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optimization. The multi-year nature of the problem is modeled by considering a comprehensive view of the
planning horizon. A cardinality-constrained uncertainty set is used to model the future worst-case uncertainty
realization of the peak power consumption of loads, along with the capacity and marginal production cost
of generating units. Unlike previous works, we model certain features of the operation that are typically
ignored in multi-year robust transmission network expansion planning problems, namely, the operational
variability of renewable generating units, the operational flexibility of conventional generating units, and the
non-convex operational feasibility sets of storage facilities. The solution procedure employed for this multi-year
two-stage robust problem, which is formulated as a three-level problem, is based on the combination of the
nested column-and-constraint generation algorithm with two exact acceleration techniques. We analyze the
performance of the proposed model through the use of the IEEE 24-bus Reliability Test System and the IEEE
118-bus Test System. Numerical results show that the use of the multi-year approach leads to reductions in
the total worst-case cost of up to 7% in comparison with the static and sequential static procedures. Moreover,
an underestimation of the total worst-case cost of more than 8% is attained when ignoring certain operational
constraints of conventional generating units and storage facilities. Lastly, a sensitivity analysis is presented in
order to illustrate the impact of the maximum deviations of the uncertain parameters on the total worst-case

cost.
1. Introduction the increase in the global average temperature to 2 °C in comparison
with pre-industrial levels established in the Paris Agreement [2] and
This paper addresses the transmission network expansion planning the goal of the European Commission of being climate-neutral by
problem (TNEP), which is solved by the transmission system operator 2050 [3]. Although CO, emission constraints and taxes can be imposed

(TSO) in order to determine the investment plan that minimizes the
total cost under a centralized framework, i.e., the sum of the investment
costs associated with the construction of new transmission lines and the
operating costs related to the production of generating units and the
load shedding [1].

in expansion planning problems [4], an increase in the percentage of
the total production in the electricity mix of power systems supplied
by weather-based renewable generating units is also needed to attain
these targets. Note that weather-based renewable production of solar-
and wind-power units can be exploited on a large scale in locations that
N are generally isolated from the transmission network or far away from
1.1. Motivation . .
demand centers [5]. Hence, the future high incorporation of renewable

Future power systems are expected to undergo major changes in energy resources into power systems, together with the expected rise

order to fulfill political requirements, namely, the objective of limiting in the power consumption of loads and the aging of the transmission
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network, put the supply of the loads at risk, i.e., load shedding may oc-
cur. It is, therefore, necessary to identify which reinforcements should
be made in the transmission network by the TSO in order to ensure the
quality of the supply.

The intrinsic operational variability of the weather-based renewable
production can be modeled by using aggregation techniques to group
the historical data concerning solar- and wind-power production into
a set of representative days (RDs) [6], each of which is composed of
a number of representative time periods (RTPs). A trade-off between
the complexity of the expansion planning problem and the accuracy
of the characterization of the operational variability should be sought
since the number of RDs considered influences the expansion decisions
of the power system identified by using mathematical optimization
techniques [7], but increases in the total number of RDs translate into
more variables and constraints involved in the problem and, therefore,
greater computational times [8]. Note that the presence of storage
facilities is a key aspect in TNEP problems since the TSO could benefit
from the presence of storage facilities attached to certain locations in
terms of building fewer transmission lines [9]. Moreover, modeling the
operational flexibility of conventional generating units through their
ramping limits and commitment statuses is important as well to avoid
suboptimal solutions in expansion planning problems [10].

In this paper we assume a two-stage framework of the TNEP prob-
lem, i.e., expansion decisions are identified at the first stage when
the future conditions are unknown, and operating decisions are made
at the second stage after the uncertainty realization has occurred. It
should be stressed that modeling the uncertainty is a key aspect since
suboptimal solutions may be determined when it is assumed that the
TSO has perfect information on the unknown future conditions [11].
We focus on modeling long-term uncertainties such as the capacity
of renewable generating units and the peak power consumption of
loads, among others. These uncertain future conditions of the power
system are specifically modeled by using robust optimization [12]. This
is a method to solve decision-making problems under uncertainty in
which the values of the uncertain parameters vary within predefined
intervals. Note that the limits of these intervals are also known as con-
fidence bounds. The solution associated with the worst-case situation is
provided when robust optimization is used. Thus, robust optimization
can be applied to protect the power system under the worst-case
uncertainty realization of future conditions, which is identified as the
uncertainty realization within an uncertainty set that maximizes the
operating costs. Moreover, adaptive robust optimization (ARO) [13],
also denominated as robust optimization with recourse, prevents too
conservative solutions by taking corrective actions associated with the
second stage of the TNEP problem, also called recourse decisions, after
the worst-case uncertainty realization is identified.

Furthermore, the TSO analyzes the TNEP problem by considering a
planning horizon that may cover several decades. With regard to the
timing at which new transmission lines should be built, three different
approaches can be considered:

1. A multi-year approach, in which the TNEP problem is solved by
considering that the expansion planning decisions can be made
at any time throughout the planning horizon [14-16]. The main
issue of this framework is that it generally involves computation-
ally intractable problems owing to its high complexity.

2. A static approach, in which all investment decisions are made
at the beginning of the planning horizon in order to reduce the
complexity of the TNEP problem [17-19]. In this approach, a
target year is considered, namely, the last year of the planning
horizon, since it is expected that this year will involve the most
difficult conditions to ensure the operating feasibility of the
power system. Nevertheless, the static approach does not allow
the planner to adjust the expansion decisions to future changes
in the power system. Thus, a multi-year approach generally
involves better decisions than a static approach does, since the
building of new transmission lines is delayed until they are really
needed.
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3. A sequential static approach, also known as pseudo multi-year
procedure [20], which involves sequentially facing static TNEP
problems for different target years. In turn, this approach is
divided into forward and backward procedures [20]. On the one
hand, the forward procedure implies that static TNEP problems
are consecutively solved for each year starting from the first
year, where the expansion decisions obtained in one of these
problems are considered as existing facilities of the following
problems. On the other, the backward procedure consists in
solving the static TNEP problem for the last year, and the
planner then tries to anticipate when the investment decisions
should be made in order to ensure the operating feasibility in
previous years. However, this approach presents the drawback
of losing the global viewpoint of the planner since, in general,
the solution of the multi-year planning problem does not match
the collection of solutions obtained from the sequential static
planning problems. This approach leads, therefore, to a trade-off
between the complexity of the problem and its accuracy.

Keeping this context in mind, the aim of this paper is to develop
a multi-year ARO TNEP model that considers high penetration of
renewable generation and represents the operational variability and
certain features that are typically ignored in the technical literature,
namely, the inter-temporal and non-convex operational feasibility sets
of storage facilities and conventional generating units. Note that the
operational feasibility sets of storage facilities and conventional gener-
ating units are non-convex since binary variables are used to prevent
the simultaneous charging and discharging of the former and to model
the commitment statuses of the latter. The high complexity of the
resulting problem is mitigated in this paper by combining an exact de-
composition technique with two exact acceleration techniques, which
ensures the converge to the global optimal solution in a finite number
of steps.

1.2. Literature review

Several works have been proposed to address two-stage ARO expan-
sion planning problems in the technical literature. The two-stage ARO
TNEP problem is addressed in [21] by applying Benders decomposi-
tion [22], where the master problem minimizes the investment costs
and the subproblem minimizes the maximum curtailment of load and
renewable generation subject to the uncertainty in the net injections.
The authors of [17,23] model the two-stage ARO TNEP problem by
applying the column-and-constraint generation algorithm (CCGA) [24]
and recast the max-min subproblem as an equivalent single-level op-
timization problem through the use of the Karush-Kuhn-Tucker (KKT)
necessary optimality conditions. Two approaches to identify the worst-
case uncertainty realization of the middle-level problem are compared
in [17], namely, the maximization of operating costs and the max-
imization of the regret related to the potential cost savings of the
planner. In addition, the authors of [23] propose the use of a poly-
hedral uncertainty set [25], where a parameter denominated as the
uncertainty budget is used to control the degree of conservativeness,
considering that the uncertain variables may be constrained by regional
uncertainty budgets. Moreover, the two-stage ARO TNEP problem is
also tackled in [26] by applying the CCGA, but more computationally
efficient solutions are obtained by using the Lagrangian duality the-
ory to recast the two lowermost optimization levels as an equivalent
single level. Additionally, the authors of [26] consider a cardinality-
constrained uncertainty set [25], in which the number of uncertain
parameters that may undergo deviations from their nominal values is
limited by an uncertainty budget that takes integer values, and point
out the difficulties to interpret the results associated with intermediate
values of the uncertainty budgets of the uncertainty set proposed
in [23]. The two-stage ARO transmission and energy storage expansion
planning problem is formulated in [18] by using RDs to characterize
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the operational variability, while first-stage binary decision variables
are considered to model transmission line switching and the charg-
ing/discharging statuses of storage facilities. Note that these decisions
should be modeled by using second-stage binary variables rather than
first-stage binary variables since they are made once the realization
of the future uncertain conditions of the power system is known. It
should be stressed that the prevention of the simultaneous charging
and discharging of storage facilities may avoid suboptimal expansion
decisions as shown in [27], which is likely to occur in the solution
determined by using expansion planning models with linear constraints
for the operation of storage facilities when renewable-dominated power
systems are analyzed [28].

The authors of [19] propose applying the alternating direction
algorithm (ADA) presented in [29], which is a heuristic technique,
to solve the bilinear subproblem of the CCGA rather than by using
binary variables to model the deviations of the uncertain parameters
and an exact linearization procedure [30]. The authors of [31] propose
a two-stage ARO transmission and energy storage expansion planning
model that includes the ramping limits of conventional generating units
and the charging/discharging statuses of storage facilities, where the
latter are modeled by using second-stage binary decision variables,
which leads to the need to use the nested column-and-constraint gen-
eration algorithm (NCCGA) [32] rather than the CCGA. Note that
the authors of [31] combine the NCCGA with the ADA to reduce
the computational burden, but the attainment of the global optimal
solution is not ensured. The two-stage ARO TNEP model presented
in [33] includes a detailed representation of the operation of the power
system as done in [31], but also modeling the commitment statuses of
conventional generating units and the uncertainty in the peak power
consumption of loads. The numerical results provided in [33] show
that the consideration of the non-convex operational feasibility sets
of storage facilities and conventional generating units increases the
computational time of the static two-stage ARO TNEP problem from
minutes to hours. The authors of [34] propose two exact acceleration
techniques applied to the NCCGA in order to reduce the computational
burden of the two-stage ARO TNEP problems when inter-temporal and
non-convex operational feasibility sets are considered. Note that all
works mentioned above ignore the multi-year nature of the expansion
planning problems since a static approach is considered.

