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RESUMEN DEL PROYECTO  
Este proyecto se centra en el desarrollo de un algoritmo de estrategia de oferta para la 
participación y gestión de una planta de energía agregada (APP), compuesta por un parque 
eólico (WF) y un sistema de almacenamiento de energía con baterías (BESS), en varios 
mercados de electricidad y servicios complementarios en Dinamarca, concretamente en el 
área DK2. 

Para ello, se integran modelos basados en datos históricos para la predicción de potencia 
eólica y precios de la electricidad con modelos de optimización para derivar estrategias de 
oferta óptimas en el mercado diario (DAM), y los dos servicios de regulación primaria de 
frecuencia (FCR-D y FCR-N). El proyecto tiene como objetivo proporcionar un marco 
práctico de cómo los modelos de predicción basados en datos y los modelos de optimización 
pueden integrarse de manera efectiva para definir estrategias de oferta y mejorar el 
rendimiento económico de las APP en múltiples mercados eléctricos. 

El proceso implica el filtrado de datos y la selección de variables para las predicciones de 
generación eólica y precios, explorando modelos basados en regresión para la generación 
eólica y modelos de series temporales para la predicción de precios. Integrando estas 
predicciones con el modelo de optimización, se analizan las ofertas óptimas basadas en las 
predicciones, evaluando la fiabilidad del modelo mediante la comparación de los beneficios 
esperados y percibidos. Además, se prueba el modelo utilizando previsiones de información 
perfecta para analizar su impacto en la estrategia de oferta óptima y los ingresos esperados. 

El análisis destaca la necesidad de previsiones precisas de precios y generación eólica y 
demuestra ciertos elementos recurrentes en las estrategias de oferta durante los días 
estudiados. El parque eólico ofrece consistentemente en el DAM y en reserva a bajar del 
servicio FCR-D, mientras que el BESS muestra una preferencia por los mercados de reserva 
sobre el DAM. Además, el estudio propone trabajos futuros para mejorar el modelo, como 
el desarrollo de técnicas de predicción más sofisticadas o la exploración de estrategias de 
control en tiempo real para mejorar la fiabilidad y el rendimiento económico de las APP. 

Palabras clave: Plantas de energía agregada, energía eólica, BESS, servicios 

complementarios, regulación primaria, predicción.  

1. Introducción 

La energía eólica es fundamental para la descarbonización de los sistemas eléctricos y la 
transición hacia fuentes de energía renovable. La creciente adopción de la energía eólica 
en Europa está llevando a un aumento significativo de su participación en el mix 
energético de multitud de países. Esta creciente integración de la energía eólica plantea 
desafíos en la operación del sistema y en los mercados de electricidad debido a su 



naturaleza variable. El reemplazo de sistemas de energía convencionales en favor de 
plantas de generación eólica supone que estas últimas deban asumir roles adicionales, 
como proporcionar servicios complementarios de regulación de frecuencia, lo que 
requiere una estimación precisa de la generación eólica. La integración de parques 
eólicos con sistemas BESS puede ofrecer una solución para abordar está situación. 

Por otro lado, la evolución de los métodos basados en datos permite la digitalización de 
activos energéticos, lo que potencialmente desbloquea estrategias de control 
personalizadas y mejora su eficiencia. Bajo este este contexto general, este proyecto 
propone el desarrollo de un algoritmo de estrategia de oferta basado en un modelo de 
optimización para derivar estrategias óptimas de participación en varios mercados 
eléctricos y servicios complementarios. El modelo de optimización aprovecha técnicas 
avanzadas basadas en datos para integrar las previsiones de generación eólica y los 
pronósticos de precios, lo que permite una estrategia integral que tiene en cuenta tanto la 
variabilidad de la generación como la dinámica del mercado. 

El modelo integrado se centra en una APP que consta de un parque eólico y un sistema 
BESS, con el objetivo de optimizar su participación combinada en varios mercados 
energéticos y servicios complementarios. Además, el estudio evalúa las expectativas de 
ingresos y la precisión con la que estos coinciden con los ingresos percibidos, y cómo 
las previsiones de información perfecta pueden mejorar las estrategias de oferta, 
aumentando la precisión de las proyecciones de ingresos. 

2. Definición y objetivos del proyecto 

El proyecto examina las estrategias de oferta basadas en las predicciones de energía 
eólica y precios, evalúa la fiabilidad del modelo comparando los beneficios esperados 
con los percibidos, y analiza cómo varían estos factores al utilizar previsiones con 
información perfecta sobre los precios y la generación eólica. El objetivo es proporcionar 
un marco práctico de cómo los modelos de pronóstico basados en datos y los modelos 
de optimización pueden integrarse de manera efectiva para desarrollar estrategias de 
oferta y mejorar el rendimiento económico de las plantas de energía agregadas en 
múltiples mercados eléctricos. 

El trabajo aborda varios objetivos específicos, cada uno de los cuales contribuye al 
objetivo general del desarrollo del algoritmo. Estos objetivos específicos son los 
siguientes: 

• Obtención y filtrado de los datos SCADA recopilados de múltiples turbinas 
eólicas. 

• Implementación de técnicas de inteligencia artificial para la predicción de 
generación de energía eólica. 

• Implementación de técnicas de inteligencia artificial para la predicción de precios 
de la electricidad. 

• Formulación de un modelo de optimización para determinar las ofertas óptimas 
de la planta de energía agregada en diversos mercados de energía y servicios 
complementarios. 

• Análisis de estrategias de participación en los mercados considerados, basadas 
en pronósticos de generación eólica y precios. 



• Evaluación y comparación de las principales fuentes de ingresos alcanzables en 
los mercados considerados, utilizando los modelos de predicción desarrollados 
frente a pronósticos perfectos. 
 

3. Descripción del modelo 

El marco general del modelo desarrollado en esta tesis se ilustra a continuación. A partir de 
series temporales históricas de precios de electricidad y generación eólica, se desarrollarán 
modelos para pronosticar precios y generación eólica. Algunos de los métodos utilizados 
serán más complejos, incorporando variables exógenas obtenidas de pronósticos externos, 
mientras que otros emplearán modelos simplificados. Además, se utilizarán mediciones 
reales de la frecuencia de la red eléctrica para modelar la activación de reservas. Todos estos 
parámetros servirán como datos de entrada para un modelo de optimización MILP que tiene 
como objetivo maximizar los ingresos del DAM, los ingresos o costes por desviación en el 
mercado de balance (IMB) y los servicios auxiliares FCR para una APP ubicada en 
Dinamarca (DK2). 

 

Ilustración 1. Descripción del modelo. Esquema y flujo de información.  

4. Resultados 

En cuanto a la previsión de la generación eólica, el análisis de los datos SCADA del parque 
eólico ha identificado la velocidad del viento como el factor principal. La fuerte correlación 
observada sugiere la exploración de modelos basados en regresión. En este sentido, se han 
desarrollado varios modelos, incluyendo regresión lineal, modelos autorregresivos y 
regresión ponderada localmente, siendo este último el que proporcionó los mejores 
resultados debido a su capacidad para generar una curva de ajuste más suave. A pesar de 
esto, la incorporación de variables externas introdujo errores de predicción notables, lo que 
resalta la importancia de utilizar previsiones adaptadas a las condiciones específicas del 
parque eólico. 

La previsión de precios ha sido el factor más importante tanto para la planificación de las 
estrategias de participación en el mercado como para los ingresos finales obtenidos en los 
días estudiados, con desviaciones entre los ingresos esperados y los percibidos coincidiendo 
con desviaciones en las previsiones de precios. Se han evaluado varios métodos de previsión 
basados en series temporales para la predicción de precios del DAM, siendo SARIMAX el 
más preciso. Sin embargo, este modelo ha mostrado variabilidad significativa en el 



rendimiento dependiendo del día estudiado, lo que indica la necesidad de modelos más 
complejos para una aplicación real. Por otro lado, la utilización de modelos de predicción 
simples para los precios de los mercados de reserva ha acabado resultando en errores de 
pronóstico significativos. A pesar de estos errores, la simplificación de estos modelos ha 
ayudado a mantener una comprensión general de las tendencias de precios y las estrategias 
de oferta. 

En cuanto a las estrategias de oferta, la estrategia para el parque eólico se ha mantenido 
constante en todos los días estudiados. El parque eólico ofrece su predicción más precisa en 
el DAM y la misma cantidad como reserva a bajar en el mercado FCR-D. Con el nivel de 
precios actual, esto ocurre porque una turbina eólica tendría que operar bajo limitación de 
potencia si oferta reserva a subir en FCR-D o FCR-N para asegurar suficiente capacidad para 
aumentar la potencia en caso de una activación repentina de la reserva. Ante esta situación, 
es óptimo ofertar en el DAM y obtener beneficios adicionales de la reserva de regulación a 
bajar de FCR-D, ya que no requiere limitación de potencia en tiempo real a menos que se 
active. En cuanto al sistema BESS, se ha observado una mayor variabilidad en sus estrategias 
dependiendo de la configuración de precios del mercado. La batería generalmente prefiere 
participar en los mercados de reserva en lugar del DAM. Sin embargo, durante los períodos 
en los que es más óptimo ofrecer en el mercado FCR, aprovecha los máximos locales en los 
precios del DAM para descargar y aumentar la disponibilidad de reserva a subir y utiliza los 
mínimos locales para cargar y aumentar las reservas para la regulación a bajar. Las 
estrategias de oferta en función de los precios son estudiadas en más profundidad en la 
discusión de resultados del documento principal. 

En cuanto a la rentabilidad de las ofertas, se han comparado los ingresos esperados con los 
percibidos. Tras analizar los ingresos por mercado, se observa que las mayores diferencias 
provienen de previsiones erróneas de los precios de reserva. Como se ha mencionado, estos 
precios se han obtenido de modelos de predicción simplistas, lo que explica los errores que 
llevaron a desviaciones en los ingresos. Por lo tanto, los ingresos esperados también se han 
analizado en comparación con los ingresos percibidos utilizando pronósticos de información 
perfecta, obteniendo una reducción en la volatilidad entre los ingresos esperados y los 
percibidos y demostrando la necesidad de pronósticos precisos para lograr escenarios de 
ingresos realistas. 

 

 

Ilustración 2. Configuración de precios y estrategia del sistema BESS para uno de los días estudiados. 



 Día 1 Día 2 Día 3 Día 4 

Resultados con los modelos de predicción desarrollados 

Beneficio esperado (€) 37,648 43,157 37,535 36,777 

Beneficio percibido (€) 34,258 14,058 52,634 31,343 

Resultados con predicciones de información perfecta 

Beneficio esperado (€) 32,484 14,736 52,615 31,846 

Beneficio percibido (€) 33,408 14,882 52,615 32,265 

Tabla 1. Comparación de beneficios esperados frente a percibidos utilizando las técnicas de predicción 

desarrolladas y previsiones con información perfecta. 

5. Conclusiones 

Este proyecto se ha centrado en el desarrollo de un algoritmo de estrategia de oferta para 
la participación y gestión de una planta de energía agregada (APP), compuesta por un 
parque eólico (WF) y un sistema de almacenamiento de energía con baterías (BESS), en 
mercados de electricidad y servicios auxiliares. A través de la consecución de sus 
objetivos específicos, el proyecto ha explorado la integración de modelos basados en 
datos para la previsión de precios de la electricidad y de la generación eólica con modelos 
de optimización para derivar estrategias óptimas de oferta en los mercados combinados 
del mercado diario (DAM) y los dos servicios de regulación primaria de frecuencia 
(FCR-D y FCR-N). 

Dado que el objetivo de este trabajo no era realizar un estudio de viabilidad económica 
de los mercados, el modelo desarrollado ha sido probado para cuatro días de estudio con 
diferentes configuraciones de precios con el fin de evaluar diversas estrategias de 
participación en el mercado. Este enfoque ha permitido examinar estrategias óptimas de 
participación para la WF, revelando que la estrategia más efectiva consiste en ofertar su 
pronóstico más preciso en el DAM y participar en la reserva de regulación a bajar del 
servicio complementario FCR-D. Además, el análisis de las estrategias para el BESS ha 
indicado una preferencia por los mercados de reserva sobre el DAM. Por otro lado, se ha 
podido concluir que bajo las suposiciones realizadas, los ingresos adicionales por la 
activación de reservas en el mercado FCR-N generalmente no sirven como el criterio 
principal para seleccionar FCR-N sobre FCR-D. 

Las estrategias desarrolladas se han analizado comparando los ingresos esperados con 
los ingresos percibidos. Este análisis incluye escenarios en los que se utilizaron 
pronósticos con información perfecta, en los cuales los precios reales de la electricidad 
y la generación eólica se conocían al momento de planificar la estrategia de oferta. Esta 
comparación ha destacado la necesidad de pronósticos más precisos para facilitar el 
desarrollo de planes de negocio realistas a largo plazo, mejorando así la viabilidad 
económica y la planificación estratégica de las APP en condiciones reales de mercado. 
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ABSTRACT  
This project focuses on developing a bidding strategy algorithm for the participation and 
management of an aggregated power plant (APP), consisting of a wind farm (WF) and 
battery energy storage system (BESS), in various electricity markets and ancillary services. 

To address these challenges, data-driven models for wind power and electricity price 
forecasting are integrated with optimization models to derive optimal bidding strategies for 
the day-ahead market (DAM), frequency containment reserve for disturbance (FCR-D), and 
frequency containment reserve for normal operation (FCR-N) markets. The research aims to 
provide a comprehensive understanding of how data-driven forecasting and optimization 
models can be effectively integrated to define bidding strategies and improve the economic 
performance of APPs in multiple electricity markets.  

The process involves data filtering and feature selection for wind power and price forecasts, 
exploring regression-based models for wind power and time series models for price 
forecasting. Once these forecasts are integrated with the optimization model, the study 
examines optimal bids based on forecasted prices, assessing the reliability of the model by 
comparing expected and realized profits. Additionally, the study tests the model using 
perfect information forecasts to analyze its impact on optimal bidding strategy and expected 
revenue.  

The analysis highlights the requirement for precise price and wind power forecasts and 
demonstrates certain recurring elements in the bidding strategies over the days studied. The 
WF consistently bids in the DAM and FCR-D down regulation, while the BESS shows a 
preference for reserve markets over the DAM. Additionally, the study proposes future work 
to further improve the model, as the development of more sophisticated forecasting 
techniques or the exploration of real-time control strategies to improve the reliability and 
economic performance of APPs. 

Keywords: Aggregated power plant, wind energy, BESS, forecasting, ancillary services, 

bidding strategy.  

1. Introduction 

Wind energy is crucial for decarbonizing electricity systems and transitioning to 
renewable energy sources. The growing adoption of wind power across Europe is leading 
to a significant increase in its share within the energy mix of several countries. However, 
the increased reliance on wind energy introduces challenges in system operation and 
electricity markets due to its variable nature. As WFs  replace conventional power plants, 
they must take on additional roles, such as providing ancillary services, which requires 



accurate wind power estimation. Integrating wind farms with BESS offers a potential 
solution to address uncertainties in wind power forecasts. 

The evolution of data-driven methods enable the digitalization of assets, potentially 
unlocking customized control strategies and improving efficiency. Building on this 
general context, this thesis proposes the development of a bidding strategy algorithm 
based on an optimization model to derive optimal participation strategies in various 
electricity markets and ancillary services. The optimization model leverages advanced 
data-driven techniques to integrate wind power forecasts and price forecasts, enabling a 
comprehensive strategy that accounts for both generation variability and market 
dynamics.  

The integrated model focuses on an APP that consists of a WF and a BESS, aiming to 
optimize their combined participation in various energy markets and ancillary services. 
Additionally, the study evaluates the revenue expectations and how closely these match 
the realized revenue and how perfect information forecasts can improve bidding 
strategies, improving the accuracy of revenue projections. 

2. Project objectives 

The project will examine bidding strategies based on forecasts, assess the reliability of 
the model by comparing expected and realized profits, and analyze how these factors 
vary when using forecasts with perfect information of prices and wind power. The 
research aims to provide a comprehensive understanding of how data-driven forecasting 
and optimization models can be effectively integrated to define bidding strategies and 
improve the economic performance of APPs in multiple electricity markets. 

The work covers several specific objectives, each contributing to the overall goal of the 
algorithm development. These specific objectives are outlined below: 

• Refinement and filtration of Supervisory Control and Data Acquisition (SCADA) data 
collected from multiple wind turbines (WT). 

• Deployment of AI techniques to forecast wind power generation accurately. 

• Deployment of AI techniques to forecast electricity prices accurately. 

