. Romano Gianetti for help developing a POC for a device capable
of measuring sEMG in order to control prosthetic limb. When i joined the team a
visit to this hospital and the facilities was scheduled where the root of the problem
was explained and coordination on this project started on both ends.
The collaboration was staged to begin with the design of an electronic prototype of
a sEMG recorder. Comprised of an amplification and cleanup analog phase. Once
this prototype had been built, an operation would happen where the mentioned
surgeons would interface this device with a couple of electrodes inplanted on a
traumatised limb of a rabbit for testing. After success in this regard the project
would move on further into prototyping and testing in humans.
The scope of my FMT is tangential to this project in that the design, and rapid
prototyping of the HW platform aforementioned is within the scope of my work,
but after that the goal is to study sEMG behaviour and determine the key markers
that can help us understand neural behaviour on traumatised neural pathways. e.g
the ones found on these type of limbs. Thus the project takes both electronics and
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signal processing, as well as a ML and DL approach to the issue.
In order to further understand the needs for this research it is important to explain
even though briefly the neurological and physiological side of the issue.

1.1 A brief explanation of trauma in nerves and
locomotion. Characterizing Neuroma.

Accidents that involve any type of violent force to limbs and the human body can
lead to, sometimes fatal, and often traumatic injuries to the human body. Due to
their location and exposure as extremities, the limbs of the human body are often
the affected party in these exchanges. The Peripheral Nervous System (PNS) of
the human body is often overlooked in the aftermath, when a traumatising injury
befalls a limb. The PNS is comprised of all the nerves of the human body that
branch out from the CNS and is further subdivided into somatic and autonomic
nervous system.
Connecting the PNS from the CNS to the rest of the body, in a amputation case
trauma shall befall the nervous ends in charge of gathering information and con-
trolling the muscle tissue of the amputated limb. These motor end plates after a
cut become a traumatised neural end. Nowadays multiple procedures appear in
the literature and are starting to be performed aiming to save as much of these
neural ends as possible and guarantee a potential use on prosthetic development in
the future. For the purpose of these research we are going to assume the opposite
state where a nerve is amputated or cut violently. Afterwards healing will happen
to these injured neural pathways along with the surrounding tissue to create what
is commonly referred to as a stump. Inside this limb ending, the tangled mess of
neural ends is called a Neuroma[10].
A healthy neuron has a resting membrane potential of around -70 mV, maintained
by differences in ion concentrations (mainly Na+, K+, Cl-) inside and outside the
cell, and by the action of the sodium-potassium pump. When a neuron receives
sufficient exciting input (e.g., from neurotransmitters binding to receptors), its
membrane potential depolarizes. If this depolarization reaches a threshold (usu-
ally around -55 mV), an action potential is triggered.The rising phase of the action
potential is caused by the opening of voltage-gated sodium (Na+) channels. Na+
rushes into the cell, further depolarizing the membrane potential to around +40
mV. The falling phase is caused by inactivation of Na+ channels and opening of
voltage-gated potassium (K+) channels. K+ exits the cell, repolarizing the mem-
brane back towards the resting potential. After the spike, the membrane briefly
hyperpolarizes due to continued K+ efflux, before returning to the resting state.
The action potential propagates along the axon as the depolarization spreads,
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Figure 1.1: Explanatory graph of a single neuron action-potential generation.
From [2]

sequentially opening adjacent voltage-gated channels. This allows the signal to
travel long distances without decrement. In myelinated axons, action potentials
jump between the nodes of Ranvier (gaps in the myelin sheath) in a process called
"saltatory conduction", allowing faster propagation. Action potentials are "all-or-
none" events that occur in a stereotyped way when the threshold is reached. Their
amplitude and shape are independent of the strength of the triggering stimulus.
After an action potential, there is a brief refractory period during which a new
action potential cannot be initiated, ensuring unidirectional propagation

1.2 sEMG for muscle activation characterization

In traumatic neuroma, the injured axons can show abnormal electro-physiological
activity, like spontaneous discharges and mechanical hypersensitivity. The dis-
organized regrowth of axons likely leads to erratic and abnormal motor neuron
potentials. [4]. As such characterization of these signals can lead to mislead-
ing results. On the other hand, sEMG are the signals generated by the muscle
fibers during contraction that can be measured on the skin surface over the muscle.

This signal is the amalgamation of multiple electrical activities across many
motor units. The depolarization that happens in a Neuron is transmitted into the
neuro-muscular junction which is the point where a neuron and a motor cell join.
This group of cells, both neurons and the corresponding innervated muscle cells
connected, are called a single motor unit or SMU 1.2. The action potential then
transmits from those muscle fibers across the muscle in a range of frequencies of 20-
500 Hz. As a general approach to understanding the potential of control between a
trauma and a prosthesis, the choice of sEMG came down to the following principles:
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Figure 1.2: Representation of a SMU (Single Motor unit) from The origin of bio
potentials - Scientific Figure on ResearchGate. [5] [accessed 2 Jun, 2024]

1. Ease of use: sEMG is non-invasive, while iEMG requires inserting needle
electrodes into the muscle. For a painful condition like a neuroma, the non-
invasive nature of sEMG is advantageous to avoid causing additional pain
or discomfort to the patient. sEMG is easier to apply in a clinical setting,
as it does not require the same level of expertise and precision as iEMG for
electrode placement. This makes it more practical for routine assessments of
patients with neuroma.

2. Explained behaviour: sEMG provides a more global measure of muscle
activity, as the electrodes record from a larger area on the skin surface. This
can be useful in assessing overall muscle function and activation patterns
related to the neuroma.In contrast, iEMG is more localized and records from
a smaller area within the muscle. While this can provide detailed information
about individual motor units, it may miss the bigger picture of how the
muscle is functioning as a whole in relation to the neuroma.

3. Previous Literature: sEMG has been shown to have good sensitivity and
specificity for distinguishing between healthy individuals and those with var-
ious neuromuscular conditions, suggesting it could be a useful tool for eval-
uating the goals of this project.

In summary, the non-invasive, global, and clinically accessible nature of sEMG,
along with its proven utility in assessing neuromuscular function, make it a pre-
ferred choice over iEMG for evaluating patients with neuromas in many cases.
However, the specific clinical question and individual patient factors would ulti-
mately guide the choice between these techniques.
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1.3 HMI Interfacing Design

The core of the project stems from the briefly mentioned collaboration between
the University Hospital of Getafe "peripheral nerve and brachial plexus unit" and
the electronics and automation’s department at Comillas ICAI. In this chapter
we will explain in detail the original project, the design and manufacture of the
original prototype for the analog sEMG capture device envisioned. Also at the end,
the evolution of that original prototype into a digital capture device completely
manufactured will be explained briefly.

As a disclaimer for this chapter and subsequent ones, some graphic images from
operations with animals and use of the prototypes will be shown.

1.4 Designing a Hardware EMG-recorder device.

The nature of sEMG and other bio-signals stem from the use of the human body of
electric and chemical means of communication. As mentioned in previous chapters
this signals are called Action Potentials and are at the very core a discharged caused
by the polarization-depolarization of membranes. The figure 1.3 shows examples of
EMG recordings that perfectly illustrate the main points that need to be addressed
for the design of our EMG-recorder device.

