
 

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título  

“An Optimized and Explainable Pre-Trained Transformer Model for Accurate Stress 

Detection using ECG Signals” 

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el  

curso académico 2023/24 es de mi autoría, original e inédito y  

no ha sido presentado con anterioridad a otros efectos.  

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido  

tomada de otros documentos está debidamente referenciada.  

 

 

Fdo.:  Francisco Barragán Castro              Fecha:  11/ 07/ 2024 

 

Autorizada la entrega del proyecto  

EL DIRECTOR DEL PROYECTO             

  

 

Fdo.:  Berta Ruíz González Fecha:  16/07/2024 

Álvaro López López Fecha:  16/07/2024 

 

 



An Optimized and Explainable Pre-Trained Transformer

Model for Accurate Stress Detection using ECG Signals

Francisco Barragán Castro

fbarraganc@alu.comillas.edu

Berta Ruiz González
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Abstract

This paper presents an enhanced and interpretable
pre-trained transformer model designed for pre-
cise stress detection using 1-lead electrocardiogram
(ECG) signals. Our model combines self-supervised
learning with transformer architecture to efficiently
process raw ECG data while ensuring explainabil-
ity. By utilizing self-supervised learning, we effec-
tively manage unlabeled data and achieve leading
accuracy in stress detection. We prioritize model
interpretability with saliency maps, ensuring com-
pliance with medical standards and fostering trust
in AI-driven healthcare solutions. This methodology
establishes a new standard for ECG-based stress de-
tection on the WESAD dataset, merging advanced
AI techniques with practical medical applications.

Keywords: Transformer Models, Electrocardio-
gram (ECG), Stress Detection, Self-Supervised
Learning, AI in Healthcare, Medical AI Inter-
pretability, WESAD Dataset

1 Introduction

Stress-related health issues are becoming increas-
ingly prevalent worldwide and seriously impact peo-
ple’s mental health and quality of life [1]. Advance-
ments in wearable technology present a promising
alternative for stress analysis, with sensors continu-
ously monitoring physiological signals such as elec-
trocardiograms (ECGs). ECGs reflect the heart’s
electrical activity and can provide insights into an
individual’s stress response.

Recent technological advancements have paved the
way for innovative applications across various sec-

tors. Notably, the synergy between deep learning
and sensor technology holds significant promise for
healthcare and wellness monitoring. Wireless mea-
surements of critical health parameters like ECGs
could soon become commonplace[2, 3], revolutioniz-
ing traditional industries and fostering innovation by
opening the door for continuous non-intrusive mea-
surement.

1.1 Related Work

The literature indicates that transformer-based
models are at the forefront of this technological rev-
olution, particularly for analyzing ECG signals[4, 5,
6]. Transformers, characterized by their ability to
handle sequential data and self-attention capabili-
ties, have demonstrated superior performance com-
pared to other approaches like Convolutional Neu-
ral Networks (CNNs)[7, 8]. Their inherent ability
to capture long-term dependencies in data makes
them ideal for ECG signal analysis, where the tem-
poral relationship between different parts of the sig-
nal is crucial. This superiority in handling ECG
data, combined with their versatility and scalability,
underscores their potential as key tools in develop-
ing emotion-sensitive models [5].

1.2 Methodology

Our approach integrates self-supervised learning
with transformer architecture to effectively process
raw ECG data while ensuring explainability. By
leveraging self-supervised learning, our model au-
tonomously handles unlabeled data, significantly
improving its ability to learn useful representations
from the data itself. The transformer architecture,
known for its prowess in capturing long-term de-
pendencies in sequential data, further enhances the
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model’s accuracy.

To ensure the model’s interpretability, we incor-
porate saliency maps. These tools provide visual
insights into the model’s decision-making process,
aligning with medical standards and building trust
in AI-driven healthcare applications. Our model sets
a new benchmark for ECG-based stress detection,
demonstrating superior performance on the WE-
SAD dataset [9] compared to existing methods.

The rest of the paper is organized as follows: In Sec-
tion 2, we delve into the methodology employed in
our study, detailing the data collection and imple-
mentation specifics. In Section 3, we present and
analyze the results of the proposed method, show-
casing its performance compared to existing models.
In Section 4, we explore the interpretability of these
results, offering insights and explanations for the ob-
served patterns and trends through saliency maps.
Finally, in Section 5, we draw our conclusions, high-
lighting the implications of our findings and suggest-
ing potential avenues for future research.

