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RESUMEN DEL PROYECTO 

Este estudio presenta un modelo basado en el transformer diseñado para la 

detección precisa de estrés mediante señales de electrocardiograma (ECG) de una 

sola derivación. El modelo combina el aprendizaje auto-supervisado con la 

arquitectura de transformadores para procesar eficientemente datos de ECG en 

bruto, garantizando al mismo tiempo la explicabilidad a través de saliency maps, 

estableciendo un nuevo estándar para la detección de estrés basada en ECG 

utilizando el conjunto de datos WESAD. 

Palabras clave: Transformers, Electrocardiograma (ECG), Detección de Estrés, 

Aprendizaje Auto-Supervisado, IA en Salud, Interpretabilidad de IA Médica, Conjunto 

de Datos WESAD 

INTRODUCCIÓN 

El estrés es un problema de salud global en aumento, que afecta 

significativamente la salud mental y la calidad de vida. La tecnología wearable, 

particularmente los sensores que monitorean señales fisiológicas como los ECG, 

ofrece una solución prometedora para el análisis del estrés. Los ECG, que reflejan 

la actividad eléctrica del corazón, pueden revelar información sobre la respuesta 

al estrés de un individuo. Los avances recientes en aprendizaje profundo y 

tecnología de sensores han revolucionado la atención médica, haciendo posible el 

monitoreo continuo de la salud de manera no intrusiva. 

TRABAJOS RELACIONADOS 

Los modelos basados en transformers están emergiendo como herramientas 

líderes para analizar señales de ECG [1], superando enfoques tradicionales como 

las Redes Neuronales Convolucionales (CNN). La capacidad de los 

transformadores para manejar datos secuenciales y capturar dependencias a 

largo plazo los hace ideales para el análisis de señales de ECG, donde la relación 

temporal entre diferentes partes de la señal es crucial. 



 

  

METODOLOGÍA 

El método propuesto integra el aprendizaje auto-supervisado con la arquitectura 

de transformers para procesar datos de ECG en bruto de manera efectiva, 

garantizando la interpretabilidad. El aprendizaje auto-supervisado permite que el 

modelo maneje autónomamente datos no etiquetados, mejorando su capacidad 

para aprender representaciones útiles. La arquitectura de transformers mejora la 

precisión del modelo al capturar dependencias a largo plazo en datos 

secuenciales. 

Un proceso de entrenamiento en dos etapas construye una arquitectura encoder-

decoder. La primera etapa de preentrenamiento emplea el aprendizaje auto-

supervisado para desarrollar un encoder robusto que captura las partes esenciales 

de la señal de ECG en un espacio latente. La segunda etapa ajusta el encoder 

preentrenado y un nuevo decoder para entrenar un modelo de detección de 

estrés. 

Figura 1: Arquitectura del Modelo 

 



 

  

PREENTRENAMIENTO AUTO-SUPERVISADO 

En esta primera etapa, el modelo predice partes ocultas de la señal de ECG 

utilizando una máscara binaria, obligándolo a comprender la estructura 

subyacente de la forma de onda del ECG. La pérdida de error cuadrático medio 

(MSE) se centra en las secciones enmascaradas de la señal de ECG, mejorando la 

capacidad del modelo para manejar datos del mundo real. La arquitectura del 

codificador comprende una CNN seguida de un transformer para capturar 

patrones de latidos y dependencias globales dentro de la secuencia, 

proporcionando una comprensión integral de las señales de ECG. 

AJUSTE FINO PARA LA DETECCIÓN DE ESTRÉS 

Para la segunda fase, se utiliza la pérdida de entropía cruzada binaria para la tarea 

de detección de estrés. El ajuste fino de todo el codificador permite que el modelo 

ajuste todas las características aprendidas para adaptarse mejor a los patrones de 

ECG relacionados con el estrés. La arquitectura del decodificador de estrés 

consiste en una red lineal de dos capas que transforma los datos codificados en 

una predicción de estrés. 

EXPERIMENTOS 

Para probar el modelo, se crearon múltiples configuraciones, cambiando el 

tamaño general del modelo. Esto se hizo cambiando la duración de la señal dada 

al modelo, 8 y 4 segundos, y el número de capas del transformer encoder. Además, 

se probó el efecto de desbloquear todas las capas del transformer encoder, o solo 

la última capa. 

Figura 2: Comparación de resultados 
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[2] QDA 85.7 - 

[3] LDA 85.4 81.3 

[4] CNN 92.0 81.8 

[5] Image 92.5 - 

[1] TF 91.1 83.3 
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8s-2l 
full 99.3 98.5 

last 94.6 87.4 

4s-1l 
full 99.2 98.2 

last 91.4 77.9 



 

  

EXPLICABILIDAD DEL MODELO 

Los sailency maps visualizan el proceso de toma de decisiones del modelo, 

destacando las partes de los datos de entrada que fueron más importantes para 

las predicciones. Se crearon ECGs artificiales alterando características específicas 

de la forma de onda, confirmando que las predicciones del modelo se alinean con 

los indicadores médicos establecidos de estrés. 

Figura 3:  Análisis del efecto del intervalo QT en el Saliency map 

 

CONCLUSIONES Y TRABAJOS FUTUROS 

En general, todos nuestros modelos, excepto el más pequeño (4s-1l last), logran 

resultados de vanguardia en el conjunto de datos WESAD, demostrando la 

efectividad del aprendizaje auto-supervisado para esta tarea. Los trabajos futuros 

incluyen expandir el conjunto de datos, desplegar el modelo en escenarios del 

mundo real, reducir la complejidad del modelo y explorar otros métodos de 

optimización. Este estudio establece un nuevo punto de referencia para la 

detección de estrés basada en ECG, fusionando técnicas avanzadas de IA con 

aplicaciones médicas prácticas. 
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ABSTRACT 

This study introduces a transformer model designed for accurate stress detection 

via 1-lead electrocardiogram (ECG) signals. The model merges self-supervised 

learning with transformer architecture to efficiently process raw ECG data while 

ensuring explainability through saliency maps, establishing a new standard for 

ECG-based stress detection using the WESAD dataset. 

Keywords: Transformer Models, Electrocardiogram (ECG), Stress Detection, Self-

Supervised Learning, AI in Healthcare, Medical AI Interpretability, WESAD Dataset 

INTRODUCTION 

Stress is a growing global health issue, significantly affecting mental health and 

quality of life. Wearable technology, particularly sensors monitoring physiological 

signals like ECGs, offers a promising solution for stress analysis. ECGs, reflecting 

the heart’s electrical activity, can reveal insights into an individual’s stress 

response. Recent advancements in deep learning and sensor technology have 

revolutionized healthcare, making continuous non-intrusive health monitoring 

feasible. 

RELATED WORK 

Transformer-based models are emerging as leading tools for analysing ECG 

signals, outperforming traditional approaches like Convolutional Neural Networks 

(CNNs). Transformers’ ability to handle sequential data and capture long-term 

dependencies makes them ideal for ECG signal analysis, where the temporal 

relationship between different parts of the signal is crucial. 

METHODOLOGY 

The proposed method integrates self-supervised learning with transformer 

architecture to process raw ECG data effectively while ensuring interpretability. 

Self-supervised learning allows the model to autonomously handle unlabeled 



 

  

data, improving its capability to learn useful representations. The transformer 

architecture enhances the model’s accuracy by capturing long-term dependencies 

in sequential data. 

A two-stage training process builds an encoder-decoder architecture. The first 

pretraining stage employs self-supervised learning to develop a robust encoder 

that captures essential parts of the ECG signal in a latent space. The second stage 

fine-tunes the pretrained encoder to train a stress detection model. 

Figure 1: Model’s architecture 

 

SELF-SUPERVISED PRETRAINING 

In this first stage, the model predicts occluded parts of the ECG signal using a 

binary mask, forcing it to understand the underlying structure of the ECG 

waveform. Mean Square Error (MSE) loss focuses on the masked sections of the 

ECG signal, improving the model's ability to handle real-world data. The encoder 

architecture comprises a CNN followed by a Transformer to capture heartbeat 



 

  

patterns and global dependencies within the sequence, providing a 

comprehensive understanding of the ECG signals. 

FINE-TUNING FOR STRESS DETECTION 

For the second phase, Binary Cross-Entropy with Logits Loss is used for the stress 

detection task. Fine-tuning the entire encoder allows the model to adjust all learned 

features to better suit stress-related ECG patterns. The stress decoder architecture 

consists of a two-layer linear network that transforms encoded data into a stress 

prediction. 

EXPERIMENTS 

To test the model, multiple configurations were created, changing the overall size of 

the model. This was done by changing the duration of the signal given to the model, 

8 and 4 seconds, and the number of layers of the transformer encoder.   

In addition, it is also tested the effect of unlocking all the layers of the transformer 

encoder, or just the last layer.  

Figure 2: Performance Comparison 
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MODEL EXPLAINABILITY 

Saliency maps visualize the decision-making process of the model, highlighting the 

parts of the input data that were most important for predictions. Artificial ECGs 

were created by altering specific waveform features, confirming that the model's 

predictions align with established medical indicators of stress. 

 



 

  

Figure 3: QT interval saliency map analysis 

 

CONCLUSIONS AND FUTURE WORK: 

Overall, all but the smallest (4s-1l last) our models achieve state of the art results on 

the WESAD dataset, proving the effectiveness of self-supervised learning for this task. 

Future work includes expanding the dataset, deploying the model in real-world 

scenarios, reducing model complexity, and exploring other optimization methods. 