Conversely, a multi-year approach has been used in recent works,
but at the expense of modeling neither inter-temporal nor non-convex
operational feasibility sets and considering only one representative time
period (RTP) associated with the peak power consumption of loads
in most of the cases. The multi-year two-stage ARO TNEP problem
is addressed in [14] considering annual evolution rates to model the
changes of the forecast values and the maximum deviations of the
uncertain parameters in each year of the planning horizon. A multi-year
approach of the two-stage ARO generation and transmission network
expansion planning problem is proposed in [15] where the disman-
tling of conventional and renewable generating units is modeled. The
authors of [16] propose a multi-year two-stage ARO TNEP model in
which a preventive n — K security criterion is used to identify the
contingencies of transmission lines and generating units that maximize
the operating costs. Moreover, the authors of [35] propose reducing
the computational time of the multi-year two-stage ARO generation and
transmission network expansion planning problem by applying Benders
decomposition to the master problem of the CCGA.

The features of previous two-stage ARO expansion planning ap-
proaches are shown in Table 1, namely, the consideration of the
operational variability of the weather-based renewable generation and
the electrical demand, the presence of renewable generating units, the
ramping limits and commitment statuses of conventional generating
units, the presence and the charging/discharging statuses of storage
facilities, and the possibility of building new facilities in each year of
the planning horizon by considering a multi-year approach. Symbols
v and X are used to illustrate whether a particular feature has been
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considered or not, respectively. Note that all the features shown in
Table 1 have not simultaneously been considered in previous two-stage
ARO expansion planning approaches.

It is worth mentioning that previous works that use the NCCGA to
solve two-stage ARO expansion planning problems, such as [16,31],
do not consider approaches as complex as the one presented in this
work in order to avoid computational issues. For instance, the authors
of [16] do not model the operational variability of the power system,
the ramping limits of conventional generating units, and the presence
of storage facilities. Moreover, the authors of [31] consider a static ap-
proach rather than a multi-year formulation and they do not model the
commitment statuses of conventional generating units. This highlights
the need to combine the NCCGA with acceleration techniques in order
to address more complex approaches as that presented in this work.

1.3. Contributions

Given this context, the contributions of this paper are twofold:

1. The formulation and solution procedure of a multi-year two-
stage ARO TNEP problem with high penetration of renewable
generation that jointly models the operational variability and
the inter-temporal and non-convex operational feasibility sets of
storage facilities and conventional generating units. The simul-
taneous consideration of all these features entails a contribution
with respect to previous two-stage ARO TNEP approaches, as
shown in Table 1. Note that previous works that model the
multi-year nature of the problem usually neglect the operational
variability, the ramping limits of conventional generating units,
and the presence of storage facilities, among other features, in
order to prevent computationally intractable problems. Despite
the high complexity of the problem, the global optimal solution
is attained in a finite number of steps by combining the NCCGA
with two exact acceleration techniques.

2. The comparison of the proposed approach with simpler models.
First, the multi-year two-stage ARO TNEP approach is compared
with the sequential static and static models. Second, the pro-
posed framework is compared with a relaxed approach in which
the detailed operation of power systems is ignored, namely,
the ramping limits and commitment statuses of conventional
generating units, as well as the charging/discharging statuses of
storage facilities.

1.4. Organization of paper

The remainder of this paper is organized as follows. Section 2 pro-
vides the description of the multi-year ARO TNEP problem, including
its detailed notation and formulation. Section 3 describes the solution
procedure employed for the problem, in which the NCCGA is com-
bined with two exact acceleration techniques. Section 4 presents the
numerical results of two case studies. Section 5 shows the conclusions
of this paper, and finally, Appendix describes the changes to be made
in the formulation of the multi-year two-stage ARO TNEP problem
described in Section 2 when static and sequential static approaches are
considered.

2. Description of the problem

The multi-year two-stage ARO TNEP problem is solved by the TSO
in order to minimize the total worst-case cost by identifying which
candidate transmission lines should be built and the optimal timing of
these investment decisions. We consider a two-stage model in which
the worst-case uncertainty realization of the peak power consumption
of loads, as well as of the capacity and marginal production cost of
generating units is modeled by applying ARO. This means that the
multi-year two-stage ARO TNEP problem follows the following decision
sequence:
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Table 1
Comparison of previous two-stage ARO expansion planning approaches.
Reference Operational Renewable Ramping Commitment Storage Charging/Discharging Multi-year
variability generation limits statuses facilities statuses approach
[14] X X X X X X v
[15] X v X X X X v
[16] X v X v X X v
[17,19] v v X X X X X
[18] v v v X v v X
[21,23] X v X X X X X
[26] X X X X X X X
[31] v v v X v v X
[33] 4 v v v v v X
[35] v v v X v X v
This paper v v v v v v v

*The non-convex operational feasibility sets of storage facilities are not modeled correctly since first-stage variables are used rather than second-stage variables.

1. The TSO determines which reinforcements should be made in
the transmission network in each year of the planning horizon
in order to minimize the total cost.

2. The worst-case uncertainty realization that maximizes the oper-
ating costs occurs.

3. The TSO takes corrective actions associated with the operation
of the power system in order to minimize the operating costs.

We assume that the capacity of conventional and renewable gen-
erating units may undergo decreases in their forecast values, while the
marginal production cost of conventional generating units and the peak
power consumption of loads may undergo increases in their forecast
values. With regard to the operational variability of the electrical
demand and the weather-based renewable production, a set of RDs
is considered. The operation of storage facilities can, therefore, be
included in the formulation of the problem since the chronological
sequence of the RTPs in each representative day (RD) is maintained.
Furthermore, particular attention is paid to the operational flexibility
of conventional generating units and the operation of storage facilities,
namely, the ramping limits and commitment statuses of the former
and the non-convex operational feasibility sets of the latter. Note
that the multi-year two-stage approach considered in this work is a
simplification of the true dynamic multi-stage ARO TNEP problem
since we assume that the expansion decisions throughout the entire
planning horizon are determined at the first stage of the problem. This
simplification is common in the technical literature [14-16,35] and is
considered to reduce the complexity of the solution procedure. The next
subsections describe the notation and formulation of the multi-year
two-stage ARO TNEP problem.

2.1. Notation

A subscript y/t/h in the symbols below denotes their values in the
yth year/rth RD/hth RTP.

2.1.1. Indexes and sets

v, k  Iteration of the inner loop

QP Set of loads indexed by d.

QP Set of loads connected to bus .

Q6 Set of conventional generating units indexed by g.

QS Set of conventional generating units connected to bus .
Q" Set of RTPs indexed by A.

QL Set of transmission lines indexed by 7.

QL+ Set of candidate transmission lines.

QN Set of buses indexed by n.

QR
QR,S

QR,W

o
QS
a5
QT
QY
iy j
n(d)
n(g)

n(r)
n(s)

0

Set of renewable generating units indexed by r.
Set of solar-power units.

Set of wind-power units.

Set of renewable generating units connected to bus n.
Set of storage facilities indexed by s.

Set of storage facilities connected to bus n.

Set of RDs indexed by 1.

Set of years indexed by y.

Iteration of the outer loop.

Bus location of load d.

Bus location of conventional generating unit g.
Bus location of renewable generating unit r.
Bus location of storage facility s.

Iteration of the ADA.

Iteration of the relaxed inner loop.

Iteration of the relaxed outer loop.

RE(¢) Receiving bus of transmission line 7.

SE(¢) Sending bus of transmission line 7.

2.1.2.
D
Ydyin

R
J/ryth

[‘D

FG’C

FG‘P

Parameters
Demand factor of load d.

Capacity factor of renewable generating unit r.

Uncertainty budget that represents the maximum number of
loads that can simultaneously undergo increases in their forecast
peak power consumption.

Uncertainty budget that represents the maximum number of
conventional generating units that can simultaneously undergo
increases in their forecast marginal production costs.

Uncertainty budget that represents the maximum number of
conventional generating units that can simultaneously undergo
decreases in their forecast capacities.



A. Garcia-Cerezo et al.

FR'S

&
é:G,C

g

2G,C
S

zG.p
S
2G.P
S

CR

S.C
N

S.D
s

Uncertainty budget that represents the maximum number of
solar-power units that can simultaneously undergo decreases in
their forecast capacities.

Uncertainty budget that represents the maximum number of
wind-power units that can simultaneously undergo decreases in
their forecast capacities.

Annual evolution rate of the forecast peak power consumption
of load 4.

Annual evolution rate of the maximum deviation from the fore-
cast peak power consumption of load d.

Annual evolution rate of the forecast marginal production cost
of conventional generating unit g.

Annual evolution rate of the maximum deviation from the fore-
cast marginal production cost of conventional generating unit
8.

Annual evolution rate of the forecast capacity of conventional
generating unit g.

Annual evolution rate of the maximum deviation from the fore-
cast capacity of conventional generating unit g.

Annual evolution rate of the forecast capacity of renewable
generating unit r.

Annual evolution rate of the maximum deviation from the fore-
cast capacity of renewable generating unit r.

Charging efficiency of storage facility s.
Discharging efficiency of storage facility s.
Discount rate.

Weight of RD 1.

Duration of RTP & of RD ¢.

Forecast marginal production cost of conventional generating
unit g in year 1.

Maximum deviation from the forecast marginal production cost
of conventional generating unit g in year 1.

Load-shedding cost coefficient of load d.

Spillage cost coefficient of renewable generating unit r.
Energy initially stored of storage facility s.

Minimum energy level of storage facility s.

Maximum energy level of storage facility s.

Number of RTPs of each RD.

