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Abstract: The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the
XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that
XX athletes are more prone to suffer non-contact muscle injuries, in comparison with RR and RX
athletes who produce a functional α-actinin-3 in their fast-twitch fibers. This investigation aimed to
determine the influence of the ACTN3 R577X polymorphism on physical performance and injury
incidence of players competing in the women’s Spanish first division of football (soccer). Using a
cross-sectional experiment, football-specific performance and epidemiology of non-contact football-
related injuries were recorded in a group of 191 professional football players. ACTN3 R577X genotype
was obtained for each player using genomic DNA samples obtained through buccal swabs. A battery
of physical tests, including a countermovement jump, a 20 m sprint test, the sit-and-reach test and
ankle dorsiflexion, were performed during the preseason. Injury incidence and characteristics of non-
contact injuries were obtained according to the International Olympic Committee (IOC) statement
for one season. From the study sample, 28.3% of players had the RR genotype, 52.9% had the RX
genotype, and 18.8% had the XX genotype. Differences among genotypes were identified with
one-way analysis of variance (numerical variables) or chi-square tests (categorical variables). Jump
height (p = 0.087), sprint time (p = 0.210), sit-and-reach distance (p = 0.361), and dorsiflexion in the
right (p = 0.550) and left ankle (p = 0.992) were similar in RR, RX, and XX football players. A total
of 356 non-contact injuries were recorded in 144 football players while the remaining 47 did not
sustain any non-contact injuries during the season. Injury incidence was 10.4 ± 8.6, 8.2 ± 5.7, and
8.9 ± 5.3 injuries per/1000 h of football exposure, without differences among genotypes (p = 0.222).
Injury rates during training (from 3.6 ± 3.7 to 4.8 ± 2.1 injuries per/1000 h of training exposure,
p = 0.100) and match (from 47.8 ± 9.5 to 54.1 ± 6.3 injuries per/1000 h of match exposure, p = 0.209)
were also similar in RR, RX, and XX football players. The ACTN3 genotype did not affect the mode of
onset, the time needed to return to play, the type of injury, or the distribution of body locations of
the injuries. In summary, women football players with different genotypes of the p.R577X ACTN3
polymorphism had similar values of football-specific performance and injury incidence. From a
practical perspective, the ACTN3 genotyping may not be useful to predict performance or injury
incidence in professional women football players.

Genes 2022, 13, 1635. https://doi.org/10.3390/genes13091635 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13091635
https://doi.org/10.3390/genes13091635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-5785-984X
https://orcid.org/0000-0002-8060-3914
https://orcid.org/0000-0003-0017-0184
https://orcid.org/0000-0002-3583-7375
https://orcid.org/0000-0003-0721-0150
https://orcid.org/0000-0001-9068-2938
https://orcid.org/0000-0001-5226-7506
https://orcid.org/0000-0003-3357-0045
https://doi.org/10.3390/genes13091635
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13091635?type=check_update&version=1


Genes 2022, 13, 1635 2 of 13

Keywords: athletic performance; exercise-related injury; single nucleotide polymorphism; α-actinin-3
deficiency

1. Introduction

α-actinin-3, encoded by the ACTN3 gene, is a structural protein of the muscle fiber
with a key role at the Z-disc, as it anchors actin filaments to maintain the myofibrillar array
and regulate muscle length and tension during muscle contraction [1,2]. α-Actinin-3 is only
expressed in fast muscle fibers, which suggests that the role of this protein is specific for
fast muscle contractions or those performed with high levels of strength [3]. A common
genetic polymorphism in the ACTN3 gene (rs1815739, c.1858C>T), habitually known as
the R577X polymorphism, leads to the replacement of an arginine (R) with a premature
stop codon (X) at amino acid 577. Homozygous individuals for the X allele in the R577X
polymorphism (XX genotype) produce a non-functional α-actinin-3, and they are habitually
considered α-actinin-3-deficient [4]. In contrast, homozygous individuals for the R allele
(RR genotype) or heterozygote individuals (RX genotype) express functional α-actinin-3,
although it has been suggested that the expression of α-actinin-3 is higher in RR than in
RX individuals [5]. The lack of α-actinin-3 is not linked with any disease as the α-actinin-3
deficiency is compensated by a higher expression of α-actinin-2, an α-actinin isoform
ubiquitously expressed in all muscle fiber types. However, it has been demonstrated
that ACTN3 XX individuals possess several negative phenotypes, such as lower muscle
strength [6] and muscle volume [7], impaired capacity to tolerate muscle strain [8] and
decreased bone mineral density [9].