2 Proposed Method

We apply a two stage training process to build an
encoder-decoder architecture. The first pretraining
stage consists uses self-supervised learning to build a
robust encoder that can capture the most vital parts
of the ECG signal in a latent space. On the second
phase, we leverage the pretrained weights of this en-
coder to fine-tune them whilst training a decoder to
a stress detection model.

2.1 Self-supervised pretraining

The first stage employs a self-supervised learning
model to autonomously identify patterns and fea-
tures within ECG data, establishing a robust foun-
dational representation. This foundation is critical
because it allows the model to learn from a large
amount of unlabeled data, enhancing its capability
to generalize and perform well in subsequent stress
classification tasks.
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Figure 1: Architecture of the models

2.1.1 Masked Reconstruction Task

We chose a task-based approach, specifically masked
reconstruction, over contrastive learning [10] due
to its effectiveness in learning representations from
time-series data[11][12][13]. Masked reconstruction
requires the model to predict occluded parts of the
ECG signal, guided by a binary mask. This task
forces the model to understand the underlying struc-
ture of the ECG waveform, which is essential for
accurate stress detection.

Our masking strategy involves fixed-width masks of
39 samples, randomly generated with a 1.66%likeli-
hood and capable of overlapping. This ensures that
the model learns to reconstruct significant portions
of the ECG signal, capturing essential features rele-
vant to stress detection, very similar to [13].
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2.1.2 Loss Function

We opted for Mean Square Error (MSE) loss, fo-
cusing on the masked sections of the ECG signal.
This choice directs the model to learn efficiently
from the occluded data, emphasizing the reconstruc-
tion of the most challenging parts of the signal.
This approach improves the model’s ability to han-
dle real-world data where noise and occlusions are
common.[13][12]

2.1.3 Encoder Architecture

Our encoder comprises a CNN followed by a Trans-
former. The CNN is designed to highlight spe-
cific heartbeat patterns, essential for detecting sub-
tle stress-related changes in the ECG signal. The
Transformer captures global dependencies within
the sequence, making it well-suited for long-term
temporal analysis inherent in ECG data. This com-
bination leverages the strengths of both architec-
tures, providing a detailed and comprehensive un-
derstanding of the ECG signals.

Layer Configuration

1 Conv1D (d = 64, k = 123, s = 1, p = 61) +
LN + ReLU + dropout = 0.1

2 Conv1D (d = 128, k = 65, s = 1, p = 32) +
LN + ReLU + dropout = 0.1

3 Conv1D (d = 256, k = 33, s = 1, p = 16) +
LN + ReLU + dropout = 0.1

Table 1: Convolutional embedding configurations

In order for the CNN to work as intended, the per-
ceptive field must be of similar length to one heart-
beat [5], therefore the CNNs kernel, stride, and
padding should be calculated accordingly. Given
our sampling rate of 250 Hz, the parameters shown
in Table 1, create a perceptive field of 0.8 seconds
(75bpm), slightly below the resting heart rate of a
healthy adult (65bpm)[13]. This design choice aims
to enhance performance for stressed heart rates, typ-
ically higher due to tachycardia. The Transformer’s
fixed positional encoding and multi-head attention
mechanisms further ensure accurate temporal mod-
eling of the ECG data. In the transformer en-
coder we denote the number of Transformer blocks

as N , the hidden size as dmodel, the number of self-
attention heads as h, and the dimension of the feed-
forward layer as dff . We present results for two
different Transformer model sizes shown in Table2.

Model N dmodel dff h

MODELLarge 2 256 512 2
MODELLittle 1 256 512 2

Table 2: Transformer Model Configurations

In both cases, the Transformer blocks incorporate a
dropout rate of 0.1, Batch Normalization, and utilize
the GeLU as an activation function. We will refer
to the model using two layers as MODELLarge, and
when applying the single layer as MODELLittle.

2.1.4 Reconstruction decoder

The decoder consists of a fully connected network of
two layers, where the dimensionality of the encoder’s
output is gradually reduced to a univariate ECG.
The first layer reduces the dimensionality from 256
to 128 and the second layer from 128 to 1. Between
the two, a ReLU activation function is placed to
introduce some non-linearity.

2.1.5 Dataset

We used the ALSEDAS dataset [14] for pre-training,
containing 48,000 ECG samples filtered and noise-
reduced. The large size and diversity of this dataset
allow the model to learn robust representations.
Downsampling to 250 Hz prevents artifacts and en-
sures the data is manageable for real-time process-
ing.