1. Maximizing the signal-to-noise ratio: The EMG signal is very small (0-
10 mV peak-to-peak or 0-1.5 mV RMS) compared to potential noise sources.
Key noise sources include inherent noise from electronic components, ambient
electromagnetic noise (e.g. 50/60 Hz from power lines), motion artifacts
from electrodes and cables, and interference from other bio-potentials like
ECG. Using high quality electronics, proper circuit design and construction
techniques is important to maximize the signal-to-noise ratio.

2. Avoiding distortion of the EMG signal: The relative contribution of
different frequency components in the EMG signal should not be altered by
the recording process. The EMG signal has usable energy from 0-500 Hz,
with dominant energy between 50-150 Hz. Filters used to reduce noise must
be designed carefully. Distortion due to delay is unavoidable. Furthermore,
this delay is dependant due to the nature of non-linear amplification on the
frequency, meaning a "waveform distortion" will appear with different levels
of phase being applied on different harmonics. There will be a need for
precisely determining the operating frequency band.

3. Selecting appropriate electrodes for the application: Surface electrodes
are non-invasive but have limitations - they can only record superficial mus-
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Figure 1.3: The image shows three examples of electromyogram (EMG)
recordings from individuals with different neuromuscular conditions. 1) 44 year
old Male without neuromuscular condition history. 2) 62 year old man with chronic
low back pain and neuropathy. 3) 57 year old man with myopathy

Titulo del TFM
Autor del TFM

6



cles, are affected by subcutaneous tissue, and risk cross-talk from adjacent
muscles. Intramuscular fine-wire or needle electrodes can record from deep
muscles and specific motor units but are invasive. Electrode material, size,
shape and inter-electrode distance affect selectivity and signal quality. The
choice of surface or intramuscular electrodes depends on the specific clinical
or research application. [6]

On the issue of appropriate electrodes the University Hospital of Getafe has
kindly lent the project a set of electrode pairs that will be used to test and pro-
totype during the design phase while the most advanced or even more invasive
ones will be saved for the trials. As such we will be mentioning their models and
characteristics as they begin appearing along the project.

Given all of this conditions the design choice relied mainly now on the way this
different challenges will be tackled. There is a wide array of electronics capable of
filtering, whether digital or analog, and cleaning the signal as intended but each
one offers it´s own set of challenges. The nature of this thesis compelled the design
to follow a more analog approach. With an analog circuit with a pass band filter
and a rudimentary but effective amplification we can tackle the issue of cleaning up
the unwanted noise outside of our main operational frequency band (up to 10kHz),
while avoiding the need for programming a filter/amplifier after the ADC. In this
case 10kHz is not a significant enough cutoff frequency to induce much latency
and/or quantization error. But the option for a simple amplifying and filtering
circuit proved to be reliable for our purposes. After this analog stage a portable
oscilloscope model ADALM-2000 will be employed to capture the signal and then
capture it and visualise it on a computer.

The analog circuit itself is comprised of 2 sections: an amplifying phase
and a filtering phase. Also the analog circuit is a floating differential EMG
recording device. The nature of a signal in the human body is that we cannot rely
on a ground connection and the differential EMG recording device would provide
us a comprehensive recording of the SMU action potentials happening across the
muscle. Thus, deep care was also put on reducing incoming noise from power
sources and from floating voltages.

The amplifying phase´s main goal is to increase the definition of the incoming
signal without affecting the SNR. If filtering happened first, it would attenuate
parts of the signal close to the noise floor, and then amplifying would boost noise
as much as signal, resulting in poor SNR. This way the second phase, filtering,
can reliably cut more of the noise out of the wanted EMG. The different sections
of the circuit can be seeing in the following figures

The power sources and the sources of the amplifier have been lined with
graphite beads and condensers to reduce the source-noise.
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Figure 1.4: Amplification phase of the Analog EMG section of the EMG recorder
device. AD8422 is a rail-2-rail instrumentation amplifier that provides robust input
protection without sacrificing noise performance.

1.4.1 Amplification phase:

The instrumental amplifier proved to be a reliable choice to base the amplification
phase upon. There are 3 main features why we choose this model:

1. Low-power consumption: aiming at a a future wearable device to control
a prostheses we need to take into account power consumption even at early
stages of the process. The AD8422 has a maximum quiescent current of only
368 νA, making it well-suited for power-sensitive applications.

2. Low noise and distortion: With a maximum input voltage noise of 8
nV/Hz at 1 kHz and 0.15 µV p-p RTI noise (at gain of 100), the AD8422
is a low-noise amplifier. It also achieves low distortion, with 0.5 ppm non-
linearity at a gain of 1 with a 2 kΩ load. For us SNR is critical and given
that the frequency band we will be operating with ranges from 0 to 10kHz
then it suits the requirements properly.

3. Adjustable gain: The gain the device has can be adjusted by a external
set of resistors. This would prove useful as setting up multiple gains can help
testing and counteracting the auto-focus setting on the capturing device.

Tho modify the gain value of the amplification circuit, the manufacturer pro-
vides in the spreadsheet the following formula:
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Figure 1.5: pin-out diagram for the AD8422 rail to rail instrumental amplifier.
Courtesy of Analog Devices.

G = 1 + 19.8kΩ/RG

Where G, corresponds to the wanted Gain value and Rg to the variable resistance
that is added externally per the figure 1.5.

Further considerations have been taken to reduce unwanted noise from sources
or other artifacts to appear in our signal, such us graphite beads to Vcc and Vee
and a high-pass filter to take out any offset coming in from the measurement.

1.4.2 Filtering phase:

The subsequent filtering phase main goal is to maximise SNR. In order to do this a
low pass filter implementation will occur where the frequency cut-off will happen
at 10kHz. Given that sEMG and EMG signals frequency band lies between 0
and 10kHz, more concentrated around 1kHz, the design took the shape of the 1.6
The image in 1.7 shows the plot simulated and expected at 10kHz for the filtering
circuit.

The filtering phase can phase the signal up to 90º from the original one. This
has been deemed enough for our uses. The lower the frequency the bigger the
delay the signal suffers, but since the signal is focused around the bands for 1kHz
and around, then the average delay would be around 0,25 ms. Which can be
disregarded for our current prototyping.

1.4.3 ADC and capturing:

An HMI is characterized for translating biomedical signals to digital ones. The
amplification and filtering were performed in Analog so the use of an ADC is
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Figure 1.6: Filtering phase of the Analog EMG section of the EMG recorder
device. It is comprised of two amplifiers in a non-inverting configuration, the
shown configuration provides a low-pass filter with a cut-off frecuency of 10kHz
(-3dB gain at 10kHz).

Figure 1.7: Simulation plot from a filtering phase LTSpice simulation. The green
plot shows the voltage of a 10kHz sine wave at the beginning of the filtering and
the blue shows its corresponding dampened signal. Since 10kHz is the cut-off
frecuency there is a dampening of 3dB and a slight delay of 90º.
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Figure 1.8: ADALM2000 Active Learning Module Portable Oscilloscope by Analog
Devices

needed to finalize the EMG capture device. With the use of ADALM2000 Active
Learning Module to sample the signal and the Scopy program to visualize it we
finalized our prototype. This tool by Analog Devices belongs to a family of portable
oscilloscopes. This device would prove useful for the following reasons:

• High sampling rate and resolution: The ADALM2000 features 12-bit
ADCs running at 100 MSPS. This allows it to accurately digitize signals up
to 25 MHz bandwidth. The high sampling rate and resolution are important
for capturing cleaned up analog signals with minimal loss of information.