This study sets a new benchmark for ECG-based stress detection, merging advanced 

AI techniques with practical medical applications. 
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Glossary 

 

Abbreviation Full Term 
AI Artificial Intelligence 
ANS Autonomic Nervous System 
AUC Area Under Curve 
AV Atrioventricular 
AV Node Atrioventricular Node 
BiLSTM Bidirectional Long Short-Term Memory 
CNN Convolutional Neural Network 
ECG Electrocardiogram 
EKG Electrocardiography (alternate abbreviation for ECG) 
GeLU Gaussian Error Linear Unit 
HR Heart Rate 
HRV Heart Rate Variability 
IoT Internet of Things 
LDA Linear Discriminant Analysis 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MLP Multilayer Perceptron 
MSE Mean Square Error 
PERT Perturbation 
PR Pulse Repetition 
QDA Quadratic Discriminant Analysis 
QR Quantitative Risk 
QT Q-wave to T-wave 
ReLU Rectified Linear Unit 
ROC Receiver Operating Characteristic 
SA Sinoatrial 
SDGs Sustainable Development Goals 
SGD Stochastic Gradient Descent 
SSL Self-Supervised Learning 
TF Transformer 
TSST Trier Social Stress Test 
W&B Weights & Biases 
WESAD Wearable Stress and Affect Detection 
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1  
Introduction 

With the continuous progress of technology, numerous aspects of life have 

become more data-driven and interconnected. This project situates itself at the 

intersection of medical technology and artificial intelligence. We aim to harness 

the advancements in Electrocardiogram (ECG) technology and Deep Learning to 

improve stress detection using raw ECG data. This endeavour not only increases 

the potential of stress management techniques but also opens up novel 

possibilities in preventive health measures, and continuous measurement. 

1.1 Motivation 

The motivation behind this project is multidimensional. There is an anticipated 

significant increase in the use of ECG technology in the coming years, led by radar 

sensors, presenting a critical opportunity to enhance the current stress detection 

models. Furthermore, by understanding the role of stress in activities like driving, 

we can work towards increasing safety measures. Lastly, the potential benefits to 

preventive healthcare and overall human wellbeing serve as powerful motivators 

to undertake this project. 

1.2 Project Objectives 

Based on the motivation and the current state of the matter, the following are the 

potential objectives for this project: 
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1. Development of a robust stress detection model: We aim to construct a 

model capable of detecting stress from raw ECG signals. This model will 

utilize advances in deep learning, specifically transformer models, to 

understand the complex time-series data in ECG signals. 

2. Use of self-supervised learning techniques: Considering the abundance 

of unlabelled ECG data and the proven success of self-supervised learning 

in managing sequential data, we intend to employ self-supervised 

strategies. This approach will enable our model to learn useful 

representations from the data itself, which can then be exploited for stress 

detection. 

3. Benchmarking and comparison with existing models: We aim to 

compare our model's performance with existing stress detection models, 

both those that use raw ECG data and those that rely on extracted features. 

4. Assessing the interpretability of the model: Lastly, the project will also 

aim to understand the decisions the model has made, and try to see if they 

align with the medical consensus to ensure a correct diagnosis. 

1.3 Resources to be used. 

1.3.1 Software and Libraries 

The project is exclusively written on the Python programming language, which is 

a prevalent choice in the domain of deep learning and data science. Python's 

syntax is user-friendly and, coupled with a robust ecosystem of libraries, it forms 

an excellent platform for constructing complex deep learning models. The 

following are the primary libraries used in this project: 

 

- PyTorch: PyTorch, a key component of our project, is a widely used open-

source machine learning library developed primarily by Facebook's artificial 

intelligence research group. It's based on the Torch library and is highly 
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regarded for its dynamic computational graph and efficient memory usage, 

which makes it suitable for our project. PyTorch offers a rich set of features for 

deep learning. 

- PyTorch Lightning: We've used PyTorch Lightning, a lightweight wrapper for 

PyTorch, to make the code more maintainable and readable. This library 

streamlines the PyTorch code, reduces the amount of boilerplate code, and 

enhances the reproducibility of the code. It enables us to focus more on the 

development of the model rather than routine coding tasks, without 

compromising performance or flexibility. 

- Scikit-learn: Scikit-learn, renowned for its effective predictive data analysis 

tools, is a crucial resource for this project. This library is primarily used for data 

manipulation, as well as model evaluation and performance metrics.  

- Weights & Biases (W&B): Weights & Biases, used for experiment tracking and 

visualization, helps in tracking machine learning experiments. It logs and 

visualizes metrics, system information, hyperparameters, and more, providing 

us with a clear and accessible method to monitor our models' performance 

and progress. Its 'sweep' feature has been integral to the model, enabling us 

to traverse the hyperparameter space using Bayesian Optimization with 

minimal additional code. 

- NeuroKit2: Specializing in neurophysiological signal processing, NeuroKit2 is a 

Python library we use to process and analyse our ECG data. It simplifies the 

task of ECG signal processing and extraction of meaningful features, saving us 

substantial time and effort. This library ensures that our model can access the 

most pertinent information contained in the ECG signals for stress detection. 



 

 UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER’S IN INDUSTRIAL ENGINEERING 

  

 

 
 

Francisco Barragán Castro 7  

1.3.2 Hardware Requirements 

Our project necessitates a robust hardware infrastructure, given the 

computationally intensive nature of deep learning tasks. We have secured 

powerful resources, including top-tier Graphics Processing Units (GPUs), to 

significantly expedite data processing and model training. 

- Server with Dual RTX 4090: We have confirmed access to a server equipped 

with two RTX 4090 graphics cards. These state-of-the-art GPUs, provided by the 

Instituto de Investigación Tecnológica (IIT), greatly aid the project's 

development with their exceptional performance. They are ideally suited for 

our machine learning operations. The GPUs' high processing power accelerates 

data processing and model training, and their substantial VRAM size (24Gb) 

allows us to use large batch sizes, enhancing the efficiency of our models. 

- Laptop with RTX 2070: Alongside the server equipped with RTX 4090 graphics 

cards, we will utilize a laptop with an integrated RTX 2070 graphics card. This 

setup provides a portable solution for the initial development, analysis, and 

review of our models. Although the RTX 2070 is not as powerful as the RTX 

4090, it still delivers substantial performance and proves invaluable for 

preliminary model training and testing. 

These dedicated hardware resources will equip us to efficiently handle the 

computational demands of our project, enabling us to rapidly iterate our models, 

perform thorough testing, and ultimately develop a reliable and robust ECG-based 

stress detection system. 

1.3.3 Data Resources 

In terms of data resources, this project will not involve any data gathering 

processes. Instead, we will rely on publicly available datasets for model training 

and validation. The use of public datasets brings a few advantages: 
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1. Efficiency and Cost-effectiveness: Data collection can be a lengthy, 

expensive, and often complex process involving participant recruitment, 

data recording, and cleaning. By using publicly available datasets, we can 

focus our efforts and resources on the core aspect of the project, i.e., 

developing and refining our stress detection model. 

 

2. Model Validation and Comparison: Public datasets offer a common 

ground for testing various models. As these datasets are widely used within 

the research community, they allow for a fair and direct comparison of our 

model's performance against other techniques featured in related works. 

The specific datasets for this project will be chosen based on their relevance to 

stress detection from ECG data, their size, quality, and the variety of the data they 

contain. This ensures that our model is trained and validated on diverse and 

representative data. 

A later section will delve into the details of the selected datasets, including their 

sources, data size, and features. Understanding these details is essential, as the 

chosen datasets will ultimately shape and guide the development and validation 

of our model. 

1.4 Alignment with the Sustainable Development Goals 

(SDGs)  

In our rapidly evolving world, ensuring sustainable growth and development 

remains paramount. To this end, the Sustainable Development Goals (SDGs) set 

forth by the United Nations act as a global blueprint, guiding concerted efforts 

towards building a brighter and more equitable future. In particular, our project 

deeply resonates with two pivotal goals: Goal 3, which emphasizes Good Health 

and Well-being, and Goal 9, which advocates for Industry, Innovation, and 

Infrastructure. By aligning our objectives and strategies with these SDGs, we aim 
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to create a holistic impact, addressing both health concerns and technological 

advancements in tandem. 

Goal 3: Good Health and Well-being 

Stress is a significant health concern that can lead to severe physical and mental 

health issues if not properly managed. By developing an advanced stress detection 

model using ECG technology and deep learning, our project is inherently aligned 

with SDG 3. Our model's primary objective is to help individuals detect their stress 

levels accurately and in real-time, which could lead to more timely interventions 

and treatments. 

Moreover, stress often acts as a precursor to various cardiovascular and mental 

health disorders. By providing an efficient and reliable stress detection tool, we 

may help reduce the prevalence and impact of these stress-related conditions. It's 

a step forward towards achieving the targets of SDG 3, which includes ending 

epidemics of communicable diseases and reducing mortality from non-

communicable diseases and promoting mental health and well-being. 

Goal 9: Industry, Innovation, and Infrastructure 

The implementation of cutting-edge technology such as deep learning, ECG 

technology, and self-supervised learning techniques to enhance stress detection 

models is an embodiment of SDG 9. We're leveraging the potential of these 

technologies to drive innovation and provide solutions to health challenges, thus 

fostering technological development in healthcare. 

Furthermore, this project also contributes to building resilient infrastructure and 

fostering innovation. The creation of robust stress detection models will augment 

the capabilities of current healthcare infrastructures, particularly those related to 

mental health care. This aspect aligns with the targets of SDG 9, which includes 

upgrading infrastructure and retrofitting industries to make them sustainable, 

with increased resource-use efficiency and greater adoption of clean and 

environmentally sound technologies and industrial processes. 
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In conclusion, this project aligns with the SDGs by capitalizing on innovative 

technology for promoting well-being and supporting sustainable industrial 

development. The positive outcomes from this project can have a ripple effect, 

leading to broader benefits in health, industry, and beyond, contributing to the 

overarching aim of the SDGs – a better and more sustainable future for all. 
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2  
Medical background 

In this section, we provide a comprehensive insight into the current state of 

electrocardiography. This foundational knowledge will enhance our 

understanding of the critical decisions made during the model development. 