2.2 Fine-tuning for Stress Detection

In the second stage, we fine-tune the pre-trained
model specifically for stress detection. Reusing the
pre-trained CNN and Transformer encoders capital-
izes on the robust representations learned in the first
stage. This transfer learning approach significantly
reduces the amount of labeled data needed for train-
ing the stress classifier, enhancing efficiency and ef-
fectiveness [10].
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2.2.1 Loss function

We selected Binary Cross-Entropy with Logits Loss
for the stress detection task. This loss function is
particularly suitable for binary classification prob-
lems, such as stress vs. no-stress, and handles im-
balanced datasets effectively, ensuring accurate pre-
dictions across different stress levels.

2.2.2 Encoder fine-tuning

A critical aspect of the downstream task stage is
the flexibility in choosing to either fine-tune the en-
tire encoder, only the last layer, or leave it frozen.
Fine-tuning the entire encoder was chosen, where
all layers of the encoder are updated based on the
new stress detection task. This approach allows the
model to adjust all learned features to better suit
the specific nuances of stress-related ECG patterns.
Fine-tuning the full encoder can lead to higher accu-
racy because the model can refine its understanding
of the data at all levels. However, this method is
computationally intensive and requires more data to
prevent overfitting. Fine-tuning the entire encoder
is particularly beneficial when there is sufficient la-
beled data available to support the training process.

2.2.3 Stress Decoder Architecture

The stress decoder transforms the encoded data into
a stress prediction. It consists of two linear lay-
ers with batch normalization and ReLU activation
functions. The first layer reduces the dimensional-
ity from 256 to 128, and the second layer further
reduces it to 1, resulting in a single stress prediction
for the entire sequence. The use of batch normaliza-
tion helps stabilize training and prevents overfitting
by normalizing the activations, while the ReLU ac-
tivation introduces non-linearity to capture complex
relationships in the data.

2.2.4 Dataset

We used the WESAD dataset[9], used for classifier
training, provides comprehensive physiological and
motion data with accurate stress labels. Segmenting
the data into 8-second chunks simulates real-time
sensor readings, aligning with our goal of real-time
stress detection. Downsampling to 250 Hz ensures

computational efficiency without losing critical sig-
nal details.

3 Experiments

In our experiments, we aimed to evaluate the im-
pact of various model configurations on the perfor-
mance of stress detection on the WESAD dataset.
We focused on two main aspects: the size of the
transformer encoder and the length of the sampled
time window (8 seconds vs. 4 seconds). This re-
sulted in two distinct configurations. One called
MODELLarge with a context window of 8 sec-
onds and two transformer layers, and a second one
MODELSmall with a 4-second window and a single
transformer layer.

Hyperparameter MODELlittleMODELlarge

Sequence Length (sec) 4 8
Accumulated Gradient 8 8
Batch Size 32 32
Dropout Rate 0.6 0.4
Learning Rate 5.947 ×

10−4
1.585 ×
10−5

Epochs 100 100

Table 3: Optimal Hyperparameter Configurations
for MODELLittle and MODELLarge

We implemented these models using PyTorch Light-
ning and trained them on NVIDIA GeForce RTX
4090 GPUs.

In terms of validation, we employ a hold-out scheme,
dividing each dataset into three subsets: 60% for
training, 20% for validation, and 20% for testing

3.1 Pretraining phase

For the pre-training phase, we utilized the Adam op-
timizer with a fixed learning rate of 0.001 and gra-
dient clipping prevents overfitting and stabilizes the
learning process. Training consisted of 100 epochs
with a batch size of 64, whether processing 8-second
or 4-second ECG signals.

The presence of low losses(2), in both cases, serves
as a strong indicator that the self-supervised task
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(a) Losses of the model MODELlittle

(b) Losses of the model MODELlarge

Figure 2: Losses of the self-supervised task

has been carried out effectively, implying that the
encoder has successfully captured a high-quality rep-
resentation of an ECG signal.

3.2 Stress detection

Hyperparameter sweeps and Bayesian optimization
were employed to fine-tune the model, focusing on
learning rate and weight decay. This meticulous tun-
ing ensures the model performs optimally, balancing
accuracy and computational efficiency. Obtaining
the parameters shown in Table 3.

To evaluate the model’s performance, we used both
accuracy and F1 metrics. While accuracy is useful,
especially for unbalanced datasets, the F1-score is
a more appropriate measure. This is because the
F1 score offers a balanced evaluation, taking into
account both majority and minority class perfor-
mance.

The results for stress prediction on the WESAD
database, as shown in Table 4, highlight the excep-
tional performance of our models in terms of accu-
racy and F1-score. Specifically, our MODELlarge
achieves an accuracy of 0.996 and an F1-score of
0.992, while our MODELlittle achieves an accuracy
of 0.992 and an F1-score of 0.983.