• Compact and affordable: The ADALM2000 integrates the ADC and
many other instruments into a small, portable form factor that can fit in
a pocket. And it does this at a very affordable price point compared to
standalone benchtop instruments. This makes it an economical choice for
digitizing signals in a variety of settings, like laboratory or hospital.

• Sufficient analog bandwidth: While the ADC runs at 100 MSPS, the
analog input bandwidth is around 25-30 MHz. This is more than enough for
most applications, allowing the ADC to faithfully capture the full spectrum
of the cleaned up analog signal without aliasing.

The design of the analog phase - amplification and filtering - thus had to be
adapted to fit the multiple range of electrodes used and also the connection to the
ADALM ADC phase. For manufacturing the tool kiCad was employed to adapt
the electronic design into a PCB design. Then a BOM was generated and the
PCB printed. The choice of components was made with cost and PCB real-state
in mind, as well as the requirements of the design.

For more details refer to the Annexes where the full electronic and PCB
blueprints will be attached.
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Figure 1.9: Amplification phase blueprint. It shows a two channel sEMG analog
amplifying phase. A choice was made during the design two include two recording
channels to make full use of the ADALM2000 double channel capacity.

Figure 1.10: Filtering phase with two channels.
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Figure 1.11: Snapshot of the final prototype PCB design in kiCAD PCB editor.

Figure 1.12: Final Printed PCB as shown during the tesbench performed in the
lab to test it´s performance.
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Figure 1.13: Photography during the workshops at UHG to understad the core of
the problem and get to know the team under Dr.Andrés Maldonado

1.5 Clinical Trials, Learnings and Results

Being the main goal of this collaboration the use of the prototype in a clinical
environment a series of tests and trials have been performed with Dr.Andrés Mal-
donado and his team to test the viability of the prototype throughout various
clinical trials.

Originally Prof. Romano Gianetti, Prof. Jose Daniel Muñoz Frias and two
students, Alvaro Martín and me, attended the hospital of Getafe to an introduction
to the topic on February 2023. Then a phase of State of the Art was kicked off until
September 2023 when the design phase of the prototype started. In the meanwhile
a series of trials took place to determine the best way to insert the device. The
trial subjects came from a supply of testing rabbits owned by the Hospital for such
tests. At first the design consisted in protruding cables connected to electrodes
embedded in the muscle tissue. This way proved to be dangerous to the rabbits we
performed trials with, due to the damage and loss of blood that could occur when
the rabbit tried to extract the cables from its hind legs, where the electrodes were
implanted for testing. Another leasson learned from the original test came from
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Figure 1.14: Test-bench with one of the rabbit subjects to test the electrodes and
show the behaviour of the muscle tissue.

the muscle tissue itself. As explained at the beginning of this chapter, a Neuroma
is a amalgam of muscle and neural tissue, and although it behaves slightly different
than existing tissue, it still needs blood flow to generate biomedical signals.

Subsequent attempts focused on subcutaneous implantation of the full device
in a biocompatible casing and transmitting the signal via bluetooth. As such, a
new device was designed on the basis of the prototype that is the topic of this
thesis. This advanced implantable was requested, designed and built by a third
party.

The testing of the prototype, as well as the trials with the advanced piece were
succesful in highlighting the viability of this process to capture EMG signals from
muscle tissue.
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Figure 1.15: Image from the Environmental Lab at university taken during the
sealing operation of the bio-compatible casing. Using UV,the same resin used in
the Additive Manufacturing process, is cured to seal the prototype.
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Figure 1.16: Image of the operating room during the subcutaneous implantation
of the advanced device
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Figure 1.17: Image taken post-operation where the testing process can be seeing
taking place. The rabbit is encased in a box, while at the same time monitoring the
prototype through the explained interfacing (Scopy and ADC). The image shows
the instant activation is recorded for the first time from the EMG capturing device
implented on the subject.
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Chapter 2

Classifying the behaviour of EMG in
trans-humeral amputees through DL
applications.

The particular application for this project will guarantee the ability for amputees
and people suffering from traumatic injuries to not be limited in movement via
the application of the discoveries from the previous chapter 1. Nevertheless, as
explained, Neuroma pose a significant issue when analysis are performed due to
the special and often traumatic nature of their appearance. The signal itself will
experience changes in it´s shape meaning shifting properties both in the time-
domain and frequency-domain. To showcase this and try to classify the behaviour
of these signals a study will be performed applying DL techniques with a publicly
available dataset of sEMG signals.

EMG signals are bio-electric action-potentials that propagate across the mus-
cular tissue. These bio-signals have many properties in the time domain and in
the frequency domain that are popularly used to extract bio-markers of health
and behaviour - e.g. tissue deterioration from shifts in frequency range - for the
respective muscle behind. Continuing the work in the MEng Thesis titled Embed-
ded Sensorization and Deep Learning Based Classification for Prosthetic Control
[7], this paper aims to provide a exhaustive understanding of EMG in Neuroma -
traumatised muscle tissue - for the purpose of the overarching research proposed
in the paper aforementioned [7] .
This paper includes an explanation on the dataset employed for the analysis -
NinaPro MeganePro Dataset -, as well as explanations of the methodology used,
the DL models employed (LSTM, RNN, GRU, ...) and other tools. The final
classification results will be compared against a test-bench of popular models from
[1] [8]
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2.1 Methodology

Before explaining the experiment and the methodology it is important to under-
stand the tools employed. The main goal of this is to create a classifier through
which we can understand how to approach the problem at hand.

The past few decades have witnessed unprecedented advancements in the field
of deep learning (DL), transforming how we approach and solve complex problems
across various domains. Initially driven by the resurgence of neural networks and
the development of sophisticated architectures, DL has become the cornerstone
of modern artificial intelligence (AI) systems. With the advent of powerful com-
putational resources and large-scale datasets, neural networks have evolved from
simple perceptron models to intricate architectures capable of learning from vast
amounts of data. Convolutional Neural Networks (CNNs) revolutionized image
recognition, while advancements in Recurrent Neural Networks (RNNs) have sig-
nificantly impacted sequential data processing, such as natural language processing
and time-series analysis.

2.1.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) represent a class of neural networks that are
particularly well-suited for processing and analyzing sequential data, such as time-
series. Unlike traditional feedforward neural networks, RNNs possess recurrent
connections that enable them to maintain an internal state or "memory." This
capability allows RNNs to capture and utilize temporal dependencies in the input
data, making them ideal for applications where contextual information across time
steps is crucial such as signals of any kind. Predominant applications include
sound-related signal processing. Applying the same pronciples we can utilize this
family of NN to our advantage in the time domain of the sEMG.

In a standard RNN, the output from a neuron can be fed back as input to
neurons in the previous layers. At each time step, the RNN receives an input and
produces an output based on the current input and the internal state derived from
previous time steps. This recurrent feedback loop facilitates the persistence of
contextual information, allowing the network to learn complex temporal patterns.
However, vanilla RNNs face significant challenges due to the vanishing and explod-
ing gradient problem, which limits their ability to learn long-term dependencies
effectively.
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Figure 2.1: Structure of an LSTM neuron. Image taken from Liu et al. (2020).

2.1.2 Long Short-Term Memory (LSTM) Networks

To address the limitations of vanilla RNNs, Long Short-Term Memory (LSTM)
networks were developed. LSTMs extend the capabilities of RNNs by introducing
a "memory cell," a specialized unit designed to maintain its state over extended
periods. The memory cell is regulated by three distinct gates: the forget gate, the
input gate, and the output gate.

• Forget Gate: Determines what information should be discarded from the cell
state.