In sport, the ACTN3 R577X polymorphism is one of the most investigated genetic
variations, as several investigations have found that XX athletes are underrepresented in
elite power-oriented athletes [2,10,11]. Although the exact phenotype(s) that cause(s) the
underrepresentation of XX in power sport are/is not fully identified, the lower physical
performance in sprint activities [12], the higher values of exercise-induced muscle dam-
age [13] and a higher tendency for muscle injuries in XX, in comparison to RR athletes [14]
may partially contribute. Among the power-oriented sports, football (soccer) is an ideal
scenario to investigate the ACTN3 R577X polymorphism as football is a “power/’explosive”
sport and is characterized by the repetition of high-intensity actions, such as sudden ac-
celerations, decelerations, sprints, changes of direction, jumping, and landings [15]. A
current meta-analysis including 17 studies about the influence of the R577X polymorphism
on the athlete status in football concluded that the RR genotype was overrepresented,
while the presence of XX players is lower than in control non-athlete populations [16].
Additionally, in a population of elite Chinese female football players, it has been found that
no player had the ACTN3 XX genotype [17]. These outcomes suggest that the XX genotype
may constitute a potential limitation to becoming an elite professional football player.
However, these investigations only measured the proportions of each R577X genotype in
samples of professional football players, while no football-specific performance phenotypes
were measured.

The influence of the ACTN3 R577X polymorphism on the injury rate in professional
football players is another topic of investigation. Several studies have found that players
with the XX genotype have certain susceptibility to developing non-contact musculoskeletal
injury [18,19] and need more recovery time to return to play after this type of injury [20].
Probably, the lower values of quadriceps and hamstrings isokinetic strength in XX than
RR players constitute a disadvantage to prevent muscle injuries in football [21], as most of
the non-contact muscle injuries in football are located at the thigh, with a particularly high
incidence in hamstring muscle [22]. However, these findings have been found in samples
of male professional football players, while the influence of the ACTN3 XX genotype on the
probability of non-contact muscle injury—or any other type of injury— has not been tested
in professional women football players.
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The purpose of this investigation was to determine the influence of the ACTN3 R577X
polymorphism on physical performance variables and the injury incidence of professional
players competing in the women’s Spanish first division of football (soccer). We hypothe-
sized that XX players would have lower jump and sprint performance and a higher injury
rate of muscle-type injuries than RR players.

2. Materials and Methods
2.1. Participants

One hundred and ninety-three professional football players volunteered to participate
in the study. Participants played for any of the nine teams that competed in the women’s
Spanish first division of football (Primera Iberdrola) in the 2020–2021 season that agreed
to participate in the investigation. The study sample included football players of the
team that won the championship and players from five teams ranked among the top
ten positions of the championship. Players trained for an average of 4.7 ± 1.7 h/week
during the season and performed ~1 competitive match per week, for a total of 30 official
matches during the whole season. From the initial sample, two participants were excluded
because their ACTN3 genotype was not clearly identified in the genotyping analysis. Age,
anthropometric characteristics, field position, and football exposure during the 2020–2021
season of the final sample of 191 professional football players are depicted in Table 1. All
participants included in this investigation were Caucasian. The study protocol conformed
to the Declaration of Helsinki for Human Research of 1974 (last modified in 2013) and was
approved by the University Ethics Committee of Miguel Hernández University. Written
informed consent was obtained from all participants before the onset of the experiment.
Participants’ rights and confidentiality were protected during the whole experiment, and
the genetic information was used only for the purposes included in this investigation.

Table 1. Age, anthropometric characteristics, field position, level, and football exposure of women
football players competing in the first division of Spanish football according to their ACTN3
R577X genotype.