Investment cost coefficient of candidate transmission line ¢.
Investment budget.

Forecast peak power consumption of load d in year 1.

Maximum deviation from the forecast peak power consumption
of load d in year 1.

Minimum production level of conventional generating unit g.

2.1.3.

nyth

S
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Forecast capacity of conventional generating unit g in year 1.

Maximum deviation from the forecast capacity of conventional
generating unit g in year 1.

Power flow capacity of transmission line #.
Forecast capacity of renewable generating unit r in year 1.

Maximum deviation from the forecast capacity of renewable
generating unit r in year 1.

Charging power capacity of storage facility s.
Discharging power capacity of storage facility s.
Ramp-down limit of conventional generating unit g.
Ramp-up limit of conventional generating unit g.

Reactance of transmission line 7.

Variables
Voltage angle at bus n.

Auxiliary variable of the inner-loop master problem.

Auxiliary variable of the first problem solved at each iteration
of the ADA when it is applied to the inner-loop master problem.

Auxiliary variable of the second problem solved at each iteration
of the ADA when it is applied to the inner-loop master problem.

Auxiliary variable of the outer-loop master problem.

Continuous variable associated with the deviation that the peak
power consumption of load d can experience from its forecast
value in year y.

Continuous variable associated with the deviation that the
marginal production cost of conventional generating unit g can
experience from its forecast value in year y.

Continuous variable associated with the deviation that the ca-
pacity of conventional generating unit g can experience from its
forecast value in year y.

Continuous variable associated with the deviation that the ca-
pacity of renewable generating unit r can experience from its
forecast value in year y.

Worst-case realization of the marginal production cost of con-
ventional generating unit g.

Operating costs.
Worst-case operating costs.
Energy stored in storage facility s.

Worst-case realization of the peak power consumption of load
d.

Power produced by conventional generating unit g.

Worst-case realization of the capacity of conventional generat-
ing unit g.

Power flow through transmission line #.
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LS
Piyin
R
P ryth

—R
Dy

S,C
psyth

S.D
psyth

G
ug yth

S
“syth

2.1.4.
N
An yth

)
Haytn

Egyfh

Hgyin

G,D
—gyth

—G,U
H gyth

L
Heyin
L+
Mfyrh

Ef yth

Unserved demand of load d.
Power produced by renewable generating unit r.

Worst-case realization of the capacity of renewable generating
unit r.

Charging power of storage facility s.
Discharging power of storage facility s.

Binary variable used to model the commitment status of conven-
tional generating unit g.

Binary variable used to avoid the simultaneous charging and
discharging of storage facility s.

Binary variable that is equal to 1 if candidate transmission line
¢ is built in year y, which is otherwise 0.

Binary variable that is equal to 1 if candidate transmission line
¢ is built in year y or in previous years, which is otherwise 0.

Binary variable that is equal to 1 if the worst-case realization
of the peak power consumption of load d is equal to its upper
bound, which is otherwise 0.

Binary variable that is equal to 1 if the worst-case realization of
the marginal production cost of conventional generating unit g
is equal to its upper bound, which is otherwise 0.

Binary variable that is equal to 1 if the worst-case realization
of the capacity of conventional generating unit g is equal to its
lower bound, which is otherwise 0.

Binary variable that is equal to 1 if the worst-case realization of
the capacity of renewable generating unit r is equal to its lower
bound, which is otherwise 0.

Dual variables
Dual variable associated with the power balance equation at bus
n.

Dual variable associated with the constraint imposing the upper
bound for the unserved demand of load d.

Dual variable associated with the constraint imposing the lower
bound for the power produced by conventional generating unit
8.

Dual variable associated with the constraint imposing the upper
bound for the power produced by conventional generating unit

8.

Dual variable associated with the constraint imposing the ramp-
down limit of conventional generating unit g, being /1 greater
than 1.

Dual variable associated with the constraint imposing the ramp-
up limit of conventional generating unit g, being & greater than
1.

Dual variable associated with the power flow through existing
transmission line #.

Dual variable associated with the power flow through candidate
transmission line .

Dual variable associated with the constraint imposing the lower
bound for the power flow through transmission line #.

—L
”fyth

H ryth
H syth
ES yth
H syth

—S.C
H syth

—S,D
Hsyth

S
¢S yt

—syt

nyth
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Dual variable associated with the constraint imposing the upper
bound for the power flow through transmission line #.

Dual variable associated with the constraint imposing the upper
bound for the power produced by renewable generating unit r.

Dual variable associated with the energy stored in storage facil-
ity s, being h greater than 1.

Dual variable associated with the constraint imposing the lower
bound for the energy stored in storage facility s.

Dual variable associated with the constraint imposing the upper
bound for the energy stored in storage facility s.

Dual variable associated with the constraint imposing the upper
bound for the charging power of storage facility s.

Dual variable associated with the constraint imposing the upper
bound for the discharging power of storage facility s.

Dual variable associated with the energy stored in storage facil-
ity s at the first RTP of RD ¢.

Dual variable associated with the constraint imposing the lower
bound for the energy stored in storage facility s at the last RTP
of RD 1.

Dual variable associated with the definition of the reference bus
n.

2.2. Formulation

The

three-level formulation of the multi-year two-stage ARO model

is provided below:

| Lowe
. y L L
min S + I;v (1a)
- ¢V
U yezpj‘y (1 +xp! ( IHx fezgu y>
subject to:
koel01); Veet yeqY, (1b)
1 L L T
v, s 1 o)
ekt yEzQ:Y (1 + )y ! 7
k<1 veeatt ad
yeQY
y=y
o= Dk et vyeqY, (1e)
=1
O.WC _ 0
e ={ mare e
subject to:
G _ AG s6c\ !, Ac sac) ! ac. G
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where set @ = {0™VC, vy € QY; b, 05, V6 € QU vy € QY)
represents first-stage decision variables, variables in set @ = {c?,
,Vd € QP vy € QY O, B, 250, 2gr, Vg € s,
vr e @R, vy € QY} comprlse the worst-case
uncertainty realization, and set & = {pgyr - gyth’ Vg € Q6, vy e QY,
vie QT,vhe Q% pR  vre QF, vy € QY, vr € QT, vh € QY
vd € Q°, vy € QY, VteQT vh € QY
vt € QT, vh € QF; emh, pmh, pw, Ul Vs € Q5, ¥y € QY, Vr e O,
vh e Q% 0, ., ¥n € QN, Vy € @Y, Vi € QT, Vh € @Y} includes the
second-stage operating decision variables.

The upper-level problem (1) minimizes the sum of the worst-case
operating and investment costs (1a). We assume that the former costs
are calculated throughout each year, while the latter are computed
at the beginning of each year since expansion decisions are made at
that time, as described in [15]. Hence, the worst-case operating and
investment costs in year y are multiplied by m and ﬁ, respec-
tively, to compute their value at the time of determining the expansion
decisions. The binary nature of investment-decision variables ulg,y is
defined in constraints (1b). An investment budget is used in constraint
(1c) to limit the investment costs. The possibility of building each
candidate transmission line only once throughout the planning horizon
is imposed in constraints (1d). The building status of a candidate
transmission line oL is established in constraints (1e).

Additionally, the middle-level problem (2) maximizes the worst-
case operating costs for year y (2a) and given investment decisions
identified by the upper-level problem (1). Eqs. (2b)-(2e) define the
uncertain variables, namely, the marginal production cost of conven-
tional generating units, the peak power consumption of loads, and the
capacity of conventional and renewable generating units, respectively.
The forecast values and the maximum deviations of these variables
evolve throughout the planning horizon based on annual evolution
rates, as described in [14]. Note that this formulation allows that the
forecast values and the maximum deviations may evolve by following
growth or downward tendencies because the annual evolution rates can
be positive or negative. Constraints (2f)-(2i) define the binary nature of
the variables used to represent whether uncertain parameters undergo
deviations from their forecast values or not. Constraints (2j)—(2n) limit
the number of units in each set of uncertain variables that may undergo
deviations from their forecast values in each year by using uncertainty
budgets. It should be stressed that we use a cardinality-constrained
uncertainty set since it allows obtaining the global optimal solution of
the multi-year two-stage ARO TNEP problem when the two lowermost
max-min optimization levels are recast as an equivalent single-level
optimization problem by using the Lagrangian duality theory and an
exact linearization technique, as described in Section 3. Note that the
Lagrangian dual problem of the lower-level problem is formulated for
given values of the second-stage binary decision variables, i.e., the
duality theory is applied to a linear programming problem.

With regard to the lower-level problem (3), the operating costs
are minimized for year y (3a) subject to the expansion decisions and
the uncertainty realization determined by the upper- and middle-level
problems, respectively. The operating costs for year y are computed as
the sum of the production costs of conventional generating units, the
spillage costs of renewable generating units, and the unserved demand
costs of loads. Egs. (3b) define the power balance at each bus. A lossless
DC model is used in Egs. (3c) and (3d) to define the power flows
through existing and candidate transmission lines, respectively, which
are limited in constraints (3e). Egs. (3f) and (3g) define the energy
stored in storage facilities for the first RTP and the rest of RTPs of
each RD, respectively. Constraints (3h) ensure that the energy stored in
storage facilities at the end of each RD is greater than or equal to their
energy initially stored in the RD. Constraints (3i) impose minimum
and maximum bounds on the energy stored. Constraints (3j) define the
binary nature of the variables used to avoid the simultaneous charging
and discharging of storage facilities. Constraints (3k) and (31) impose

-D
vy € QY; pdyﬁ z0
Vy € Q% P, zNs

> pdyth’
pf o V2 € QY vy € QY,
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limits on the charging and discharging power levels of storage facilities,
respectively. Constraints (3m) establish limits on the unserved demand
of loads. Constraints (3n) define the binary variables used to model the
commitment statuses of conventional generating units. Constraints (30)
and (3p) impose bounds on the production of conventional generating
units by using capacity and ramping limits, respectively. Constraints
(3q) impose limits on the power produced by renewable generating
units. Finally, Egs. (3r) establish the voltage angle at the reference bus.
Note that constraints (3b)-(3r), with the exception of constraints (3j)
and (3n), are followed by a colon and the corresponding dual variables.