• Formulation of an optimization model to determine day-ahead schedules for WF 
participation in diverse energy markets and ancillary services, incorporating BESS 
aggregation. 

• Analysis of participation strategies in the considered markets based on wind power and 
price forecasts. 

• Evaluation and comparison of the main revenue streams achievable within the 
considered markets, using developed forecasts versus perfect forecasts. 

 

 

 



3. Model description 

The general framework of the model developed in this thesis is illustrated below. Based 
on historical time series of electricity prices and wind power generation, models for 
forecasting prices and wind power will be developed. Some of the methods used will be 
more complex, incorporating exogenous variables obtained from external forecasts, 
while others will use simplifications in the form of naive predictors. Additionally, real 
power grid frequency measurements will be used to model reserve activation. All these 
parameters will serve as inputs for a MILP optimization model that aims to maximize 
revenues from the DAM, imbalance settlement (IMB), and the FCR ancillary services 
for an aggregated power plant located in Denmark (DK2). 

 

Figure 1. Model development. Framework and flow of information. 

4. Results 

Regarding wind power forecasting, the analysis of the WF’s SCADA data available for 
this thesis has identified wind speed as the main factor. The strong correlation presented 
led to the exploration of regression-based models. Several models, including linear 
regression, autoregressive, and local weighted regression were tested, with the latter 
providing the best results due to its potential to generate a smoother fit curve. Despite 
this, incorporating external variables introduced notable prediction errors, highlighting 
the importance of using tailored forecasts specific to the conditions of the wind farm. 

Price forecasting has been the most important factor both for planning market 
participation strategies and for the final revenue obtained on the studied days, with 
deviations between expected revenue and realized revenue coinciding with deviations in 
price forecasts. Various time series forecasting methods were evaluated for DAM price 
prediction, with SARIMAX delivering the most accurate results. However, there was 
still significant variability in performance depending on the day, indicating that further 
refinement with more sophisticated models could be beneficial for practical applications. 
While naive predictors were used for reserve market prices to simplify the methodology, 
they resulted in significant forecast errors. Despite these errors, they helped maintain a 
general understanding of price trends and potential bidding strategies. 

As for bidding strategies, the strategy for the WF remained consistent across all study 
days. The wind farm offers its most accurate prediction in the DAM and the same amount 
as downward reserve in the FCR-D market. With the current price level, this occurs 
because a wind turbine would have to operate under curtailment if it were to offer in 



FCR-D up-regulation or FCR-N to ensure sufficient capacity to increase power if a 
sudden reserve activation occurs. In this situation, the WF prefers to offer in the DAM 
and gain additional benefits from the FCR-D down-regulation reserve, as it does not 
require real-time curtailment unless activated. Regarding the BESS, more variability in 
its strategies is observed depending on the market price configuration. The battery 
generally prefers to participate in reserve markets rather than the DAM. However, during 
periods when it is more optimal to offer in the FCR market, it takes advantage of local 
maxima in DAM prices to discharge and increase reserve availability for up-regulation 
or utilizes local minima to charge and boost reserves for down-regulation. More price-
specific strategies are discussed in the main text of the thesis. 

Concerning the profitability of the results, expected revenues have been compared with 
realized revenues. After analyzing the revenues by market, it was observed that the 
largest differences come from erroneous forecasts of reserve prices. As mentioned, these 
prices were derived from naive forecasts, which explains the errors leading to revenue 
deviations. Consequently, the expected revenue was also analyzed against the realized 
revenue using perfect price forecasts, which demonstrated a reduction in the volatility 
between expected and realized revenues, underscoring the necessity for accurate 
forecasts to achieve realistic expected revenues. 

 

Figure 2. Price configuration and BESS bidding strategy for one of the selected days of study. 

 

 Test Day 1 Test Day 2 Test Day 3 Test Day 4 

Results with the developed forecast techniques 

Expected revenue (€) 37,648 43,157 37,535 36,777 

Realized revenue (€) 34,258 14,058 52,634 31,343 

Results with perfect information forecasts 

Expected revenue (€) 32,484 14,736 52,615 31,846 

Realized revenue (€) 33,408 14,882 52,615 32,265 

Table 1. Comparison of expected vs. realized profits using developed forecasting techniques and perfect 

information forecasts. 



5. Conclusions 

This thesis has focused on developing a bidding strategy algorithm for the participation 
and management of an aggregated power plant (APP), comprising a wind farm (WF) and 
a battery energy storage system (BESS), in electricity markets and ancillary services. 
Through achieving its specific objectives, this research has explored the integration of 
data-driven models for electricity price and wind power forecasting with optimization 
models to derive optimal bidding strategies in the combined markets of day-ahead 
market (DAM), FCR-D, and FCR-N. 

Since the objective of this work was not to perform an economic viability study of the 
markets, the developed model was tested over four days with different price 
configurations to evaluate various market participation strategies. This approach enabled 
the examination of optimal participation strategies for the WF, revealing that the most 
effective strategy involves bidding its most accurate forecast into the DAM and 
participating in the FCR-D down-regulation reserve. Additionally, the analysis of 
strategies for the BESS indicated a preference for reserve markets over the DAM. It was 
also found that, under the assumptions made, FCR-N reserve activations generally do 
not serve as the primary criteria for selecting FCR-N over FCR-D. 

The developed strategies were analyzed by comparing expected revenues with realized 
revenues. This analysis included scenarios where perfect information forecasts were 
used, in which actual electricity prices and wind power were known at the time of 
planning the bid offering strategy. This comparison highlighted the necessity for more 
precise forecasts to reduce the gap between expected and realized revenues. Achieving 
more accurate forecasts could facilitate the development of realistic long-term business 
scenarios, thereby enhancing the economic viability and strategic planning of APPs in 
actual market conditions.





Abstract
This thesis focuses on developing a bidding strategy algorithm for the participation and
management of an aggregated power plant (APP), consisting of a wind farm (WF) and
battery energy storage system (BESS), in various electricity markets and ancillary services.

To address these challenges, data-driven models for wind power and electricity price fore-
casting are integrated with optimization models to derive optimal bidding strategies for
the day-ahead market (DAM), frequency containment reserve for disturbance (FCR-D),
and frequency containment reserve for normal operation (FCR-N) markets. The research
aims to provide a comprehensive understanding of how data-driven forecasting and opti-
mization models can be effectively integrated to define bidding strategies and improve the
economic performance of APPs in multiple electricity markets.

The process involves data filtering and feature selection for wind power and price fore-
casts, exploring regression-based models for wind power and time series models for price
forecasting. Once these forecasts are integrated with the optimization model, the study
examines optimal bids based on forecasted prices, assessing the reliability of the model
by comparing expected and realized profits. Additionally, the study tests the model us-
ing perfect information forecasts to analyze its impact on optimal bidding strategy and
expected revenue.

The analysis highlights the requierment for precise price and wind power forecasts and
demonstrates certain recurring elements in the bidding strategies over the days studied.
The WF consistently bids in the DAM and FCR-D down regulation, while the BESS shows
a preference for reserve markets over the DAM. Additionally, the study proposes future
work to further improve the model, as the development of more sophisticated forecasting
techniques or the exploration of real-time control strategies to improve the reliability and
economic performance of APPs.
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Abbreviations
WF Wind farm
BESS Battery Energy Storage System
APP Aggregated power plant
WT Wind turbine
DAM Day-Ahead market
FFR Fast Frequency Reserve
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t Activation function of FCR-N up-regulation at time t [-]
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aD,↑
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Ωb Subset of binary variables

Decision Variables
pEM
t APP power produced at time t to the Energy Market [MW ]

pW,EM
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pB,EM
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λDR
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EEM
t,w APP earnings from the EM at time t under scenario w [€]
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EFCR−D
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Parameters
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t Forecasted down-regulation price at time t [€/MWh]

λ̂D↑
t Forecasted FCR-D up price at time t [€/MW ]

λ̂D↓
t Forecasted FCR-D down price at time t [€/MW ]

λ̂N
t Forecasted FCR-N price at time t [€/MW ]

p̂Wt Forecasted wind power at time t [MW ]
P

B Maximum discharge and charge power of the BESS [MW ]
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1 Introduction

1.1 Context and motivation
Wind energy plays a crucial role in the decarbonization of electricity systems and their
shift towards renewable energy solutions. In 2023, 272 GW of wind power capacity was
installed in Europe and 260 GW of new wind power capacity is expected for 2030. This
increase in the installation of wind power generation represents a share of wind energy of
more than 20% in the energy mix of ten European countries, with Denmark and Ireland
leading the way with 56% and 36% respectively [1].

The increasing penetration of wind power in the energy mix brings with it multiple chal-
lenges in system operation and electricity markets due to the variable nature of the wind
resource. Wind farms (WF) are replacing conventional power plants and, therefore, will
have to assume the roles these plants had in ancillary services, making the accurate estima-
tion of wind power a fundamental requirement. One possible solution to the detrimental
effects induced by uncertainty in wind power forecasts is the aggregation of portfolios,
particularly the integration of wind farms and battery energy storage systems (BESS).

Within the context of asset aggregation, the application of advanced modeling and optimal
control techniques becomes essential for asset managers. In contrast to traditional physical
models, which often rely on complex mathematical equations and physical laws to simulate
asset behavior, the constant evolution of data-driven methods offers significant advantages.
By using artificial intelligence models, these data-driven approaches enable the digitization
of assets, potentially unlocking customized control strategies and improving efficiency.
These models are developed solely from historical asset data, from which mathematical
models are inferred to define the relationship between input variables and the asset’s
behavior. In addition to reducing complexity, these models offer the advantage of being
computationally more efficient, making them a powerful tool for energy asset management.

Building on this foundation, this thesis proposes the development of a bidding strategy
algorithm based on an optimization model to derive optimal participation strategies in
various electricity markets. To achieve this, the creation of accurate wind power forecasts
and electricity price forecasts is essential. These forecasts serve as critical inputs to the
optimization model, guiding decision-making processes and enhancing the reliability and
profitability of market participation.

The optimization model leverages advanced data-driven techniques to integrate wind
power forecasts and price forecasts, enabling a comprehensive strategy that accounts for
both generation variability and market dynamics. The integrated model focuses on an
aggregated power plant (APP) that consists of a WF and a BESS, aiming to optimize
their combined participation in various energy markets and ancillary services.

In summary, this thesis aims to demonstrate how data-driven models can be practically
applied to electricity market participation. The model will allow for the analysis of op-
timal bids based on price and wind power forecasts, evaluating the revenue expectations
generated and how closely these match the realized revenue. Additionally, the study will
analyse how perfect information forecasts can improve bidding strategies, improving the
accuracy of revenue projections.
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1.2 Thesis objectives
The primary objective of this project is to develop a bidding strategy algorithm for the
participation and management of an APP in electricity markets and ancillary services.
However, this thesis covers several specific objectives, each contributing to the overall goal
of the algorithm development. These specific objectives are outlined below:

• Refinement and filtration of Supervisory Control and Data Acquisition (SCADA)
data collected from multiple wind turbines (WT).

• Deployment of AI techniques to forecast wind power generation accurately.

• Deployment of AI techniques to forecast electricity prices accurately.

• Formulation of an optimization model to determine day-ahead schedules for WF
participation in diverse energy markets and ancillary services, incorporating BESS
aggregation.

• Analysis of participation strategies in the considered markets based on wind power
and price forecasts.

• Evaluation and comparison of the main revenue streams achievable within the con-
sidered markets, using developed forecasts versus perfect forecasts.

1.3 Thesis structure
In Chapter 2, a comprehensive literature review is conducted, leading to the definition of
this thesis scope. Chapter 3 provides a theoretical framework, explaining the necessary
background on wind turbines, the theoretical aspects of electricity markets, the uncer-
tainties to consider, and the methods for evaluating the forecasts that will be developed
later.

Chapter 4 details the acquisition, filtering, feature selection, and prediction models for
wind power forecasting. Chapter 5 focuses on the development of the optimization model
for deriving bidding strategies in the considered electricity markets.

In Chapter 6, the inputs to the optimization model are explained. These include electricity
price forecasts, the creation of scenarios to model the state of the electrical system at each
hour, and the creation of parameters to model reserve activations in ancillary services.
Chapter 7 presents the results, covering the optimal bids obtained and the comparison
between expected and realized revenue.

Chapter 8 discusses the results, providing an in-depth analysis of the findings. Finally,
Chapter 9 concludes the project, mentioning potential future work to improve the model.

A section with the nomenclature and abbreviations used throughout this thesis is pro-
vided before the table of contents. Additionally, lists of figures and tables are included
immediately after the table of contents.
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2 State-of-the-Art
This chapter provides an overview of the current state-of-the-art in the integration of
APPs into electricity markets. First, a literature review is conducted, exploring existing
studies and methodologies related to data preparation and filtering, forecasting techniques
for wind power and electricity prices, and optimization strategies for market participation.
Following this, the specific contributions and scope of this thesis are explained.

2.1 Literature review
The initial step in modeling wind assets using artificial intelligence techniques is the col-
lection and filtering of historical data from the WFs to eliminate outliers or samples that
do not represent the regular behavior of the assets. Although data is sometimes filtered
manually, the author in [2] provides a thorough review of different related studies in this
field that employ machine learning models for outlier filtering. Among these studies, tech-
niques such as K-means clustering, binary image analysis, binning of power curves, and
k-nearest neighbors can be found. One model that appears to provide good results is the
one proposed in [3], where the Least Mean of Squares (minimizing the sum of the squares
over all the measurements) is employed to filter the points of the WT power curve. The
results of this study reflect a 20% increase in computational time.

For the development of this thesis, both real SCADA data from different WTs and their
operating ranges accepted by the manufacturer are available. These normal operating
ranges provide a good basis for manual data filtering. If manual filtering proves to be
insufficient, more complex techniques proposed in [2] and [3] will be explored.

After filtering the data, it is necessary to select the input variables for training the models,
as well as the prediction techniques to be used. The literature shows a great variety in
terms of input variables and models used, ranging from simple regression-based models
to more complex deep learning techniques. Two specific studies reflecting this diversity
are presented: In [4], a deep learning model based on a temporal Convolutional Neural
Network (CNN) is used to predict power generation as a function of wind speed, direction,
and theoretical power. Conversely, in [5], k-nearest neighbor regression is employed, with
the set of variables reduced to only wind power and wind speed.

Regarding electricity price forecasting, there is an extensive literature, particularly for
predicting day-ahead market prices. A comprehensive overview of existing methods is
presented in [6]. The authors classify the typically used methods into three groups. First,
there are time series models (such as ARIMA or dynamic regression), which relate current
prices to past prices and current errors to past errors. Second, Artificial Neural Network
(ANN) models are employed. Lastly, Wavelet Transform Analysis (WTA) based models
are used. In the case of this paper, dynamic regression models provide the best results,
followed by ARIMA and WTA, with ANN models performing the least effectively.

In [7], other models are compared across three different countries and two time peri-
ods. These models include Random Forest Regressor (RFR), CNN, Deep Neural Network
(DNN), and Support Vector Regressor (SVR), incorporating external variables such as
production and consumption forecasts. While the first two models do not yield good re-
sults, the latter two are able to extract valuable information from the features and reflect
the impact of external variable patterns on the final price forecast.
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In this thesis, different models will be explored for both wind power generation prediction
and electricity price forecasting. The literature does not provide conclusive evidence that
any particular model or set of features consistently outperforms others; rather, the best
approach tends to depend on the specific case. Therefore, the techniques used in this thesis
will depend on the prior data analysis. It is worth noting that instead of seeking the most
precise forecasts possible, this thesis aims to exemplify different models for subsequent
integration with the optimization model. These models will be explained in depth in later
sections.

Regarding the integration of APPs into electricity markets, the literature presents various
market considerations. For example, [8] develops an algorithm to maximize the net income
of three WFs combined with BESS in the day-ahead and intraday markets, considering
only the WF for day-ahead optimization.

Other works, such as [9], also consider reserve markets, specifically FCR-N. [10] examines
the combined participation in the day-ahead market, FCR-N, and FCR-D, while [11]
focuses solely on a BESS participating in FCR-N and FCR-D. The authors of these studies
analyze the economic viability of participating in each scenario, both separately and in
combination, and conclude that multi-market participation is the most profitable.

All the cited articles use MILP (Mixed-Integer Linear Programming) to model the opti-
mization algorithms, which is the same technique that will be employed in this thesis.

It is worth mentioning that this thesis will not study the technical feasibility of WTs
participating in reserve services, assuming no technical impediments. However, literature
on how WTs can participate in reserve markets by using pitch-control to adjust its power
output can be found in [12] and [13].