• Input Gate: Decides what new information should be stored in the cell state.

• Output Gate: Controls what information is output based on the current
input and the cell state.

At each time step, the LSTM can selectively read from, write to, or reset the
memory cell using these gates. This sophisticated gating mechanism allows LSTMs
to learn and capture both short-term and long-term dependencies, making them
particularly effective for tasks involving sequential data, such as Electromyography
(EMG) signal classification.

2.1.3 Gated Recurrent Units (GRUs)

Gated Recurrent Units (GRUs) represent a more recent advancement in RNN
architectures, aiming to address the vanishing gradient problem with a simpler de-
sign compared to LSTMs. GRUs combine the forget and input gates into a single
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"update gate" and merge the cell state and hidden state. This streamlined struc-
ture reduces the computational complexity while retaining the ability to capture
long-term dependencies.

• Update Gate: Controls how much of the previous memory to retain.

• Reset Gate: Determines how to combine the new input with the previous
memory.

The simpler architecture of GRUs results in faster training times and lower com-
putational requirements, often achieving comparable performance to LSTMs in
various applications.

2.1.4 Comparison of RNNs, LSTMs, and GRUs for EMG
Classification

In the realm of Electromyography (EMG)-based gesture recognition, a variety of
studies have been conducted to evaluate and compare the performance of Recur-
rent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and
Gated Recurrent Units (GRUs). These studies highlight both the strengths and
limitations of each architecture, offering insights into their suitability for surface
EMG (sEMG) classification models.

Simão et al

. Simão et al. conducted a comprehensive comparison between vanilla RNNs,
LSTMs, and GRUs, focusing on their classification accuracies and computational
efficiencies. The key findings from this study revealed that although vanilla RNNs,
LSTMs, and GRUs achieved similar levels of classification accuracy, LSTMs and
GRUs had a distinct advantage in terms of model complexity and computational
efficiency. Specifically, LSTMs and GRUs required only one-third the number of
parameters compared to vanilla RNNs. This reduction in parameters translates
directly to faster training and inference times, which is particularly beneficial for
real-time applications of sEMG classification where low latency is crucial. The
reduced computational burden also facilitates deployment on resource-constrained
devices, such as embedded systems in prosthetic control.

Nasri et al. [3]

In a separate study, Nasri et al. explored the performance of a basic RNN archi-
tecture on a 6-gesture EMG dataset, achieving an accuracy of 77.85
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Koch et al.

Koch et al. performed a comparative analysis involving feedforward networks,
vanilla RNNs, LSTMs, and GRUs to assess their effectiveness in EMG classifi-
cation. Their findings indicated that both static models (feedforward networks)
and dynamic models (RNN variants) demonstrated similar accuracies for sEMG
classification. This suggests that, for some sEMG classification tasks, the tem-
poral dependencies captured by RNNs may not provide a substantial advantage
over simpler feedforward architectures. However, it is important to consider that
the dataset characteristics and the specific application requirements play a critical
role in determining the most suitable model. For tasks where capturing temporal
dynamics is essential, such as recognizing complex or subtle gestures over time,
RNNs, LSTMs, and GRUs may still offer significant benefits over static models.

2.1.5 CNN and CNN in sEMG

CNNs are a class of deep learning models that have achieved state-of-the-art per-
formance in computer vision tasks like image classification and object recognition.
The key characteristics of CNNs are:

• Convolutional Layers: These layers perform convolution operations to ex-
tract features from the input data. Convolution involves sliding a small
matrix called a kernel or filter over the input, computing the dot product at
each position. This results in feature maps that highlight specific patterns
in the input.

• Pooling Layers: Pooling layers downsample the feature maps by summarizing
the presence of features in patches of the input. This makes the representa-
tions approximately invariant to small translations of the input.

• Fully Connected Layers: After several convolutional and pooling layers, the
high-level reasoning in the network is done via fully connected layers. These
interpret the feature representations and perform the final classification or
regression task.

CNNs are inspired by the organization of the animal visual cortex. They exploit
spatially-local correlation by enforcing a local connectivity pattern between neu-
rons of adjacent layers - each neuron is connected to only a small region of the
input volume. This enables CNNs to learn spatial hierarchies of features, from low-
level edges to high-level semantic concepts. CNNs have been successfully applied
to sEMG signal classification, achieving state-of-the-art performance:
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1. Raw sEMG as Input: The raw multi-channel sEMG signals can be directly
fed into a CNN. The 1D convolutions learn to extract discriminative features
from the time-series data.

2. Spectrogram Images: The sEMG signals can be converted into spectrograms
using Short-Time Fourier Transform (STFT) or Continuous Wavelet Trans-
form (CWT). The resulting 2D time-frequency representations are then clas-
sified using a CNN.

3. Hybrid CNN-RNN Models: CNNs are often combined with recurrent neural
networks (RNNs) like LSTMs and GRUs to jointly model the spatial and
temporal dependencies in sEMG signals. The CNN extracts spatial features
which are then fed into the RNN to capture the temporal dynamics.

CNNs are a powerful tool for sEMG signal classification. They automate fea-
ture learning, provide invariance to signal variations, model spatio-temporal depen-
dencies, and achieve high classification performance. With the increasing availabil-
ity of sEMG datasets, CNNs are expected to further advance the state-of-the-art
in sEMG-based gesture recognition and prosthetic control.

2.1.6 Dataset Explanation

Since our main goal is to be able to create a classifier at par with what the state-
of-the-art offers we will be training and testing our models in the widely used and
publicly available dataset called Ninapro. Our particular dataset is the dataset
DB5 and DB3.

The datasets Ninapro DB5 and DB3 are a publicly available sets of data includ-
ing sEMG, inertial, kinematic and force data from 11 trans-radial amputees (DB3)
and 10 intact subjects (DB5) while repeating up to 49 and 52 hand movements
plus the rest position, respectively. The focus of this exercise will take place on the
sEMG data and labels, disregarding the use of the kinematic and other signals.

The feature labels in both datasets present 12 channels of sEMG recordings
at the same frecuency 200 Hz of sampling, although with t¡different recording
devices. We have considerd this as an advantage with training to increase the
generalisation capabilities of the model. The distribution of the electrodes along
the arm of the subjects are the same.

The target labels for our study will be hand movement labels present in
experiment B of each of these datasets. In particular and due to the complexity of
hand signals, we have chosen to focus in a samll subset of these. Small enough to
not suppose a computationally intensive problem while at the same time ensuring
we do not fall into any label unbalance.
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Clenched Fist Experiment B Labels 6 And 17
Open Hand Experiment B Label 5
Wrist Flexion Experiment B Label 13
Wrist Extension Experiment B Label 14
Radian Deviation Experiment B Label 15
Ulnar Deviation Experiment B Label 16

Table 2.1: Table showing the encoded labels used in this paper for training the
model belonging to datasets NINAPRO DB3 and DB5

The dataset has the following shape:

Q = (samples, features, labels) = (n, 16, 6) (2.1)

To be able to utilize this time sensitive data we wanted to emphasize the sequential
nature of an sEMG signal. As such the process of separating the data in train and
test splits will be preceded by a sliding window clipping process. Literature shows
a mean sliding window size of 200-300 ms meaning around 40 samples per window
of our 200Hz dataset. The dataset will go through a pre-processing phase like this:

1. sEMG feature normalization: a MinMaxScaler will be employed in order
to normalize the signal among all channels to values between -1 and 1.