3. Solution procedure

We solve the multi-year two-stage ARO TNEP problem by combin-
ing the NCCGA [32] with two exact acceleration techniques [34].

The NCCGA is an exact solution technique to solve two-stage ARO
problems in which the set of lower-level variables comprises continuous
and integer recourse variables, i.e., a mixed-integer recourse problem
is considered.

The NCCGA, which ensures that the global optimal solution is
obtained for problem (1)-(3) [32], is based on applying a hierarchical
structure of two loops, each of which is composed of a subproblem
and a master problem. Note that cutting planes are iteratively included
at the outer- and inner-loop master problems of the NCCGA until the
convergence of both loops is attained. This may lead to the use of a
large number of variables and constraints and, therefore, computation-
ally intractable problems. Thus, we combine the NCCGA with two exact
acceleration techniques, namely, the relaxation of the master problems
and the ADA-based initialization of the inner loop.

The formulations of the subproblem and master problems of the
NCCGA combined with these two acceleration techniques are described
in the following subsections.

3.1. Outer-loop master problem

The outer-loop master problem is modeled at outer-loop iteration j
and relaxed outer-loop iteration r© as follows:

. 1 L, L
min _ ;v (4a)
@OLMPyEZQY A +x)! <1+K 2 z f’)
subject to:
Constraints (1b)-(1e), (4b)

G() G R =R(i) R
{ﬂy > 2 Oy 2 Tyth < Cey Pyni + Z = < VryinPry Pryt’“')

teQT heQH gent reQR

LS LS
+ Z Ci™Piyini >’ (40)

denP

z pgythi + Z prl'{ythi + Z pI{"ythi - Z p;ythi

geQl reaR ¢eQU|RE(£)=n ¢eQL|SE()=n

— —=D(i) . N
+ Z < vytht vytht) 2 (ydyrhpdy _deth’> Vne Q",
D

s€Q deQb
vie QT,vh e QY (4d)
1
Py = X, (OsE@)yini = Ore@rymi) s VE € Q\QY Vi e QT,
Vh e QH, (4e)
l~)L

L ¢y . L T
Peyni = X, (Os £y = OrEyyni) 2 VE € QX Ve QT

vhe QH, (4f)
pL pL. L T H
—P; <pju S Pp VEEQNVIEQ Vhe Qb (48)
pS,D
S S S.C . s.C syrli . S T
€ = Esyt() + Py~ nS‘D Tys VSEQVIE QT (4h)
S
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S.D
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Vg € Q6, VyeQY Vte_QT VheQH,i
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includes the optimization variables of problem (4). Note that second-
stage operating decision variables, such as p® | include a subscript
G(i) =D(@) =G(i)
gy 2 Pay’s Pey
and Pry , where the values of the middle-level variables are determined
by the outer-loop subproblem at previous outer-loop iterations. It is
worth mentioning that the use of the conventional NCCGA implies
that constraints (4c)—(4t) are evaluated for i = 1,...,,j rather than for
i=j—r0+1,...,j

The outer-loop master problem (4) is a relaxed version of the three-
level problem (1)—(3) in which the first-stage decision variables are
determined and the recourse objective function value is approximated
by using a set of cutting planes based on the primal information of
the lower-level problem for the realizations of the uncertain variables
identified by the outer-loop subproblem at previous outer-loop itera-
tions. In order to improve the computational performance, a relaxation
of the outer-loop master problem is applied. In particular, it is solved
by considering only the constraints and variables associated with the
latest uncertainty realization determined by the outer-loop subproblem
to speed up its solution procedure. Then, more cutting planes related
to other uncertainty realizations previously identified by the outer-loop
subproblem are added to the relaxed outer-loop master problem if its
optimal objective function value does not increase with respect to its
value in the previous outer-loop iteration. If j = 3, for instance, the
first time that the relaxed outer-loop master problem is solved in outer-
loop iteration j we set r© to 1, which means that constraints (4c)—(4t)
are evaluated only for i = 3. If the optimal objective function value of
the relaxed outer-loop master problem does not increase with respect
to its value in the previous outer-loop iteration, then we increase the
value of r© by one (r© = 2) and the relaxed outer-loop master problem
is solved by considering that constraints (4c)-(4t) are evaluated for

gythi’
i since they are related to the uncertainty realizations ¢
—R(0)
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i = 2,3. This solution procedure is repeated until the optimal objective
function value of the outer-loop master problem increases with respect
to its value in the previous outer-loop iteration or until /© > j. The
convergence to the global optimal solution in a finite number of steps
is still ensured when this acceleration technique is used since the
solution procedure of the relaxed outer-loop master problem is repeated
if needed until all active cutting planes are considered.

The objective function (4a) is analogous to (1a), but the worst-case
operating costs for year y are approximately represented through the
term p,. This approximation is modeled in constraints (4c) by imposing
a lower bound for p, defined by the worst-case operating costs related
to the uncertainty realization identified at previous iterations of the
outer loop. Constraints (4d)-(4t) are similar to constraints (3b)-(3r) of
the lower level.

Problem (4) is a mixed-integer non-linear programming (MINLP)
problem since non-linear terms ﬁlijeny,h,- in constraints (4f) involve the
product of binary first-stage expansion-decisions variables and con-
tinuous second-stage operating decision variables. The disjunctive lin-
earization proposed by the authors of [36] allows recasting problem (4)
as a mixed-integer linear programming (MILP) problem, which can be
solved by using solvers such as CPLEX [37].

Note that the lower bound of the outer loop LB° is updated to the
optimal objective function value of the outer-loop master problem.
3.2. Outer-loop subproblem

The outer-loop subproblem comprises the two lowermost optimiza-
tion levels for given values of the expansion-decision variables pre-
viously determined by the outer-loop master problem. Note that two
modeling aspects considered make it possible to decompose the outer-
loop subproblem by each year. On the one hand, we consider that the
forecast value and the worst-case realization of the uncertain variables
for a given year are independent of their values in the previous years,
as shown in Egs. (2b)-(2e). Note that this assumption has also been
considered in previous multi-year two-stage ARO expansion planning
problems [14-16,35] for the sake of simplicity. On the other, we model
the inter-temporal operation of the power system in each year by
using RDs that are independent of each other. Inter-day and inter-year
constraints are, therefore, not considered. This means that we do not
model, among other features, the evolution of the energy stored in
storage facilities throughout the entire planning horizon.

The solution procedure of the outer-loop subproblem is attained by
solving two problems that constitute the inner loop. The formulations
of the inner-loop subproblem and inner-loop master problem of the
NCCGA combined with the two acceleration techniques considered are
described in the following subsections.

3.2.1. Inner-loop master problem

The inner-loop master problem is formulated by recasting the two
lowermost optimization levels as an equivalent single-level optimiza-
tion problem by using the Lagrangian duality theory. In particular,
the operating costs are approximately represented by using a set of
cutting planes based on the lower-level dual objective function for
given values of the binary recourse variables determined by the inner-
loop subproblem at previous inner-loop iterations. In other words,
the Lagrangian duality theory can be applied because the lower-level
problem is formulated as a linear programming problem when the
second-stage binary decision variables are fixed to the values previously
obtained by solving the inner-loop subproblem.

The inner-loop master problem is formulated for given expansion-

.. . _L(Gj . . .. .
decision variables f(y’) and binary operating decision variables ugy(:z

and us(:) for year y at outer-loop iteration j, iteration k of the inner

loop and relaxed inner-loop iteration ! as follows:

max, I (5a)
subject to:

Constraints (2b)-(2n), (5b)
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The acceleration technique associated with the relaxation of the
inner-loop master problem is used, i.e., it is solved by considering only
the constraints and variables associated with the latest realization of
the binary operating decision variables determined by the inner-loop
subproblem to speed up its solution procedure. More cutting planes
associated with realizations of the third-level binary variables previ-
ously identified by solving the inner-loop subproblem are considered in
the formulation of the inner-loop master problem (5) when the relaxed
inner-loop iteration counter r' increases, i.e., it works in a similar
manner to the relaxation of the outer-loop master problem explained
in Section 3.1. In this case, the solution procedure is repeated until
the optimal objective function value of the inner-loop master problem
decreases with respect to its value in the previous inner-loop iteration
or until /' > k.

The objective function (5a) is equivalent to (2a), but the operating
costs for year y are approximately represented using the term ¢,.
Constraints (5¢) impose an upper bound for ¢, defined by the lower-
level dual objective function, while constraints (5d)-(5z) are associated
with the lower-level dual feasibility constraints. Note that constraints

(5¢)—(5z) are evaluated for given values of the binary variables ugGy(,VZ

and us(f) identified at inner-loop iteration v.
Problem (5) is an MINLP problem featuring non-linear

terms ﬁ?y/lnN( Dythy? [_;dD yﬁdDythv, ﬁf yﬁgGyrhv’ and p p ry/‘ rythy included in con-
straints (5c), which can be rewritten as the sum of linear terms
and the product of binary variables and continuous dual variables.
For instance, variables ﬁdDy are replaced with terms PD (1 + f?)y -y
PP (1+ 5{?)% z?y, which represent the sum of the forecast values and
the maximum deviations of the peak power consumption of loads.
Note that the these terms evolve at each year of the planning horizon
according to the annual evolution rates P and £P. As a result of
this transformation, non-linear terms EdDyA"N( Dy AT€ replaced with the

sum of terms PP (1+¢P)"" ! /lnN(d)ythv and PP (1 +f{?)y—1 z];y Irf(d)ythv.
Problem (5) can be, therefore, recast as an MILP problem by using the
exact linearization described in [30].

Note that the upper bound of the inner loop U B' is updated to the
optimal objective function value of the inner-loop master problem (5).