2.2 Contributions and thesis scope
Despite the existing literature on the integration of aggregated power plants (APP) into
electricity markets, to the best of the author’s knowledge, no studies have addressed the in-
tegration of data-driven models for both price and wind power forecasting, combined with
optimization models to derive optimal bidding strategies in the joint markets of FCR-D,
FCR-N, and day-ahead market. Additionally, this thesis will introduce the consideration
of imbalance settlement, exploring whether wind farms can benefit by bidding different
quantities than their forecasts.

This study will examine bidding strategies based on forecasts, assess the reliability of
the model by comparing expected and realized profits, and analyze how these factors vary
when using forecasts with perfect information of prices and wind power. The research aims
to provide a comprehensive understanding of how data-driven forecasting and optimization
models can be effectively integrated to define bidding strategies and improve the economic
performance of APPs in multiple electricity markets.

Furthermore, this thesis does not focus on developing the most precise forecasts or con-
ducting an exhaustive economic study on the integration of these plants into the market.
Instead, it aims to demonstrate how the aforementioned techniques can be combined to
plan bidding strategies in electricity markets. The main objective is to show how integrat-
ing these methods can be used to develop effective offer strategies, despite the constraints
of time and complexity in creating highly detailed forecasts or evaluating all the possible
electricity markets.
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3 Theoretical Framework
3.1 Wind turbines
The scope of this thesis regarding the operation of WTs ranges from the acquisition of
data from the SCADA system, their analysis and filtering, to their potential operation
in different electricity markets. Therefore, this section describes the basic WT concepts
necessary in the context of this thesis. These are power extraction from the wind resource,
power curves and their different operating ranges.

Unless otherwise specified, the theory explained in this section is based on [14].

A WT captures the kinetic power of the wind resource and transform it into mechanical
power using the aerodynamic characteristics of its rotor, which is then transformed into
electrical power by the generator. The maximum wind power available for a WT with
rotor area Awtr, is calculated as

Pmax =
1

2
· ρ ·Awtr · V 3

0 (3.1)

where ρ is the air density in kg/m3 and V0 is the free wind speed in m/s. Therefore, wind
power increases with the cube of wind speed and the square of the rotor area. However,
it is not physically possible to extract all the power available in the wind, so the power
coefficient Cp is defined as the fraction that can be converted into mechanical power, being
the limit at 0.593, defined as the Betz limit [14]. The final aerodynamic power equation
is:

P =
1

2
· ρ ·A · V 3

0 · Cp(Λ, θ) (3.2)

As can be seen in the previous equation, Cp actually depends on two variables, the tip-
speed ratio (Λ) and the pitch angle (θ). In order to explain these parameters, the aerody-
namic profile of a WT is introduced below.

Figure 3.1: Top view, side view and airfoil view of a Wind Turbine. From: [15]

The pitch angle of the blade is the angle between the plane of rotation and the chord line,
and it can be actively controlled by means of a pitch controller. Moreover, the tip-speed
ratio is the ratio between the linear tip speed and the free wind speed, defined as
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Λ =
wwtr ·R

U0
(3.3)

where wwtr is the rotor rotational speed in rad/s and Rwtr is the rotor radius in m. Thus,
the maximum efficiency of a WT can be controlled by adjusting Λ and θ. In practice,
there are WTs that operate at a fixed rotational speed and with a fixed pitch angle. In
such cases, the optimal Cp is only achieved at a specific wind speed. However, the WTs
studied in this thesis are VSPR (Variable Speed Pitch Regulation). With this type of
WT, the optimal Cp corresponds to an optimal θ and Λ, so it can be achieved for a range
of wind speeds by controlling the rotational speed.

The above theory has been included to introduce the power curve of a WT, and its different
operating modes, since, as will be seen later, for a WT to be able to participate in reserve
markets, it must be able to actively curtail its power, either to reserve available power
and provide up-regulation reserve, or to reduce its power if it is necessary to provide
down-regulation reserve.

The power curve of a WT relates the electrical power produced as a function of the
wind speeds within its operating range, defining the cut-in wind speed as the minimum
wind speed at which the blades start to rotate, and cut-out wind speed as the maximum
operating speed achievable to avoid damage. Each turbine model has its own power curve.
Figure 3.2 shows the electrical power, rotational speed, pitch and Cp as a function of wind
speed for a VSPR WT, differentiating its operating modes.

A distinction can be made between two zones of operation: the optimisation zone (ABC)
and the power limitation zone (CD). Between A and B the WT is operated at maximum
efficiency by keeping the pitch angle constant and at its optimal value (normally close to
zero), and the tip-speed ratio also constant and at its optimal value by controlling the
rotational speed, increasing it as the wind speed increases. Between B and C, the pitch
is still maintained at its optimal value. However, at B the nominal rotational speed is
reached, which is kept constant, causing the tip-speed ratio to decrease as the wind speed
increases. Therefore, the efficiency (Cp) begins to decrease. Finally, between C and D,
once the nominal power of the WT is reached, it is necessary to start increasing the pitch
of the blades to keep the power constant as the wind speed increases. In this zone there
is a drop in efficiency [15].

By actively controlling both rotor speed and pitch angle, the turbine can at any time
decrease its power to a given setpoint if it has to keep a certain reserve to participate in
the markets considered in this thesis. On the other hand, if the wind speed is sufficient,
and the turbine is operating under curtailment, it is also possible to increase the power
setpoint.

3.2 Electricity markets
The bidding zone considered in this thesis is East Denmark or DK2. Electricity markets
in DK2 can be broadly grouped as energy markets or reserve markets/ancillary services.
Within energy markets, Day-Ahead market (DAM), Intraday Market and Balancing or
Regulation market are included, while for ancillary services related to frequency, the ser-
vices available are Fast Frequency Reserve (FFR), Frequency Containment Reserve (FCR),
Automatic Frequency Restoration Reserve (aFRR) and Manual Frequency Restoration Re-
serve (mFRR). All of these markets differ in terms of closing gates, payment schemes and
technical requirements.
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Figure 3.2: Operating zones of a VPR Wind Turbine. From: [15]

However, for the scope of this thesis not all the markets will be considered. The markets
to be considered for the bidding strategy algorithm are the DAM and FCR, so their details
will be summarized in this section. Although not actively participating in the balancing
market, a term reflecting the imbalance cost for deviating from the original schedule will
be taken into account, so how producers are penalized in this regard is also explained in
this chapter.

3.2.1 Day-Ahead Market
The Day-Ahead market follows a market-clearing procedure and is managed by NordPool,
where it is also known as Elspot. In this market, market participants have to submit
their quantity-price bids before the market gate closure at 12:00 CET of day D − 1 for
every hour of the operating day, D. Once participants have submitted their bids all orders
are aggregated into supply and demand curves for each delivery hour and the day-ahead
price is calculated via algorithms with the objective function of maximizing social welfare,
considering the Available Tranfer Capacity between bidding areas. The outcome is the
market clearing price in €/MWh for each hour.

3.2.2 Imbalance settlement
The purpose of the balancing or regulation market, which is cleared by the TSO (En-
erginet) 45 minutes before actual delivery, is to balance generation and demand in real
time.

For each hour, the clearing of the market results in two different prices corresponding with
the price of mFRR activation of the dominant direction (up or down). These balancing
energy prices are denoted as up-regulation price and down-regulation price.

The final imbalance price in the imbalance settlement depends on the pricing configura-
tion. In DK2, with the previous dual-pricing model, two different imbalance prices were
considered for production and consumption of imbalance. However, since 2021, a single-
price scheme has been implemented, where only one imbalance price is calculated. In case
of activation of balancing energy, the imbalance price is the mFRR price in the dominating
direction, while it is the day-ahead price if there is no net activation [16].

Based on the above, the following relationships between regulation prices, imbalance price
and day-ahead price can be established. If for an hour there is a power deficit (dominant
direction of mFRR activation is up), the up-regulation price will be higher or equal than
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the day-ahead price, while the down-regulation price will be equal to the day-ahead market
price. In this case, the final imbalance price will be the up-regulation price. If, on the
contrary, there is power excess (dominant direction of mFRR activation is down), the
down-regulation price will be lower or equal to the day-ahead price, being the up-regulation
price equal to the latter. In this case, the imbalance price will be the down-regulation price.
Finally, if the net activation is 0, all three prices will be equal to the day-ahead price.

Denoting day-ahead market price, down-regulation price, up-regulation price and imbal-
ance price as λDAM

t , λDR
t , λUR

t and λIMB
t respectively, the previous behaviour is depicted

by the following equations.

λUR
t


= λDAM

t if power excess
= λDAM

t if system is balanced
≥ λDAM

t if power deficit
(3.4)

λDR
t


≤ λDAM

t if power excess
= λDAM

t if system is balanced
= λDAM

t if power deficit
(3.5)

λIMB
t


= λDR

t if power excess
= λDAM

t if system is balanced
= λUR

t if power deficit
(3.6)

Finally, the price applied in the imbalance settlement to producers who have created an
imbalance due to a power deviation with respect to the scheduled power in the day-ahead
market is λIMB

t . The amount they will have to pay will depend on whether their imbalance,
defined as produced power minus contracted power, is positive or negative and follows the
following formula.

CIMB
t =

{
(λIMB

t − λDAM
t ) ·∆Pt if ∆Pt ≥ 0

−(λDA
t − λIMB

t ) ·∆Pt if ∆Pt < 0
(3.7)

From (3.7), it can be concluded that creating an imbalance does not always result in a
payment, but can sometimes result in a revenue. In fact, if the imbalance of the plant
occurs in the favourable direction of the system, it will be an income, while if it occurs in
the unfavourable direction, it will be an expense. For example, in a power deficit situation
where, as explained above, the imbalance price is higher than the DAM price, if the plant
incurs in a positive imbalance (more energy produced than scheduled), the CIMB

t term
becomes positive.

Although the APP considered in this thesis does not actively bid in the balancing market,
the above term is incorporated in the bidding strategy algorithm to address situations in
which it may be favourable for the wind farm to incur an imbalance by bidding a different
amount than the forecast amount of available wind power.

3.2.3 Frequency Containment Reserve
The frequency ancillary services considered and their market practicalities are summarized
in this section.

Frequency Containment Reserve, also known as Primary Reserve, is used to stabilize the
frequency in the power grid in the event of frequency jumps. In DK2, this service is
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divided in Frequency Containment Reserve-Normal Operation (FCR-N) and Frequency
Containment Reserve-Disturbance (FCR-D).

FCR-N is activated for deviations of +/-100mHz with respect to the nominal grid fre-
quency of 50Hz. It consists of both up-regulation and down-regulation, but it is procured
as a symmetrical product, meaning that the producer bid into the market is only one,
being up and down regulation procured together.

On the other hand, FCR-D is asymmetrical, meaning that there is a market for up-
regulation and one for down-regulation. Up regulation is activated if the frequency falls
below 49.9 Hz, while up-regulation is activated if it surpases 50.1 Hz.

The activation rate of these services follow the droop profiles presented in Figure 3.3.

Figure 3.3: Droop profiles on system level for FCR-N and FCR-D. From: [10]

Both FCR-N and FCR-D within the Nordic Synchronous area are a joint responsibility
of all the TSOs in the area. For FCR-N the combined requirement is to provide 600MW,
of which Energinet is obliged to provide a proportional share, being in 2024 +/- 18MW.
On the other hand, from the total requirement of FCR-D in the Nordic area, the share
corresponding to Energinet is +42MW in FCR-D up and -42MW in FCR-D down.

There is another difference between FCR-D up, FCR-D down and FCR-N in terms of
payment schemes. The three services are paid for capacity reservation at the clearing
price, in €/MW, of each service. However, while energy activations corresponding to FCR-
N are paid at up-regulation price and down-regulation price depending of the direction of
activation, FCR-D does not have any payment for energy supplied.

In terms of practicalities in the market, the three services behave in the same way. On
the one hand, for each of them there are two auctions on which to bid. While both occur
on D-1, the early auction closes at 00:30 CET while the late auction closes at 18:00 CET.
In both auctions, bids must contain a price in €/MW with up to two decimal points and
a minimum amount of 0.1MW.

The pricing scheme for reserve allocation is pay-as-clear, with the bids being sorted by
price. However, the clearing of the market does not only consider bids price, but it also
minimizes TSOs cost, so bids with prices lower than the marginal price might get out of
the market. On the other hand, bids are always accepted in its totality or not at all. [17]

Finally, there are several exceptions for limited energy reservoir (LER) units, which are of
special interest in this thesis as the integration of a BESS in this market will be considered.
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Units that can not provide full energy supply for four consecutive hours are considered
as LER. These units must have a Normal State Energy Management (NEM) system that
allows the battery to change the baseline power to reduce the imbalance caused by state
of charge (SOC) management [18]. The BESS in this thesis will be considered to have a
NEM.

3.3 Uncertainties and forecasting methods
Both the available wind power capacity and the expected market prices are key elements
to consider when establishing a strategy for participation in the markets described above.
Since none of these elements are known in advance, there is a need to predict them as
accurate as possible.

Although there are probabilistic forecasting methods that provide good results, based on
the literature review, deterministic forecasts give good enough results to be used within
the focus of this thesis, so it is decided that the methods studied will be of this type.

The difference is that while deterministic forecasts generate a single value for each horizon,
probabilistic forecasts generate a range of possible values and allow a probability to be
assigned to each of them. In this case, by using point forecasts, a price will be predicted
for each market and a wind power available for each hour within the forecast horizon.

Since different forecasting methods will be studied depending on the variable to be pre-
dicted, they will be defined and described in their corresponding sections. In contrast, in
this section the metrics used to evaluate the performance of each one of them are explained,
as they will be common to all the variables predicted.

The selected metrics are Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE) and Normalized Root Mean Squared Error
(NRMSE). For all of them, the lower the value the better is the prediction.

First, RMSE and MAE have been used as metrics to assess performance in the same units
as the original data. If the variable to be predicted is a price in €/MWh, the RMSE and
MAE results will be in €/MWh, so these metrics give an idea of the performance of the
models in physical quantities. The difference between the two is that RMSE calculates
the squared error, so it is more sensitive to outliers, giving them more weight. MAE is less
sensitive to outliers as it calculates only the absolute value of the error. It is calculated
by following the equations below:

RMSE =

√√√√ 1

N
·

N∑
t=1

(yt − ŷt)2 (3.8)

MAE =
1

N
·

N∑
t=1

|yt − ŷt| (3.9)

Where N is the total number of observations, yt is the actual value and ŷt is the predicted
value at hour t.

However, if models are compared for different days and the data for these days have
different scales, the use of MAE and RMSE does not provide as much information, as
it is not the same to have a MAE or RMSE of 5 €/MWh on a day when prices ranged
between 5 and 10 €/MWh, than for a day when they ranged between 100 €/MWh and 120
€/MWh. Therefore, it has been decided to evaluate the forecasts also using normalised
metrics.
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On the one hand NRMSE normalises the RMSE by dividing by the range of the original
data (yt,max − yt,min), so NRMSE has no physical units. On the other hand, MAPE
normalises the error by dividing by the actual error, so the result is in value per unit (p.u)
or in percentage if multiplied by 100. They are calculated as follows:

MAPE =
1

N
·

N∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ (3.10)

NRMSE =
RMSE

yt,max − yt,min
(3.11)

Aggregated energy intelligence 11



12 Aggregated energy intelligence



4 Wind Power Forecasting
This section is dedicated to the prediction of the wind power available for the wind farm,
information that will be used as input to the strategic bidding model that will be explained
in the next section. Firstly, a description of the available data will be given, followed by its
analysis, the selection of the variables to be used by the models and, finally, the prediction
techniques used will be explained and the results will be analysed.

4.1 Data description
For the wind power forecasting, the actual data of a wind farm composed of 12 WTs rated
at 2000kW each, located in the north-east of Germany, is used. Note that the aim of
this thesis is to obtain optimal bids for an aggregated plant in Denmark, more precisely
in DK2, so it will be assumed that this wind farm is actually located in Denmark. The
necessary transformations will be explained in this section.

The data extracted from year 2020 to 2022 is obtained from the SCADA system with a
resolution of 10 minutes. Thus, there are more than 157,000 data points of each parameter,
with more than 50 different parameters. Among these parameters are the WT status
(error or operational), variables related to wind speed measured by the anemometer and
rotor rotation speed (average speed, maximum, minimum, standard deviation...), nacelle
position, pitch angles, temperatures of different WT components, reactive power, voltages,
currents and, the variables to forecast, average active power and generation.