2. Sliding window clipping: sliding window with 40 samples (200ms) will
be applied. Human being reflex has a mean around 250ms meaning the
processing time of the sliding window to be as imperceptible as possible.

3. Feature extraction and augmentation: For some of the models and due
to the need for bigger datasets, feature augmentation using random noise
will be applied to create new augmented samples. The aim is to help the
model generalize better by understanding potential variations in the original
signal. Once this feature augmentation has been applied, some of the model
will extract as well features from both the time and frequency domain to
feed into the model, instead of a sequential sEMG.

2.1.7 Features

The literature shows multiple times the need feature extraction or a previous pre-
processing step for the models to be able to easily process the amount of informa-
tion in a sEMG signal. From artifacts to EMI that can add additional abstraction
to the model, the popular solution is to extract manually features before training
the model - as explained in [9].
The features we will be extracting are the following:
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Feature Formula

RMS RMS =
√

1
N

∑N
i=1 x

2
i

Variance Var = 1
N

∑N
i=1(xi − µ)2

SSI SSI =
∑N

i=1 |xi|
Entropy Ent = −

∑N
i=1 xi log(|xi|+ 1× 10−10)

Zero Crossing Rate ZC = 1
2

∑N−1
i=1 |sign(xi)− sign(xi+1)|

Table 2.2: sEMG Signal Features and formulas

Figure 2.2: Simple LSTM model architecture

2.1.8 Model Architecture

We will model 3 experiments on the DL library Tensorflow Keras to determine the
best classification model according to our needs.

Experiment A: 2 labels and 3 models

The first experiment consist of 3 simple models consisting on a LSTM, GRU and
Bidirectional layer followed by a Dense layer with activation function sigmoidal to
detect multilabel classification on 2 labels ( Clenched Fist and Open Hand).

# simple LSTM and Dense layer model
model = Sequential()
model.add(Input(shape=(window_size, len(features))))
model.add(LSTM(64))
model.add(Dense(len(labels), activation='sigmoid'))

Experiment B: 6 labels and 3 models

Same models will be trained with an increased number of target labels, spanning
the full label subset for our problem.
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Figure 2.3: Simple GRU model architecture

Figure 2.4: Simple Bidirectional model architecture

# model with GRU
model2 = Sequential()
model2.add(Input(shape=(window_size, len(features))))
model2.add(GRU(64))
model2.add(Dense(len(labels), activation='sigmoid'))

Experiment C: CNN-based architecture on 2 and 6 labels

With the use of the feature extraction and augmentation a model will be trained
that instead of studying the Sequential nature of the sEMG classifies based on it´s
features with the following architecture.

# simple bidirectional LSTM model
model3 = Sequential()
model3.add(Input(shape=(window_size, len(features))))
model3.add(Bidirectional(LSTM(64)))
model3.add(Dense(len(labels), activation='sigmoid'))
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Figure 2.5: Double Layer CNN model for classification
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Brand Apple
Model Macbook M2 Pro 13 inch

Processor ARM M2 Pro
Graphics Card ARM M2 Pro neural engine (mps)

Table 2.3: Architecture information of the training platform

2.1.9 Training procedure

We will be training the DL model in a personal laptop with the specifications
showed on table 2.3. During training we will use the power and ease of the keras
library for python.
Keras is a high-level wrapper of the TensorFlow deep learning library. As such we
can use high level instructions for training without having to delve deeper into the
isntrucitons for the different training stages and steps.

Training will be normalized along the differrent models in order to be able
to compare them between each other. as such training will take place constantly
between 100 epochs, will use the Adam optimizer and a batch size of 1024 samples,
to leverage the power of the model.

Originally we had split the dataset in multiple files due to the weight of all
the data, being loaded into memory being to great for memory. What we would
do was randomly split the training and testing files and then sample each set of
windows from each file. This meant that even though the data was randomized
at file level, it was not at window level, making the model overfit to the mean
average of the loss between windows, giving out a result similar to image. This
was the result of a bad choice of training and testing sets and a bad choice of time
window which prevented the model from learning the patterns and abstractions of
the dataset.
The final training and test split is an 70-30 training-test split where the data is
not randomized at file level but at window level. Meaning the context of a window
is not lost, but there is no pattern to overfit to across epochs.

Another learning point during the training of the model was the understanding
of an appropriate loss function for the model at hand. In this case we ended up
using multi-class classification loss function "binary cross-entropy". We chose this
loss function for the follwoing reasons:

1. Independent class probabilities: In multilabel classification, each in-
stance can belong to multiple classes simultaneously. Binary cross-entropy
treats each class independently, calculating the loss separately for each class
label. This is important because the probability of an instance belonging to
one class should not affect the probabilities of belonging to other classes in
multilabel problems.
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Figure 2.6: Snippet of part of the resulting dataset when the model overfitted to
the average mean value of the multiclass output.
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Model Loss Accuracy F1 score Precission Recall
LSTM 0.065257 0.90571 0.22475 0.98977 0.12676
GRU 0.066040 0.90427 0.20757 0.96521 0.11629

Bidirectional 0.048287 0.92996 0.52142 0.99046 0.35385

Table 2.4: Experiment A training results across all 3 simple models, LSTM, GRU
and Bidirectional.

2. Handles class imbalance: Many multilabel datasets have significant class
imbalance, with some classes appearing much more frequently than others.
Binary cross-entropy can be modified to a weighted version that adjusts the
loss based on the ratio of positive examples for each class. This helps the
model focus more on less frequent classes.

3. Optimizes relevant metrics: Accuracy is not a suitable metric for mul-
tilabel classification due to class imbalance. Binary cross-entropy directly
optimizes metrics more appropriate for multilabel problems, such as Ham-
ming loss, precision, recall, and F1 score. Minimizing binary cross-entropy
corresponds to improving these metrics.

4. Enables multiple positive classes: Unlike softmax cross-entropy which is
better suited for multiclass problems where each instance belongs to exactly
one class, binary cross-entropy enables multilabel problems where instances
can have multiple positive class labels. The sigmoid activation function used
with binary cross-entropy outputs independent probabilities for each class.

Since the output of this classification is a probabilistic distribution across all
labels we also applied a threshold as it is usually done in the literature of 0.7,
meaning we would eliminate all classes with low level of certainty.

Once the model is run we would calculate accuracy post-thresholding, F1 score,
loss and recall to understand how the model behaves.

2.2 Experiments

2.2.1 Experiment A:

The results show not so promising values. Where Accuracy both in train and test
boasts values similar to the ones in the literature [1], and the loss reduction is
important, the model displays a recall level both in training and in test that is
subpar. Recall measures the ability of the model to identify positive labels. This
means that even though the model has high accuracy, it still misses a huge number
of positive labels.
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Model Loss Accuracy F1 score Precission Recall
LSTM 0.077960 0.89068 0.071548 0.53333 0.038346
GRU 0.085587 0.88805 0.055432 0.37037 0.029958

Bidirectional 0.088829 0.88265 0.083076 0.28825 0.048532

Table 2.5: Experiment A testing results across all 3 simple models, LSTM, GRU
and Bidirectional.

Figure 2.7: Results showing a snippet of the test set and classification via the three
simple models over two labels

This can happen due to model imbalance, meaning there are very few positive
instances of the few classes in the model, or a very sensitive threshold.