2.1 Introduction to Electrocardiography 

Electrocardiography, abbreviated as ECG or EKG, is a method used to measure and 

interpret the heart's electrical activity. By placing electrodes in standardized 

positions on a patient's arms and chest, electrical impulses generated by cardiac 

tissue during polarization and depolarization are captured. These waveforms 

provide essential insights into the heart's rhythm and its overall state. 

In the past, ECGs were primarily tools for medical professionals. However, recent 

technological advancements have extended their usage to non-medical domains, 

enabling a more accessible and less invasive mode of data collection.  

2.2 Lead systems 

The foundation of electrocardiography lies in the various lead systems utilized. 

These lead systems determine the dimensionality and depth of the heart's 

electrical activity representation. From the comprehensive 12-lead ECG to the 

simplicity of the 1-lead, each system serves unique diagnostic purposes and offers 

specific insights into cardiac health. 
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2.2.1 12-lead ECG 

The 12-lead ECG is the gold standard for diagnosis. This system captures the heart's 

electrical activity in 3D, employing electrodes to create 6 vertical and 6 horizontal 

visual axes. It is widely used for both resting and stress ECGs. 

 

Figure 1 12 lead ECG[6] 

2.2.2 3-lead ECG 

Commonly used for 24-hour readings, 3-lead ECGs are instrumental in diagnosing 

heart problems. The Holter monitor is a typical example of this system, offering a 

long-term reading method.   

 

Figure 2 3 Lead ECG[6] 
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2.2.3 1-lead ECG 

1-Lead ECG systems have gained popularity in recent years, as they provide great 

comfort to the user. They range from short-duration recordings, like the AliveCor, 

to extended recordings up to 14 days, as seen with iRhythm[6]. Despite their 

convenience, these systems present limitations. For instance, the intricacies of 

signals like Ischaemia (restricted blood flow) and extra ventricular beats are more 

discernible with higher lead systems. However, the 1-Lead system remains 

valuable, especially in the wearables domain, as it offers essential data like Heart 

Rate (HR) and Heart Rate Variability (HRV), which are central to deep learning 

applications. 

 

Figure 3 1 lead ECG[6] 

2.2.4 Radar electrocardiography 

Radar electrocardiography is an emerging research area that presents significant 

promise as an innovative approach for capturing ECG data with minimal intrusion. 

Unlike traditional methods that use electrodes, this technique employs millimetre-

wave radar to detect the minute movements of the heart on the patient's chest. 

It's important to note that the output from this method is susceptible to noise 

interference. However, through the employment of signal processing algorithms 

and deep learning, researchers have effectively filtered these movements and 

correlated them with the conventional electrical signals generated by electrodes. 
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Figure 4 Radar electrocardiogram [1] 

In a recent study[7], the researchers reported a median timing error of under 14 

milliseconds, with a morphology accuracy surpassing 90% of standard ECG 

techniques. Furthermore, a 90th-percentile error of just 9ms was observed for R-

R interval timing, a critical measure in diagnosing heart arrhythmias, underscoring 

its potential medical significance. 

This advancement introduces a revolutionary approach to ECG monitoring. It not 

only showcases enormous potential for cardiovascular disease diagnosis but also 

paves the way for future medical applications rooted in non-intrusive and more 

dependable systems. 

2.3 Understanding the Origins of ECG Waveforms 

2.3.1  Electrical Waves in the Heart 

The heart's electrical cycle commences at the sinoatrial node (SA node), the heart's 

natural pacemaker. This node generates an electrical impulse that traverses the 

atria, inducing their contraction. After a brief pause at the atrioventricular node 
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(AV node), the impulse travels through the ventricles' conduction system, 

prompting their synchronized contraction. 

 

Figure 5 Diagram of the heart[8] 

2.3.2 Polarization and Repolarization 

Cardiac cells can undergo rapid depolarization and repolarization. Depolarization 

triggers cardiac cells to contract, while repolarization prepares them for the next 

electrical impulse. In ECG terms, depolarization corresponds to a positive 

deflection on the left precordial, whereas repolarization typically results in a 

negative deflection on them. 

2.3.3 Critical Role of the SA and AV Nodes 

The SA node regulates the heart's rhythm and can adjust its rate based on various 

signals. The AV node ensures the atria fully contract  regulating the number of 

auricular impulses that arrive to the ventricle and their speed, by briefly delaying 

the impulse. 
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2.4 Wave morphology 

Cardiac activity generates various waveforms, each offering insights into different 

aspects and components of a heartbeat. All these waveforms are added up 

together and captured by the leads of an ECG. One waveform that particularly 

stands out due to its pronounced amplitude is the QRS complex. While each 

specific lead observed might present subtle variations in the waveform's topology, 

a consistent general structure is seen across all leads; each lead unveiling a unique 

facet of the waveform. 

It's imperative to delve into the morphology and timings of these waveforms, with 

the QRS complex being central, to unlock a more profound understanding of the 

heart's electrical system. 

The distinct components of the signal, often called PQRST, are depicted in the 

following graph: 

 

Figure 6 QRS complex [9] 
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The waveform comprises: 

• P segment: Depolarization of the atria. 

• QRS complex: Representing the ventricles' depolarization (contraction). 

Within the QRS complex: 

o Q: Contraction of the interventricular septum (just before its curvature). 

o R: Contraction of the main bulk of the ventricles. 

o S: Final contraction phase at the ventricles' apex. 

Atrial repolarization (relaxation) also occurs in parallel, but its signal is notably 

subdued and can be overshadowed. 

• T wave: Indicates the repolarization (relaxation) of the ventricles. 

2.5 The Role of the Nervous System 

The heart's electrical activity is not just a product of its intrinsic cells and pathways 

but is also significantly influenced by the nervous system. This interplay between 

the heart and the nervous system ensures that the heart can rapidly adjust its 

function in response to the body's varying needs. 

2.5.1 Autonomic Nervous System (ANS)  

The Autonomic Nervous System (ANS) plays a vital role in modulating heart rate, 

the strength of cardiac contraction, and even the conduction speed of electrical 

impulses through the heart[10]. The ANS is divided into two main branches: the 

sympathetic and the parasympathetic nervous systems. 

Sympathetic Nervous System: The sympathetic branch prepares the body for 

physical activity. When activated, it can increase heart rate, elevate the force of 

cardiac contraction, and enhance the conduction velocity of electrical impulses. 
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The release of neurotransmitters like norepinephrine from sympathetic nerve 

endings acts on the heart's beta receptors to produce these effects. 

Parasympathetic Nervous System: Commonly referred to as the "rest and 

digest" system, the parasympathetic branch primarily acts to conserve energy and 

restore calm. Its activation usually reduces heart rate, decreases the force of 

contraction, and slows the conduction speed of impulses, particularly through the 

AV node. Acetylcholine is the main neurotransmitter here, acting on the heart's 

muscarinic receptors. 

2.5.2 The SA and AV Nodes in the Context of the Nervous System 

The SA node, as the heart's primary pacemaker, has receptors for both 

sympathetic and parasympathetic neurotransmitters. This means that its rate of 

firing (and thus the overall heart rate) can be rapidly adjusted based on the 

balance of sympathetic and parasympathetic stimulation. For instance, during 

periods of stress or exercise, sympathetic activity dominates, increasing the SA 

node's firing rate. In contrast, during times of rest or relaxation, parasympathetic 

influence prevails, reducing the heart rate.[10] 

The AV node, too, is influenced by the ANS, primarily by the parasympathetic 

system. Strong parasympathetic stimulation can slow conduction through the AV 

node so much that some impulses from the atria may not be transmitted to the 

ventricles, leading to a phenomenon known as AV block. 

2.5.3 Integration with Cardiac Cycle 

In the context of the cardiac cycle, the influence of the nervous system is profound. 

When you consider the sequential depolarization and repolarization of cardiac 

cells, it's essential to realize that these processes are not just passive events. They 

are modulated by the nervous system to suit the physiological demands of the 

body. Whether it's during the excitement of a sprint, the calm of meditation, or the 
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stress of an emotional event, the heart's electrical activity, as evidenced on the 

ECG, offers clues about the prevailing autonomic influence. 

2.6 ECG stress detection 

As for its application in determining stress, the electrocardiogram (ECG) has 

proven to be a robust tool. Stress can influence several physiological parameters, 

and the heart is no exception. Stress-induced cardiac responses can manifest in 

various ways on the ECG, and understanding these patterns is paramount for 

timely intervention and management. 

One of the primary reasons the ECG signal serves as an effective indicator is its 

ability to encapsulate the combined influences of both the sympathetic and 

parasympathetic nervous systems[11], which control stress. 

 

Specifically, heart rate variability (HRV), which is derived from the ECG signal, 

represents the cardiac vagal tone. This tone mirrors the role of the 

parasympathetic nervous system in regulating the heart, making it valuable for 

psychophysiological studies. 

Diving a bit deeper, HRV’s low frequency (LF) variations in heart rate, ranging from 

0.01 to 0.08 Hz, are shaped by both sympathetic and parasympathetic activities. 

On the other hand, the high frequency (HF) variations, spanning 0.15 to 0.5 Hz, 

predominantly result from parasympathetic activity. The ratio of these 

frequencies is called the autonomic balance (AB) and is often used in studies as a 

separate feature when studying the signal as a power spectrum[12].  