4.2 Data analysis and feature selection
Since the objective is to forecast wind power, the time series for one WT in the park is
illustrated in Figure 4.1. The time series should oscillate between 0kW and 2000kW, which
is the rated power of the WT. However, some outliers are observed, which can be due to
defective functioning, signal errors, or noise.
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Figure 4.1: Time Series of wind power for a WT in the WF of study

In order to perform a correct analysis of the data and not induce errors in the models
developed later, the first step consists in the elimination of outliers from the dataset. There
are numerous articles in the literature that use machine learning models for the elimination
of outliers. However, another possible procedure is the use of the power curves of the WT
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model studied, which is available in this thesis. As seen in the theoretical framework, the
power curve shows the relationship between the wind speed measured at hub height and
the active power generated by the WT. However, these power curves are only a guideline,
since in reality the power of a WT will never follow the curve perfectly due to factors
such as temperature, turbulence, air density, terrain, etc... For this reason, manufacturers
also provide a range of validity for the power curve, within which the WT is considered
to be under normal operation. In this thesis, both the power curve of the WT model and
its validity range are available, so it has been decided to use them for the elimination of
anomalous measurements, using only the WT normal operating data points

For this purpose, all the wind speed datapoints have been taken and interpolated with
them on the maximum and minimum validity curve. If the actual power datapoint for
a given wind speed is beyond the valid range, that datapoint is removed. Figures 4.2a
and 4.2b show the theoretical and actual power curve before and after data filtering for
one WT, although the same procedure is done for all WTs in the WF. It should be
noted that before performing this procedure, the datapoints where the WT is under error
status have been removed, so these points do not appear in the pre-filtering figure, where,
however, values outside the correct operating range can still be observed. On the one
hand, the observations that form a horizontal line correspond to the WT operating under
curtailment. The other scattered points, which have not been filtered by eliminating the
points with the WT in error state, correspond to power measurements in moments after
the correction of an error, when the WT is trying to return to its optimal operating point.

(a) Before filtering. (b) After filtering

Figure 4.2: Power Curve for WT1, before and after filtering the outliers.

Once the data have been filtered, the next step is the selection of the explanatory vari-
ables for the prediction algorithms. For this purpose, from the total number of available
variables, only those that are external to the operation of the WT have been selected for
analysis. These are atmospheric variables such as wind speed, wind direction or temper-
atures, as well as the month of the year or the active power time series itself, which will
be used to analyze whether past measurements have an influence on future predictions.

A first analysis of the explanatory variables can be to visualize the power curves of a WT
under certain conditions. In this case, the power curves as a function of wind direction
and month of the year are shown in Figures 4.3 and 4.4 respectively. It should be noted
that this visual analysis is not based on finding out whether the WT reaches its maximum
capacity under certain conditions, since that depends on the wind speed, but on how much
the actual curve deviates from the manufacturer’s curve. In addition, deviations can be
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caused by other variables such as air density, which does vary by seasonality and therefore
would be valid to explain the curves as a function of the month, but it distorts the analysis
to some extent according to the wind direction.

Figure 4.3: Power curve of WT1 per wind direction

Under ideal conditions, the WTs should perform the same regardless of wind direction
as long as the nacelle can be correctly aligned with the prevailing direction. In reality,
deviations may be observed due to factors such as orographic obstacles, or the existence
of other WTs that cause wind turbulence for certain directions. In this case, no major
differences are observed from Figure 4.3, although wind direction as a factor will continue
to be considered in subsequent analyses.

Figure 4.4: Power curve of WT1 per month

As for the month of the year, the differences in terms of deviations from the power curve
are mainly due to the difference in temperatures. Higher temperatures mean lower air
density, (4.1), which leads to lower power extraction according to (3.2) and therefore the
power curves tend to be below the manufacturer’s curve. In the case of WT1, it can be
seen that in June, July and August the datapoints are not as centered around the nominal
curve as they are for colder months, so the month of the year may be an important factor
to consider.

ρ = ρref ·
Tref

Tamb
(4.1)
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The previous equation models the relation between air density and air temperature, where
ρref = 1.223kg/m3 is the air density in standard conditions, Tref = 288.15K is the
reference temperature and Tamb is the actual temperature [19].

Continuing with the analysis of variables, the next step is the exploration of the correlation
between the different variables. The variables chosen for exploration are wind power, wind
speed and direction, temperature at hub height and month of the year. However, before
performing the analysis, some changes are made.

First of all, the wind direction contains values between 0 and 360 degrees, so if the corre-
lation with other variables is evaluated, a wind direction of 0 degrees and a wind direction
of 360 degrees would give completely opposite information when, in practice, they are the
same direction. Therefore, the wind direction will be evaluated as two different variables,
using the cosine and sine of the actual measurement. Hereafter these variables will be
referred to as ”Wind Direction X” and ”Wind Direction Y” respectively. On the other
hand, the month of the year is a categorical variable, so in order not to work with label
data directly and to eliminate the influence of its numerical value, one-hot encoding is
performed.

A scatter pair plot is included in which the relationship between the variables is visually
represented, Figure 4.5. In turn, Figure 4.6 shows the correlation coefficients between
variables using both the Pearson coefficient and the Spearman coefficient.

Figure 4.5: Scatter Pair Plots for explanatory wind power variables
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Figure 4.6: Heatmaps for Pearson and Spearman correlation factors.

The choice of using two correlation factors is due to the fact that the Pearson correlation
factor is very suitable for determining linear relationships between variables. However, if
the relationship between variables is not linear, it has certain limitations and the Spearman
coefficient is better [20]. While the Pearson coefficient is calculated as the covariance of
two variables divided by the product of the individual standard deviations, the Spearman
coefficient is based on the ranks of the variables rather than on the values themselves [21].

In addition, because months are categorical variables, the literature suggests that Pearson’s
or Spearman’s coefficient are not the most optimal measures to calculate their correlation,
but that other techniques such as point-biserial coefficient or ANOVA are more appropri-
ate. Finally, it has been decided not to continue with months as an explanatory variable
in order to simplify the prediction models that will be studied later. In this case, given
the strong correlation between power and wind speed, such simplification may be correct
since temperature is also considered and, as explained above, both factors can explain by
themselves the variations relative to the time of the year.

The results indicate a strong correlation with wind speed, while temperature and wind
direction X also show some correlation. Furthermore, it may also be interesting to study
the influence of past power values on future values. For this purpose, autocorrelation
(ACF) and partial autocorrelation (PACF) functions are calculated and shown in Fig-
ure 4.7. While ACF, measures the correlation between a time series and its lagged version
over different time periods, PACF measures the same correlation but partialling out the
effects of the values in-between [22].
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Figure 4.7: ACF and PACF of Wind Power.
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From the PACF plot it can be concluded that only the first three lags show correlation,
which indicates that the ACF values, can be explained by the first three. However, in this
thesis the objective is to predict the wind power for the next day and the closing of the
day-ahead market occurs at 12:00 of the day D-1, considering D as the operating day, so
the horizon for the forecast would be 36 hours. In addition, due to market considerations
and simplifications that will be explained later, the forecast will be made, at the latest,
at 00:30 am on D-1, increasing the forecast horizon to 48 hours. Therefore, it must be
considered that if it is decided to incorporate a lagged version up to 3 hours of the active
power as an explanatory variable, this will be based on predicted and not real values.

To make the final selection of the variables, a dataset is created in which the explanatory
variables to be studied are: wind speed in m/s (WS), temperature at hub height in °C
(T ), wind direction X (WD−X), wind direction Y (WD−Y ) and the time series of wind
power delayed by one (P (t − 1)), two (P (t − 2)) and three hours (P (t − 3)). Therefore,
there are a total of 7 possible explanatory variables.

Two sequential feature selection techniques, forward feature selection (FFS) and backward
feature selection (BFS), are used to reduce the dimensionality of the problem. These mod-
els are based on starting from a subset of the set of independent variables and modifying
it depending on whether better results are obtained. For both models, linear regression is
considered as the prediction model and the coefficient of determination, R2, as a metric of
precision, which calculates the proportion of the variance of the variable to be predicted
that is explained by the input variables. Furthermore, when evaluation each subset, cross-
validation is performed using five k-folds.

Thus, FFS is started from a model M without features and evaluate all the subsets formed
by a single feature. If any of these models gives a better result than model M, the feature
in question is added to the set, creating the subset Mi. Then, all the subsets formed by the
first chosen feature (i) and each of the remaining features (j) are evaluated. Again, if any
model is better than Mi, the new feature is added, creating the subset Mi,j . The process
continues until adding a new feature does not improve the previous subset. On the other
hand, BFS is the reverse process, it starts from the total set of features and evaluates all
the subsets created by eliminating each one of the features. If any new model is better,
the feature corresponding to it is eliminated and the process continues until eliminating
more features does not improve the model [23].

Forward Selection Results Coefficients of determination
Subsets k-Fold 1 k-Fold 2 k-Fold 3 k-Fold 4 k-Fold 5 Avg Score
WS 0.877 0.917 0.908 0.922 0.899 0.905
WS + P(t-1) 0.922 0.956 0.949 0.953 0.948 0.946
WS + P(t-1) + T 0.922 0.956 0.949 0.953 0.948 0.946
WS + P(t-1) + T + P(t-2) 0.922 0.956 0.950 0.954 0.949 0.947

Table 4.1: Results for forward feature selection

Backward Selection Results Coefficients of determination
Subsets k-Fold 1 k-Fold 2 k-Fold 3 k-Fold 4 k-Fold 5 Avg Score
WS + T + WD-X + WD-Y + P(t-1) + P(t-2) + P(t-3) 0.924 0.957 0.950 0.954 0.949 0.947
WS + T + WD-X + P(t-1) + P(t-2) + P(t-3) 0.925 0.957 0.950 0.954 0.949 0.947
WS + T + WD-X + P(t-1) + P(t-2) 0.925 0.957 0.950 0.954 0.949 0.947
WS + T + P(t-1) + P(t-2) 0.925 0.957 0.951 0.954 0.950 0.948

Table 4.2: Results for backward feature selection
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Figure 4.8: Sequential Feature Selection results, R2

The results of these iterative processes are presented in Tables 4.1 and 4.2 . While ac-
cording to FFS the optimal features are WS, P(t-1) and T, according to BFS, WD-X and
P(t-2) should be included as well. However, the average scores are very similar between
them after introducing more than two variables, showing that the feature that explains
the most variance of the wind power is the wind speed. Figure 4.8 shows a graph with
the best scores for each subset formed from 1 to 7 possible features. The light blue area
shows the range of scores for the five k-folds considered for each subset, where the dark
blue line is the average values. It can be seen how there is a jump from 1 to 2 features
(although not very significant), and then stabilizes as more features are included. The
algorithm calculates as optimal to use three features in FFS and four in BFS because it
considers all the decimals of the R2 values, but it can be concluded that only the first two,
WS and P(t-1), are sufficient for forecasting, with the third variable, which would be T,
contributing little value to the model.

Since the prediction models will work with time series, it is necessary to treat the missing
values in the dataset. Missing data values from SCADA are mainly due to situations where
WTs are under maintenance or if there are communication errors. Different methods of
missing value treatment are evaluated below.

The first and simplest option considered for dealing with missing values is to use linear
interpolation. This method assumes a linear relationship between known values, connects
the two adjacent points with a straight line and calculates the points in between. This
method may work well when the interval of missing values is not too large, but leads to
loss of detail in the time series otherwise. To exemplify how it works, a missing value
section has been extracted from the original time series and linear interpolation has been
applied, illustrated in Figure 4.9.
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Figure 4.9: Results of filling missing datapoints with linear interpolation
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The next method used is known as moving average or rolling mean, it is used to try to
capture the variations of the time series in a better way than linear interpolation. This
method consists of assigning to each missing datapoint the average of the observations
falling within the specified window. Although it generally works better than linear in-
terpolation, if the specified window is very small, it may not be able to assign values to
the missing datapoints. On the other hand, if the window is too large, the ability to
reflect fluctuations is lost. The same time period as in the previous case is illustrated in
Figure 4.10
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Figure 4.10: Results of filling missing datapoints with rolling mean

Finally, a missing value imputation method based on kNN (k-Nearest Neighbours) models
is tested, which calculates and assigns the mean of the k datapoints closest to the missing
datapoint [24]. Different measures can be used to calculate the distance, in this case
Euclidean distance has been used. The result of the model can be seen in Figure 4.11.
Although the result for this date range is similar to the moving average, in general it works
better in capturing fluctuations without leaving unassigned values.
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Figure 4.11: Results of filling missing datapoints with kNN

Before analyzing the forecasting methods, it should be noted that the bids in the electricity
market have hourly resolution, while the data available come from SCADA, which has 10
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minutes resolution. Therefore, resampling has been performed by grouping the data by
hours and averaging.

4.3 Forecasting models
This section explains the forecast models considered for wind prediction. It should be
noted that the aim is not to develop the best possible or the most complex forecasting
method, since this is not the central aspect of this thesis, but to evaluate and exemplify
different available options. For a real application, it may be necessary to explore more
sophisticated methods.

The strong correlation seen between wind power and wind speed in the previous section
suggests that simpler models such as regression can provide good prediction results. How-
ever, as mentioned above, the prediction will take place with a horizon of up to 48 hours, so
the actual value of any of the input variables is not known. Therefore, the input variables
used, wind speed and temperature, will be obtained in the form of external forecasts.

The external forecasts are obtained from the database of the Danish Meteorological In-
stitute (DMI), DMI Open Data [25]. In particular, the platform offers access to the
numerical weather prediction (NWP) model HARMONIE (Hirlam Aladin Research to-
wards Mesoscale Operational NWP in Europe), which produces deterministic forecasts
of up to 90 different variables for Denmark, Iceland, the Netherlands and Ireland [26].
The forecast results can be obtained from the API provided by DMI by entering the re-
quired coordinates and dates. However, the database requires Lambert Conformal Conic
projection as the coordinate system, so transformation is required to convert the system
coordinates. In addition, the wind speed forecasts are for a height of ten meters above
ground level, so it is necessary to transform them to the corresponding wind speeds at
hub level. For this purpose, the wind profile power-law as defined in (4.2) is employed.

U1 = U0 ·
(
Z1

Z0

)α

(4.2)

The wind profile power-law estimates the wind speed U1 at height Z1 above the ground
from the wind speed U0 measured at height Z0 [27]. In the equation, α is the wind
shear coefficient, an empirically derived constant that varies depending on the stability
of the atmosphere. In this case it has been decided to use the corresponding to neutral
conditions, thus α = 0.143 [28]. Lastly, the hub height of the WTs is 100 m.

The selected models to be used are Linear Regression (LR), an Auto-Regressive with
eXogenous input (ARX) model, and a Locally Weighted Regression (LWR). These are not
the most complex models in the literature, but they are chosen given the data available
and the high correlation shown between the dependent and independent variables.

It should be noted that although the features used are external forecasts as explained
above, it is decided to test these models using real data first, which would represent
perfect forecasts of the input variables. The best performing model will then be evaluated
using the actual external forecasts. This is done in order to be able to visualise more
clearly how much of the error in the final forecast is induced by the model itself, and how
much by the errors of the external forecasts.
Linear Regression
For its simplicity, the first of the models studied is a multiple linear regression in which
wind speed and temperature are used as features.
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A multiple linear regression follows (4.3), where y is the predicted value of the dependant
variable (wind power), β0 is the intercept, the set β1, β2, βn are the regressors of each
feature and ϵ is the random error component assumed to have mean zero and unknown
variance. To find the regression coefficients, the least squares method is used, which min-
imizes the sum of the square of the differences between observations and predictions[29].

y = β0 + β1X1 + β2X2 + ...+ βnXn + ϵ (4.3)

The model is trained and tested for a period of seven days. The final mathematical formu-
lation of the model, with the calculated coefficients, is given in (4.4). On the other hand,
the visual representation of the forecast and the results based on the metrics described in
the previous chapter are included in Figure 4.12 and table Table 4.3 respectively.

p̂Wt = −0.176 + 1.307 ·WSt + 0.017 · Tt (4.4)

In the above equation p̂Wt is the predicted wind power for hour t, as a function of wind speed
and temperature at hour t, WSt and Tt respectively. It can be seen that the temperature
input variable has a significantly lower weight than the wind speed, as expected from the
results of the feature selection.
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Figure 4.12: Wind power forecasting results with Linear Regression

RMSE [kW] MAE [kW] MAPE [%] NRMSE[p.u]
Linear Regression 1040 882 46.9 0.07

Table 4.3: Wind power forecasting results with Linear Regression

Analysing the results, the model performs poorly for low wind speeds that cause the power
to be close to zero. In fact, for those time periods with power close to zero, the model
predicts negative values, so they have been actively modified to be null. Furthermore, if
the predictions for these dates are removed from the calculation of the metrics, the MAPE
falls drastically from the original 46.9% to 22.79%.