The results from this experiment revealed several critical insights. While the
models demonstrated high accuracy during training, with values around 0.9 for
LSTM and GRU, and 0.93 for the Bidirectional LSTM, the recall scores were
significantly lower, indicating that the models struggled to correctly identify all
instances of the positive class labels. For example, the Bidirectional LSTM, despite
its higher training accuracy and reduced loss (0.0483), achieved a recall of only
0.3538 in training and an even lower recall during testing. This suggests that
the models might be overfitting to the training data or that the thresholding
mechanism needs adjustment. Furthermore, the discrepancy between training and
testing performance, particularly in recall and precision, highlights the challenge
of generalizing from the training set to unseen data. These findings underline the
need for further refinement in both model architecture and training methodology
to improve the robustness of the classifiers.

2.2.2 Experiment B:

In Experiment B, we expanded the scope of our analysis by increasing the number
of target labels from two to six. The labels included a variety of hand and wrist
movements: "Clenched Fist," "Open Hand," "Wrist Flexion," "Wrist Extension,"
"Radial Deviation," and "Ulnar Deviation." This expansion aimed to test the
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Model LSTM GRU Bidirectional
Loss 0.42795 0.43901 0.40731
Acc 0.76672 0.76166 0.77519
F1 0.15384 0.11955 0.20799

Prec 0.96907 0.95348 0.98865

Table 2.6: Train results of experiment B

Model LSTM GRU Bidirectional
Loss 0.47591 0.48956 0.53514
Acc 0.75515 0.75265 0.75265
F1 0.079822 0.061614 0.068187

Prec 0.70742 0.63589 0.56275

Table 2.7: Test results of experiment B

scalability and performance of the LSTM, GRU, and Bidirectional LSTM models
when dealing with a more complex, multi-label classification task.

The results from Experiment B underscored the added complexity in multi-
label classification. While the models showed a reasonable ability to reduce loss
during training, with all three models achieving losses below 0.1, their performance
metrics suggested significant room for improvement. Specifically, the Bidirectional
LSTM model, which performed best in Experiment A, continued to show relatively
high accuracy during training (approximately 89%), but like the other models, it
exhibited a notable drop in recall and precision when tested on unseen data. The
increased label set introduced additional challenges, such as class imbalance and
the need for the model to discern subtle differences between similar movements.
This was reflected in the lower F1 scores and precision, particularly in the testing
phase, where the models struggled to maintain their training performance levels.
These outcomes emphasize the necessity for advanced techniques such as better
feature engineering, more sophisticated model architectures, and potentially en-
semble methods to handle the intricacies of multi-label classification in sEMG
signals.

2.2.3 Experiment C:

Experiment C focused on employing a Convolutional Neural Network (CNN)-based
architecture for classifying the sEMG signals, shifting from a sequential analysis
to a feature-based approach. The CNN model aimed to leverage feature extraction
and augmentation to improve classification performance on both six-label tasks.
This approach was motivated by the need to enhance the model’s ability to general-
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Model Loss Acc F1 Prec
Fist 2.28 0.937 0.937 0.937

Open Hand 1.20 0.966 0.966 0.966
Wrist Flexion 1.10 0.969 0.969 0.969

Wrist Extension 1.12 0.968 0.968 0.968
Radial Deviation 1.13 0.968 0.968 0.968
Ulnar Deviation 1.17 0.967 0.967 0.967

Table 2.8: Test results of experiment C on 6 label classification

Fist 0.79 Wrist Extension 0.83
Open hand 0.83 Radial Deviation 0.87

Wrist Flexion 0.83 Ulnar Deviation 83

Table 2.9: AUC for every label in Experiment C

Figure 2.8: ROC curve with AUC values for the binary classification of each
multiclass label
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ize across various types of movements by focusing on the innate features extracted
from the sEMG signals.

The CNN-based model demonstrated significant potential in handling the com-
plexities associated with multi-label classification. By extracting and augmenting
features, the model could focus on important patterns within the sEMG data. Also
the introduction of an additional variable set potentially improving its robustness
against noise and variability in the signals, is a novel approach that needs too be
taken into consideration. During the training phase, the CNN model showed a
consistent reduction in loss, indicating effective learning of the extracted features.
Moreover, the model’s architecture allowed it to capture both spatial and temporal
dependencies in the sEMG data, which is crucial for accurately classifying different
hand and wrist movements.

However, the transition to a feature-based approach also highlighted several
challenges. While the CNN model achieved commendable accuracy and reduced
loss during training, the testing phase revealed the need for further optimization.
The performance metrics, including precision, recall, and F1 score, indicated that
the model, although improved, still struggled with certain movements, especially
in the presence of similar muscle activation patterns. The use of feature augmen-
tation helped mitigate some issues related to class imbalance and signal variability,
but the results suggested that additional strategies, such as combining CNNs with
other deep learning techniques like LSTMs or GRUs, might be necessary to fully
capture the dynamics of sEMG signals for multi-label classification. This exper-
iment underscores the importance of continuous refinement in model design and
training procedures to achieve a robust and generalized sEMG signal classification
system.
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Chapter 3

Conclusion and Future steps

3.1 Conclusion
:

The thesis presented delves into the intricate and highly specialized domain
of surface Electromyography (sEMG) signal processing and classification, focusing
on distinguishing hand and wrist movements through advanced machine learning
techniques. The research primarily leverages datasets NINAPRO DB5, character-
ized by their 12-channel sEMG recordings at 200 Hz, to train and evaluate the
performance of a Convolutional Neural Network (CNN)-based model.

3.1.1 Key Findings and Contributions

1. Data Utilization and Preprocessing: The research emphasizes the im-
portance of the sequential nature of sEMG signals, employing a sliding window
technique to segment the data effectively. This preprocessing step ensures that
temporal dependencies within the sEMG data are maintained, which is crucial
for accurate classification. Normalization techniques, such as MinMaxScaler, were
used to standardize the data across different channels, thus preparing it for efficient
model training.

2. Model Architecture and Training: The CNN-based model was selected
for its robustness in handling spatial and temporal dependencies inherent in sEMG
data. The model architecture was designed to extract meaningful features from the
sEMG signals, focusing on enhancing its ability to generalize across various hand
and wrist movements. Feature extraction and augmentation played a significant
role in improving classification performance, as these steps allowed the model to
focus on critical patterns within the data.

3. Performance and Evaluation: During the training phase, the CNN
model demonstrated a consistent reduction in loss, indicating effective learning

37



of the extracted features. The architecture of the model enabled it to capture
both spatial and temporal dependencies, essential for accurately classifying dif-
ferent movements. The evaluation metrics, including precision, recall, and F1
score, reflected the model’s overall performance. Although the model achieved
commendable accuracy, certain challenges remained, particularly in distinguishing
movements with similar muscle activation patterns.

4. Challenges and Future Directions: The transition to a feature-based
approach highlighted several challenges, notably the need for further optimization
to enhance the model’s robustness against noise and variability in the signals.
While feature augmentation helped mitigate some issues related to class imbalance
and signal variability, the results suggested that additional strategies might be
necessary. Combining CNNs with other deep learning techniques such as Long
Short-Term Memory (LSTM) networks or Gated Recurrent Units (GRUs) could
potentially capture the dynamics of sEMG signals more effectively.

5. Innovative Approaches: The introduction of an additional variable set
to improve the model’s robustness against noise is a novel approach that merits
further exploration. This innovation underscores the importance of continuous
refinement in model design and training procedures. The research highlights the
potential of CNN-based models in sEMG signal classification while acknowledging
the need for ongoing development to achieve a more generalized and robust system.