These HRV components offer a lens to observe the sympathetic and 

parasympathetic nervous systems. However, the precise physiological 

mechanisms that underpin them remain somewhat elusive and are subjects of 

ongoing discussion [13]. 
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A lot of information can be obtained by observing the shape form of the signal, as 

stress can produce both atrial and ventricular arrhythmias, that can be 

distinguished over a normal waveform, which researchers[14], [15] have found 

that includes: 

• A Shortened R-R interval implies that the heart is beating at a faster pace 

(tachycardia).  

• A Shortened PR interval can suggest that the atrial signal is being transmitted 

to the ventricles faster than usual.  

• An Augmented T wave amplitude can sometimes be seen in hyperkalaemia, 

but can also be an indicator of increased sympathetic nervous system activity. 

• A Shortened QT interval is regulated by cardiac sympathetic innervation. 

• An ST depression, it occurs when the J point is displaced below baseline. 

Studies have shown mental stress causes transient myocardial ischaemia, 

which can be identified by the ST depression.[16] 

However, it is important to consider that these features can’t solely be used as a 

stress indicator, as other factors might also affect the topology. For example, 

external factors such as caffeine intake, medications, electrolyte imbalances, and 

other underlying conditions can mimic or compound the ECG changes brought 

about by stress. 
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3  
State of the art 

3.1 Problem statement 

The goal of our project is to create a real-time stress detector that is non-intrusive.  

This allows users to monitor of their stress levels in various situations, helping 

them record and potentially mitigate the negative effects of stress. To achieve this, 

we need to analyse the complexities and challenges associated with the 

development and implementation of such a device. 

3.2 Related works 

The concept of monitoring stress and emotions in real-time though ECGs is not 

new and has been studied by many researchers over the past decades. The 

following subsections delve into the prior efforts and breakthroughs in the realms 

of stress detection and emotion recognition. These explorations shed light on the 

methodologies employed, the challenges encountered, and the improvements 

achieved, setting the context for our present work. While our main objective is 

stress detection, we've also investigated emotion recognition. This decision stems 

from the close correlation between stress and emotions, and the belief that 

methods used in emotion recognition most probably also apply to stress 

detection. 
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3.2.1 Stress detection 

The quest to decode stress from ECG signals has been attempted with a varied set 

of approaches, ranging from traditional machine learning techniques to cutting-

edge deep learning methodologies. Here, we present a concise overview of some 

most influencial studies that have shaped the field: 

- SmartCar: Detecting Driver Stress[12]: This study utilized features extracted 

from ECG data, specifically focusing on Heart Rate (HR) and Sympathovagal 

Balance (AB). The research employed the K-Nearest Neighbors Algorithm to 

detect stress in drivers. 

- A Transformer Architecture for Stress Detection from ECG[1]. Raw ECG 

data was the primary focus of this research. The study applied a combination 

of Convolutional Neural Network (CNN) and Transformer architecture to 

detect stress, providing a baseline for transformer-based networks in this 

domain. 

- Contrastive Self-Supervised Learning for Stress Detection from ECG 

Data[17] This paper introduced an innovative approach by focusing on Self-

Supervised Learning (SSL) for ECG-based stress assessment. The study 

implemented a contrastive SSL model based on the SimCLR framework, 

showing its efficacy in stress detection. 

- Machine Learning for Stress Detection from ECG Signals in Automobile 

Drivers[18] This research took a comprehensive approach by extracting 

features from ECG signals. The study applied various machine learning 

algorithms, achieving notable accuracy in detecting different stress levels in 

automobile drivers. 

• Real-Time Psychological Stress Detection According to ECG Using Deep 

Learning[19] This study combined advanced neural network architectures. It 

utilized Convolutional Neural Networks (CNN) and Bi-directional Long Short-
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Term Memory (BiLSTM) networks with extracted ECG features to detect stress 

in real-time. 

• Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect 

Detection[3] This study is the introductory paper for the WESAD dataset, and 

delves into various machine learning techniques to develop a baseline for the 

dataset. 

• Emotion Assessment Using Feature Fusion and Decision Fusion 

Classification Based on Physiological Data: Are We There Yet?[2] This 

study centred on emotion recognition based on physiological data 

classification. It employed Supervised Learning (SL), Decision Fusion (DF), and 

Feature Fusion (FF) techniques using multimodal physiological data, providing 

a systematic analysis across multiple datasets. 

• Detecting stress through 2D ECG images using pretrained models, 

transfer learning and model compression techniques[5] This study 

transformed 1D ECG data into 2D ECG images to represent stress states, 

eliminating the need for feature extraction. The research utilized transfer 

learning for enhanced results and applied model compression techniques, 

such as quantization, to reduce computational size without significantly 

compromising performance. 

• Stress Detection ECG[4]  This last reference isn’t a published paper, but a 

GitHub repo. Regardless, it achieves great performance by applying a CNN to 

a set of carefully crafted features. 

 

Table 1 Comparison of previous stress detection models 

Paper Dataset Method Modality Accuracy [%] F1 [%] 

[17] RML Contrastive SSL ECG 73.8 - 
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[18] physionet J48 Wave feat. 76.47 - 

[19] Own BiLSTM + CNN HR feat. 86.65 - 

[12] Own kNN HR feat. 88.6 - 

[3] 

WESAD 

LDA HR feat. 85.4 81.3 

[2] QDA ECG 85.75 - 

[5] SSL + image Learned feat 90.62 - 

[1] TF + CNN ECG 91.1 83.3 

[4] CNN HR feat. 92.0 81.8 

3.2.2 Emotion recognition 

Emotion recognition, while a distinct field, shares many parallels with stress 

detection. The underlying premise is that our physiological responses, captured 

through ECGs, can offer a window into our emotional states. This section reviews 

key studies that have made significant strides in emotion recognition using ECGs: 

• ECG Pattern Analysis for Emotion Detection[20] 

  This study conducts a thorough analysis of ECG signals for emotion detection, 

using empirical decomposition to dynamically identify emotion patterns. The 

research highlights the potential of ECG morphology in determining emotional 

valence and differentiating arousal levels. It provides a very in-depth description 

of how an ECG wave works. 

• Transformer-Based Self-Supervised Learning for Emotion Recognition[21] 

  His paper employs a Transformer-based model for ECG-based emotion 

recognition. Using attention mechanisms, the model builds contextualized signal 

representations. The approach leverages self-supervised learning on unlabelled 

ECG datasets and fine-tunes on the AMIGOS dataset for emotion recognition. 
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3.3 ECG as a Data Source for Stress Detection 

From the presented literature, two primary methods to use the ECG data stand 

out as the most used. These are the wave morphology and Heart Rate Variability 

(HRV).  

Wave morphology pertains to the shape, structure, and various intervals of the 

ECG waveform, which can reveal subtle changes in the heart's electrical activity 

due to stressors.  

On the other hand, HRV measures the variation in time between consecutive 

heartbeats. It's a widely accepted metric for autonomic nervous system activity, 

and changes in HRV are directly related to the body's stress response. 

Both methods provide unique insights and have been instrumental in the 

advancements in the field of real-time stress detection using ECG data. 

3.3.1 Heart Rate Variability (HRV) 

HRV is a compelling technique but requires the individual to be studied in the long 

term, as the patterns perceived are very low frequency (0.01 to 0.08 Hz)[22]. To 

reliably estimate the power density of a low-frequency signal, especially one as 

slow as 0.01 Hz, one would need to sample over multiple periods of the signal. 

Capturing for a minimum of 2 periods (200 seconds) would give a decent 

resolution, capturing for longer durations (e.g., 500-1000 seconds) would yield a 

more reliable power density estimation for the signal.  

This makes it inviable for real-time or short-term stress detection, particularly in 

situations where quick intervention or actuation is necessary. For instance, if one 

were trying to monitor stress in inside a vehicle, waiting for several minutes to 

even half an hour to get a reliable first reading would be far from ideal. 
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3.3.2 Wave Morphology Analysis 

Wave morphology presents both challenges and opportunities. Analysing wave 

morphology requires precise identification, which can be affected by noise, 

artefacts, or other external factors.  

Another significant challenge is the considerably higher bandwidth requirements 

compared to HRV analysis. Processing and working with wave morphology data is 

much more resource-intensive, making it more expensive and demanding in 

terms of computational power and data transmission.  

Moreover, individual variations in ECG patterns, influenced by aspects like age, 

gender, or health conditions, can complicate standardization.  

However, if accurate algorithms or models for wave morphology analysis are 

developed, it may serve as a lower latency higher accuracy method to detect stress 

in real-time scenarios compared to HRV, therefore it has been chosen as the 

selected technique. 

3.4 Selected leads 

To reduce the device's intrusiveness, it's essential to minimize the number of 

required leads or sensors. Traditionally, ECGs necessitate multiple leads to obtain 

the necessary data. An increase in the number of leads can render a device 

cumbersome and potentially discourage users from wearing it. This can be 

mitigated by using radar technology, but using multiple of this sensors might 

prove too costly. 

For this reason, we have chosen to use a single-lead ECG. The III projection has 

been selected to optimize the algorithm's performance, as it most clearly defines 
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the R wave and T waves. This aids in analysing wave morphology, as detailed in 

the medical section of the project. 

One of the primary applications of this project is stress detection within a car cabin 

using radar. In this context, the optimal placement for the sensor would be on the 

car's pillar. This placement would produce a projection similar to the III, with a 

horizontal component. As a result, the selected wave morphology would strongly 

correlate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Lead position in respect to the heart. 
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3.5 Selected technologies 

Looking at the preceding works and understanding the complexities involved, we 

have selected a set of technologies that will be instrumental in achieving our goals 

for real-time stress detection. First, the use of a CNN seems mandatory, as it is 

used by the vast majority of well performing methods as a mean provide pattern 

detection and to filter between noise and signal. In the case of using raw time 

series, it has the added effect of providing short-term pattern recognition 

capabilities. 