The prediction has been made for the total wind farm, consisting of 12 WTs of 2000kW,
so that an RMSE of 1040kW and a MAE of 882kW means an average RMSE of 87kW
and an average MAE of 74kW per WT. While these errors are a larger percentage of the
actual instantaneous value, as can be seen from the MAPE, the errors with respect to the
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rated power of the WT are around 4%, so while it is not an extremely accurate model,
the errors are not that significant for its simplicity.
ARX model
In addition to wind speed and temperature, the feature selection algorithms in the previous
section indicated the possibility of using delays of the power itself for prediction, so the
next model studied is an auto-regressive model with exogenous inputs (ARX).

An ARX model is similar to a LR model but it includes past values of the variable to
predict as a feature. Therefore, its mathematical representation is as follows [30]:

y(t)+a1 ·y(t−1)+...+an ·y(t−n) = c+b0 ·x(t)+b1 ·x(t−1)+...+bm ·x(t−m)+ϵ(t) (4.5)

Being y(t) the variable to predict and x(t) the input variable, in the previous equation
the coefficients an and bm are those referring to the lags of the variable to predict and the
input features respectively, being n and m the total number of lags considered.

From the analysis of features selection of the previous section, only the first two lags of the
wind power will be considered. For the exogenous variables, wind speed and temperature,
the external forecasts are used and no lags considered. However, the wind power values
of D-1 are not known at the moment of forecasting the wind power for day D. Therefore,
the power lags to be considered are in turn power forecasts for day D-1, for which linear
regression similar to the previous model is used.

After training the model, the final mathematical formulation of the ARX model with the
obtained coefficients is:

p̂Wt = −0.147 + 1.06 ·WSt + 0.013 · Tt + 0.199 · pWt−1 − 0.019 · pWt−2 (4.6)

Again, the wind speed coefficient is the highest as expected. In addition, the coefficients
of the power delays become more important than the temperature. The graphical repre-
sentation of the prediction for the test set is included in Figure 4.13, and the metrics in
Table 4.4.
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Figure 4.13: Wind power forecasting results with ARX model

RMSE [kW] MAE [kW] MAPE [%] NRMSE [p.u]
ARX 877 731 42.5 0.06

Table 4.4: Wind power forecasting results with ARX model
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Based on the metrics shown in Table 4.4, it is found that this method is better than
the linear regression studied above, both in relative and absolute terms. However, the
model presents the same problem, predicting as negative the power in periods of low wind
speeds. Recalculating the MAPE without accounting for these periods, a result of 18.8%
is obtained, which again leads to the conclusion that most of the error is due to the low
power periods. As for Figure 4.13, the result is very similar to that of the linear regression,
although an improvement can be seen in the peaks of the curve.
Locally Weighted Regression
The two models above are based on linear regression. However, as seen in the theoretical
section, the relation between wind speed and power is not linear, but power grows with
the cube of wind speed. Therefore, the next model used is a Locally Weighted Regression
(LWR) model.

In a LWR model, a regression function is estimated for each query point (x0) of the test set
using only observations close to that query point, which results in a smoother regression
function that fits the data better than if only a straight line were used, as in the case of
linear regression. To this end, a model is estimated for each query point that optimises
the loss function of (4.7), where wi is a weighting function or kernel that assigns weights
to the rest of the datapoints according to their distance to the query point. By converting
to matrix notation and assigning weights to the diagonal of the matrix W, the coefficients
for the LWR have the solution of (4.8). Finally, the prediction for each query point is
obtained with (4.9) [31].

J(θ(x0)) =
1

2

N∑
i=1

wi(x0, xi)[yi − xTi · θ(x0)]2 (4.7)

Θ = (XTWX)−1XTWy (4.8)

ŷt = (x0)
T
t θ (4.9)

The function used as a kernel for the predictions is the Gaussian Kernel (4.10), where τ
is called bandwidth and determines how fast the assigned weights decay with the distance
to the query point, so the higher the value, the more points are considered [32].

At this point, to obtain the best possible model it would be necessary to optimise the
value of τ . However, as finding the most accurate forecast possible is not the aim of this
thesis, it has been decided to use a fixed value of 0.1.

wi = exp
(
−
∥xi − xquery∥2

2τ2

)
(4.10)

Once the prediction has been made using the LWR model, it can be seen from the results in
Figure 4.14 and Table 4.5 that the model predicts with considerably less error than those
studied previously. In addition to predicting peak power more accurately, this method
does not have the same problem as the previous ones with low values.
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Figure 4.14: Wind power forecasting results with LWR.

RMSE [kW] MAE [kW] MAPE [%] NRMSE [p.u]
LWR 363 288 20.01 0.02

Table 4.5: Wind power forecasting results with LWR.

It should be noted again that so far the models have been evaluated with the actual values
of the features, simulating a perfect forecast scenario of them. However, given that LWR
is the best method, it is decided to test the model using the external forecasts obtained
from DMI as described above.

In this case the results are quite poor as can be seen in Figure 4.15 and Table 4.6. When
analysing the forecasts obtained, it is calculated that the MAPE for the wind speed forecast
is around 14%, while the temperature forecast is around 7%. These errors are due to
several factors. On the one hand, it is not possible to obtain the forecasts at the exact
location of the WTs, but they are taken for a bounding box of coordinates and the average
value is calculated. On the other hand, the wind speed predictions are at 10 metres above
the ground and, although the conversion has been made according to the height with the
profile wind power law, there are other more complex factors that come into play, such as
wind stability or orographic factors. Therefore, given this situation, in a real application
it would be convenient to be able to develop own forecasts of the exogenous variables to
be considered when predicting the wind power.
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Figure 4.15: Wind power forecasting results with LWR using external forecasts.
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RMSE [kW] MAE [kW] MAPE [%] NRMSE [p.u]
LWR 2053 1631 67.9 0.14

Table 4.6: Wind power forecasting results with LWR using external forecasts.
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5 Bidding Strategy Formulation
This chapter introduces the deterministic optimization model developed to obtain the
optimal bidding of the APP (WF + BESS) in both energy and reserve markets.

5.1 Considerations
The model is developed considering the APP as a price-taker actor, meaning that the APP
has a small enough market share not to influence the market equilibrium and therefore
does not have the ability to change the market clearing outcomes in its favor. In practice,
this means that it will not be necessary to formulate market prices as a function of the
bidding quantities of the plant. On the other hand, the bidding strategy is formulated as
a Mixed-Integer Linear Programming model.

The APP is considered to participate in the Day-Ahead (DAM) and reserve markets FCR-
N and FCR-D. Therefore, regarding energy markets (EM), the APP participation in the
Intraday Market (IM) and Balancing Market (BM) is disregarded in this thesis. However,
although the plant will not be considered to bid in the BM to reduce its power imbalance
with respect to the offered quantity in the DAM, the cost associated with such deviations
will be taken into account. Regarding FCR-N and FCR-D, the plant only participates in
the early auction.

5.2 Objective Function

OBJ = max
Ω

∑
t∈T

(EEM
t + EFCR−D

t + EFCR−N
t ) (5.1)

The objective function (5.1) maximizes the daily revenue of the APP, being EEM
t , EFCR−N

t

and EFCR−D
t the earnings from participating in the EM, FCR-N and FCR-D markets

respectively.

5.2.1 Energy Markets
The earnings from the EM come from the participation of the APP in the DAM and the
income/cost from the power deviation with respect to it.

EEM
t = (pEM

t · λ̂DAM
t + CIMB

t ) ·∆t ∀t ∈ T (5.2)

In (5.2), pEM
t is the total APP power scheduled to the EM at hour t in MW, λ̂DAM

t is the
forecasted DAM price at hour t in EUR/MWh and CIMB

t is the imbalance income/cost,
which following (3.7) can be expressed as in (5.3).

CIMB
t = (λ̂IMB

t − λ̂DAM
t ) ·∆P+

t +(λ̂DAM
t − λ̂IMB

t ) ·∆P−
t =

(λ̂IMB
t − λ̂DAM

t ) · (∆P+
t −∆P−

t ) ∀t ∈ T (5.3)

where λ̂IMB
t is the forecasted imbalance price in EUR/MWh, and ∆P+ and ∆P− are the

power deviation, in MW, with respect to the scheduled DAM output when such deviation
is positive or negative respectively.
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5.2.2 Reserve Markets
The FCR-D service is divided into FCR-D down-regulation and FCR-D up-regulation.
The revenue is only based on the reserve availability payment of the APP and there is no
payment for energy supplied.

EFCR−D
t = λ̂D↑

t ·RD↑
t + λ̂D↓

t ·RD↓
t ∀t ∈ T (5.4)

The earnings from the FCR-D service are calculated in (5.4), where λ̂D↑
t and λ̂D↓

t are the
forecasted reserve prices for up and down regulation in EUR/MW, and RD↑

t , RD↓
t are the

reserve power bids in MW.

In addition, FCR-N is a symmetrical service where up and down regulation reserves are
provided as a single product. For this service, the revenue stream includes payment for
reserve availability at forecasted FCR-N price (λ̂N

t ) and payment for energy supplied to up-
regulation and down-regulation service (pN↑

t , pN↓
t ) at up-regulation and down-regulation

forecasted prices respectively (λ̂UR
t , λ̂DR

t ).

EFCR−N
t = λ̂N

t ·RN
t + (λ̂UR

t · pN↑
t − λ̂DR

t · pN↓
t ) ·∆t ∀t ∈ T (5.5)

In (5.4) and (5.5), the reserves and energy activations account for the combined contribu-
tion of both the WF and the BESS.

5.2.3 Scenario Indexation
The previous subsections explained the objective function of the optimization problem
considering that the regulation and imbalance prices (λ̂UR

t , λ̂DR
t , λ̂IMB

t ) are the final
prices of the regulation market. However, these prices depend on the system imbalance at
each hour of the operating day.

In reality it is of great complexity to forecast accurately the system state in each hour, so
in order to model the behavior described above it has been decided to use an indexation of
scenarios for the prices relative to regulation. Thus, under scenario w, at time t the power
system is consider to be in state SNeed

t,w . The definition of states, creation of scenarios,
and a more precise explanation of this methodology is included in the later chapter 6,
subsection 6.5.2. In this section, the final objective function considering these scenarios is
presented.

OBJ = max
Ω

∑
t∈T

(EEM
t,w + EFCR−N

t,w + EFCR−D
t ) (5.6)

EEM
t,w = (pEM

t · λ̂DAM
t +

∑
w∈W

πw[(λ
IMB
t,w − λ̂DAM

t ) · (∆P+ −∆P−)]) ·∆t ∀t ∈ T (5.7)

EFCR−D
t = λ̂D↑

t ·RD↑
t + λ̂D↓

t ·RD↓
t ∀t ∈ T (5.8)

EFCR−N
t = λ̂N

t ·RN
t +

∑
w∈W

πw[(λ
UR
t,w · pN↑

t − λDR
t,w · pN↓

t )] ·∆t ∀t ∈ T (5.9)

It should be noted that the prices are no longer considered as forecasts, but derived from
them, so the symbol ”^” is eliminated in the notation. On the other hand, πw represents
the probability of each scenario. This will be explained in the next chapter.
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5.3 Constraints
5.3.1 Energy Market constraints
The total contribution of the APP to the EM is the combined contribution of the WF and
the BESS.

pEM
t = pW,EM

t + pB,EM
t ∀t ∈ T (5.10)

pW,EM
t = p̂Wt − (RW,N

t +RW,D↑
t ) ∀t ∈ T (5.11)

pB,EM
t = pDAM,dis

t − pDAM,ch
t ∀t ∈ T (5.12)

In real time, the WF will be operated under curtailment if a bid for up-regulation reserve
is placed in the FCR-D auction, leaving enough capacity available to provide the service
if activated. On the other hand, if for a certain hour a bid for down-regulation is placed,
the WF will produce the realized level of wind power and will be curtailed if needed to
provide the service. Regarding FCR-N, since this is a symmetrical product, the WF will
also be operated under curtailment if a bid is placed. This behaviour is represented by
constraint (5.11). It should be noted that when the bidding strategy algorithm is run, it
is not possible to know what the WF realization will be. Therefore, the forecasted wind
power (p̂Wt ) is used instead at this stage. When the outcome of the algorithm is evaluated
after the operating hour and the actual revenue is calculated, the forecasted wind power
should be replaced by the actual realization of the WF at that hour.

The BESS can place a bid in the DAM for either charging (pDAM,ch
t ) or discharging

(pDAM,dis
t ). In the first case, the charging power will be charged at DAM price, while

discharging supposes an income for the APP. pB,EM
t can be understood as the baseline

power for the BESS.

5.3.2 Imbalance constraints
The imbalance income/cost has been introduced in the section dedicated to the objective
function. The imbalance accounts for the power deviation of the WF with respect to the
scheduled output levels contracted in the DAM.

∆Pt = pW,EM
t − pW,DAM

t ∀t ∈ T (5.13)

∆Pt = ∆P+
t −∆P−

t ∀t ∈ T (5.14)

∆P+
t ,∆P−

t ≥ 0 ∀t ∈ T (5.15)

where ∆Pt is the total imbalance of the WF at hour t. Contraint (5.13) accounts for
the difference between the realized power output and the contracted power in the DAM
auction, denoted as pW,DAM

t .

The total imbalance can be positive or negative, so two non-negative variables are included,
∆P+

t and ∆P−
t . These variables are the ones used to account for the final imbalance

income/cost of the APP. When the total imbalance is negative, ∆P−
t will take the absolute

value of the imbalance and ∆P+
t will be 0. The same, but reversed, applies if the imbalance

is positive.
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5.3.3 Bids limitation constraints
The DAM bid of the BESS has to be either for charging and discharging and it can not
exceed the maximum charging or discharging rate. This is ensured by (5.16) and (5.17),
where PB is the maximum discharge and charge power of the BESS and bstatet is introduced
as an auxiliary binary variable. When bstatet = 1, the BESS will be scheduled to charge in
the day-ahead auction. Likewise, bstatet = 0 will indicate discharging.

0 ≤ pDAM,dis
t ≤ P

B · (1− bstatet ) ∀t ∈ T (5.16)

0 ≤ pDAM,ch
t ≤ P

B · bstatet ∀t ∈ T (5.17)

The WF bid to the DAM is bounded between zero and the day-ahead power forecast,
ensured by (5.18).

0 ≤ pW,DAM
t ≤ p̂Wt ∀t ∈ T (5.18)

On the other hand, FCR participation requires all the reserve bids to be higher than 0.1
MW, so (5.19) to (5.24) are introduced in this regard.

0.1 · δW,D↑
t ≤ RW,D↑

t ≤ δW,D↑
t · PW ∀t ∈ T (5.19)

0.1 · δW,D↓
t ≤ RW,D↓

t ≤ δW,D↓
t · PW ∀t ∈ T (5.20)

0.1 · δW,N
t ≤ RW,N

t ≤ δW,N
t · PW ∀t ∈ T (5.21)

0.1 · δB,D↑
t ≤ RB,D↑

t ≤ δB,D↑
t · 2 · PB ∀t ∈ T (5.22)

0.1 · δB,D↓
t ≤ RB,D↓

t ≤ δB,D↓
t · 2 · PB ∀t ∈ T (5.23)

0.1 · δB,N
t ≤ RB,N

t ≤ δB,N
t · PB ∀t ∈ T (5.24)

The binary variables denoted as δ are used as auxiliary variables to ensure that at each
hour, the reserve bids are either null or larger than 0.1 MW for both the WF and the BESS
and for every FCR service. The upper limit for the reserve bids of the WF is considered
to be the rated power of the WF, although the constraints introduced below limit this
behaviour.