Variable (Units) RR RX XX p Value

Number (frequency, %) 54 (28.3) 101 (52.9) 36 (18.8) -
Age (years) 23.8 ± 4.6 23.1 ± 3.9 24.3 ± 4.1 0.304
Height (cm) 167.7 ± 6.1 166.5 ± 6.5 167.0 ± 5.2 0.438
Body mass (kg) 61.7 ± 6.7 59.9 ± 6.3 61.0 ± 5.5 0.220
Body mass index (kg/m2) 21.9 ± 2.1 21.6 ± 1.7 21.9 ± 1.6 0.422
Forward (frequency, %) 20 (37.0) 28 (27.7) 9 (25.0)

0.638
Midfielder (frequency, %) 13 (24.1) 29 (28.7) 10 (27.8)
Defender (frequency, %) 16 (29.6) 31 (30.7) 15 (41.7)
Goalkeeper (frequency, %) 5 (9.3) 13 (12.9) 2 (5.6)
International level (frequency, %) 14 (25.9) 23 (22.8) 6 (16.7)

0.586National level (frequency, %) 40 (74.1) 78 (77.2) 30 (83.3)
Total exposure time (h) 202 ± 65 212 ± 71 213 ± 78 0.722
Training exposure time (h) 179 ± 64 192 ± 67 189 ± 74 0.614
Match exposure time (h) 23 ± 15 20 ± 14 24 ± 12 0.337

Data are numbers and frequencies (in percentage) or mean ± standard deviation (SD) for each genotype.

2.2. Experimental Design

This investigation is a cross-sectional study to determine the effect, if any, of the
ACTN3 R577X genotype (RR vs. RX vs. XX) on football-specific physical performance and
injury incidence of sport-related injuries suffered by professional football players during
one season. For this investigation, a battery of physical performance tests was performed
in the pre-season and the injuries resulting from their training routines or competitions
were recorded during the whole 2020–2021 season. The questionnaire used to collect the
injuries was based on the consensus statement on injury definitions and data collection in
epidemiological studies of the International Olympic Committee [23].
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2.3. Sample Collection and Genotyping

The DNA samples were collected through buccal smears between January and June
2020. A researcher went to the training facility of each football team to explain the aim of the
investigation, its benefits, and risks, to obtain the written informed consent of participants
willing to take part in the study, and to achieve two buccal swab samples per player for
DNA analysis. During this process, the medical staff of the teams assisted the researcher.
After collection, the samples were refrigerated at 4 ◦C and shipped to the laboratory. Upon
arrival at the laboratory, the extraction of genomic DNA from the samples was carried out
by automatic extraction in QIACube equipment (QIAGEN, Venlo, The Netherlands) to
obtain a solution with a DNA concentration of 25–40 ng/mL. The solution was frozen at
−20 ◦C until genotyped, which was done once all the samples had been received. During
the genotyping process, the p.R577X polymorphism (rs1815739; c.1858C>T) in the ACTN3
gene was genotyped using single nucleotide primer extension (SNPE). For this process,
the SNaPshot Multiplex Kit (Thermo Fisher Scientific, Waltham, MA, USA) was used with
capillary electrophoresis fragment analysis in ABI3500 equipment (Applied Biosystems,
Foster City, CA, USA). Genotyping of ACTN3 rs1815739 polymorphism was conducted
using a TaqMan SNP Genotyping Assay (Applied Biosystems, CA, USA) and the reaction
was performed in an Applied Biosystems 7500 Fast Real-Time PCR System (Applied
Biosystems). All analysis that did not offer a clear genotype assignment were repeated.
If the assignment of a genotype was still unsuccessful, the participant was removed for
the analysis. The PCR was performed according to the previously published method [24].
Positive controls for all genotypes were obtained from the Mexican branch of the CANDELA
Consortium. Fifty samples randomly selected samples were genotyped by duplicate, and
we confirmed that the genotyping results were perfectly agreed between duplicates.