In addition, the use of a long-term pattern recognition algorithm, seems to have a 

significant effect. Long Short-Term Memory (LSTM), and Transformers, have both 

shown promise in this regard. The use of transformers is particularly enticing given 

its proven effectiveness in capturing long-term dependencies within sequences, 

as seen in natural language processing applications.  

These more advanced methods are harder to train, and require significant 

amounts of data, which might be hard to obtain. Therefore, the use of Self-

supervised Learning warrants itself as an ideal solution to overcome this obstacle. 

As both of these technologies are quite recent advancements in Deep Learning, 

they will now be discussed in detail. 

3.5.1 Transformers 

As previously stated, transformers have the advantage of being able to look at the 

entire sequence of data, rather than just short windows. By doing so, we aim to 

filter some noise and artefacts that can interfere with accurate wave morphology 

identification. Furthermore, the ability of transformers to attend to different parts 

of the sequence, based on the importance of those parts to the task at hand, may 

help in highlighting significant features of the ECG that indicate stress. 
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It is important to note that while transformers can analyse longer sequences, one 

shouldn't input an excessively large sequence. The number of parameters grows 

quadratically with the model's dimension[23]. Therefore, the model shouldn't 

have an excessively high sampling rate, and its timeframe shouldn't be too long if 

we don’t want to excessively increase the learning time and computational 

hardware required. 

ECGs are usually sampled at very high frequencies (~1kHz) but are usually down 

sampled depending on their use. In the case of HRV analysis, it has been shown 

that the resolution can be lowered up to 250 Hz with negligible loss in 

accuracy[24].  Meanwhile, for the study of the ECG morphology, it’s been shown 

that the delineation remains essentially unaltered for sampling frequencies higher 

than 125 Hz [25] using common methods. 

 

Figure 8 Delineation errors regarding the automatic detections at 1000 Hz of the ptbdb (in ms) [25] 

3.5.2 Self-Supervised Learning 

Self-supervised learning, on the other hand, can address the challenge of 

individual variations in ECG patterns derived from external factors such as age or 

gender, and help to create a more robust model. 

 By not relying on labelled data, but instead generating its own pseudo-labels from 

the data itself, self-supervised learning enables us to use far bigger datasets than 

what might be available if one depended on manually labelled datasets.  

This vast amount of data, combined with the ability of self-supervised models to 

discern patterns, can help the system learn more generalized features and 
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representations from the ECG signals. This increases its accuracy and reliability 

without having to fine-tune the model for the individual user. 

For the election of the tasks, it is critical to use a generalist task instead of a 

specialized one for the field, such as detecting features in the signal. By doing so, 

we one sure that no bias is introduced by us while developing the model. 
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4  
Methodology 

To overcome the challenges of real-time, non-intrusive stress detection, we 

propose a solution that brings together advanced computational methods and 

optimized hardware components. Our solution is a two-stage process: 

 

Figure 9 General architecture of the model 

The first stage is designed for pre-training a self-supervised model using single-

lead ECG data, with the architecture encompassing a CNN Encoder, a Transformer 

Encoder, and a Decoder. This pre-trained model is specifically tuned for stress 

detection tasks in the second stage, where the encoder layers are repurposed for 

a stress detection classifier. Each of these stages is comprehensively discussed in 

the following chapters to provide in-depth insights into their operational 

mechanics, data handling, and functional components.  
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4.1 Pre-training via Self-Supervised Learning 

In the initial phase, a self-supervised learning model is employed to identify 

patterns and features autonomously within the data. This enables the model to 

establish a robust foundational representation of the ECG (Electrocardiogram) 

data, providing a significant advantage for the subsequent task of stress 

classification. This section explores the model's architecture, implementation 

specifics, and validation procedures. 

 

Figure 10 Self-supervised task architecture 
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4.1.1 SSL Task 

For the purpose of representation learning, we opt for a pretext task-based 

approach over a contrastive learning-based approach. While there have been 

efforts to apply contrastive learning to univariate time-series representation[26], 

task-based methods remain the most prevalent. Within this area, the technique of 

masked reconstruction [21], [27], [28] stands out as the most commonly utilized 

approach, and was chosen for this project. 

The task to be carried out is to reconstruct an ECG signal from an occluded view. 

The occlusion is guided by a binary mask M which decides what parts of the 

sequence should be replaced. 

There are several algorithms to create the mask, but in general terms it was 

observed that the masked sequence shouldn’t be too large. Instead, for the model 

to successfully learn, it was much better to create a small mask, of similar width to 

the individual PQRST features of the waveform. The final masking strategy 

consisted of masks of fixed width of 39 samples (0.16 seconds). 

 

Figure 11 ECG masking strategy 
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The masks are generated randomly with a 1.66% likelihood and can overlap. 

Overall, nearly half (48%) of the original ECG waveform is obscured by these 

masks. This process is quite reminiscent to the one used for masking in a similar 

paper[21]. 

The choice of masking value also plays a critical role. Initially, we considered using 

a high value for masking, given that ECG signals are centred around zero and the 

values of the signal are small. The rationale was to make the masked value easily 

distinguishable, thereby maximizing the loss function. However, we discovered 

that this approach led to training instability, causing abrupt changes in the initial 

stages of the neural network's learning process. 

We also tried to do multitask training, by alternating between this task and a 

reordering task. As they are very different tasks, we left each task running for many 

generations until the test function started to deteriorate. But ultimately, we found 

the learning from one task was not transferable to the next, and all the progress 

done by one was reversed by the other. 

4.1.2 Loss function 

Drawing upon the insights gained from the reviewed literature[21], [27], several 

options for the loss function were implemented for this project. The options 

included the Mean Square Error (MSE) loss, which has been commonly used, and 

the Mean Absolute Error (MAE), which has been found to be robust against 

outliers[29]. 

It was finally decided to use MSE, as there were no real benefits seen when using 

MAE on the initial testing.  

LMSE =
1

|M|
∑ (�̂�(𝑡, 𝑖) − 𝑥(𝑡, 𝑖))

2

(t,i)∈ M

 

Where |𝑀| is the total number of masked points, �̂�(𝑡, 𝑖) is the predicted value at 

time t and position i, and 𝑥(𝑡, 𝑖) is the true value. As seen, a significant aspect of 
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our chosen loss function is that it focuses solely on the subset of the masked 

sections of the ECG signal for loss computation. 

The primary rationale behind this approach is efficiency. By focusing the loss 

calculation on the masked areas, the model is directed to learn the most from the 

parts of the data that are intentionally obscured.  

4.1.3 Encoder architecture 

To create the latent space where the intrinsic ECG data is stored, an Encoder-

Decoder architecture was used. To create the encoder, the state-of-the-art 

technologies for sequential data processing were used, a CNN encoder followed 

by a transformer encoder.  

 

Figure 12 Encoder architecture 

This architecture has been selected in recent works [1], [21], [27]  over other 

techniques based in LTSM[19], RNN or Autoencoders[30]. 

4.1.4 CNN Encoder 

The CNN should help to highlight specific patterns inside a heartbeat, while the 

transformer should capture more global dependencies between different parts of 

the ECG sequence. 
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In order for the CNN to work as intended, the perceptive field must be of similar 

length to one heartbeat[21], therefore the CNNs kernel, stride, and padding 

should be calculated accordingly. 

In this case, the desired network specifications for the CNN were as follows: 

Layer Input channels Output channels Kernel  Padding Stride 

1 1 64 123 61 1 

2 64 128 65 32 1 

3 128 256 33 16 1 
Figure 13 CNN network specifications 

In this case, using the kernel sizes creates a perceptive field of 0.8 seconds 

(75bpm), which is a bit lower than the resting heart rate of a healthy adult (65bpm). 

It was intentionally chosen as to hopefully improve performance for stressed heart 

rates suffering with tachycardia, although further experimentation is needed to 

corroborate its usefulness. 

The padding was picked as to not affect the dimensionality of the sequence. For 

each layer, the kernel always starts from the first sample and traverses the whole 

sequence with stride 1. 

As for the output channels, they were selected considering that they would be the 

𝑑𝑚𝑜𝑑𝑒𝑙 for the transformer encoder, which in general is recommended to be used 

with tokens with numbers of features of that order of magnitude[23], [31]. 

4.1.5 Transformer Encoder 

The output of the CNN is passed to a transformer. Each of the sample n of the 

sequence is an element of the input vector, with each of the elements consisting 

of a 1×256 feature vector.  

The positional encoding used was a fixed positional encoding as in the Attention 

all you need paper[23], other positional encoding methods such as learnable 
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positional encoding were tested, but no additional advantages were seen in 

performance. 

 

Figure 14 Transformer encoder block 

The transformer block consists of 2 layers of multi-head attention with 2 heads 

each. A value of 0.1 for the dropout was picked as a balance between overfitting 

and performance. Layer and Batch normalization were studied, Batch 

normalization was finally selected as it led to much better performance and faster 

training. A Gaussian Error Linear Unit (GeLU) activation function was chosen overt 

a Rectified Linear Unit (ReLU) activation function, as it lead to better results in BERT 

[28], although further research is needed to corroborate if it’s a better option for 

this task, as BERT is a NLP (natural language processing) model.  

The attention matrix of each block was saved for debugging and interpretability 

without separating the heads.  

4.1.6 Decoder 

The decoder consists of a fully connected network of two layers, where the 

dimensionality of the encoder’s output is gradually reduced to a univariate ECG. 
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The first layer reduces the dimensionality from 256 to 128 and the second layer 

from 128 to 1. Between the two, a ReLU activation function is placed to introduce 

some non-linearity. 

 

4.1.7 Training 

For the initial phase of training, we used the ALSEDAS dataset[32]. The data was 

pre-processed to remove noise and normalized to ensure zero-mean and unit 

variance. 