It should also be noted that the upper limit for the BESS FCR-D reserve bids is twice
the maximum power of the BESS. This is because reserves are activated on top of the
baseline power of the BESS (pB,EM

t ), so there are situations where the battery can go
from a baseline of full discharge to a reserve activation of full charging power, or vice
versa. However, the limits of the APP are to be fulfilled, so the following equations are
introduced.

pB,EM
t +RB,D↑

t +RB,N
t ≤ P

B ∀t ∈ T (5.25)

− pB,EM
t +RB,D↓

t +RB,N
t ≤ P

B ∀t ∈ T (5.26)

pW,DAM
t +RW,D↑

t +RW,N
t ≤ p̂Wt ∀t ∈ T (5.27)

RW,D↓
t +RW,N

t ≤ pW,DAM
t ∀t ∈ T (5.28)

Constraints (5.25) and (5.26) ensure the total power bids of the BESS to be within limits.
In the case of the WF, the upper limit for power bids is the forecasted power, ensured by
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constraint (5.27), while (5.28) prevents the down regulation reserve bids to be lower than
the day-ahead bid. Theoretically, the WF could offer to reduce all its capacity, but since
the total power it will be able to decrease is the power at which it is operating in real time
when the reserve is activated, it is limited to the amount offered in the DAM.

Since FCR-N reserve is a symmetrical product, its equivalent variable is included in both
up and down limitation constraints.

5.3.4 Battery constraints
For the BESS is not enough for the bids to be within its maximum discharge and charge
capacity, but it is also needed to ensure the SOC to be within limits at every hour of the
operating day. Therefore, it is necessary to account for the total charging and discharging
power of the BESS at every time step.

pdist = pDAM,dis
t + pB,D↑

t + pB,N↑
t ∀t ∈ T (5.29)

pcht = pDAM,ch
t + pB,D↓

t + pB,N↓
t ∀t ∈ T (5.30)

pdist ≤ P
B ∀t ∈ T (5.31)

pcht ≤ P
B ∀t ∈ T (5.32)

The total discharge (pdist ) and charge (pcht ) power are defined in 5.29 and 5.30 as the
sum of the scheduled DAM power and the BESS activated power for up regulation and
down regulation in FCR-N (pB,N↓

t ,pB,N↑
t ) and FCR-D (pB,D↓

t ,pB,D↑
t ). As it has been done

with the power bids, the total charging and discharging power is limited to the maximum
charging and discharging power capacity of the BESS with constraints (5.31) and (5.32).

The SOC of the BESS at hour t is defined as the previous SOC and percentage energy
change due to total charging and discharging. This is modeled by constraint (5.33) and
(5.34), where charging and discharging efficiencies are also introduced and Eb represents
the nominal energy of the BESS in MWh. In addition, as it has been already mentioned
above, the BESS has to be at 50% (SOCinit) of charge at the end of each day to have
the same capacity of providing up and down regulation in the first hour of the next day.
Constraint (5.35) is introduced in this regard.

SOCt = SOCinit +
∆t

Eb
· (pcht · ηch − pdist /ηdis) t = 0 (5.33)

SOCt = SOCt−1 +
∆t

Eb
· (pcht · ηch − pdist /ηdis) ∀t ∈ {1, 2, ..., |T |} (5.34)

SOCt = SOCinit t = |T | (5.35)

Finally, the characteristics of the BESS are such that no full FCR-response can be sustained
for four concurrent hours, so it is considered a unit with Limited Energy Reservoir (LER).
As far as this algorithm is concerned, this means that the SOC limit at each instant of time
can be limited to the minimum and maximum, without considering that a full activation
of a reserve would lead to exceeding the limits. In case of not being LER, it would be
necessary to take into account the reserve offers and consider that they could be fully
activated when limiting the SOC. Therefore, the SOC limits follow the constraint (5.36).

SOCmin ≤ SOCt ≤ SOCmax ∀t ∈ T (5.36)
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5.3.5 Reserve constraints
In the section dedicated to the objective function, the reserve and energy activation vari-
ables account for the overall APP values. Those variables are the sum of the WF and
BESS contributions.

RD↑
t = RW,D↑

t +RB,D↑
t ∀t ∈ T (5.37)

RD↓
t = RW,D↓

t +RB,D↓
t ∀t ∈ T (5.38)

RN
t = RW,N

t +RB,N
t ∀t ∈ T (5.39)

pN↓
t = pW,N↓

t + pB,N↓
t ∀t ∈ T (5.40)

pN↑
t = pW,N↑

t + pB,N↑
t ∀t ∈ T (5.41)

Finally, the relation between the energy activated for FCR-D or FCR-N and the scheduled
reserves is determined by the activation variables. This activation variables are a function
of the grid frequency, as explained in the literature review, and determine how much of the
contracted reserve needs to be delivered. Since in practice is not possible to forecast the
frequency of the system, the activation variables are replaced by activation parameters,
which will be given as an input to the model. This will be explained further in subsequent
sections of this thesis.

The previous behaviour is modeled by introducing the following constraints, where AD↑,
AD↓, AN↑ and AN↓ are the activation parameters for FCR-D up-regulation, FCR-D down-
regulation, FCR-N up-regulation and FCR-N down-regulation respectively.

pW,D↑
t = AD↑ ·RW,D↑

t ∀t ∈ T (5.42)
pW,D↓
t = AD↓ ·RW,D↓

t ∀t ∈ T (5.43)
pW,N↑
t = AN↑ ·RW,N

t ∀t ∈ T (5.44)
pW,N↓
t = AN↓ ·RW,N

t ∀t ∈ T (5.45)

pB,D↑
t = AD↑ ·RB,D↑

t ∀t ∈ T (5.46)
pB,D↓
t = AD↓ ·RB,D↓

t ∀t ∈ T (5.47)
pB,N↑
t = AN↑ ·RB,N

t ∀t ∈ T (5.48)
pB,N↓
t = AN↓ ·RB,N

t ∀t ∈ T (5.49)

5.4 Decision Variables
This section summarizes all the variables of the model presented in the previous sections.
The complete set of variables is denoted as Ω, where ΩR+ is the subset of positive real
variables, ΩR is the subset of real variables and Ωb is the subset of binary variables:

Ω = {pEM
t , pW,EM

t , pB,EM
t , pW,DAM

t , pDAM,dis
t , pDAM,ch

t ,∆Pt,∆P+
t ,∆P−

t , bstatet

δW,D↑
t , δW,D↓

t , δW,N
t , δB,D↑

t δB,D↓
t , δB,N

t , pdist , pcht , SOCt

RW,D↑
t , RW,D↓

t , RW,N
t , RB,D↑

t , RB,D↓
t , RB,N

t

pW,D↑
t , pW,D↓

t , pW,N↑
t , pW,N↓

t , pB,D↑
t , pB,D↓

t , pB,N↑
t , pB,N↓

t , SNeed
t,w } (5.50)

ΩR+ = {pW,EM
t , pW,DAM

t , pDAM,dis
t , pDAM,ch

t ,∆P+
t ,∆P−

t , pdist , pcht , SOCt,

RW,D↑
t , RW,D↓

t , RW,N
t , RB,D↑

t , RB,D↓
t , RB,N

t ,

pW,D↑
t , pW,D↓

t , pW,N↑
t , pW,N↓

t , pB,D↑
t , pB,D↓

t , pB,N↑
t , pB,N↓

t } (5.51)

ΩR = {pEM
t , pB,EM

t ,∆Pt} (5.52)

Ωb = {bstatet , δW,D↑
t , δW,D↓

t , δW,N
t , δB,D↑

t , δB,D↓
t , δB,N

t } (5.53)
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6 Model Inputs
In this chapter, the inputs to the bidding strategy algorithm developed in Chapter 5
are described. These inputs include the wind power forecasts, forecasts for day-ahead,
regulation and reserve market prices, the set of power system need scenarios (power deficit,
power excess or balanced) and the frequency parameters for energy activation in FCR-
D and FCR-N markets. A graphical representation of the proposed system is shown in
Figure 6.1.
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Figure 6.1: Flow of inputs to the bidding strategy algorithm.

First, although already introduced in previous chapters, an overview of the forecasting
horizons with respect to the APP operating day is provided. Then, data collection, pro-
cessing and implementation of the forecasting techniques are explained. Particular em-
phasis is given to the forecasting of energy and reserve prices, since wind power forecasting
has been explained in a dedicated chapter, Chapter 4.

6.1 Time Framework
The bidding strategy model developed in this thesis considers the APP to participate in
DAM, FCR-D and FCR-N, so this section elaborates on the time frameworks of these
markets and the available data for the operator to perform the forecasting of prices.

Referring to the operating day as D and the decision day, when the forecasts are performed
and the bids are placed, as D−1, an operator has until 12:00 CET of D−1 to submit the
final DAM bids to NordPool. Once the market is cleared, NordPool typically announces
the hourly clearing prices at 12:45 CET. Therefore, when submitting the offer bids to the
DAM, the operator has knowledge of the actual clearing prices of decision day, D− 1, due
to the outcome of D − 2 auction.

On the other hand, FCR-D and FCR-N markets are divided into an early auction and a
late auction. In this thesis, the APP is considered to bid only in the early auctions. To
participate in theearly auctions, operators are required to submit their bids to Energinet
no later than 00:30 CET of D − 1. As it is the case with DAM prices, the operator has
knowledge of the reserve prices of the current day (D − 1) from the clearing outputs of
D − 2.

The case is however different for up-regulation, down-regulation and imbalance market
prices since the imbalance market is cleared 45 minutes prior to the hour of operation.
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Therefore, the data closest in time available to the operator at the beginning of D− 1 are
those corresponding to day D − 2.

For simplicity, since FCR-D and FCR-N reserve markets are the first of those considered
to close, all the bidding decisions are considered to take place prior to 00:30 a.m of D− 1.
Therefore, even though the DAM closes later in time, the optimal bid offers obtained from
the optimisation algorithm for DAM are considered definitive and not changed closer to
DAM closing gate. On the other hand, no participation in late auctions are considered
for FCR-N and FCR-D. As a result of this decision, the data used for the forecasting of
prices explained below is that available at 00:30 a.m of D − 1.

A graphical overview of the explained timeline is included in Figure 6.2

DD-1D-2D-n

. . .

Bidding Strategy Algorithm

Available Day-Ahead Prices

Available Reserve Prices

Available Regulation Prices

Figure 6.2: Prices known by the operator at the time of bidding.

6.2 Wind Power Forecasts
The hourly wind power forecast algorithm developed in Chapter 4 is executed prior to the
bidding strategy model and the wind power point forecasts are recorded for every hour of
operation day D. The forecasted wind power for hour t of day D is denoted as p̂Wt in the
bidding strategy algorithm.

The forecasting method employed is LWR, as it was the one showing the best results in
Chapter 4. As it was explained, the exogenous data for the forecasting is obtained from
external forecasts developed by DMI.

6.3 Day-Ahead Market Price
6.3.1 Overview of historical prices
Historical DK2 day-ahead prices are obtained from Energinet via an API to the Energi
Data Service platform ([33]) and the time-series for the current year (2024) is presented
in Figure 6.3. Since data is available in Danish time, the last Sunday in March has 23
hours due to the switch from CET (Central European Time) to CEST (Central European
Summer Time). This means that in the linear timeline used for the data, the time step
31st March 2024, 2:00 am is missing. For the presented time-series it has been decided to
assume the DAM price for the missing hour to be the one of the previous hour. A similar
issue will happen for the last Sunday of October, when time is switched from CEST to
CET at 3:00 am, so in the linear timeline used for the data this day will have 25 hours.

Figures 6.3 and 6.4 show how the prices of DAM in 2024 have oscillated mainly in the
range of 0 to 200€/MWh, with an average of just under 100€/MWh. Some exceptions
can be observed, such as some price peaks in January or negative prices in April and
June, with a maximum of 526€/MWh and a minimum of -54€/MWh. The price peaks in
January were due to high electricity demand due to the cold weather, while the negative
prices are generally caused by low demand and high renewable energy market penetration.
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Figure 6.3: Historical DK2 DAM prices from Jan 2024 to July 2024. Data from: [33].
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Figure 6.4: Histogram of DK2 DAM prices from Jan 2024 to July 2024. Data from: [33].

6.3.2 Forecasting
In order to make an optimal offer, it is necessary to make an accurate prediction of DAM
prices. A good price forecast can lead operators to take better financial decisions and
maximize payoffs. While this topic could be the subject of a thesis in itself, this section
proposes and compares some methods to obtain a price prediction that will serve as an
input to the optimisation algorithm. As will be explained below, price prediction with more
sophisticated models will be exemplified with DAM forecasting. However, the prediction
of regulation prices and reserve prices will be simplified by the use of naive predictors.

DAM prices are characterised by high seasonality, which can be explained by many fac-
tors such as demand, temperature or renewable generation. Although these explanatory
variables will be studied in more detail in the last forecasting model used in this thesis
(SARIMAX), the high seasonality may indicate that the development of models based
solely on the seasonality of the data may be effective in predicting prices. The two mod-
els chosen for this purpose in this thesis are Prophet and SARIMA, although as already
reflected in the literature review section, there are numerous studies using other meth-
ods. The choice of Prophet and SARIMA in this thesis is mainly due to the ease of
implementation of the former and the large existing literature on the latter.

Before explaining the prediction models used, figures 6.5 and 6.6 are included to illustrate
the seasonality of the data. Figure 6.5 shows how the price profile over the hours of the
day is similar for all the months studied. The seasonality of prices is calculated using the
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statsmodel library over the whole dataset. However, for presentation purposes, only 5 day
are represented in Figure 6.6, where black dotted lines are placed at the beginning of each
day to appreciate how the data has daily seasonality.
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Figure 6.5: Hourly averaged DAM prices per month. Data from: [33].
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Figure 6.6: Day-Ahead market prices seasonality

Prophet Model
Prophet is a time series forecasting model developed by Facebook Data Science Team
[34]. The equation on which the model is based is Equation 6.1, created by decomposing
the time series into three main components: trend, seasonality and holidays. The trend
component (g(t)) and seasonality component (s(t)) model changes in the time series that
are non-periodic and periodic respectively, while the holidays term (h(t)) represents the
effect of holidays that occur on a irregular basis. Finally, ϵt represents changes in the time
series not captured by the previous terms [35].

y(t) = g(t) + s(t) + h(t) + ϵt (6.1)

In this thesis, the forecasting is performed following the Prophet python procedure guide
published by Meta [36]. The necessary input to the model is a dataframe with two columns,
’ds’ being a column dedicated to the timestamps and ’y’ the variable to forecast. In this
case, data in column ’y’ are the historical DK2 day-ahead prices from [33].

To evaluate the performance of this forecasting method, Prophet models have been tested
on six randomly selected days. Keeping these days fixed, price predictions have been made
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for each of them by varying the amount of data entered for fitting the models and the
RMSE, MAE, MAPE and NRMSE metrics have been calculated for each time horizon,
as listed in Table 6.1. These metrics are shown as the resulting average over the six test
days, and it should be noted that since the data used spans for the first 6 months of 2024,
none of the days tested belong to January or February in order to fit the model with up
to two months of data.

Fitting days 1 3 5 10 20 40 60
Average RMSE [e/MWh] 42.22 26.00 18.73 32.67 26.70 20.89 18.18
Average MAE [e/MWh] 32.29 20.35 14.97 26.38 22.98 17.81 14.49
Average MAPE [%] 69.07 29.91 21.13 35.78 36.42 29.22 25.55
Average NRMSE [p.u] 0.31 0.19 0.14 0.24 0.19 0.15 0.13

Table 6.1: Prophet forecasting results over 6 testing days

From the results it is difficult to draw a conclusion on which horizon would be better to
use for the Prophet model, as the total mean of the metrics is very dependent on not
having large forecasting errors for one of the days studied. This is reflected in the results
obtained when using five days as training horizon, obtaining better metrics than with the
rest of the horizons studied. In fact, when plotting the prediction results for each of the
days studied, three of them show similar results regardless of the training horizon, while
the other two days show large fluctuations. In general, the model shows more accuracy
the longer the horizon, but in the case of five fitting days there is an exception, and that
is that the prediction for the two days mentioned is better than in the rest of the cases,
improving the global metric.

Figure 6.7 shows the forecast results for the six days tested and using a five-day training
horizon for demonstration purposes, since it is the horizon with better results. In general,
the model captures the trend but peak prices are not predicted correctly, specially for the
first three days studied.
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Figure 6.7: Prophet forecasting results over 6 testing days
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SARIMA Model
Due to the extensive literature available and the feasibility of these models for forecasting
electricity prices over short horizons, the next times-series forecasting method employed
is SARIMA.