3.1.2 Practical Implications

The findings from this research have significant implications for the development of
assistive technologies, particularly in the field of prosthesis and rehabilitation. Ac-
curate classification of hand and wrist movements using sEMG signals can lead to
more intuitive and responsive control systems for prosthetic limbs. The advance-
ments in feature extraction and model training presented in this thesis contribute
to the growing body of knowledge aimed at improving the quality of life for indi-
viduals relying on assistive devices.

Additionally, as the scope for a future collaboration between UHG and Comillas
ICAI broadens, this POC has proven fruitful to determine the initial approach to
this technology and the tests to be performed.

3.2 Future Work

While this project was definitely a POC for a bigger scope, it still manages to light
up some areas that can have a profound impact in research. Thus, next steps from
this POC can be easily determined.
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On the Hardware side, it is important to leverage the latest findings in IoT
technology and during our work to enhance the reach of capabilities of this device
while keeping the original concept. as such i would improve certain aspects of it.

1. Power consumption and heat dissipation: Optimizing power efficiency
and thermal management is critical for implantable devices that require long
usage hours and high computational loads. Some strategies to consider:

• Utilize ultra-low power micro-controllers like the ESP32 family, which
offer a range of power modes (e.g. deep sleep, hibernation) to dynami-
cally scale power based on workload. The ESP32 can consume as little
as 5µA in deep sleep.

• Implement efficient power gating and clock gating techniques to selec-
tively disable unused components and reduce dynamic power consump-
tion.

• Incorporate advanced packaging materials with higher thermal conduc-
tivity (e.g. ceramics, metallic substrates) to improve heat spreading
across the PCB.

• Strategically place high-power components and utilize thermal vias,
heat sinks, and heat spreaders to create a more even thermal distri-
bution and avoid localized hotspots.

2. Telemetry and wireless communications: Enabling wireless data trans-
mission is essential for seamless telemetry and remote device management
without invasive procedures. Key considerations include:

• Leverage the robust Wi-Fi and Bluetooth capabilities of IoT-focused
micro-controllers like the ESP32. The ESP32 supports 802.11b/g/n
Wi-Fi, Bluetooth 4.2, and Bluetooth Low Energy (BLE).

• Implement a dual-band implantable rectenna system to efficiently har-
vest and convert RF energy at multiple frequencies (e.g. 915 MHz and
2.45 GHz) for wireless power transfer to the implant.

• Utilize MQTT or similar lightweight IoT communication protocols to
minimize bandwidth and power requirements for telemetry data trans-
mission.

• Ensure secure data encryption and access control to protect sensitive
patient information and prevent unauthorized device manipulation.

3. Digital pre-processing: Integrating digital preprocessing on the implant’s
microprocessor can reduce data transmission overhead and enable more effi-
cient, real-time signal analysis. Approaches include:
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• Exploit the digital signal processing (DSP) capabilities of IoT micro-
controllers like the ESP32, which includes accelerated FFT, matrix/vec-
tor operations, and digital filtering.

• Implement edge AI techniques to perform inference and feature extrac-
tion directly on the implant, reducing raw data transmission.

• Optimize memory usage and processing algorithms to fit within the
constrained resources of the embedded device.

• Evaluate trade-offs between preprocessing complexity, power consump-
tion, and wireless data rates to find an optimal balance for the specific
application.

By incorporating the latest advancements in ultra-low power computing, wire-
less connectivity, and edge processing, our implantable biomedical device can
achieve enhanced functionality, energy efficiency, and data intelligence while mini-
mizing size and heat generation. A thoughtful, system-level approach considering
the inter-dependencies between power, thermal, communication, and processing
aspects is key to developing a robust and clinically viable solution.

3.3 Conclusion

In summary, this thesis has made substantial contributions to the field of sEMG
signal processing and classification. The CNN-based model developed demon-
strates significant potential in accurately classifying hand and wrist movements,
paving the way for more advanced and intuitive control systems for prosthetic de-
vices. However, the challenges identified underscore the need for ongoing research
and development to refine these models further. The journey towards creating
a robust, generalized, and real-time sEMG signal classification system continues,
with this research laying a strong foundation for future advancements.
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Appendix A

Planos de Diseño

41







Titulo del TFM
Autor del TFM

42



Appendix B

Ethical Compliance

Declared by the ethical committee in animal experimentation from the hospital of
Getafe, spearheaded by Dr. Rosa Fernández Lobato, the experiments and proce-
dures carried out are all in accordance to these entities highest ethical standards.
Sanctioned to do so by the following document:
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Appendix C

Sustainable Development Goals

This project is in accordance with the SDGs issued by the UN in 2016 and updated
up to the year of this publication 2024. This project falls into the accordance of
categories 3, 9 and 10 of the SDGs:

• SDG 3 - Good health and well being: The focus of this project lies
in exploring the ways the human being, the health and the tech industries
come into contact. Thus continuous development of these solutions and
future more advanced solutions aim to improve quality of life through the
intersection with technology.

• SDG 9 - Industries, Innovation and Infrastructure: Promoting fur-
ther development of a rising industry, and the sectors of prosthetic therapy
and medicine are some of the fields being pushed by projects such as this one.
This research aims to drive future technological advances through the inte-
gration of human-machine interfaces and neuroengineering techniques, fos-
tering innovation and infrastructure development in these specialized fields.

• SDG 10 - Reduced inequalities: This project addresses SDG 10 by seek-
ing to reduce disparities in access to advanced technologies and healthcare
solutions in the areas of prosthetics and neuroengineering. Through the
development of more accessible innovations, the goal is to reduce the oppor-
tunity gap and ensure that individuals from diverse backgrounds can benefit
from advances in human-machine interfaces and neuroengineering, promot-
ing a more equitable society.

45



Titulo del TFM
Autor del TFM

46



Bibliography

[1] Hajar Y. Alimam, Wael A Mohamed, and Ayman S. Selmy. Deep recurrent
neural network approach with lstm structure for hand movement recognition
using emg signals. Proceedings of the 2023 12th International Conference on
Software and Information Engineering, 2023.

[2] Damian Apollo. Action potential basics, 2022.

[3] Reza Bagherian Azhiri, Mohammad Esmaeili, and Mehrdad Nourani. Real-
time emg signal classification via recurrent neural networks. Predictive An-
alytics and Technologies Lab, ME Dept. The University of Texas at Dallas,
2021.

[4] Elias, Elias, Hatanpaa, Kimmo, MacAlliste, Matthew, Daoud Ali, Eliasa
Charbel, and Nasser Zeina. Cervical intradural traumatic neuroma without
history of trauma: illustrative case. Journal of Neurosurgery: Case Lessons,
6, 09 2023.

[5] Research Gate. The origin of biopotentials, 2022.

[6] Carlo J. De Luca, 2002.

[7] A. Quintana. Embedded sensorization and deep learning based classification
for prosthetic control. Master’s thesis, Comillas Pontificial University, 2024.

[8] Diana C. Toledo-Pérez, J. Rodríguez-Reséndiz, R.A. Gómez-Loenzo, and J. C.
Jauregui-Correa 2. Support vector machine-based emg signal classification
techniques: A review. MDPI Applied Sciences, 2019.

[9] Chuhen Wu, S. Farokh Atashzar, M. Ghassemi, and Tuka Alhanai. An lstm
feature imitation network for hand movement recognition from semg signals.
2024.