Model Method
Time

window(s)
Acc. F1

[15]
Deep

ECGNet
10 0.908 0.857

[16] QDA 40 0.857 -

[17] Image - 0.925 -

[9] LDA 60 0.854 0.813

[4] TF 30 0.911 0.833

Ours
MODELlittle

SSL + TF 4 0.992 0.983

Ours
MODELlarge

SSL + TF 8 0.996 0.992

Table 4: ECG stress-based detection on WESAD
database. Explanation QDA = Quadratic Discrim-
inant Analysis, LDA = Linear Discriminant Analy-
sis, TF = Transformer, SSL = Self-supervised learn-
ing

An interesting finding is that reducing the model
complexity and input sequence length does not sig-
nificantly affect the performance. This suggests that
a simpler model can be effectively used for stress
detection without compromising accuracy. The
reduced input sequence length allows for quicker
stress detection in real-time applications, and the
model’s parameter count is significantly decreased
from 3,993,476 to 2,807,940.

Table 4 also compares our models with several
other approaches applied to the WESAD database
for stress versus non-stress detection. Our models
consistently outperform the alternatives, achieving
state-of-the-art results in both accuracy and F1-
score. Notably, our method demonstrates superior
performance even with a shorter time window, which
is critical for real-time stress detection. The pre-
training phase in our approach plays a crucial role in
enhancing the model’s ability to detect stress effec-
tively, setting it apart from other transformer-based
methods.

4 Model Explainability

While achieving high accuracy and F1 scores is crit-
ical for the stress detection model, interpretability
is equally important, particularly in the healthcare
sector. Understanding the model’s reasoning helps
clinicians trust its decisions and enables identifica-
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tion and correction of any biases or errors. This sec-
tion focuses on the techniques used to enhance the
interpretability of our model, specifically saliency
maps.

4.1 Saliency maps

Saliency maps are used to visualize the decision-
making process of the stress detection model. They
highlight which parts of the input data were most
important for the model when making a prediction.
This technique involves backpropagation from the
output layer to the input layer, calculating the gra-
dient of the output concerning the input. The mag-
nitude of these gradients indicates the importance of
each feature, which is then visually represented as a
saliency map.[18] In our context, bright red bars on
the map indicate strong evidence supporting stress,
while blue bars indicate evidence against stress.

For instance, in a true negative case, the map might
focus on a short T wave as evidence against stress,
while in a true positive case, it highlights a faint
T wave typical of stress. This detailed view helps
us understand the temporal dependencies the model
relies on.

4.2 Artificial ECGs

To further understand and validate our model, we
created synthetic ECGs by altering specific wave-
form features, as shown in Figure 3. This pro-
cess allows us to observe the model’s responses to
controlled changes, ensuring they align with med-
ical understanding. We used mathematical mod-
els to generate synthetic ECG waves[19], adjust-
ing parameters to simulate different stress indicators
[20][21][22].

• RR Interval: By shortening the RR interval,
simulating an increased heart rate, the pre-
dicted probability of stress increased signifi-
cantly. This aligns with the clinical expectation
that a higher heart rate can indicate stress.

• PR Interval: Shortening the PR interval in-
creased the stress probability, demonstrating
the model’s sensitivity to changes in atri-

Figure 3: Artificial ECG waveform compared with
a real signal

Figure 4: Artificial ECG waveform compared with
real signal predictions

oventricular conduction time, a known stress
marker.

• T Wave Amplitude: Doubling the T wave am-
plitude and increasing its duration led to a no-
ticeable increase in the stress prediction proba-
bility, reflecting the model’s ability to recognize
stress-related changes in ventricular repolariza-
tion.

• QT Interval: Shortening the QT interval, rep-
resenting a faster depolarization-repolarization
cycle, also increased the predicted stress prob-
ability, in line with medical knowledge.

These synthetic ECGs confirmed that our model’s
predictions are consistent with established medical
indicators of stress, thereby enhancing trust in its
reliability. Some examples of the changes in the pre-
dictions can be seen in the Figures 4 5 6 and 7.
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Figure 5: Effect of the RR interval on the model’s
predictions

Figure 6: Effect of the PR interval on the model’s
predictions

Figure 7: Effect of the T-wave amplitude on the
model’s predictions

5 Conclusions and Future Work

5.1 Conclusions

The successful intersection of medical technology
and artificial intelligence was a hallmark of this
project. By drawing upon the latest advancements
in Electrocardiogram (ECG) technology and inte-
grating them with cutting-edge Deep Learning tech-
niques, our endeavor has significantly elevated the
potential of stress detection using raw ECG data
over previous works. This synergy opens up promis-
ing avenues for the integration of these sensors for
multiple applications, such as the automotive field.