Moreover, once the convergence of the inner loop has been attained
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for all years, the upper bound of the outer loop U BO is updated to the

total worst-case cost, i.e., Z 1 — ( Z IL LU)).

ey (L+ &) !
3.2.2. Inner-loop subproblem

The inner-loop subproblem is equivalent to the lower-level problem
(3) for given expansion-decision variables ﬁw), where the uncertain
variables are set to the values identified by the inner-loop master prob-
lem at the previous inner-loop iteration. The inner-loop subproblem for
year y at outer-loop iteration j and inner-loop iteration k is formulated
as the following MILP problem:

. Gk .G R(, R —R(k) _ R
dr,rlng}’ Z Oyt Z Tyth < Cey gyth+ Z C ( VeyinPry pryth)
1eQT heQH 2eQG reQR
£ 3 s, ) (6)
deQP
subject to:
G R L L
Z Peyin T Z Pryn + Z Ppyin ~ Z Piyen
P reaR ¢EQL|RE(¢)=n £eQLISE(¢)=n
=D(k) . N
+ Z ( syth syth) Z (ydythpdy _pdyth> Vne 27,
seQs deqQP
vie QT,vh e QH, (6b)
ﬁL(j)
L ‘y . L T
Pevn = Ty (OsE@in = Oreyym) ;. V6 € Q17 Ve 21,
vh e oY, (6¢)
=D(k). D T H
0<pdyth_ydymp ; Yde QP Ve Q' ,Vhe Q" (6d)
—G(k). G T H
gy,hgg Spgyrh < gy,hpgy ; Vge U Vie Q' ,Vhe QF, (6e)
=R(k), R T H
O<pryth _yrythpry . Vre Q8 Vie Q',Vh e Q7 (6f)
Constraints (3c), (3e)-(31), (3n), (3p), and (3r), (68)

ILSP _ G T
where set @ {pgym, Vg € Q0, vt € QT, vh € Of; dem’

vd € QP, vt € QT, Vh € Qﬁgym vr € QR vt € QT Vh € QY; pfyth,
Ve e Q1 Vi€ QT vhe QU &S L p3C b th, uS s Vs € 5, Vi € 2,
vhe Q% 0,,,, Vne @V, vt € QT, vh € @1} includes the optimization
variables of problem (6).

The objective function (6a) and constraints (6b)—(6g) are analo-
gous to the objective function (3a) and constraints (3b)—(3r), where
expansion-decision variables ”];(’ ) are set to the investment plan result-
ing from the outer-loop master problem (4) at outer-loop iteration j,
and the values of the uncertain variables cg’y(k), ﬁ];;k), _gy(k), and p pRE
are identified by solving inner-loop master problem (5) at the previous
inner-loop iteration.

Note that the lower bound of the inner loop LB! is updated to the

optimal objective function value of the inner-loop subproblem (6).

yth’

3.3. ADA-based initialization of the inner loop

The computational time of the NCCGA is associated with the num-
ber of iterations needed to attain the convergence of the inner loop,
since the number of variables and constraints of the inner-loop mas-
ter problem is increased at each inner-loop iteration. Note that the
inner loop is initialized by considering given values of the uncertain
variables when the inner-loop subproblem is solved at the first inner-
loop iteration. The variables that model the uncertainty realizations
can, therefore, be initialized at the beginning of the inner loop to
the solution of the outer-loop subproblem obtained by using heuristic
methods in order to reduce the number of inner-loop iterations and
the computational time. In particular, we apply the ADA [29] to solve
the inner-loop master problem (5), while the inner-loop subproblem
(6) is solved by using an exact solution procedure. Note that the
solution of the uncertain variables obtained at this point may not be
optimal since the ADA is a heuristic technique. Thus, the outer-loop



A. Garcia-Cerezo et al.

subproblem is solved again, but this second time the uncertain variables
are initialized to the uncertainty realization previously determined, and
the non-linearities of the inner-loop master problem are tackled by
using the exact linearization described in [30], which guarantees the
convergence of the NCCGA to the global optimal solution.

Bilinear problems can be solved by applying the ADA, as done for
instance in [31] to tackle the inner-loop master problem, which implies
iteratively solving two linear programming (LP) problems. Next, the
formulations of these two LP problems are presented. The reader is
referred to [29] for additional information about the ADA.

3.3.1. First LP problem
The first LP problem for given expansion-decision variables ﬁ;(y’),
G(V) S(v)
syth’
and p‘fy(") for year y at outer-loop iteration j, inner-loop

binary operating decision variables u, and u and uncertain vari-

D(O)’ ﬁG(o)

iteration k, and ADA-loop iteration o is formulated as follows:

ables p,

max (7a)
PILMP,P y
subject to:
=6 (1486 y_1+éG(1+§‘G "6 veeqb (7b)
gy~ g g g g gy’ g i
0<agC<l; VgeQl, (79)
Y, € < roe, 7d
genC
P P N pL(, L —L
5}’ < Z ( Z < Z ydyrhp n(d)ythv - Z Pf (Efythv +”[’ythv)
teQT \ he@H \depP reQl
S(v) —s C—S C S\ »S,.D-S.D S, S
- Z ( syth vythv + (1 _usyth> P nythv Exﬁsy,hv
SENS
7SS GV ( pG, G  _ =G)=G
ES”SWW ) + Z ugyrh<£g Heyiny ~ Pey ”gyrhv)
geQC

—R(0) R D =D(0)=D
- Z yrythpry ( rythv_‘7 TyThCr ) - Z ydythpdy ”dythv)

reQR denb
S
+ EZQ ErytO( sytv ij,‘/)
N
G,D, G.D G,U=G,U . —
g

Constraints (5d)—(5z), 7
where set @IIMPP = (P; o, 8, vgef N vne N, vieq,

ZY > Coyr ythv?
k ymhv, V¢ € .QL\.QL+ vt € QF, vh € OH,
Jk; y';;hv, Ve € QU vi e QT, vh e QY v = 1, ...,k
ﬂl}ymv’ ﬁ;ythv, ve e QL vie QT,vhe QM v =1, .. .k ¢5,, ¢ny
VvseS,vieT, v=1, ...,k uS VseQS,VteQT,VheQH\{l
Jk; MWV, yfy,hv, ﬁfyfhv, Foyn,s Vs € @5, Vi € QT, vh € O,
6 Hoypy ¥4 € QP V1 € QT Vh € Q1 v = 1, ..k
E;}ymv’ Fgumo V8 € Q0, V1€ QT,vhe QM v=1, . k ﬂgythv ﬁg’y};
vee S, vie @, vhe QM\(1},v=1, ... .k ﬁl}ymv: vre QR, v e QT,
Vhe Q% v=1, ...k o) ,n:ref, V1€ QT,Vhe Q" v=1 . .k}
includes the 0pt1mlzat10n varlables of problem (7). Note that it is not
necessary to consider the constraints of the inner-loop master problem
(5) that involves only variables from set ®™MPQ which is described in
Section 3.3.3, in the formulation of problem (7).

Yhe Q" v = 1,.

v =1,...

sythv’
v=1, ..

v =1, ..

3.3.2. Second LP problem

The second LP problem for given expansion-decision variables 7,
G(v) S(v)
th and usyth

(0) :
nyihy? for year y at outer-loop iter-

L(J)

binary operating decision variables u , and dual varlables

of the lower-level problem, such as A

11

Applied Energy 349 (2023) 121653

ation j, inner-loop iteration k, and ADA-loop iteration o is formulated
as follows:

max Q (8a)
PHILMP.Q y
subject to:
=D _ 3D zD\»-1 | 5D sD\’~1 D . D
pdy—Pd (1+8))  + PP (1+8)) ad, vd € Q°, (8b)
~ -1 y=
G.P pG 2G.P el G
70 = PO (1—g ) o (1+§g ) P vgeql, (8c)
—R ~ 1 AR R\V-1
By =P (1+E8)T - BR(1+88)7 a}; vre X, (8d)
0<a) <1; Vde@P (8e)
0<daff <1; vgeQl, D)
0<af <1; Vrek, (8g)
D g, <1’ (8h)
deQb
> aSP <roF (8i)
geQC
Y, < TR, (8)
reQRS
D an <™V, (8k)
reQRW
Q =D N@) 5L Lo , —L©
¢ < 2 ( Z < Z ydythpdy n(d)ythv Z Py (Efythv+”fythv>
teQT \ he@H \denP renl
_ S(v) $S.C=S.C(0) _ 5™ BS.D=SDO) _ 1S S(0)
Z <MsythPs 'Msyrhv + <1 usyth) PA' 'usythv E“—sythv
s€0S
7S—S(0) G ( pG, Go) _ =G —G(o)
+ES sythv ) + Z ugyfh(£gﬁgythv 8y gthv)
geQ6
R D =D —D(o)
- 2 7rythpry( ryrhv o-yTT,VThCr )_ 2 ydythpdy”dythv>
reQR deQD
S(o) S(0)
+ 2 Eser( sytv ¢Sy,‘/)
SEQS

-2

2 (RGDﬂGD(o)+ RGUﬁGU(D)) ) v=1, ... .k (8D
heQH\(1} genC

gythv gythv

where set @ILMPQ — {éy ; dy, pdy, vd € QP aff, pgy, Vg € Q% af,

ry, Vr € QR} includes the optimization variables of problem (8). Note
that it is not necessary to consider the constraints of the inner-loop
master (5) problem that involves only variables from set ®""™MPPwhich
is described in Section 3.3.3, in the formulation of problem (8).

3.3.3. Steps of the ADA

The ADA involves the following steps:

(1) First, variables of the inner-loop master problem are distributed
in two sets, namely, @MPP and @IMPQ, We specifically dis-
tribute them with the aim of minimizing the number constraints
considered in the problems solved in Steps (2) and (3). As a
result, set ®"MPP is composed of the lower-level dual variables
for given values of the binary operating decision variables, and
the uncertain variables related to the marginal production cost of
conventional generating units c , while set cDILMPQ is composed
of the remaining uncertain varlables, ie., p iy p " and p pry.
Moreover, we set the iteration counter of the ADA o to 1 and
initialize the values of variables included in @™MPRU) to their
forecast values.

Problem (7) is solved. Note that variables from set @''MP.Q are
considered to be equal to the values from the solution obtained
in Step (3) of the previous ADA-loop iteration if iteration counter
o is greater than 1. Otherwise, the values are those set in Step

).

(2
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(3) Problem (8) is solved. Note that variables from set ®-MPP are
considered to be equal to the values from the solution obtained
in Step (2).