[10] Hu Yang, Yanzhao Dong, Zewei Wang, Chenjun Yao Jingtian Lai, Haiying
Zhou, Ahmad Alhaskawi, Sohaib Hasan Abdullah Ezzi, Vishnu Goutham

47



Kota, Mohamed Hasan Abdulla Hasan Abdulla, and Hui Lu. Traumatic neu-
romas of peripheral nerves: Diagnosis, management and future perspectives.
Frontiers of Neurology, 2023.

Titulo del TFM
Autor del TFM

48


	Context of the Project, Design and testing of a Human-Machine Interface
	A brief explanation of trauma in nerves and locomotion. Characterizing Neuroma.
	sEMG for muscle activation characterization
	HMI Interfacing Design
	Designing a Hardware EMG-recorder device.
	Amplification phase:
	Filtering phase:
	ADC and capturing:

	Clinical Trials, Learnings and Results

	Classifying the behaviour of EMG in trans-humeral amputees through DL applications.
	Methodology
	Recurrent Neural Networks (RNN)
	 Long Short-Term Memory (LSTM) Networks
	Gated Recurrent Units (GRUs)
	Comparison of RNNs, LSTMs, and GRUs for EMG Classification
	CNN and CNN in sEMG
	Dataset Explanation
	Features
	Model Architecture
	Training procedure

	Experiments
	Experiment A:
	Experiment B:
	Experiment C:


	Conclusion and Future steps
	Conclusion
	Key Findings and Contributions 
	Practical Implications 

	Future Work 
	Conclusion

	Appendix
	Planos de Diseño
	Ethical Compliance
	Sustainable Development Goals
	Bibliografía

	20ca772f-19a2-426f-89c7-97efbe7c980b.pdf
	Context of the Project, Design and testing of a Human-Machine Interface
	A brief explanation of trauma in nerves and locomotion. Characterizing Neuroma.
	sEMG for muscle activation characterization
	HMI Interfacing Design
	Designing a Hardware EMG-recorder device.
	Amplification phase:
	Filtering phase:
	ADC and capturing:

	Clinical Trials, Learnings and Results

	Classifying the behaviour of EMG in trans-humeral amputees through DL applications.
	Methodology
	Recurrent Neural Networks (RNN)
	 Long Short-Term Memory (LSTM) Networks
	Gated Recurrent Units (GRUs)
	Comparison of RNNs, LSTMs, and GRUs for EMG Classification
	CNN and CNN in sEMG
	Dataset Explanation
	Features
	Model Architecture
	Training procedure

	Experiments
	Experiment A:
	Experiment B:
	Experiment C:


	Conclusion and Future steps
	Conclusion
	Key Findings and Contributions 
	Practical Implications 

	Future Work 
	Conclusion

	Appendix
	Planos de Diseño
	Ethical Compliance
	Sustainable Development Goals
	Bibliografía


	20ca772f-19a2-426f-89c7-97efbe7c980b.pdf
	Context of the Project, Design and testing of a Human-Machine Interface
	A brief explanation of trauma in nerves and locomotion. Characterizing Neuroma.
	sEMG for muscle activation characterization
	HMI Interfacing Design
	Designing a Hardware EMG-recorder device.
	Amplification phase:
	Filtering phase:
	ADC and capturing:

	Clinical Trials, Learnings and Results

	Classifying the behaviour of EMG in trans-humeral amputees through DL applications.
	Methodology
	Recurrent Neural Networks (RNN)
	 Long Short-Term Memory (LSTM) Networks
	Gated Recurrent Units (GRUs)
	Comparison of RNNs, LSTMs, and GRUs for EMG Classification
	CNN and CNN in sEMG
	Dataset Explanation
	Features
	Model Architecture
	Training procedure

	Experiments
	Experiment A:
	Experiment B:
	Experiment C:


	Conclusion and Future steps
	Conclusion
	Key Findings and Contributions 
	Practical Implications 

	Future Work 
	Conclusion

	Appendix
	Planos de Diseño
	Ethical Compliance
	Sustainable Development Goals
	Bibliografía


	20ca772f-19a2-426f-89c7-97efbe7c980b.pdf
	Context of the Project, Design and testing of a Human-Machine Interface
	A brief explanation of trauma in nerves and locomotion. Characterizing Neuroma.
	sEMG for muscle activation characterization
	HMI Interfacing Design
	Designing a Hardware EMG-recorder device.
	Amplification phase:
	Filtering phase:
	ADC and capturing:

	Clinical Trials, Learnings and Results

	Classifying the behaviour of EMG in trans-humeral amputees through DL applications.
	Methodology
	Recurrent Neural Networks (RNN)
	 Long Short-Term Memory (LSTM) Networks
	Gated Recurrent Units (GRUs)
	Comparison of RNNs, LSTMs, and GRUs for EMG Classification
	CNN and CNN in sEMG
	Dataset Explanation
	Features
	Model Architecture
	Training procedure

	Experiments
	Experiment A:
	Experiment B:
	Experiment C:


	Conclusion and Future steps
	Conclusion
	Key Findings and Contributions 
	Practical Implications 

	Future Work 
	Conclusion

	Appendix
	Planos de Diseño
	Ethical Compliance
	Sustainable Development Goals
	Bibliografía

	20ca772f-19a2-426f-89c7-97efbe7c980b.pdf
	Context of the Project, Design and testing of a Human-Machine Interface
	A brief explanation of trauma in nerves and locomotion. Characterizing Neuroma.
	sEMG for muscle activation characterization
	HMI Interfacing Design
	Designing a Hardware EMG-recorder device.
	Amplification phase:
	Filtering phase:
	ADC and capturing:

	Clinical Trials, Learnings and Results

	Classifying the behaviour of EMG in trans-humeral amputees through DL applications.
	Methodology
	Recurrent Neural Networks (RNN)
	 Long Short-Term Memory (LSTM) Networks
	Gated Recurrent Units (GRUs)
	Comparison of RNNs, LSTMs, and GRUs for EMG Classification
	CNN and CNN in sEMG
	Dataset Explanation
	Features
	Model Architecture
	Training procedure

	Experiments
	Experiment A:
	Experiment B:
	Experiment C:


	Conclusion and Future steps
	Conclusion
	Key Findings and Contributions 
	Practical Implications 

	Future Work 
	Conclusion

	Appendix
	Planos de Diseño
	Ethical Compliance
	Sustainable Development Goals
	Bibliografía


	20ca772f-19a2-426f-89c7-97efbe7c980b.pdf
	Context of the Project, Design and testing of a Human-Machine Interface
	A brief explanation of trauma in nerves and locomotion. Characterizing Neuroma.
	sEMG for muscle activation characterization
	HMI Interfacing Design
	Designing a Hardware EMG-recorder device.
	Amplification phase:
	Filtering phase:
	ADC and capturing:

	Clinical Trials, Learnings and Results

	Classifying the behaviour of EMG in trans-humeral amputees through DL applications.
	Methodology
	Recurrent Neural Networks (RNN)
	 Long Short-Term Memory (LSTM) Networks
	Gated Recurrent Units (GRUs)
	Comparison of RNNs, LSTMs, and GRUs for EMG Classification
	CNN and CNN in sEMG
	Dataset Explanation
	Features
	Model Architecture
	Training procedure

	Experiments
	Experiment A:
	Experiment B:
	Experiment C:


	Conclusion and Future steps
	Conclusion
	Key Findings and Contributions 
	Practical Implications 

	Future Work 
	Conclusion

	Appendix
	Planos de Diseño
	Ethical Compliance
	Sustainable Development Goals
	Bibliografía