The model was trained using a batch size of 64 and was optimized using the Adam 

optimizer with a learning rate of 0.001. We also applied gradient clipping to 

prevent exploding gradients. Training was performed for 100 epochs; at each 

epoch, a checkpoint was saved with the parameters of the network at that point. 

 

Figure 15 SSL Training curves 

During training, validation loss is curiously lower than training loss, which can be 

seen as highly unusual, but can be partially attributed to the dropout applied. The 

validation loss slope was smaller than the training, so the gap between the two 
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decreased over time until both stagnated, becoming both rather horizontal. At the 

100 epoch, the validation loss is just 0.00311, which is negligible and produces an 

almost perfect reconstruction. 

4.2 Classifier 

In the second stage, the focus shifts from pre-training to fine-tuning the model for 

stress detection. We utilize the weights of the encoders pre-trained in the first 

stage as a starting point for the stress classifier. This fine-tuning aims to adapt the 

pretrained model to the stress detection task, making it specialized and more 

accurate. 

 

Figure 16 Classifier architecture 
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4.2.1 Loss function 

For the stress detection task, which is essentially a binary classification problem 

(stress vs. no-stress), we opt for the Binary Cross-Entropy with Logits Loss, also 

known as Sigmoid Cross-Entropy loss. This loss function is well-suited for binary 

classification, especially those that may involve imbalanced datasets. 

Mathematically, the loss is calculated as: 

𝐿𝐵𝐶𝐸(y, x) = y ⋅ log(𝜎(x)) + (1 − y) ⋅ log(1 − 𝜎(x)) 

Where σ(𝑥) is the sigmoid function applied to the output x of the model and y is 

the ground-truth label, and N is the total number of samples. 

4.2.2 Encoder 

The encoder is loaded from a checkpoint of the previous stage, which loads the 

weights as achieved in pre-training. To give the model a bit more flexibility, it was 

decided to unlock the full encoder.  

4.2.3 Decoder 

The decoder consists of a gradual dimensionality reduction over two linear layers 

to a one-dimensional prediction.  Between the two layers, we apply batch 

normalization and a ReLU activation function.  After the last layer, a sigmoid 

function is applied to convert the output to a logit. 

The first layer reduces the dimensionality of the 𝑑𝑚𝑜𝑑𝑒𝑙 from 256 to 1, and the 

second layer reduces the dimensionality across time, and gives a single stress 

value for the entire sequence. 

It is crucial to apply batch normalization between the two linear layers for several 

reasons. Firstly, it helps stabilize the training process by normalizing the 
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activations of the neurons in the hidden layer. This can result in a much quicker 

and more stable training. Secondly, batch normalization acts as regularization, 

mitigating the risk of overfitting the model to the training data. This is particularly 

important given the complexity of stress detection tasks, which often require 

capturing subtle patterns in the data that may easily lead to overfitting. 

4.2.4 Training 

For the fine-tuning of our stress detection classifier, we implemented a rigorous 

training regimen to ensure the best performance. 

1. Optimizer Choice: We leveraged the Adam optimizer for training our model. 

Adam is a widely used optimization algorithm that can handle sparse gradients 

on noisy problems. Given its adaptive, it is regularly recommended by other 

similar papers over other methods as SGD. 

2. Parameter Sweeps: To ensure optimal performance, we executed a sweep 

for certain hyperparameters. Notably, the sweeps focused on the beta1 

learning rate and the weight decay parameters. Sweeping allows us to test 

multiple hyperparameter combinations, ultimately helping us to identify the 

combination that yields the best results. 

3. Bayesian Optimization: To streamline our hyperparameter tuning, we 

employed Bayesian optimization, a method that uses a Gaussian Process to 

model the objective function and quickly identify optimal hyperparameters. 

We integrated this with the automatic Bayesian optimization feature of 

Weights & Biases (WandB), a platform for advanced machine learning 

experiment tracking. This combined approach not only expedited the tuning 

process but also provided valuable insights and visualizations. 

Through this meticulous training approach, we aimed to produce a model that is 

adept at accurately detecting stress in diverse datasets. 



 

 UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER’S IN INDUSTRIAL ENGINEERING 

  

 

 
 

Francisco Barragán Castro 43  

Various sweeps were conducted with slightly different model architectures. In the 

following image an example sweep, with the WESAD dataset parted into 8 seconds 

(2048 samples) sections, is shown. To better illustrate the performance of each 

run, and its parameters, a parallel coordinates plot was created with the 

performance being measured with the model’s validation set F1 score. 

 

Figure 17 Classification hyperparameter sweep 

 The parallel coordinates plot only shows a subset of the top performing runs, as 

to not clog up the screen. The learning_rate and weight_decay hyperparameters are 

very sensitive, and the band that produces optimal results is very narrow. 

 

4.3 Data acquisition  

The acquisition of a high-quality dataset is crucial for the success of this project. 

The choice of dataset plays a crucial role in both training and validation of the 

model and can greatly impact the performance of the stress detection system. 

Two different datasets will be used, one for each of the training stages of the 

model: the self-supervised stage and the classifier stage.  
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The two datasets must contain the same type of signal, as not to interfere with 

each other. Therefore, they must include a III lead ECG signal with a sampling 

frequency higher than 250Hz, as for them to be downsampled. 

Publicly available datasets were chosen to ensure the reproducibility of the project 

and enable comparison with other studies. 

4.3.1 Self-Supervised Dataset 

For the self-supervised dataset, the primary focus is on the waveform, and no 

additional labels such as stress indicators are necessary. Therefore, this dataset 

can be more easily sourced. Although there are thousands of ECG datasets 

available online, a vast majority of them correspond to patients suffering from 

heart conditions, making them not representative of the general population. 

After reviewing multiple datasets, it was finally decided to use the dataset: A large 

scale 12-lead electrocardiogram database for arrhythmia study [32] from now own 

referred as the ALSEDAS for simplicity’s sake. It consists of 85,152 ECGs from 

patients from two Chinese hospitals, each of 10 seconds of duration. The dataset, 

therefore, contains many patients suffering from heart conditions, but because of 

the vast amounts of data to work with, we were able to filter these, as well as the 

ECGs that had significant noise. After the fact, we have 48k samples. 

The III lead extracted and down sampled to the desired 250 Hz, which won’t 

introduce any artefacts as it’s a multiple of the original signal. 

It must be noted that, the Icentia11k dataset [33] was originally chosen for the 

project, but it was finally scrapped for as the electrode location better resembled 

a II lead, making it not representative of the waveform types seen for the selected 

classifier dataset. Despite the discrepancy, performance was only marginally 

affected. Therefore, indicating that the selected self-supervised task didn’t overfit 

for the lead type. 
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4.3.2 Classifier Dataset. 

The selection of the classifier dataset, in contrast, is essential, as it includes the 

label used to classify stress. To help compare performance to other methods, it 

was decided to use a well-established and publicly available dataset. After 

evaluating various options, the dataset selected for this purpose is the WESAD 

dataset [34].  

This multimodal dataset features physiological and motion data, recorded from 

both a wrist- and a chest-worn device, with all signals sampled at 700Hz. 

 

Figure 18 Placement of the RespiBAN and the ECG, EDA,[3] 

The ECG used in the dataset is a standard 1-lead ECG with two signal electrodes 

and a ground electrode. The dataset doesn’t specify, but after closely looking at 

the electrode placement, it is clear that it is a type III ECG. 

The dataset includes data from 15 participants, averaging 27.5 ± 2.4 years of age. 

Of these, 12 are male, and three are female. 

To measure stress levels, the study employed questionnaires administered after 

participants completed each of the following stations: 

• Baseline: Participants sat or stood at a table for 20 minutes, with neutral 

reading material like magazines provided. 
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• Meditation: A 7-minute meditation session following other tasks. 

• Amusement: Viewing humorous video clips for a total duration of 392 seconds 

(6 minutes and 32 seconds). 

• Stress: The Trier Social Stress Test (TSST) was conducted, involving tasks like 

public speaking and mental arithmetic, lasting for 10 minutes. 

To avoid any bias, two different versions of the study were carried out, each with 

a different order. 

 

Figure 19 The two different versions of the study protocol 

The original dataset featured signals sampled at 700Hz. While a higher sampling 

rate offers more detailed information, it may also introduce computational 

challenges, such as increased processing time and memory usage. Therefore, we 

opted to reduce the sampling rate to 250Hz.  

We segmented the ECG data into 8 second chunks to emulate sensor readings for 

a real-time monitoring system. These 8-second intervals were labelled according 

to the reported stress doing that activity type.  
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However, it should be noted that stress responses may vary considerably within a 

single labelled activity. For example, during the Stress task, patients could 

experience a range of emotions from anticipation to relief while doing the 

different tasks. These details might not be fully captured by a single “Stress” label 

for the entire 10-minute segment but might be captured inside the 8-second 

intervals, leading to mislabelling. 

This limitation is a by-product of our data-labelling methodology, which assigns 

labels at relatively long intervals to accommodate a broader spectrum of stressors.  

Future work could consider employing their data acquisition, employing a more 

dynamic labelling approach that allows for shorter, more context-sensitive 

labelling intervals, which may be more relevant to the task at hand.  
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5  
Results  

5.1 Quality of the models’ predictions 

In this section, we delve into a more profound analysis of the models' predictive 

quality by investigating other evaluation metrics and analysing some individual 

predictions. It's crucial to understand the behaviour of the models beyond just 

accuracy and F1 scores to gauge their reliability and robustness in real-world 

scenarios. Of course, all this metrics have been made with an unseen test set. 

5.1.1 Confusion Matrix Analysis 

The confusion matrix provides a more detailed view of the prediction results, 

offering insights into the types of mistakes that the model is making. We analysed 

the confusion matrix for each model to observe the rate of true positives, true 

negatives, false positives, and false negatives. 