(4) The algorithm stops if the relative difference between the opti-
mal objective function value of the problems solved in Steps (2)
and (3) is lower than a predefined tolerance. Otherwise, increase
the ADA-loop iteration counter by one and go to Step (2).

With regard to the convergence of the ADA, the author of [29] shows
in Proposition 2.3 that the ADA converges to a KKT point in a finite
number of steps when the feasible regions of the two problems involved
in the ADA are bounded. Note that a maximum number of iterations of
the ADA and the inner loop of the NCCGA can be imposed during the
solution procedure of the first outer-loop subproblem at each outer-loop
iteration. Hence, if the maximum number of iterations is achieved be-
fore obtaining the convergence, the uncertain parameters are initialized
to the uncertainty realization associated with the last iteration of the
ADA when the second outer-loop subproblem is addressed.

3.4. Algorithm

The flowchart of the NCCGA combined with the two exact accelera-
tion techniques is illustrated in Fig. 1. The reader is referred to [32,34]
for further information on the detailed algorithms of the NCCGA and
the two exact acceleration techniques, respectively.

4. Numerical results

This section presents the numerical results obtained from two case
studies in which the proposed multi-year two-stage ARO TNEP ap-
proach was considered. We handled this problem by following the solu-
tion procedure described in Section 3, in which the NCCGA is combined
with two exact acceleration techniques. A Gigabyte MD71-HBO with
768 GB of RAM and 2 Intel Xeon Cascade Lake Gold 6248RR at 3.0 GHz
was used to run the simulations by applying CPLEX 20.1.0.1 [37] under
GAMS 38.3.0 [38].

The operational variability of the electrical demand and the pro-
duction of solar- and wind-power units was modeled by using a set
of RDs obtained from the combination of the modified maximum
dissimilarity algorithm [39] and the priority chronological-time period
clustering [40]. The former aggregation technique was specifically
applied to group historical days into 10 RDs, and the latter clustering
method was then used to reduce the number of RTPs of each RD from
24 to 8, since hourly historical data were considered as input data.
Note that we used these two aggregation techniques owing to the perks
of their combination shown in [41], but the formulation of the multi-
year two-stage ARO TNEP problem makes it possible to consider any
other clustering techniques. The reader is referred to [42] for further
information on the data of the case studies analyzed.

4.1. IEEE 24-bus reliability test system

We analyzed the performance of the multi-year two-stage ARO
TNEP approach by using a modified version of the IEEE 24-bus Re-
liability Test System (RTS) [43]. The network comprises 24 buses,
10 conventional generating units, 5 solar-power units, 5 wind-power
units, 5 storage facilities, 17 loads, and 38 existing transmission lines.
Moreover, we considered the possibility of building 24 candidate trans-
mission lines, and these investment decisions can be made in each
year through a planning horizon of 10 years. We imposed a relative
stopping tolerance of 10~2 for the different loops involved in the
solution procedure, and the relative optimality gap for the branch-
and-cut algorithm of CPLEX was set to 103, Five different uncertainty
levels were considered to test this case study: null, low, medium, high,
and maximum. The values of the uncertainty budgets associated with
these five uncertainty levels are shown in Table 2.
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Solve the relaxed outer-loop master problem considering
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Set the initial values of the uncertain
variables to their forecast values

1

’ Solve the inner-loop subproblem. Update LBT [+

Inner-loop convergence?

Solve the inner-loop master problem
by using the ADA. Update UB!

¥
CLBI = —oolUBI = +oo)

Set the initial values of the uncertain variables to
the solution identified in the previous inner loop

v
’ Solve the inner-loop subproblem. Update LB! ‘«—

Inner-loop convergence?

Solve the relaxed inner-loop master problem by using
the exact linearization procedure considering more
cutting planes until UB! decreases. Update U B!

Y

y<y+l

Update UB°

Outer-loop convergence?

Fig. 1. Flowchart of the NCCGA combined with the ADA-based initialization of the
inner loop and the relaxation of the outer- and inner-loop master problems.

We solved the multi-year two-stage ARO TNEP problem by con-
sidering the proposed approach, but also the sequential static and
static procedures. Note that the formulation of the problem to consider

these approaches implies some changes as explained in Appendix.
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Fig. 3. IEEE 24-bus RTS: relative increase in the total worst-case cost obtained by using the sequential static, and static approaches at different uncertainty levels.

Table 2
IEEE 24-bus RTS: uncertainty budgets at different uncertainty levels.
Uncertainty level Null Low Medium High Maximum
i 0 3 8 14 17
rec 0 2 5 8 10
rer 0 2 5 8 10
RS 0 1 3 4 5
RV 0 1 3 4 5

Fig. 2 shows the total worst-case cost obtained by using the multi-
year, sequential static, and static approaches at different uncertainty
levels. Note that the total worst-case annualized cost was minimized
when solving the static two-stage ARO TNEP problem since only a
target year was considered. The total worst-case cost associated with
the static approach was, then, computed by solving the multi-year two-
stage ARO TNEP problem for given investment decisions obtained from
the solution of the static problem. This procedure was not required to
compute the total worst-case cost associated with the sequential static
approach since the total worst-case cost of each year of the planning
horizon had already been computed during its solution procedure.
Observe that increases in the uncertainty level translate into greater
total worst-case costs for the three approaches considered. Moreover,

13

the use of the multi-year model leads to lower total worst-case costs in
comparison with the other two approaches at all the uncertainty levels
analyzed. The use of the sequential static and static approaches involves
relative increases in the total worst-case cost between 1% and 7% in
comparison with the multi-year approach, as shown in Fig. 3.

The three approaches analyzed involve different values of the total
worst-case cost since the investment plans identified are not the same,
as shown in Fig. 4. Note that more than one color is used in a cell when
the same investment decision is identified by different approaches.
Fig. 5 shows that these mismatches in the expansion decisions result in
different investment costs. Observe that the greatest investment costs
are obtained at all the uncertainty levels analyzed when the static
approach is used because all investment decisions are made at the
beginning of the planning horizon and more transmission lines are
built in comparison with the solution of the other models. Additionally,
similar investment plans are obtained by using the multi-year and
sequential static approaches, but transmission lines are built earlier in
most of the cases when the former approach is considered. The reason
for this advance in the investment decisions is that the use of the multi-
year approach allows the comprehensive view of the entire planning
horizon to be considered when the expansion decisions are made.
In other words, the multi-year approach may identify that a certain



A. Garcia-Cerezo et al.

Null uncertainty level

Transmission line\Year | 1|7 |8 | 9

6-12
7-8

Applied Energy 349 (2023) 121653

- Multi-year approach

- Sequential static approach

D Static approach

High uncertainty level

Transmission line\Year | 1 |2 |4 |5|6 |7 ]9 |10
Low uncertainty level 2-5
Transmission line\Year | 1|2 |3 |7 | 8|9 |10 3-4
6-12 6-12
6-13 6-13
7-8 7-8
10-13 10-13
11-20 11-20
13-19 13-19

Medium uncertainty level Maximum uncertainty level

Transmission line\Year | 1 |2 | 5|6 |7 |8 ]9 |10 Transmission line\Year | 1 |2 |4 |56 |7 ]9 |10
2-5 2-5
3-4 3-4
6-12 6-12
6-13 6-13
7-8 7-8
10-13 10-13
11-20 11-20
13-19 13-19

Fig. 4. IEEE 24-bus RTS:

200 T T

investment plan obtained by using the multi-year,

sequential static, and static approaches at different uncertainty levels.

I Multi-year approach

T

— 175
&

[[Static approach

0

—_

a1

o
T

B Sequential static approach

1251

100 -

50 [

Investment costs [1

[\}
[¢)]
T

Null Low

Medium

High Maximum

Uncertainty level

Fig. 5. IEEE 24-bus RTS: investment costs obtained by using the multi-year, sequential static, and static approaches at different uncertainty levels.

transmission line should be built in a year taking into consideration
the conditions of the power system in the following years, while the
sequential static approach will made expansion decisions on the basis
of only the conditions of the power system in the year under study. It is
worth mentioning that some new transmission lines are built earlier as
the uncertainty level is increased when using the multi-year approach.
For instance, Fig. 4 shows that this occurs to the transmission line that
joins nodes 11 and 20 at the medium, high, and maximum uncertainty
levels.

With regard to the solution procedure, Fig. 6 shows the computa-
tional time of the proposed multi-year two-stage ARO TNEP problem
obtained by using the modified NCCGA described in Section 3 and
the conventional NCCGA at different uncertainty levels. Observe that
the computational times significantly increase when the conventional
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NCCGA is applied without any acceleration technique. On the one
hand, the computational time varies between 6 h and 14 h at the
non-null uncertainty levels analyzed when the modified NCCGA is
applied. On the other, the use of the conventional NCCGA leads to
computational times of between 43 h and 46 h at the medium, high, and
maximum uncertainty levels, while the solution at the low uncertainty
level has not been attained after 100 h.

Furthermore, Table 3 shows the number of outer-loop iterations
and maximum number of inner-loop iterations needed to attain the
convergence of both loops obtained by using the modified NCCGA and
the conventional NCCGA to solve the multi-year two-stage ARO TNEP
problem at different uncertainty levels. These results confirm that the
ADA-based initialization of the inner-loop described in Section 3.3.3
reduces the number of inner-loop iterations. It is worth mentioning that
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Fig. 6. IEEE 24-bus RTS: computational time of the multi-year two-stage ARO TNEP problem obtained by using the modified and conventional NCCGA at different uncertainty

levels.

Table 3

IEEE 24-bus RTS: number of outer-loop iterations and maximum number of inner-
loop iterations needed to attain the convergence of both loops obtained by using
the modified and conventional NCCGA to solve the multi-year two-stage ARO TNEP
problem at different uncertainty levels.

Uncertainty level Null Low Medium High Maximum
Number of 'o.uter-loop iterations 1 4 9 P 2

of the modified NCCGA

Number of out.er-loop iterations 1 3 9 2 5

of the conventional NCCGA

Maximum number of inner-loop 3 9 2 9
iterations of the modified NCCGA

Maximum number of inner-loop 5 3 3 3 3

iterations of the conventional NCCGA

*Problem not solved in less than 100 h.

the maximum value of relaxed outer- and inner-loop iteration counters
O and 10 is 1 for all cases in which the modified NCCGA has been used,
which highlights the perks of relaxing the master problems.