In terms of methodology, our research underscored
the power of a two-stage process, which placed sub-
stantial emphasis on self-supervised learning. This
pivotal decision gifted our model with an enhanced
capability to recognize and decode intricate patterns
from ECG signals over traditional HRV analysis,
thus amplifying its accuracy and reliability mani-
fold.

Further, by harnessing state-of-the-art compu-
tational paradigms like Transformers and Self-
Supervised Learning, we not only positioned the
project at the forefront of innovation but also served
as a testament to the transformative power of con-
temporary AI techniques when wielded in medical
contexts. Such an adoption not only reflects our
commitment to the best in technology but also casts
a spotlight on the possibility of real-time and non-
invasive stress detection.

Parallelly, our deep dive into interpretability studies,
particularly through tools like saliency maps, has de-
mystified the AI decision-making process, reinforc-
ing the imperative of transparency in AI-driven out-
comes which is crucial in the medical field.

5.2 Future Work

Even though we are delighted with our results, we
recognize that there is always room for improvement
and expansion in such a dynamic field.

One immediate area of potential lies in the expan-
sion of our dataset. The WESAD dataset used is
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quite limited in size and might be a limiting factor
for the model’s real-life adoption. By integrating
a broader and more varied spectrum of ECG sig-
nals, we can potentially enable our model to achieve
even greater levels of accuracy and generalization.
This diversity in data can be instrumental in mir-
roring the true complexity and variability seen in
real-world stress patterns.

A natural progression of this project would be its
deployment in real-world scenarios. Given the po-
tential applications in diverse fields like vehicular
safety, continuous healthcare monitoring, and even
workplace stress management, our model can be a
game-changer. Experimenting with its deployment
in these arenas can yield practical insights and pave
the way for broader adoption.

Linking with the previous point, in a real deploy-
ment of the model, the recorded signals are likely
to have some sensor distortion which needs to be
calibrated for, varying for each sensor model. Our
two-stage training model will ensure this retraining
is minimal and more focused on the latter stages of
the model, without a complete retraining, for more
efficient and cost-effective adaptation to different de-
ployment environments.

Another area that warrants further exploration is
the architectural nuances of the model. One aspect
that could significantly lighten the model for IoT
applications would be reducing the CNN encoder’s
parameters, as they largely contribute to the overall
model’s size. There are several ways to do this, but
it is important for the architecture to maintain the
receptive field of approximately 60bpm.

One avenue would be reducing the sampling rate to
125Hz, which would almost halve the number of pa-
rameters used. And, as shown while explaining the
methodology, theoretically, it should be possible to
lower the sampling rate up to 125Hz without signifi-
cantly reducing the delineation, but we would rather
not push the model so far in this study.

As for the transformer, it undoubtedly leads to great
results even when using just one layer. But some of
its hyperparameters, such as the number of heads,
and the dmodel dimensionality (which comes from

the CNN), could also be studied.

Lastly, to facilitate training, it might be a good
idea to explore other optimizer methods rather than
ADAM, in particular, SAM [23] and its variants
seem like a good fight because of the nature of the
task and the training instabilities found, where per-
formance was very dependent on hyperparameter
initialization.
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ability of ECG-based Stress Detection Mod-
els”. In: 2022 21st IEEE International Con-
ference on Machine Learning and Applications
(ICMLA). IEEE. 2022, pp. 549–554.

[16] P. Bota, C. Wang, A. Fred, and H. Silva.
“Emotion assessment using feature fusion and
decision fusion classification based on physio-
logical data: Are we there yet?” In: Sensors
(Switzerland) 20 (2020), pp. 1–17. doi: 10.
3390/s20174723.

[17] S. Ishaque, N. Khan, and S. Krishnan.
“Detecting stress through 2D ECG images
using pretrained models, transfer learning
and model compression techniques”. In: Ma-
chine Learning with Applications 10 (2022),
p. 100395. doi: 10 . 1016 / j . mlwa . 2022 .

100395.

[18] P. S. Parvatharaju, R. Doddaiah, T.
Hartvigsen, and E. A. Rundensteiner.
“Learning Saliency Maps to Explain Deep
Time Series Classifiers”. In: Proceedings of the
30th ACM International Conference on In-
formation & Knowledge Management. CIKM
’21. Virtual Event, Queensland, Australia:
Association for Computing Machinery, 2021,
pp. 1406–1415. isbn: 9781450384469. doi:
10 . 1145 / 3459637 . 3482446. url: https :

//doi.org/10.1145/3459637.3482446.
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