A SARIMA model is an extension of an ARIMA model that includes seasonal effects, which
in turn is a combination of autoregressive (AR) and moving average (MA) models [37]. An
AR model is one in which the value of the series is predicted by modelling its relationship
with its past p values, while a MA model of order q models the relationship of the series
with the q past prediction errors [22]. Combining an AR model with a MA model would
yield an ARMA (Autoregressive Moving Average) model. However, an integrating process
is added to convert non-stationary time series into stationary series. This ”integrating”
process actually consists of subtracting previous values from the current value of the
series. The number of differences necessary to convert the series into a stationary series
determines the order d of the ”integrating” process [38]. Combining all the above together,
an ARIMA (Autoregressive Integrated Moving Average) model is built. In addition, if the
time series presents seasonality as in the case of day-ahead market prices, a SARIMA
(Seasonal Autoregressive Integrated Moving Average) model is built, including additional
terms related to this seasonality [39]. The general notation for ARIMA and SARIMA
models is:

ARIMA(p, d, q) , SARIMA(p, d, q)(P,D,Q, s) (6.2)

Where:

• p is the non-seasonal AR order.

• d is the non seasonal integrating/differencing order.

• q is the non-seasonal MA order.

• P is the seasonal AR order.

• D is the seasonal integrating/differencing order.

• Q is the seasonal MA order.

• s is the seasonal period.

The seasonal parameters follow the same reasoning as the non-seasonal parameters ex-
plained above, but the lags follow seasonal intervals. The mathematical representation of
a SARIMA model follows (6.3) [39], [40].

ϕp(B)ΦP (B
s)(1−B)d(1−BS)Dyt = µ+ θq(B)ΘQ(B

S)εt (6.3)

In the previous equation, yt is the observed time-series at time t, B is the backshift
operator (Bl ·yt = yt−l), εt represents noise with zero mean and µ is a constant term. The
polinomial operators are defined as (6.4), where ϕ, Φ, θ and Θ are the AR, seasonal AR,
MA and seasonal MA coefficients respectively.

ϕp(B) = 1− ϕ1(B)− ϕ2(B
2)...− ϕp(B

p) (6.4a)

ΦP (B
s) = 1− Φ1(B

s)− Φ2(B
2s)...− ΦP (B

Ps) (6.4b)

θq(B) = 1− θ1(B)− θ2(B
2)...− θq(B

q) (6.4c)

ΘQ(B
s) = 1−Θ1(Q

s)−Θ2(B
2s)...−Θq(B

Qs) (6.4d)
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Using the same data as in the previous models, the first SARIMA model for day-ahead
market price prediction is performed by using the auto_arima functionality available
in the python pmdarima library [41]. By default, the function optimizes by minimizing
AIC (Akaike´s Information Criterion) via the Kwiatkowski-Phillips-Schmidt-Shin test [42].
The result of this function are the SARIMA parameters p, d, q, P,D and Q. However, the
seasonality of the data s, defined as the number of periods in each season, has to be entered
manually. From Figure 6.6 it is worth to set s = 24.

After executing the auto_arima function, the optimal parameters obtained for the model
are p = 2, d = 1, q = 1, P = 1, D = 0, Q = 0. In order to evaluate the performance
of the model, it is tested for the same six days as in the case of the Prophet model, and
the average performance metrics are shown in Table 6.2. Results show that SARIMA
model performs worst than Prophet following this methodology, so it is decided to tune
the parameters manually following the information provided by the ACF and PACF in
Figure 6.8.
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Figure 6.8: ACF and PACF of DAM prices. Data from: [33].

Previously introduced, both ACF and PACF are functions generally used to identify orders
for Moving Average (MA) and Autoregressive (AR) models [43]. The blue horizontal cone
in the figures represents the 95% confidence level, so lags with an ACF inside the cone are
considered to not have significant autocorrelation.

The previous figure shows ACF and PACF up to 48 lags (hours). The PACF values give
an idea of the p order of the autoregressive models, while the ACF plot can help determine
the q order of the moving average model [22]. Therefore, reasonable parameters to test
would be p = 3 and q = 4, since the largest PACF values within the 24-lag season are
given for the first three lags, while, if only ACF values greater than 0.5 are considered for
simplicity of the model, the largest are given for the first four lags. On the other hand,
as for the seasonality parameters, it would be reasonable to consider P = 1 or P = 2,
since the PACF values for first and second multiples of the seasonality (24 and 48 hours)
are higher than the rest. Finally, considering again values of ACF greater than 0.5, it
is reasonable to consider Q = 1. Starting from these values, different iteration tests are
performed on the parameters, obtaining the best result for p = 5, d = 1, q = 1, P = 2,
D = 0, Q = 1 in terms of the average performance metrics for the six days studied.

The results for the best performing models using automatic and manual tuning of the
parameters are shown in Table 6.2, while the fitting of the manual tuning, which yields
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better results, are illustrated in Figure 6.9

SARIMA tuning Auto Manual
(p, d, q)(P, D, Q, s) (2, 1, 1)(1, 0, 0, 24) (5, 1, 1)(2, 0, 1, 24)
Average RMSE [e/MWh] 21.68 14.72
Average MAE [e/MWh] 17.99 11.04
Average MAPE [%] 29.42 17.95
Average NRMSE [p.u] 0.16 0.11
Table 6.2: SARIMA forecasting. Parameters and performance metrics
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Figure 6.9: SARIMA forecasting results over 6 testing days

SARIMAX Model
The two prediction models studied before have focused on the seasonality of the data itself
for the predictions. This is why, in this last model, the possibility of incorporating external
explanatory variables in order to make a correct prediction of prices is studied. In this
regard, the model studied is SARIMAX, which can be defined as a SARIMA model but
including exogenous explanatory variables. Keeping the same notation as for SARIMA,
the mathematical formulation of SARIMAX follows (6.5) [40].

ϕp(B)ΦP (B
s)(1−B)d(1−BS)Dyt = µ+ θq(B)ΘQ(B

S)εt + Xtβ (6.5)
with

Xtβ = β1x1,t + β2x2,t...+ βkxk,t (6.6)

In (6.6), Xt = [x1,t, x2,t, ..., xk,t] is the set of exogenous variables and β = [β1, β2, ..., βk]
the set of exogenous coefficients. The rest of the terms from (6.5) are already defined in
(6.4).

With the mathematical formulation presented, the objective is to find a set of explanatory
or exogenous variables for improving the forecasting of prices.

The factors to be considered in this thesis as explanatory variables are the consumer
demand and renewable generation, both wind and solar. In addition to the existing studies
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in the literature about the influence that these factors have on DAM prices, they have been
chosen because of the ease of obtaining historical data. Historical data is available online
in the transparency platform of ENTSO-E (European Network of Transmission System
Operators for Electricity) [44] , which collects and publishes historical data of electricity
generation, transportation and consumption for the pan-Europen market. With these
data, two approaches will be explored. On the one hand, SARIMAX will be tested with
historical data of these variables as exogenous variables. On the other hand, instead of
historical data, the model will be tested using external forecasts of the factors, which are
also provided by the same platform.

The influence that the selected exogenous features have on prices is analyzed in order to
determine whether the DAM price timeseries is affected by all or some specific lags of the
demand, solar generation or wind generation timeseries. For this purpose it is decided
to use the Cross-Correlation Function (CCF) to identify which lags of the exogenous
variables might be useful to predict the prices by estimating the correlation between the
objective variable yt and lagged versions of the explanatory/exogenous variables xt+k [45].
Figure 6.10 illustrates the CCFs between the DAM prices and the three studied exogenous
variables.
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Figure 6.10: Cross-Correlation Functions between historical DAM prices and exogenous
variables. From top to bottom: Historical Load [46], Historical Solar Generation [47],
Historical Wind Generation [47]

In the graph above, each blue bar represents the CCF factor, while the red lines represent
a 95% confidence interval representing whether the CCF is significant (bars outside red
range), or not significant (bars inside red range). Several conclusions can be drawn from
this picture. On the one hand, it can be seen that there is a certain seasonality in the
cross-correlation between prices and load and solar generation, being more pronounced for
solar generation, since in the case of demand, the peak of each pattern is declining as the
lags increase, while that of solar generation remains stable. However, while demand has a
positive CCF for almost all lags, solar generation oscillates between positive and negative.
On the other hand, the CCF with wind generation does not show these patterns. While
electricity demand, due to working hour patterns, and solar generation, due to weather
conditions or the position of the sun, present seasonality themselves in the short term,
wind generation has a more arbitrary character. Therefore, prices are impacted by the
wind resource in the short term (which do not vary as much), but the influence decreases
as the lags increase. In terms of absolute values, the highest correlation with prices is the
wind generation during the first 12 lags.
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As mentioned above, the first approach is to use historical data on exogenous factors.
This idea arises because introducing external forecasts into the predictions can increase
the uncertainty and error of the models. However, following the timeline explained above,
bidding takes place on D-1 at 00:30am, so unlike prices, which are known for all the
hours of D-1 due to the auction on D-2, the latest demand and renewable generation data
available for forecasting are those corresponding to D-2. Therefore, despite the above
conclusions, the closest lags to real-time operation that can be used for the model are
those corresponding to D − 2. In this way, an input dataset is constructed for the model
in which, for each hour to be predicted, the D-2 lagged values of demand and renewable
generation are considered as regressors. However, after training and testing the model in
the same way as with the previous models (using six test days and calculating the average
of the evaluation metrics used), the results are worse than using the SARIMA model
without exogenous variables. A reason could be found in that introducing exogenous
variables with not enough correlation to the objective variables can lead to overfitting the
model.

In a real application, the bidding for the DAM could be done until 12:00 at the latest, the
closing time of this market, so that the real exogenous variables corresponding to the first
12 hours of day D-1 could be used, potentially leading to better forecasts. However, with
the simplifications of the bidding strategy algorithm developed in this thesis, that is not
possible, so the option of using the external forecasts available in ENTSO-E platform is
also considered.
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Figure 6.11: SARIMAX forecasting results over 6 testing days using D − 1 forecasts as
exogenous variables

ENTSO-E provides hourly day-ahead forecasts of solar, wind onshore and wind offshore
generation [48] and demand [46], which are published at 18:00pm of D-1. Therefore, the
forecasts for day of operation are not known when the bidding takes place, so the forecasts
for D-1 will be used for predictions instead. After testing the model for the same six days
that have been used so far, results show that the model performs better than Prophet
but worst than SARIMA. Forecasts are illustrated in Figure 6.11. Again, the fact that
the model performs worse than with respect to SARIMA may be due to overfitting of
the model by introducing complexity with exogenous variables that do not show as much
correlation with the target variable. In this case, the correlation is lost due to the fact
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that external forecast for day D are not available and, as seen in Figure 6.10, lags above
24 have poor CCF between the prices and the exogenous variables. To study the impact
of having external forecasts for day D, it is decided to use the model to test the same
days but assuming that forecasts are available at the moment of developing the offering
strategy, and not published after the placing of the bids as it is the case in reality. The
result of this model is depicted in Figure 6.12, where it can be seen that having the day
D forecasts significantly improves the model.

The metrics for SARIMAX with historical data, SARIMAX with predictions and SARI-
MAX with day D forecasts are shown in Table 6.3. Finally, Table 6.4 compares the metrics
of the three prediction algorithms explored, concluding that the best model is SARIMAX,
followed by SARIMA and, finally, Prophet.
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Figure 6.12: SARIMAX forecasting results over 6 testing days using D forecasts as exoge-
nous variables

Exogenous data source Historical Data D-1 Forecasts D Forecasts
Average RMSE [e/MWh] 20.05 15.38 12.79
Average MAE [e/MWh] 14.37 11.39 10.05
Average MAPE [%] 23.85 18.97 18.54
Average NRMSE [p.u] 0.15 0.11 0.09

Table 6.3: SARIMAX (5, 1, 1)(2, 0, 1, 24) forecasting. Performance metrics

Model Prophet SARIMA SARIMAX
Average RMSE [e/MWh] 18.73 14.72 12.79
Average MAE [e/MWh] 14.97 11.04 10.05
Average MAPE [%] 21.13 17.95 18.54
Average NRMSE [p.u] 0.14 0.11 0.09

Table 6.4: Forecasting results. Comparison of models
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6.4 Reserve Prices
6.4.1 Overview of historical prices
Historical data from DK2 FCR-N and FCR-D services is also available in the Energi
Data Service platform ([49]). The time-series for the current year (2024) is presented in
Figure 6.13 in hourly resolution. It should be noted that the prices presented in this
sections are the ones related to the early auctions, since the APP is not considered to
participate in the late auctions.

Several observations can be drawn from Figure 6.13. First, it can be observed that FCR-D
up-regulation prices have been generally lower than down-regulation prices in the first half
of 2024, although down-regulation prices show higher volatility with more extreme price
peaks. The difference in price volatility can be seen most clearly in Figure 6.14, with a
difference between the maximum and minimum value in the order of 60€/MW for FCR-D
up-regulation versus the higher volatility of FCR-D down-regulation, with a maximum
price of around 800€/MW. On the other hand it can be observed that the reserve prices
for FCR-N are generally higher than those of FCR-D with the exception of the peaks of
FCR-D down-regulation occurred in the month of April and some other peaks distributed
throughout the year.
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Figure 6.13: Historical DK2 FCR-D and FCR-N early-auction prices from Jan 2024 to
July 2024. Data from: [49].
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Figure 6.14: Histogram of DK2 FCR-N and FCR-D early-auction prices from Jan 2024 to
July 2024. Data from: [49].
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6.4.2 Forecasting
Regarding the bidding strategy algorithm, FCR-D and FCR-N reserve prices (λ̂UR

t , λ̂DR
t )

should also be predicted for each of the operating hours prior to executing the bidding
strategy algorithm. However, since a more complex forecasting model has already been
exemplified in the case of DAM prices, it has been chosen to simplify the procedure and
develop a naive method for the prediction of reserve prices.

The chosen approach is to use a Simple Moving Average method (SMA) defined as (6.7),
where the price at each hour is predicted to be the hourly average of the previous Npred

days to day of operation D. The same method is applied to FCR-D up, FCR-D down and
FCR-N.

λ̂RM
t =

1

Npred

Npred∑
j=1

λRM
t,D−j RM ∈ {D ↑, D ↓, N} ∀t ∈ T (6.7)

Using Npred = 5, Figures 6.15, 6.16a and 6.16b illustrate the results of forecasting reserve
prices for test day 07-06-2024, showcasing the need for more complex prediction models,
as using a simplistic predictor can yield large errors, as it is the case for FCR-N prices for
the test day represented
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Figure 6.15: FCR−N price forecast. 07-06-2024
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Figure 6.16: Forecasting of FCR-D prices
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6.5 Regulation Prices
6.5.1 Overview of historical prices
Finally, historical DK2 regulation prices are obtained from the Energi Data Service Plat-
form ([50]) and the time-series for the current year (2024) is presented in Figure 6.17
in hourly resolution, where up-regulation prices show greater volatility with price peaks
throughout the year, while in the case of down-regulation there is only one notable price
peak, which occurs in the month of April. It is also possible to see how for each hour, the
up-regulation price is never lower than the down-regulation price. This is to be expected
since, as discussed in the theoretical framework, the up-regulation price will always be
higher or equal to the DAM price while the down-regulation price will be equal or lower.
As for the price distribution, this is illustrated in Figure 6.18a, where the maximum and
minimum prices recorded during the year are also indicated, and it can be seen that the
up-regulation prices have a greater dispersion.

Finally, the difference between the final imbalance price and DAM price is calculated. The
histogram of the resulting values is illustrated in Figure 6.18b, where missing values have
been removed. Therefore, a positive value indicates an hour when the system was in power
deficit and up-regulation was activated, while a negative value indicates power excess
and down-regulation activation. In terms of occurrences, for the 4367 hours recorded,
up-regulation was activated in 1121 hours and down-regulation in 1842 hours, while no
regulation was activated in 1404 hours.
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Figure 6.17: Historical DK2 regulation prices from Jan 2024 to July 2024. Data from:
[50].

6.5.2 Forecasting
As in the case of reserve prices, it is also decided to use a naive prediction method for
up-regulation (λ̂UR

t ), down-regulation (λ̂DR
t ) and imbalance prices (λ̂IMB

t ). For a real
application, it would be necessary to explore more sophisticated forecasting models.

In the energy markets section of the theoretical framework, it has been explained how
the up-regulation prices are, for each hour, equal or higher than the DAM price, while
the down-regulation prices are equal or lower. Therefore, in order to be consistent with
the prediction of the DAM prices developed in the previous section, it is necessary to
ensure the aforementioned behavior for the model developed. For this purpose, it has
been decided to use the idea of naive regulation prices predictor described in [51], where
the author makes a prediction of the regulation costs. These costs are defined as the
difference between regulation prices and the DAM price, and their prediction is made
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Figure 6.18: Histograms of DK2 regulation prices and difference between imbalance price
and day-ahead price. Data from: [50]

by averaging these differences over the decision period. With these predicted costs, the
prediction of regulation prices is finally defined as the difference between the actual DAM
prices and the regulation costs.