2.4. Physical Performance Testing

During the pre-season of the 2020–2021 season, football players performed a battery
of performance tests. The performance tests were administered by the strength and condi-
tioning staff of each team and were performed following the same procedures, including
materials, order, and recovery between tests (>5 min). All participants were familiarized
with the tests as they were part of the team’s physical assessments to assess players’ general
physical conditioning after the transition period. All performance tests were performed
within the same day and 24 h after a training day of low intensity. On the day of test-
ing, anthropometric data were collected, and players completed a standardized warm-up
consisting of 8 min of light-to-moderate runs, lower-limb dynamic stretching and sub-
maximal attempts of sprinting and jumping tests. After this, participants performed the
following tests.

2.4.1. Ankle Dorsiflexion

The ankle dorsiflexion range of movement (ROM) was assessed on both ankles using
the Leg Motion system test (LegMotion, Check your Motion, Albacete, Spain) and the
procedures of Calatayud et al. [25]. For this measurement, players were in a standing
position on the Leg Motion system with the foot to be measured on the measurement scale.
The contralateral foot was placed outside the platform with the toes on its edge. Each
player performed the test with their hands on their hips, with the assigned foot on the
middle of the longitudinal line and just behind the transversal line of the platform. While
maintaining this position, the players were instructed to flex the knee forward placing it
in contact with a metal stick. The maximal distance obtained with the knee flexion was
recorded while the player maintained the heel in contact with the platform. Three trials
were allowed for each ankle with 30 s of passive recovery between trials. The best score for
each ankle among these trials was selected for subsequent analysis.
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2.4.2. Sit-and-Reach Test

The sit-and-reach test was performed using the procedures outlined by the American
College of Sports Medicine in their manual for guidelines for exercise testing and prescrip-
tion [26]. A standard sit-and-reach box was used to position the players for the test, and a
sliding ruler centered on the top of the box was used to obtain the scores. Each player sat
on the floor with shoes off, with their legs together, knees fully extended, and soles of the
feet placed against the end of the box. Placing one hand on top of the other, with palms
down, participants then reached forward sliding their hands along the measuring scale.
Two trials were performed, and the best result was used for statistical analysis.

2.4.3. Countermovement Jump

The height reached during a bilateral countermovement jump (CMJ) was measured
using a contact-time platform (Tapeswitch Signal Mat, Tapeswitch Corporation America,
Farmingdale, NY, USA), following the procedures described by Lara et al. [27]. During the
CMJ, participants were instructed to keep their hands on their hips and to jump as high
as possible. Each player performed two maximal CMJs interspersed with 60 s of passive
recovery. The best height for each player was recorded and used for statistical analysis.

2.4.4. Sprint Time

The time during a maximal velocity 30 m sprint in a straight line was measured using
photocells (Witty System, Microgate, Bolzano, Italy), following the protocol described by
Vescovi for a 35 m sprint [28]. Each sprint was initiated 50 cm behind the photocell. Players
started the sprint test in a standing position, with their preferred foot behind the starting
line, followed by accelerating forward at maximal effort until they have passed the last
photocell gate placed at 30 m. Each player performed two maximal 30 m sprints, with at
least 2 min of passive recovery in between the two trials. The test was performed on the
football pitch and participants wore their football cleats. The fastest time was used for
statistical analysis.

2.5. Exposure Times

During the season, the strength and conditioning staff of each team meticulously
registered players’ exposure in training and matches as part of their routines to estimate
players’ load across the season. The warm-up of training activities and matches, the
time employed for strength training activities, and the time during friendly matches were
considered training exposure. Match exposure was computed as the sum of the time
that each player was on the pitch during official matches of the national league and
during international competitions. The strength and conditioning staff of each team sent a
report with individual training and match exposure times to the researchers at the end of
the season.