Table 2 Confusion Matrix Analysis 

8s-2l full 

Predicted  
8s-2l last 

Predicted 

No 
Stress 

Stress 
 

No 
Stress 

Stress 

 A
c

tu
a

l 
 

No 
stress 

710 4 
 

 A
c

tu
a

l 
 

No 
stress 

671   17 

Stress 10  161  Stress  31  166 

    

 

      

4s-1l full  Predicted  4s-1l last Predicted 



 

 UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER’S IN INDUSTRIAL ENGINEERING 

  

 

 
 

Francisco Barragán Castro 49  

No 
Stress 

Stress 
 

No 
Stress 

Stress 

 A
c

tu
a

l 
 

No 
stress 

1361  5  
 

 A
c

tu
a

l 
 

No 
stress 

1349  17  

Stress 16  389   Stress  136 269  

The model displays a strong capability to correctly classify "No Stress" situations, 

with only a minor portion being misclassified as "Stress". However, when it comes 

to detecting "Stress" scenarios, there is a noticeable number of instances that the 

model incorrectly predicts as "No Stress". This suggests that while its specificity is 

commendable, its sensitivity might require improvement.  

5.1.2 Receiver Operating Characteristic (ROC) Curve and Area 

Under Curve (AUC) 

The ROC curve and the associated AUC value are crucial metrics to evaluate the 

models' ability to distinguish between the two classes over a range of threshold 

settings. We computed the ROC curves and AUC values for each model. 

Table 3 ROC curves 
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Upon examining the ROC curves, it is evident that the models have demonstrated 

excellent discriminatory power. Specifically, the near-square shape of the ROC 

curve is indicative of outstanding performance, as it closely hugs the top-left 

corner. This shape means that for a broad range of thresholds, the model has a 

high true positive rate and a low false positive rate. 

The AUC values reaffirm this observation. High AUC values, approaching 1, signal 

that the model has a strong ability to distinguish between the positive and 

negative classes across different decision thresholds. An AUC of 1 represents a 

perfect classifier, so our models' performance is commendable and suggests they 

are highly reliable in making predictions. 

5.1.3 Histogram analysis 

In this section, we present a histogram analysis to further dissect the performance 

of our models and understand the distribution of prediction scores across the two 

classes (stress and no-stress). Histograms provide a visual representation of the 

frequency of prediction scores, helping to gauge the confidence level of the 

model's predictions and understand any biases. 

We plotted histograms of the prediction scores for both classes across different 

models to observe the distribution of scores. 



 

 UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER’S IN INDUSTRIAL ENGINEERING 

  

 

 
 

Francisco Barragán Castro 51  

Table 4 Histogram of the models 

8s-2l full  8s-2l last 

   

      

4s-1l full  4s-1l last 

   

We find that the model is well-calibrated, with distinct peaks for the stress and no-

stress classes, and minimal overlap between the two distributions. Although the 

“4s-1l full” predictions never get to 0, which indicate a slight miscalibration. 

There are some stress samples which get completely mistaken for no stress, 

suggesting a possibility of outliers or mislabelled data in the dataset, or perhaps 

certain physiological markers of stress that were not captured well by the model.  
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6  
Interpretability of the results 

While achieving high accuracy and F1 scores is undoubtedly important for the 

stress detection model, the interpretability of the model is equally crucial, 

especially in the healthcare and medical sector. Knowing what the model “thinks” 

helps clinicians and healthcare providers trust the model's decision-making 

process, which is vital for making informed medical decisions. Additionally, 

interpretability helps to identify any biases or errors in the model, thus enabling 

fine-tuning and iterative improvements. 

6.1 Saliency maps 

Saliency maps are one of the techniques we used to visualize the decision-making 

process of the stress detection model. The maps highlight which parts of the input 

data were most essential for the model when making a prediction. In our context, 

it can be especially useful to understand which physiological or behavioural signals 

are most indicative of stress according to the model. 

To generate saliency maps, we perform backpropagation from the output layer to 

the input layer, computing the gradient of the output regarding the input. The 

magnitude of the gradient serves as an indicator of the importance of each 

feature, which is then represented visually as a saliency map.  
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6.2 Saliency map of the encoder 

The encoder plays a vital role in transforming raw input data into a feature-rich 

representation, which is utilized by the subsequent layers of the model to make 

predictions. Visualizing the saliency map for the Convolutional Neural Network 

(CNN) encoder helps us understand which features were deemed valuable for the 

pretraining task, and therefore which parts of the waveform are better 

represented for the Transformer and decoder. 

The gradients obtained through this process are indicative of the importance of 

each feature extracted by the encoder. These gradients are then visualized as a 

saliency map, which could be colour-coded to reflect the magnitude and direction 

of the importance each feature has in the decision-making process. To illustrate 

this, the saliency of the four possible cases of our algorithm is shown, these 

illustrate a diverse set of the ECGs encountered by the network. 

 

Figure 20 Saliency map of the encoder 
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The CNN encoder accentuates certain segments of the signal over others. 

Interpretation may be subjective, yet some insights can be garnered. Given the 

nature of our pretraining task, the encoder seems to have learned the attributes 

of a 'baseline ECG,' which is the most prevalent type in the ALSEDAS dataset and 

closely resembles the non-stressed ECG of the WESAD dataset. Utilizing this 

baseline, the encoder has honed its ability to detect anomalies in this pattern, 

highlighted within the saliency maps. 

The true negative (top left) illustrates a fairly typical ECG, aside from two 

heartbeats with lower R amplitude. In this instance, the saliency map appears 

relatively flat, with the only notable area being the end of the T segment. This 

observation is beneficial for the downstream task, as a pronounced T wave is 

indicative of stress. The encoder also focuses on the ST-T segment of the second-

to-last heartbeat, which deviates from the rest of the presented beat’s waveform—

a result of our chosen pretraining task, which emphasizes the ECG intricacies for 

reconstruction. 

In the false positive (top right), emphasis is placed on the PR interval due to an 

abnormally low reference level (PQ), which typically hovers around 0. 

Regarding the false negative (bottom left), attention is directed towards the ST 

segment, which is noticeably low, exhibiting ST depression with a negative J 

point—a marker of stress and indicative of a short QT. Despite being captured by 

the encoder, it wasn't correctly classified. 

Lastly, the true positive (bottom right) appears to amalgamate all previously 

highlighted observations. Though the Heart Rate (HR) is notably low, the waveform 

exhibits abnormal characteristics typical of stress, and is therefore correctly 

classified. 

Overall, it can be inferred from the saliency maps and corresponding cases that 

the encoder has developed a good representation of the signal, which correlates 

well with the downstream task. It must be noted, that although the encoder was 
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also trained on the downstream task in the case of all layers, unlocked model. The 

number of epochs, and number of samples it was trained on won't drastically 

change the overall extracted features, and its performance must be largely 

attributed to the pretraining task. 

6.3 Saliency map of the output 

Computing the saliency map from the output is also valuable. This map highlights 

the time steps that notably influence the classification result, acting as a visual tool 

to pinpoint the evidence the model utilizes for its prediction.  

The saliency map gives ‘importance scores’ to the time steps of a given time series, 

demonstrating the extent to which each time step affects the classifier's 

prediction. Higher values on the map signify a stronger reliance by the model on 

those specific time steps. It's worth mentioning that we opted for a base saliency 

map computation over more recent methods like PERT [35]. 

In the following image, bright red bars signify strong evidence supporting the 

opposite class, stress, while blue bars indicate evidence against stress. We've 

chosen to display the performance in one of the four possible scenarios our 

algorithm could face. It should be noted, however, that there is a significant 

variability in the segments the network selects to focus on, with some patterns or 

features not displayed in this image.  
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Figure 21 Saliency map of the output 

Overall, there is a prevalence of the colour of which the network decided to 

classify. 

The true negative case (top left) seems two, focuses on the T wave. Its short length 

is seen as evidence against stress, whilst its amplitude on the last heartbeat is a 

sign of stress. As this pattern is only seen on the last beat, it doesn’t have enough 

weight as to change the overall classification. 

The true positive case (bottom right) on the other hand, displays a very faint T 

wave, but isn’t seen as evidence against stress. As probably the type of wave comes 

from an electrode location where there isn’t a pronounced T wave.  
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6.3.1 Simulated ECGs 

To further improve our understanding of the model, synthetic ECGs will now be 

made to alternate certain features of wave. There are mathematical models to 

create synthetic ECG waves [36], but they are hard to control as they have many 

non-linear parameters; therefore we decided to approximate the wave by using a 

collection of sine segments. 

 

Figure 22 Synthetic ECG 

Using this base ECG, the wave parameters can be changed to see the effect on the 

output, and corroborate they go in accordance with the medical background.  The 

best way to test the similarity of our simulated ECGs to their real counterparts, and 

therefore see their viability for measuring the model’s performance, is two compares 

this real ECG with the simulated one in the output logit and saliency.  
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The simulated ECG isn’t a perfect model of the waveform, as there are significant 

differences in the saliency, and the predicted probability of the simulated waveform 

is higher, and there is some HRV. Nevertheless, generally, the areas of focus in the 

saliency maps are the same, and the predicted probability is very similar. From now 

on, this synthetic wave will be used as a baseline for the transformations to better 

resemble what scientific papers believe is a stressed waveform. 

6.3.2 RR Interval 

The first feature to be studied is the RR interval, in other words, the heart rate (HR). 

In this case, the RR interval was changed from 239(62.76 bpm) samples to 180 

(83.33bpm). Which is still not considered tachycardia(100bpm), but can be 

considered an accelerated HR. 
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Figure 23 RR interval 

This caused the predicted probability to drastically increase to 64.64% and the 

evidence of stress to appear much more pronounced on the waveform. It must be 

pointed out, however, that the QRS complex isn’t being targeted as evidence of 

stress, this suggests that this part of the waveform wasn’t deemed relevant for the 

model. Instead, it seems to have used other parts of the end of waveform, as the 

T or P as an anchor point of the waveform. 