4.2. IEEE 118-bus test system

We also analyzed the performance of the multi-year two-stage ARO
TNEP approach by using a modified version of the IEEE 118-bus Test
System (TS) [44]. This network comprises 118 buses, 40 conventional
generating units, 16 solar-power units, 12 wind-power units, 7 storage
facilities, 91 loads, 186 existing transmission lines, and 18 candidate
transmission lines. Moreover, we considered a planning horizon of
20 years. The relative stopping tolerance of the different loops in-
volved in the solution procedure and the relative optimality gap for
the branch-and-cut algorithm of CPLEX were set to 5- 1072,

The uncertainty was modeled in this case study by considering
groups for the uncertain parameters that may undergo deviations from
their forecast values. This simplification was considered in order to
reduce the computational burden of the problem since in this case
study a larger test system was analyzed. We assumed that the 91
loads were equally distributed among 13 groups based on their forecast
peak power consumption. The first group is composed of the 7 loads
associated with the greatest forecast peak power consumption, while
the last group contains the 7 loads linked to the lowest forecast peak
power consumption. Thus, if the load of a specific group undergoes an
increase in its forecast peak power consumption, a deviation is also
undergone by the remaining loads of that group. The values given
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Table 4
IEEE 118-bus TS: uncertainty budgets at different uncertainty levels.
Uncertainty level Null Low Medium High Maximum
re 0 3 6 9 13
rec 0 1 2 3 4
rer 0 2 4 6 8
RS 0 1 2 4 5
rRv 0 1 2 3 4

to the uncertainty budget I'® were, therefore, between 0 and 13.
Similarly, the 40 conventional generating units, the 16 solar-power
units, and the 12 wind-power units were equally distributed among 8,
5, and 4 groups, respectively, based on their forecast capacity. With
regard to the marginal production cost of conventional generating
units, these units were distributed among 4 groups since we considered
only the following forecast values: $10/MWh, $20/MWh, $30/MWh,
and $40/MWh. The case study was analyzed at five uncertainty levels,
which differ from each other in the values given to the uncertainty
budgets, as shown in Table 4. Note that in this case study loads and
generating units with similar characteristics are grouped together and
the uncertainty budgets represent the maximum number of groups that
can undergo deviations from their forecast values.

4.2.1. Impact of modeling the multi-year nature

We compared the results of the multi-year two-stage ARO TNEP
problem obtained by using the multi-year, sequential static, and static
approaches. The total worst-case costs obtained by using these ap-
proaches at different uncertainty levels are shown in Fig. 7. Observe
that the use of the sequential static and static approaches leads to
greater total worst-case costs than those obtained when the multi-year
approach is considered at the five uncertainty levels analyzed. These
differences are highlighted in Fig. 8, which illustrates that the non-
multi-year approaches involve relative increases in the total worst-case
cost between 0.5% and 3%. Note that Fig. 8 shows that the expansion
decisions determined by using the sequential static approach leads to
total worst-case costs closer to the optimal solutions associated with
the use of the multi-year approach than that attained when the static
approach is applied. However, the results are opposed in the previous
case study as shown in Fig. 3. Hence, it cannot be concluded than the
static approach performs better than the sequential static model or vice
versa. The conclusion that can be inferred from these results is that
the use of both the static and the sequential static approaches leads to
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Fig. 7. IEEE 118-bus TS: total worst-case cost obtained by using the multi-year, sequential static, and static approaches at different uncertainty levels.

investment plans that involve greater total worst-case costs than the
expansion decisions obtained when the multi-year approach is used.

With regard to the investment plans, the use of the multi-year,
sequential static, and static approaches leads to different expansion
decisions at the uncertainty levels analyzed, as shown in Fig. 9. Observe
that the conclusions inferred from the numerical results of this case
study are similar to those derived from the IEEE 24-bus RTS.

Moreover, Fig. 10 shows the computational time of the multi-
year two-stage ARO TNEP problem obtained by using the modified
NCCGA and the conventional NCCGA at different uncertainty levels. On
the one hand, the use of the modified NCCGA involves computational
times of between 4 h and 8 h to solve the multi-year two-stage ARO
TNEP problem at the non-null uncertainty levels analyzed. On the
other, the use of the conventional NCCGA involves a computational
time of 67.70 h at the low uncertainty level, while the solutions at
the remaining non-null uncertainty levels have not been attained after
100 h. Furthermore, Table 5 shows the number of outer-loop iterations
and maximum number of inner-loop iterations needed to attain the
convergence of both loops obtained by using the modified NCCGA and
the conventional NCCGA to solve the multi-year two-stage ARO TNEP
problem at different uncertainty levels. The conclusions inferred from
these results are similar to those obtained in the previous case study,
i.e., the use of the ADA-based initialization of the inner-loop may lead
to reductions in the number of inner-loop iterations and, therefore,
computational times lower than those attained when the conventional
NCCGA is applied. Moreover, the maximum value of © and r© is also 1
in this case study for all cases in which the modified NCCGA has been
used.

4.2.2. Impact of modeling the detailed operation of power systems

Many previous two-stage ARO TNEP approaches presented in the
technical literature ignore certain features used to model the detailed
operation of power systems, as shown in Table 1. The impact of
including these features in two-stage ARO TNEP models is highlighted
hereunder.

We solved the multi-year two-stage ARO TNEP problem at different
uncertainty levels by using a model in which we ignored the ramping
limits and commitment statuses of conventional generating units, as
well as the charging/discharging statuses of storage facilities. This is
called the relaxed model hereon, while the multi-year two-stage ARO
TNEP model described in Section 2 is called the benchmark approach.
We used the CCGA [24] combined with the second exact acceleration
technique described in Section 3.2 to solve the relaxed approach. Note
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Table 5

IEEE 118-bus TS: number of outer-loop iterations and maximum number of inner-
loop iterations needed to attain the convergence of both loops obtained by using
the modified and conventional NCCGA to solve the multi-year two-stage ARO TNEP
problem at different uncertainty levels.

Uncertainty level Null Low Medium High Maximum
Number of .oflter-loop iterations 1 9 9 9 9
of the modified NCCGA
Number of outer-loop iterations 1 9 1% 1 9
of the conventional NCCGA
Maximum number of inner-loop 2 9 P 2 2
iterations of the modified NCCGA
Maxi ber of i -1
aximum number of inner-loop 3 3 3 3

iterations of the conventional NCCGA

*Problem not solved in less than 100 h.

that the ADA-based initialization of the inner loop was not applied in
this case because the algorithm of the CCGA does not involve an inner
loop, i.e., the two lowermost optimization levels are recast as an equiv-
alent single-level optimization problem by using the Lagrangian duality
theory owing to the lack of second-stage binary decision variables.

Numerical results obtained by using the relaxed approach are shown
in Table 6. Observe that the use of the relaxed model leads to es-
timated total worst-case costs significantly lower than those attained
by using the benchmark approach. These underestimations involve an
average absolute relative error of the total worst-case cost of 7.57%
at the uncertainty levels analyzed. Furthermore, Fig. 11 shows that
the investment plans identified by the relaxed approach differ from
those attained by the benchmark model. Note that the differences
in the number of transmission lines built by using both approaches
does not follow a pattern, since the solutions of the relaxed approach
involve building more or less transmission lines in comparison with the
benchmark results depending on the uncertainty level, and neither do
the differences in the time at which the expansion decisions are made. It
is, therefore, not easy to infer the optimal investment plan associated
with the benchmark approach from the results attained by using the
relaxed model.

4.2.3. Impact of storage facilities on the expansion of the transmission
network of power systems

We compared the results of the multi-year two-stage ARO TNEP
problem obtained by using the benchmark approach described in Sec-
tion Section 2 with those attained by considering a modified version
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Fig. 8. IEEE 118-bus TS: relative increase in the total worst-case cost obtained by using the sequential static, and static approaches at different uncertainty levels.

Null uncertainty level

Transmission line \ Year| 1 | 7 - Multi-year approach
12-117
30-38 - Sequential static approach
86-87
92-102 I:\ Static approach
108-112
Low uncertainty level
Transmission line \ Year| 1 | 4 |16[1920 High uncertainty level
12-117 Transmission line \ Year| 1 |11]15|16|19|20
30-38 12-117
68-116 68-116
86-87 86-87
92-102 92-102
108-112 108-112

Medium uncertainty level

Maximum uncertainty level

Transmission line\Year| 1 | 7 |15]16]19|20 Transmission line\ Year| 1 | 3 [15/16|19|20
12-117 12-117
30-38 30-38
68-116 68-116
86-87 86-87
92-102 92-102
108-112 108-112

Fig. 9. IEEE 118-bus RTS: investment plan obtained by using the multi-year, sequential static, and static approaches at different uncertainty levels.

of that model in which storage facilities are not considered. Table 7
shows the estimated total worst-case cost and the relative increase in
the total worst-case cost obtained by using the model without storage
facilities. Numerical results illustrate that the lack of storage facilities in
the power system leads to increases in the total worst-case cost between
11% and 25% in comparison with the results obtained by using the
benchmark approach. These increases are mainly associated with the
production costs of conventional generating units except in the case
related to the maximum uncertainty level, in which the rise in the total
worst-case cost is also associated with load shedding costs. These results
illustrate that storage facilities provide more flexibility to the power
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system to minimize the total worst-case cost. Furthermore, Fig. 12
shows that different investment decisions are generally identified by
using both approaches.