2.6. Injury Data Collection

In each team, all non-contact injuries were recorded by the medical services of the team
during the 2020–2021 season (from 1 September 2020 to 30 June 2021). For the recording of
injuries, the medical staff used an ad hoc questionnaire created by the research group of
this study, which was filled once a football-related injury occurred. Injuries caused due to
collision with another player or with an object (either direct or indirect) were excluded from
the investigation as they are potentially unaffected by the player’s genotype. Data on injury
epidemiology were obtained prospectively, and all injuries were diagnosed, classified, and
recorded by the medical staff of the football clubs using the classification system developed
by the medical commission of the International Olympic Committee (IOC) [23]. In each
injury, the type of injury, the type of exposure, where it was sustained (training or match),
the existence of recurrence, the mode of onset, and the body location were meticulously
reported. Once the player returned to play with the group, the injury file was closed. We
used the definition of the IOC consensus statement to classify injury severity by using data
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from the day of the injury and the day of their return to playing. Afterwards, injuries were
grouped as slight (1–3 days), mild (4–7 days), moderate (8–28 days), or severe (>28 days).
The medical staff of each team sent a report at the end of the season with the number and
characteristics of the injuries sustained by each player. Injury incidence, in numbers of
injuries per 1000 h of football exposure, was individually calculated for each football player
using the number of non-contact injuries and football exposure time. Injury incidence
during matches and training were also calculated separately using data on the number of
injuries and exposure times in each scenario.

2.7. Statistical Analysis

Data on players’ genotype and performance and injury variables were introduced into
an ad hoc database for analysis with the SPSS software package v.27.0 for Windows (IBM
Corp., New York, NY, USA). The normality of each variable was initially tested with the
Kolmogorov–Smirnov test, and parametric/non-parametric statistics were performed for
normally/non-normally distributed variables, respectively. A chi-square (χ2) test was used
to verify that the genotype frequencies were in Hardy–Weinberg equilibrium (HWE). A
χ2 test was also used to verify if the genotype frequency in our cohort of football players
complied with Hardy–Weinberg, with respect to the 1000 genome database of ethnically
matched controls [29]. For the continuous variables, genotype comparisons (RR vs. RX vs.
XX) were performed using a one-way analysis of variance (ANOVA; followed by Tukey’s
posthoc comparisons) or the Kruskal–Wallis test. For the variables presented as frequency,
the differences in distribution among genotypes were identified with crosstabs and χ2 tests,
including adjusted standardized residuals. When comparing the dominant (RR vs. X-allele
carriers) and recessive (XX vs. R-allele carriers) models, the differences in the distribution of
injury characteristics were tested with χ2 tests and the differences in injury incidence were
calculated with unpaired t-tests. The quantitative variables are presented as mean and SD
(standard deviation) and the qualitative variables are presented by number and frequency.

3. Results

The distribution of the rs1815739 ACTN3 genotype in the sample of women football
players is presented in Table 1 ((28.3/52.9/18.8 for RR/RX/GG), which followed HWE.
Based on frequency data in the 1000 genome database for the European population (allelic
frequency for A/G alleles 56.7/43.7%, respectively), and assuming that this population is in
the Hardy–Weinberg equilibrium, the genotype frequencies would be 31.0/50.0/19.0% for
RR/RX/XX, respectively. The genotypic frequency in our sample of women football players
complies with Hardy–Weinberg, with respect to the 1000 genome database (p = 0.871).

Table 2 contains information about the performance tests performed at the beginning
of the season. There were no differences in ankle dorsiflexion, sit-and-reach distance, jump
height, and sprint time among genotypes. The use of the dominant (RR vs. RX + XX) and
recessive models (RR + RX vs. XX) did not produce any statistically significant difference
in the performance tests.

Table 2. Physical performance variables in women football players competing in the first division of
Spanish football according to their ACTN3 R577X genotype.

Variable (Units) RR RX XX RR vs.
RX vs. XX

Dominant
RR vs. RX + XX

Recessive
RR + RX vs. XX

Right ankle dorsiflexion (cm) 10.0 ± 2.1 10.6 ± 2.8 9.9 ± 2.2 0.550 0.508 0.522
Left ankle dorsiflexion (cm) 10.3 ± 2.8 10.2 ± 2.0 10.3 ± 2.0 0.992 0.914 0.974
Sit-and-reach distance (cm) 10.9 ± 6.1 7.1 ± 8.1 8.2 ± 7.1 0.361 0.172 0.941
Countermovement jump
height (cm) 34.2 ± 5.5 33.8 ± 4.0 33.4 ± 3.5 0.087 0.594 0.599