6.3.3 PR Interval 

Another indicator of stress is the PR interval, which is the duration between the 

onset of the P wave and the QRS complex in an ECG. It reflects the time the 

electrical impulse takes to travel from the sinus node through the atrioventricular 

node, where it enters the ventricles. The PR interval is an important indicator of 



 

 UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER’S IN INDUSTRIAL ENGINEERING 

  

 

 
 

Francisco Barragán Castro 61  

atrioventricular conduction. In the context of stress, an altered PR interval may 

signify altered autonomic balance with increased sympathetic tone. 

To show this, the PR interval of the base wave was shortened by 12 samples 

(48ms). 

 

Figure 24 Low PR interval 

Whilst this might look like an un significant alteration, the effect on the predicted 

probability is noteworthy. The probability of the waveform being associated with 

stress increased, highlighting the sensitivity of the model to PR interval changes. 

6.3.4 T amplitude 

The amplitude of the T wave is another prominent feature, it represents the 

repolarization of the ventricles, and its amplitude and shape can provide 

information of the autonomic nervous system and therefore stress. In the context 

of stress, an elevated T wave can be indicative of hyperkalaemia. 
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To analyse the model's response to changes in T amplitude, we modified the 

amplitude of the T wave in our base synthetic ECG doubling it and increasing its 

duration (4 samples) as not to distort the T waveform excessively. 

 

Figure 25 Increase of T wave amplitude. 

This had a noticeable impact on the model's predictions. As shown in Figure 21, 

the heightened and prolonged T wave contributed significantly to the model's 

stress classification. The saliency map showed prominent evidence of stress over 

the T wave region, corroborating the clinical understanding that a heightened T 

wave can be indicative of stress. 

6.3.5 QT interval 

The QT interval represents the total time taken for the ventricles to depolarize and 

then repolarize, and it is measured from the beginning of the QRS complex to the 
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end of the T wave. It is, among other things, regulated by cardiac sympathetic 

innervation, and low intervals can be linked to stress. 

To exemplify the effect, the QT interval of the base wave was shortened by 12 

samples (48ms).  

 

Figure 26 Low QT interval 

6.4 Attention heatmaps 

Attention heatmaps provide another way to visualize the decision-making process, 

in models that rely on self-attention mechanisms. This technique provides insight 

into which parts of the input data the model is paying attention to when making a 

prediction. 

The attention mechanism allows a model to focus on different parts of the input 

for different tasks. By visualizing the attention weights, one can see which parts of 

the input the model finds relevant for a particular task. 
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In a trained model, the weights of the attention mechanism are learned during 

training. Once the model is trained, the weights themselves are fixed. However, 

the attention matrix produced by these weights for any given input is dynamic, 

meaning it depends on the input data. 

The cyclic nature of the ECG signals creates the periodic lines and squares on the 

ECG, as the model pays attention to the same points of the signal at other cycles. 

 

Figure 27 Attention heatmap of a non-stressed patient 
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Figure 28 Attention heatmap of a stressed patient 

Whether stressed or not, it's clear that the receptive field of the S-wave peak 

consistently focuses on signal points, like the QRS complex and the P wave. This 

indicates that the classifier’s Multilayer Perceptron (MLP) is zeroing in on the 



 

 UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER’S IN INDUSTRIAL ENGINEERING 

  

 

 
 

Francisco Barragán Castro 66  

crucial parts of the signal. Essentially, there's a distinct correlation between the 

insights from the saliency maps and the model's emphasis on essential signal 

elements. 
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7  
Conclusions and future works 

The successful intersection of medical technology and artificial intelligence was a 

hallmark of this project. By drawing upon the latest advancements in 

Electrocardiogram (ECG) technology and integrating them with cutting-edge Deep 

Learning techniques, our endeavour has significantly elevated the potential of stress 

detection using raw ECG data over previous works. This synergy opens up promising 

avenues for the integration of these sensors for multiple applications, like the 

automotive field. 

In terms of methodology, our research underscored the power of a two-stage 

process, which placed substantial emphasis on self-supervised learning. This pivotal 

decision gifted our model with an enhanced capability to recognize and decode 

intricate patterns from ECG signals over traditional HRV analysis, thus amplifying its 

accuracy and reliability manifold.  

Further, by harnessing state-of-the-art computational paradigms like Transformers 

and Self-Supervised Learning, not only positioned the project at the forefront of 

innovation but also served as a testament to the transformative power of 

contemporary AI techniques when wielded in medical contexts. Such an adoption 

not only reflects our commitment to the best in technology but also casts a spotlight 

on the possibility of real-time and non-invasive stress detection. 

Parallelly, our deep-dive into interpretability studies, particularly through tools like 

saliency maps and attention heatmaps, has demystified the AI decision-making, 
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reinforcing the imperative of transparency in AI-driven outcomes which is crucial in 

the medical field. 

7.1 Future works 

Even though we are delighted with our results, we recognize that there is always 

room for improvement and expansion in such a dynamic field. 

One immediate area of potential lies in the expansion of our dataset. The WESAD 

dataset used is quite limited in size and might be a limiting factor for the model’s 

real-life adoption. By integrating a broader and more varied spectrum of ECG signals, 

we can potentially enable our model to achieve even greater levels of accuracy and 

generalization. This diversity in data can be instrumental in mirroring the true 

complexity and variability seen in real-world stress patterns.  

A natural progression of this project would be its deployment in real-world scenarios. 

Given the potential applications in diverse fields like vehicular safety, continuous 

healthcare monitoring, and even workplace stress management, our model can be a 

game-changer. Experimenting with its deployment in these arenas can yield practical 

insights and pave the way for broader adoption.  

Linking with the previous point, in a real deployment of the model, the recorded 

signals are likely to have some sensor distortion which needs to be calibrated for, 

varying for each sensor model. Our two-stage training model will ensure this 

retraining is minimal and more focused on the latter stages of the model, without a 

complete retraining, for more efficient and cost-effective adaptation to different 

deployment environments. 

Another area that warrants further exploration is the architectural nuances of the 

model.  

One aspect that could significantly lighten the model for IoT applications would be 

reducing the CNN encoder’s parameters, as they largely contribute to the overall 



 

 UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER’S IN INDUSTRIAL ENGINEERING 

  

 

 
 

Francisco Barragán Castro 69  

model’s size. There are several ways to do this, but it is important for the architecture 

to maintain the receptive field of approximately 60bpm.  

One avenue would be reducing the sampling rate to 125Hz, which would almost half 

the number of parameters used. And, as shown while explaining the methodology, 

theoretically should be possible to lower the sampling rate up to 125Hz without 

significantly reducing the delineation, but we would rather not push the model so far 

in this study.  

As for the transformer, it does undoubtedly lead to great results as using just one 

layer. But some of its hyperparameters, such as the number of heads, the K Q V 

dimensionality (which comes from the CNN), could also be studied. 

Lastly, stress, as a physiological phenomenon, is closely tied to our emotional and 

mental well-being. It would be intriguing to explore the use of the model for said 

applications. 
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ANNEX A: 

 Alignment with the Sustainable Development Goals (SDGs) 

In our rapidly evolving world, ensuring sustainable growth and development 

remains paramount. To this end, the Sustainable Development Goals (SDGs) set 

forth by the United Nations act as a global blueprint, guiding concerted efforts 

towards building a brighter and more equitable future. In particular, our project 

deeply resonates with two pivotal goals: Goal 3, which emphasizes Good Health 

and Well-being, and Goal 9, which advocates for Industry, Innovation, and 

Infrastructure. By aligning our objectives and strategies with these SDGs, we aim 

to create a holistic impact, addressing both health concerns and technological 

advancements in tandem. 

Goal 3: Good Health and Well-being 

Stress is a significant health concern that can lead to severe physical and mental 

health issues if not properly managed. By developing an advanced stress detection 

model using ECG technology and deep learning, our project is inherently aligned 

with SDG 3. Our model's primary objective is to help individuals detect their stress 

levels accurately and in real-time, which could lead to more timely interventions 

and treatments. 

Moreover, stress often acts as a precursor to various cardiovascular and mental 

health disorders. By providing an efficient and reliable stress detection tool, we 

may help reduce the prevalence and impact of these stress-related conditions. It's 

a step forward towards achieving the targets of SDG 3, which includes ending 

epidemics of communicable diseases and reducing mortality from non-

communicable diseases and promoting mental health and well-being. 

Goal 9: Industry, Innovation, and Infrastructure 

The implementation of cutting-edge technology such as deep learning, ECG 

technology, and self-supervised learning techniques to enhance stress detection 

models is an embodiment of SDG 9. We're leveraging the potential of these 
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technologies to drive innovation and provide solutions to health challenges, thus 

fostering technological development in healthcare. 

Furthermore, this project also contributes to building resilient infrastructure and 

fostering innovation. The creation of robust stress detection models will augment 

the capabilities of current healthcare infrastructures, particularly those related to 

mental health care. This aspect aligns with the targets of SDG 9, which includes 

upgrading infrastructure and retrofitting industries to make them sustainable, 

with increased resource-use efficiency and greater adoption of clean and 

environmentally sound technologies and industrial processes. 

In conclusion, this project aligns with the SDGs by capitalizing on innovative 

technology for promoting well-being and supporting sustainable industrial 

development. The positive outcomes from this project can have a ripple effect, 

leading to broader benefits in health, industry, and beyond, contributing to the 

overarching aim of the SDGs – a better and more sustainable future for all. 
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