4.2.4. Sensitivity analyses

Lastly, we performed several sensitivity analyses to assess the im-
pact of the maximum deviations of the uncertain parameters on the
total worst-case cost. We solved the multi-year two-stage ARO TNEP
problem at the medium uncertainty level by considering different val-
ues for these maximum deviations, namely, 1%, 3%, 5%, 7%, and 9%
of the forecast values. We carried out the following sensitivity analyses:
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Fig. 10. IEEE 118-bus TS: computational time of the multi-year two-stage ARO TNEP problem obtained by using the modified and conventional NCCGA at different uncertainty

levels.
Null uncertainty level
Transmission line\Year| 1 | 6 | 7 |15 - Benchmark approach
30-38
92-102 - Relaxed approach
108-112
Low uncertainty level High uncertainty level
Transmission line \ Year| 4 |10|16|17|18 Transmission line \ Year| 8 [11|15]|16|17|18
12-117 12-117
86-87 86-87
92-102 92-102
108-112 | ] 108-112
Maximum uncertainty level
Medium uncertainty level Transmission line \ Year| 2 | 3 |12|15|16|17|18
Transmission line \ Year| 7 [10]15|16|18 12-117
12-117 30-38
86-87 86-87
92-102 92-102
108-112 108-112
Fig. 11. IEEE 118-bus RTS: investment plan obtained by using the benchmark and relaxed approaches at different uncertainty levels.
Table 6 Table 7

IEEE 118-bus TS: estimated total worst-case cost and absolute relative error of the total

worst-case cost obtained by using the relaxed approach at different uncertainty levels.

Uncertainty level Null Low Medium  High Maximum

Estimated total

worst-case cost [10° $] 1761.88

1969.03 205494 2121.02 2167.30

Absolute relative
error of the total 8.54 7.53 7.50 7.31 6.96
worst-case cost [%]

IEEE 118-bus TS: estimated total worst-case cost and relative increase in the total
worst-case cost obtained by using the benchmark model without storage facilities at
different uncertainty levels.

Uncertainty level Null Low Medium High Maximum

Estimated total

2157.41
worst-case cost [10° $] 574

2373.00 2517.23 273595 2910.19

Relative increase in the

12.00 11.44 13.31 19.56 24.93
total worst-case cost [%]

« Sensitivity analysis A: we considered different values of the max-
imum increases that the peak power consumption of loads may
undergo in their forecast values.

» Sensitivity analysis B: we considered different values of the maxi-
mum decreases that the capacity of conventional generating units
may undergo in their forecast values.
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Null uncertainty level

Transmission line\ Year| 1 | 7
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- Benchmark approach

- Model without storage facilities

High uncertainty level
Transmission line \ Year| 3 | 9
12-117

30-38

86-87

92-102
108-112

11]15/16

Maximum uncertainty level

Medium uncertainty level Transmission line\Year| 1 | 7 |15]16 |17
Transmission line\ Year| 3 | 7 |15|16 18|19 12-117
12-117 30-38
86-87 86-87
92-102 92-102
108-112 108-112

Fig. 12. IEEE 118-bus RTS: investment plan obtained by using the benchmark approach and the model without storage facilities at different uncertainty levels.
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Fig. 13. IEEE 118-bus TS: sensitivity analyses of the total worst-case cost obtained by using the multi-year approach at the medium uncertainty level for different maximum

deviations of the uncertain parameters.

« Sensitivity analysis C: we considered different values of the max-
imum decreases that the capacity of wind-power units may un-
dergo in their forecast values.

+ Sensitivity analysis D: we considered different values of the max-
imum decreases that the capacity of solar-power units may un-
dergo in their forecast values.

+ Sensitivity analysis E: we considered different values of the maxi-
mum increases that the marginal production cost of conventional
generating units may undergo in their forecast values.

The results of these sensitivity analyses are shown in Fig. 13.
Observe that the total worst-case cost is increased when the maxi-
mum deviations of the uncertain parameters rise. Moreover, the peak
power consumption of loads are the uncertain parameters whose max-
imum deviations most affect the total worst-case cost, followed by the
marginal production cost of conventional generating units, and the
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capacity of conventional, wind- and solar-power generating units. Note
that a maximum absolute relative deviation of the total worst-case cost
of approximately 5% is obtained with respect to the results provided
in Section 4.2.1. Furthermore, the investment decisions obtained in
most of the cases differ from those shown in Fig. 9 for the multi-
year approach at the medium uncertainty level. The planner should,
therefore, develop a proper analysis to set the maximum deviations that
the uncertain parameters may undergo from their forecast values. This
is out of the scope of this work, but the reader is referred to [23],
in which the authors define the polyhedral uncertainty set by using
available data of the uncertain parameters and forecasting tools.

We have also analyzed the multi-year two-stage ARO TNEP problem
by considering only a single uncertainty budget I" to limit the total
number of uncertain variables that may reach their lower or upper
limits. The sum of the different uncertainty budgets previously con-
sidered is equal to 34 at the maximum uncertainty level. We have,
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Table 8
IEEE 118-bus RTS: number of groups of uncertain variables that undergoes deviations
from their forecast values in year 20 by using only a single uncertainty budget.

Uncertainty budget, I 7 14 21 28
# groups of loads that undergo increases 5 s 11 13
in their peak power consumption

# groups of conventional generating units 9 3 5 6
that undergo decreases in their capacities

# groups of wind-power units that 1 1 3 4
undergo decreases in their capacities

# groups of solar-power units that 0 0 0 1
undergo decreases in their capacities

# groups of conventional generating units that 2 5 4

undergo increases in their marginal production costs

therefore, analyzed the following values of I': 7, 14, 21, and 28. Table 8
shows that most of the groups of uncertain variables that undergo
deviations from their forecast values when I is equal to 14 are the peak
power consumption of loads. This means that the worst-case situation
in terms of maximizing the total worst-case cost is mainly driven by
the uncertainty in the peak power consumption of loads. The results
obtained at greater values of I show that more deviations are under-
gone by the rest of the uncertain variables once the majority of the
loads undergoes increases in their peak power consumption. The use
of different uncertainty budgets, therefore, provides a fairer approach
when the uncertainty in several unknown parameters is analyzed since
the deviations undergone are distributed in different sets of uncertain
variables.

5. Conclusions

This paper presents a new approach for the multi-year two-stage
ARO TNEP problem with high penetration of renewable generation.
A multi-year approach is considered rather than sequential static and
static approaches. ARO is used to identify the worst-case realization of
the future uncertain conditions of the power system that maximizes the
operating costs, where the uncertain parameters are the peak power
consumption of loads, the marginal production cost of conventional
generating units, and the capacity of generating units. Moreover, the
presence of wind- and solar-power units is considered, and the opera-
tional variability of their production levels and the electrical demand
is modeled by means of a set of RDs. Certain features associated with
the detailed operation of power systems, which are generally ignored
in previous multi-year two-stage ARO expansion planning approaches
from the technical literature, are simultaneously considered in this
work, namely, the commitment statuses and ramping limits of conven-
tional generating units and the non-convex operational feasibility sets
of storage facilities. The multi-year two-stage ARO TNEP problem is
formulated through a three-level model and it is solved by combining
the NCCGA with two exact acceleration techniques. The following
statements are inferred from the numerical results of two case studies:

1. Relative increases in the total worst-case cost of up to 7% are
obtained when the comprehensive view of the planning horizon
is ignored by using static and sequential static approaches rather
than a multi-year model for the multi-year two-stage ARO TNEP
problem.

2. More transmission lines are usually built when the static ap-
proach is applied in comparison with the results of the multi-
year model, while the use of the sequential static approach
generally leads to delays in the building of new transmission
lines in comparison with the results of the multi-year approach.

3. The use of a relaxed model, in which the detailed operation of
the power system is not considered, leads to underestimations of
the total worst-case cost of over 8%.
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4. The flexibility provided by storage facilities involves reductions
in the total worst-case cost close to 25%.

5. Particular attention should be paid to the values set to the
maximum deviations that the peak power consumption of loads
may undergo from their forecast values, since they significantly
influence the investment plan.

Finally, some proposals to continue this research are:

The use of an ellipsoidal uncertainty set to model the correlation
among different uncertain parameters. Note that this correlation
cannot be modeled by using a cardinality-constrained uncertainty
set. Moreover, this framework would allow us to control the
conservativeness of the solution through the size of the ellipsoidal
uncertainty set.

The modeling of the power flows through transmission lines by
using an AC model rather than the lossless DC model considered
in this work.

The use of a rolling horizon approach to approximate the multi-
year multi-stage ARO TNEP problem to a set of multi-year two-
stage ARO TNEP problems sequentially solved.
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Appendix. Formulation of the static and sequential static ap-
proaches

This appendix explains the changes that should be made in the
formulation of the multi-year two-stage ARO TNEP problem described
in Section 2 when considering static and sequential static approaches:
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« Static two-stage ARO TNEP problem, in which the upper-level
problem minimizes the sum of the annualized investment and
worst-case operating costs for a target year. The investment costs
are, therefore, annualized by using a capital recovery factor,
which is computed taking into consideration the interest rate
and the investment return period. Moreover, the discount rate
is removed from the constraint that imposes the limit on the
investment costs since all expansion decisions are made at the
beginning of the planning horizon. Furthermore, the forecast
values and the maximum deviations of the uncertain parameters
are assumed to be equal to those values in the last year of the
planning horizon in order to make a fair approximation of the
results provided by the multi-year model. The formulation of the
lower-level problem is the same as that used in the multi-year
approach, but particularized for the target year. The reader is
referred to the Appendix of [34] for further information on the
detailed formulation of the static two-stage ARO TNEP problem.
Sequential static two-stage ARO TNEP problem, in which the
upper-level problem is solved by considering only one year of the
planning horizon. In this case, constraints (1c)-(1e) are replaced
with the following constraints for year y:

1 L L

T
PG ey

y=y-1 1
_ S— %) 7 (A.1a)
S E a+ K)y—l £y

y=y-1

L L . L
vi+ Y V<L vee ol (A.1b)
y=1
y=y-1
AL L L. L+
oy, =g, + 21 Vi vee v, (Alo)
=

where parameter VfLy is equal to 1 if candidate transmission line
¢ has been built in previous year 7, being otherwise 0. Constraint
(A.1a) limits the investment costs by using the difference between
the investment budget and the investment costs of previous years.
Constraints (A.1b) impose that each candidate transmission line
can be built only once. Eq. (A.1c) define the building status of a
candidate transmission line. Note that VL,QL is set to the optimal
value of variable UIEy obtained after solving the problem for year
y. Lastly, the formulation of the middle- and lower-level problems
do not change with respect to the multi-year approach since they
are independently solved for each year.
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