30 m sprint time (s) 4.80 ± 0.32 4.72 ± 0.77 4.47 ± 0.27 0.210 0.316 0.089

Data are mean ± standard deviation (SD) for each genotype.
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During the season, there were recorded a total of 356 non-contact injuries, which
represents a mean of 1.86 injuries/player/season. Table 3 contains the number (and
frequencies) of players with and without a non-contact injury during the season. The
proportion of players with a non-contact injury varied from 75.9 to 83.3% for each genotype
without differences among genotypes. The proportions of players with a non-contact
muscle injury, ligament injury, and bone injury were also similar among genotypes. The
dominant and recessive models did not produce any statistically significant difference in
the proportion of players with and without a non-contact injury during the season.

Table 3. Distribution of women football players of the first division of Spanish football with/without
an injury according to their ACTN3 R577X genotype.

Variable (Units) RR RX XX RR vs.
RX vs. XX

Dominant
RR vs. RX + XX

Recessive
RR + RX vs. XX

Players with injury
(frequency, %) 41 (75.9) 73 (73.3) 30 (83.3)

0.415 0.914 0.219
Players without injury
(frequency, %) 13 (24.1) 28 (27.7) 6 (16.7)

Players with muscle injury
(frequency, %) 20 (37.0) 29 (28.7) 15 (41.7)

0.298 0.517 0.250
Players without muscle injury
(frequency, %) 34 (63.0) 72 (71.3) 21 (58.3)

Players with ligament injury
(frequency, %) 10 (18.5) 23 (22.8) 10 (27.8)

0.586 0.407 0.401
Players without ligament injury
(frequency, %) 44 (81.5) 78 (77.2) 26 (72.2)

Players with bone injury
(frequency, %)

3
(5.6)

8
(7.9)

2
(5.6) 0.811 0.667 0.741

Players without bone injury
(frequency, %) 51 (94.4) 93 (92.1) 34 (94.4)

Data are numbers and frequencies (in percentage) of players with/without injury reported in the preceding season
from the total number of players within each genotype.

Overall injury incidence was 9.71 injuries per 1000 h of football exposure. Table 4
contains information about injury incidences and the characteristics of the non-contact
injuries sustained by the players during the season depending on their ACTN3 genotype.
Injury incidence was between 8.2 ± 5.7 and 10.4 ± 8.6 injuries/1000 h of football exposure,
without differences among genotypes. The injury rates during training (from 3.6 ± 3.7 to
4.8± 2.1 injuries/1000 h of football training exposure) and during matches (from 47.8 ± 9.5
to 54.1 ± 6.3 injuries/1000 h of football match exposure) were also similar in RR, RX,
and XX football players. The distribution of players according to the number of injuries,
injury severity, exposure type, recurrence, and mode of onset was similar in RR, RX, and
XX football players. The use of the dominant and recessive models did not produce any
statistically significant difference in these epidemiological variables.

Figure 1 contains information about the body area where the non-contact injuries
were located for each genotype. In all three genotypes, the thigh was the most common
location for the injury with proportions between 26.9 to 38.2% of the injuries reported
within each genotype group. The ankle was the second most common location for RR
and XX players, while the knee was the second most common location for RX players.
In any case, the distribution of injuries according to the location was not affected by the
genotype (p = 0.396). Figure 2 depicts the distribution of injuries according to their type in
RR, RX, and XX football players. Muscle injury was the most-common injury type in all
three genotypes with proportions between 40.0 and 45.1% of the injuries reported within
each genotype group. The second most habitual type of injury was joint sprains in all three
genotypes, with frequencies between 28.3 and 32.4% of total injuries within each genotype
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group. The distribution of injuries according to their type was unaltered by the ACTN3
genotype (p = 0.633).

Table 4. Injury incidence, distribution of players according to the number of injuries, and distribution
of injuries according to severity, exposure, recurrence and mode of onset in women football players
of the first division of Spanish football with different ACTN3 R577X genotypes.

Variable (Units) RR RX XX RR vs.
RX vs. XX

Dominant
RR vs. RX + XX

Recessive
RR + RX vs. XX

Incidence
/1000 h of exposure 10.4 ± 8.6 8.2 ± 5.7 8.9 ± 5.3 0.222 0.112 0.714

/1000 h of training 4.8 ± 2.1 3.6 ± 3.7 3.8 ± 3.5 0.100 0.090 0.401

/1000 h of match 54.1 ± 6.3 51.8 ± 9.4 47.8 ± 9.5 0.209 0.163 0.329

Number of injuries
No injury (%) 24.1 27.7 16.7

0.074 0.056 0.884
1 injury (%) 37.0 29.7 27.8
2 injuries (%) 11.1 23.8 25.0
≥3 injuries (%) 27.8 10.9 16.7

Return to play
Severity (days) 39 ± 60 36 ± 65 36 ± 51 0.679 0.543 0.422
Minor (%) 19.5 32.0 29.4

0.127 0.056 0.422Moderate (%) 45.1 38.9 47.1
Serious (%) 35.4 29.1 23.5

Exposure
Training (%) 40.7 39.4 38.2

0.945 0.772 0.797Competition (%) 59.3 60.6 61.8

Recurrence
New onset (%) 85.8 90.9 92.6

0.261 0.112 0.361Recurrent (%) 14.2 9.1 7.4

Mode of onset
Acute sudden onset (%) 76.1 77.1 79.4

0.795 0.615 0.536Repetitive gradual (%) 4.4 5.7 7.4
Repetitive sudden onset (%) 19.5 17.1 13.2

Data are frequencies (in percentage) from the total of injuries recorded in each genotype and mean ± standard
deviation (SD) for each genotype.

Figure 1. Distribution of non-contact injuries according to their body location in women football
players of the first division of Spanish football with different ACTN3 R577X genotypes.
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Figure 2. Distribution of non-contact injuries according to their type in women football players of the
first division of Spanish football with different ACTN3 R577X genotypes.

4. Discussion

Several previous investigations have found that the ACTN3 XX genotype, which pro-
duces α-actinin-3 deficiency, may be deleterious to becoming a professional football player
as the presence of XX players in professional football teams is lower than in control non-
athlete populations [16], and they may be more prone to non-contact muscle-type injuries
than RR football players [18,19]. However, these findings were obtained in samples of
male football players, while the influence of the ACTN3 R577X polymorphism on women’s
football performance has been less investigated [17]. For this reason, the main purpose of
this investigation was to determine the influence of the ACTN3 R577X polymorphism on
physical performance variables and injury incidence in a sample of professional women
football players. The main outcome of this investigation indicates a negligible influence of
ACTN3 R577X polymorphism on football performance, as the physical performance values
and injury rates of RR, RX, and XX women football players were similar. Collectively, the
data obtained in this investigation suggest that the ACTN3 XX genotype may not produce
any deleterious phenotype for women football players, contrary to what occurs in men
football players.

The assumption that the ACTN3 XX genotype may produce a deleterious effect on
sports performance is supported by several investigations that have reported some poten-
tially negative phenotypes in XX athletes, when compared to RR or R-allele carriers (see
these reviews for a more profound analysis [1,2,14]). Briefly, XX athletes may have less mus-
cle strength [30]; lower sprint capacity [12]; higher levels of muscle damage after endurance
activities, such as marathons [8] and half Ironman events [31] or eccentric training [32];
and higher probability of muscle injury in team sports [18,19] and endurance sports [33].
Additionally, in samples of active non-athlete individuals, a link has been found between
the XX genotype and the presence of ankle injuries [34,35]. There are also studies where
the ACTN3 XX genotype did not influence sports performance [36] and injury rate [37], but
they constitute a lower portion than those that found potentially negative phenotypes of
the ACTN3 XX genotype or the X-allele. As it happens in other topics of sports sciences [38],
these findings were obtained in samples of male athletes or mixed male/female samples,
while the number of investigations on the influence of the ACTN3 R577X polymorphism in
women only athletes is low.

To our knowledge, this is the first experiment that obtains performance and injury data
in a sample of women football players of professional teams. In this context, the ACTN3
XX genotype did not produce any deleterious effect, as the values in the performance tests
obtained by XX players were comparable to RR and RX players. Additionally, the injury
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rates of non-contact injuries or the sub-analysis of muscle, ligament, and bone injuries
were similar in XX, RX, and RR players and all within the habitual injury rates found in
women football players [39]. Last, the grouping of participants to produce dominant (RR
vs. X-allele carriers) and recessive (XX vs. R-allele carriers) models indicated that both
R-carriers and X-carriers had similar football-specific performance values and injury rates.
These findings contradict the ones found in samples of professional male football players,
as an inferior football-specific performance of XX football players has been suggested
via underrepresentation of this genotype in professional male football [16] and higher
rates of muscle-type injuries in XX players have been found [18,19]. Interestingly, lower
sprint and jump capacities of XX football players have been found in professional male
players [40], while these capacities measured in women football players with a CMJ and
a 30-m sprint test were similar in all three genotypes. Even, in a sample of male football
players, it has been shown that no XX players are found in field positions associated with
high-speed demands, such as forwards and wingers [41], while the distribution of the RR,
RX, and XX genotypes was similar in all the field positions analyzed in the current study in
women football players. Although there needs to be confirmatory studies, it seems that the
XX genotype may have a less harmful influence on football performance in women than
in men.

Despite the reason for the lack of influence of the ACTN3 XX genotype in women’s
football performance is not evident with the data of this study, the different physical,
physiological, and tactical characteristics of women’s football—in comparison to men’s
football [42]—may have influenced these findings. Existing literature has found that fe-
male football players cover less distance and at lower speeds during matches [43] and
present lower performance in sprints, jumps, and intermittent endurance than male coun-
terparts [44,45]. As for the tactical side, women’s football teams seem to display a more
direct style of play, with fewer passes per possession, and a lower passing tempo than
men’s teams [46,47]. These physiological and tactical differences between the characteristics
of elite women’s and men’s football may contribute to the insignificance of α-actinin-3
deficiency, due to homozygosity in the ACTN3 X-allele, found in the present study. Further
investigations are warranted to clearly define the ACTN3 XX genotype as harmless in
women football players and other samples of women athletes.

The current study presents some limitations that should be addressed to enhance
the application of the results to women’s professional football. Although the study was
carried out in a homogeneous sample of female football players participating in the same
competition, the sample size is relatively low and not all the teams were subject to identical
training, competition, and diet protocols. Additionally, the protocols developed by the
staffs of the teams to prevent and to treat injuries were not identical. Therefore, the fact of
reaching any definitive conclusions about the lack of association of the ACTN3 genotype
with football performance and injury incidence in professional women players should be
made with caution. Future investigations in other samples of professional or elite women
athletes should be carried out to replicate the results of this study. Additionally, the current
study was focused on only one genetic polymorphism, while sports performance and
injury susceptibility may be influenced by other genetic variants not studied in the current
experiment. Among others, future investigations should study the potential interaction of
different genotypes in target polymorphisms, such as the ApaI in the Vitamin D receptor
(VDR) gene [48], the I/D variation in the angiotensin-converting enzyme (ACE) gene [49],
and the C-to-T polymorphism in the 3′-untranslated region of the collagen type V α1 chain
(COL5A1) gene [50], as all of these variants have been found to be associated with some
aspect of injury epidemiology in professional football players. Because all these genes
may partly contribute to the overall susceptibility of injury in football players, the study of
the interaction of the ACTN3 genotype with other genotypes should include the study of
players’ polygenic profile, as in previous studies with other type of athletes [51,52].
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5. Conclusions

In summary, professional women players with different genotypes of the p.R577X
ACTN3 polymorphism possessed similar values in football-specific performance variables
and had very comparable injury incidence rates during training and competition. From
a practical perspective, the genotyping of the ACTN3 gene may not be useful to predict
football-specific performance or injury incidence in professional women football players.
The influence of this genotype on women’s football seems negligible, at least in comparison
to the harmful effect of the ACTN3 XX genotype found in men football players.
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