However, the model in [51] is used for trading in the balancing market, so when predicting
the regulation prices, the DAM prices for the trading horizon are already known from the
day-ahead bid. In this thesis, on the contrary, the DAM prices are unknown when defining
the bidding strategy, so the DAM prices used for this predictor are those forecasted as in
the previous section. A higher error factor is therefore induced than in the case of [51],
since the error introduced by the simplification of the model is added to the error of the
prediction of the DAM prices.

ĈUR =
1

NThor

∑
τ∈Thor

(λUR
τ − λDAM

τ ) (6.8)

ĈDR =
1

NThor

∑
τ∈Thor

(λDAM
τ − λDR

τ ) (6.9)

Equations (6.8) and (6.9) define the forecasting of up-regulation and down-regulation cost
parameters, denoted as ĈUR and ĈDR respectively. In these equations, the time step τ
belongs to the selected horizon Thor of 5 days prior to the bidding strategy decision, from
D − 2 to D − 6, where NThor the number of hours in Thor. It should be noted that the
prices used in these equations are the actual historical prices fetched from Energinet API
([33], [50]). Finally, the up-regulation and down-regulation prices are defined in (6.10) and
(6.11), where the forecasted prices described in the previous section are used.

λ̂UR
t = λ̂DAM

t + ĈUR ∀t ∈ T (6.10)

λ̂DR
t = λ̂DAM

t − ĈDR ∀t ∈ T (6.11)

Figure 6.19 illustrates the historical data used and the results of the forecasting method-
ology proposed for test day 07-06-2024. The bidding algorithm to obtain the optimal
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bidding strategy for 07-06-2024 (day D) is executed at 00:30 a.m of 06-06-2024 (D − 1)
so, as explained above, the regulation prices of D − 1 are not known. This lack of data
is represented by the blank space in Figure 6.19 between the historical data and the re-
sults of the forecasting algorithm. The DAM prices of D − 1 are known, but they are
not considered following the proposed method. The same applies to the forecasting of
down-regulation prices.

A detailed view of the results for the proposed method can be found in Figure 6.20a and
Figure 6.20b for the same test day. The method seems to capture the trend of actual prices,
but not the peak values. While this simplified naive predictor is enough for the purpose
of this thesis, more sophisticated algorithms should be explored for real application.
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Figure 6.19: Time horizon and results of regulation prices forecasting method
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(a) UR price forecast. 07-06-2024
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(b) DR price forecast. 07-06-2024

Figure 6.20: Forecasting of up-regulation and down-regulation prices

However, the final regulation and imbalance prices of the market are determined depending
on the actual energy activation each hour. Thus, the up-regulation price will be equal to
the DAM price if the system is down-regulated and the down-regulation price equals
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DAM price if the system is up-regulated. Likewise, the final imbalance price equals the
up-regulation or down-regulation prices if the system is up-regulated or down-regulated
respectively.

In the previous section it has been explained that the power system need (SNeed
t,w ) will

be considered as an input to the algorithm. This is done by creating different scenarios
for each hour where the system can be in power excess (SNeed

t,w = −1), power deficit
(SNeed

t,w = 1) or balanced (SNeed
t,w = 0), where t refers to the set of hours and w refers to

the set of scenarios. Therefore, SNeed
t,w is the power system need at hour t under scenario

w. This scenarios are created based on the frequency of activation of each service, already
summarized in the overview of historical prices.

Five different scenarios will be considered where, for each hour, the system can be in power
excess, deficit or balanced, creating a matrix of scenarios with shape 24x5, where each
value is either -1, 0 or 1. The recurrence of each state follows the historical probabilities
calculated from the hours of activation seen above. In this line, it is calculated that down-
regulation has been activated in 42.2% of hours, while up-regulation has a frequency of
activation of 25.7%. Therefore, the imbalance prices and final up-regulation and down-
regulation prices used to maximize the revenue in the bidding strategy algorithm will be
scenario-indexed and defined as:

λUR
t,w =


λ̂DAM
t if SNeed

t,w = −1

λ̂DAM
t if SNeed

t,w = 0

λ̂UR
t if SNeed

t,w = 1

∀t ∈ T , ∀w ∈ W (6.12)

λDR
t,w =


λ̂DR
t if SNeed

t,w = −1

λ̂DAM
t if SNeed

t,w = 0

λ̂DAM
t if SNeed

t,w = 1

∀t ∈ T ,∀w ∈ W (6.13)

λIMB
t,w =


λ̂DR
t if SNeed

t,w = −1

λ̂DAM
t if SNeed

t,w = 0

λ̂UR
t if SNeed

t,w = 1

∀t ∈ T , ∀w ∈ W (6.14)

Finally, all scenarios are considered to have the same probability of occurrence so πw, used
in the notation to define these probabilities, is 1/5.

6.6 Frequency Reserve Activations
The fraction of FCR-N and FCR-D reserves that are activated in real time to provide
balancing service is a function of the frequency measured by the operator and it follows
the droop profiles illustrated in Figure 3.3, which can be converted to droop functions.
This section explores how to obtain these functions and how to convert them to be used
as an input to the bidding strategy algorithm.

The activation functions for FCR-N up-regulation, FCR-N down-regulation, FCR-D up-
regulation and FCR-D down-regulation are denoted as aN↑

t , aN↓
t , aD↑

t and aD↓
t respectively.

All functions are defined so that they take positive values, so although down-regulating
activation is represented with negative values in the droop profile, for the purpose of
this section it is considered as positive. Therefore, 1 is considered full activation and 0
represents no activation for each of the services and direction of activation.
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Reserves allocated to FCR-N service are fully activated if the frequency exceeds 50.1Hz
(down-regulation) or drops below 49.9Hz (up-regulation), while energy activation in be-
tween that range follows the linear part of the droop profile. Thus, activation functions
for FCR-N can be expressed as in (6.15) and (6.16).

aN↑
t =


1 if ft < 49.9 Hz
50 Hz−ft
0.1 Hz , if 49.9 Hz ≤ ft ≤ 50 Hz

0 if ft > 50 Hz
(6.15)

aN↓
t =


0 if ft < 50 Hz
ft−50 Hz
0.1 Hz , if 50 Hz ≤ ft ≤ 50.1 Hz

1 if ft > 50.1 Hz
(6.16)

Regarding to FCR-D service, full activation takes place if the grid frequency is higher than
50.5 Hz for up-regulation and is lower than 49.5 Hz for down-regulation, while no reserve
is activated if the frequency is in the range 49.9 Hz - 50.1 Hz. Activations for up-regulation
in the range of frequencies 49.5 Hz - 49.9 Hz and down-regulation in the range 50.1 Hz -
50.5 Hz follow the lineal part of the droop profile. Thus, activation functions for FCR-D
can be expressed in (6.17) and (6.18).

aD↑
t =


1 if ft < 49.5 Hz
49.9 Hz−ft

0.4 Hz , if 49.5 Hz ≤ ft ≤ 49.9 Hz
0 if ft > 49.9 Hz

(6.17)

aD↓
t =


0 if ft < 50.1 Hz
ft−50.1 Hz

0.4 Hz , if 50.1 Hz ≤ ft ≤ 50.5 Hz
0 if ft < 50.1 Hz

(6.18)

For the bidding strategy algorithm it would be ideal to have perfect information at D− 1
of the frequency deviation events for day of operation D. However, since grid frequency
trajectory is unpredictable, the transformation is required to convert the activation func-
tions defined above into the activation parameters AN↑, AN↓, AD↑, AD↓ introduced in
Chapter 5, keeping these parameters fixed over all hours in the algorithm.

Activation parameters are calculated from a historical dataset of DK grid frequencies with
1-second resolution covering from February to June 2024.

The histogram of frequencies from the dataset is represented in Figure 6.21. In addition
to the histogram, vertical lines indicate the maximum and minimum measured frequency
values as well as the frequencies at which FCR-N is fully activated and FCR-D starts its
activation, 49.9 Hz for up-regulation and 50.1 Hz for down-regulation. The figure shows
how frequency deviations that would trigger FCR-D activation rarely happen and how
FCR-D was never activated during the data period.
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Figure 6.21: Histogram of power system frequencies in 1-second resolution from February
2024 to June 2024.

Since the bidding model has hourly resolution, (6.15) to (6.18) are applied to each of the
data points in the dataset and converted into hourly resolution by calculating the average.
The distribution of the 1-hour resolution activation variables for the four FCR services is
represented in Figure 6.22.

Among the 2133 hours studied, FCR-D up-regulation only has activations above 1% in 29
hours, with a maximum of 6.1%. The activation for FCR-D down-regulation is similar,
with only 33 hours with activations higher than 1%, although the maximum is higher than
that of up-regulation, being 10.7%. For FCR-N it can be seen that the highest frequency
of activation is in the range of 1-10% for down-regulation and 10-20% for up-regulation.

0 250 500 750 1000 1250 1500 1750 2000
Hours

FCR-N up

FCR-N down

FCR-D up

FCR-D down

Activation Range
0 - 0.01
0.01 - 0.1
0.1 - 0.2
0.2 - 0.4
0.4 - 0.6
0.6 - 1

Figure 6.22: FCR activations distribution using 1-hour resolution activation variables.

With the activation variables in hourly resolution, it is now possible to transform them
into the activation parameters that are used as an input to the bidding model. However,
by calculating the ACF of the hourly activation variables, it is possible to prove that they
do not present strong seasonality, so instead of using an activation parameter for each of
the bidding optimization hours, it is decided to use the average over all hours for each
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service, resulting in the four activation parameters. Thus, these parameters (AN↑, AN↓,
AD↑ and AD↓) do not have the time sub-index t in the model. An example of the ACF
for one of the 1-hour resolution activation variables is shown in Figure 6.23.

The final activation parameters obtained after calculating the average over all the hours
are included in Table 6.5.
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Figure 6.23: Autocorrelation factor for 1-hour resolution FCR-N up-regulation activation
variable.

Service FCR−N ↑ FCR−N ↓ FCR−D ↑ FCR−D ↓
Activation parameter AN↑ AN↓ AD↑ AD↓

Value 0.161 0.157 0.000588 0.000654
Table 6.5: Activation parameters for FCR energy activation.
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7 Results
This section analyzes the results obtained after the implementation of the forecasting
methods and the bidding strategy algorithm. First, the assumptions, simplifications, and
considerations used are presented. Subsequently, an analysis of the optimal bidding strate-
gies obtained from the optimization model is carried out, comparing them with the results
obtained in a perfect foresight scenario. Finally, an analysis of the economic profitability
of the strategies is conducted.

7.1 Assumptions and considerations
• The WF consists of 12 WTs rated at 2,000KW each, with variable speed and pitch

control.

• The wind power forecasting is performed using a LWR model, with wind speed and
temperature as features, obtained from external forecasts.

• Due to the poor results obtained from the errors induced by the external forecasts,
LWR has been used with real forecasts of the exogenous variables, resulting in pre-
dictions with an average MAPE of 7%, representing a more realistic forecast error.

• DAM price is forecasted using SARIMAX.

• Regulation prices and FCR prices are forecasted using naive predictors.

• The APP is assumed to be a price-taker actor.

• The electricity markets considered are DAM, FCR-N and FCR-D.

• Imbalance settlement is also included.

• The bidding strategy is settled at FCR market closing gate (00:30 CET) and is not
changed afterwards.

• The bids to DAM and FCR are assumed to be fully accepted.

• Fixed reserve activation parameters based on historical data are used.

• The BESS is constrained to be at 50% of SOC by the end of the day. SOC limits
are bounded between 10% and 90%.

• The BESS has a rated capacity of 6MW, with maximum discharge and charge rate
of 1C, and discharging and charging efficiency of 98%.

7.2 Bidding strategies
The charts used to illustrate market participation strategies consist of bar charts centered
at zero. Above zero, the bars correspond to WF production, BESS discharge or up-
regulation reserves. Below zero, the bars correspond to BESS charge or down-regulation
reserves.

To analyze the performance against different price configurations, the results of four test
days are examined.

Before focusing on each of the days, the optimal strategy for the WF for one of the days
is shown in Figure 7.1. It is displayed here because the strategy is the same for all days,
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and the only difference from one day to another is the values themselves. Therefore, it is
not necessary to show the graph for each day.

The results show that for the WF, the optimum strategy is always to offer its most accurate
power forecast in the DAM and FCR-D down-regulation. This outcome is due to the fact
that if the WF wanted to bid in FCR-D up-regulation or FCR-N, it would have to operate
under curtailment to leave enough capacity to provide up-regulation reserve. Given this
situation and the current price levels, it is more optimal for the turbine to bid its capacity
for down-regulation, as this allows it to operate at its realized power and only curtail if
necessary to provide the service.
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Figure 7.1: Optimal WF bids into the markets, test day 1

7.2.1 Test Day 1
The strategy for the BESS is illustrated in Figure 7.2. It should be noted that although it
is rated at 6 MW, there are bars that can reach 12 MW. This is because the up-regulation
and down-regulation reserves can be up to twice the rated power of the battery. For
example, in hour 13, the battery is operating with a baseline of charging 6 MW. For that
hour, the optimal result is to offer 12 MW of up-regulation reserve, which accounts for
reducing the baseline of 6 MW of charge plus discharging 6 MW. The same happens in
hours 0 and 21, where the BESS has a baseline of around 4 MW of discharge and offers a
FCR-D up-regulation reserve of about 9 MW, accounting for the reduction of the 4 MW
baseline and 5 MW of actual reserve provision. In these two hours, the BESS also saves
some capacity to bid in FCR-N.

Since FCR-N is a symmetrical service, it is doubly represented in the graph. Using as an
example the hours 1 to 12, the BESS offers 6MW of FCR-N reserve, although 12MW are
represented since the activation can be in both directions.

The evolution of SOC is also depicted in Figure 7.2 with a black line, where it can be
appreciated that the BESS starts and ends the day with a SOC of 50%.
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Figure 7.2: Optimal BESS bids, test day 1

To analyze the bidding strategy, the predicted prices for this day are shown in Figure 7.3.

It can be observed that the DAM prices are higher than the reserve prices for all but three
hours. Given this situation, the optimal strategy for the battery is to take advantage of
the high DAM prices during the first hours of the day to discharge in the third hour, which
also allows the BESS to bid down-regulation reserve in FCR-D and save some capacity
for FCR-N. Once discharged, the BESS takes advantage of the fact that FCR-N prices are
higher than those of FCR-D to make full capacity bids in this market. This is maintained
until hours 13 and 14, and coinciding with a low DAM price, an offer is placed for charging,
which also allows bidding capacity in FCR-D up-regulation. When DAM prices are again
higher than FCR-N prices, the battery continues to bid only in FCR-N. Additionally, with
the BESS charging during the hours of lower DAM prices, it is possible to discharge when
prices are higher, which occurs in hour 21.
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Figure 7.3: Forecasted prices for test day 1
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7.2.2 Test Day 2
The next test day has been chosen because the FCR-N and FCR-D-down prices are higher
than the DAM price, presenting a different price configuration as the one seen before. The
results are illustrated in Figure 7.4.

During the first hours of the day, the FCR-D down price is the highest, so the BESS seeks
to participate in this market. To do so, it charges in the first hour of the day. During
the next five hours, when the FCR-D down price remains the highest, the BESS can also
place a bid for discharging in the DAM, which allows it to bid even more reserve. Once
the BESS’s SOC is at its minimum, it supplements the FCR-D down bid with FCR-D up
bids. During the remaining hours, the BESS seeks to participate in FCR-N, as it is the
service with the highest prices, with the exception of a charging baseline in hours 11 and
12, when the DAM price is lower, and discharging in hours 20 and 21, coinciding with the
peak DAM prices. In the last hour, a bid for charging is placed to reach 50% SOC.
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(b) BESS bidding strategy

Figure 7.4: Bidding strategy results, test day 2

7.2.3 Test Day 3
The third day presents a new price configuration, as the price of FCR-D-down is the
highest during the whole day, followed by FCR-N and DAM, which does not exceed the
previous ones at any time.

From the results included in Figure 7.5 it can be observed how the BESS always seeks to
participate in FCR-D-down. Moreover, as in this case the FCR-N price is always lower, it
does not seek to participate in it throughout the day. In addition, a greater arbitrage is
observed with the DAM bids, seeking to charge at local minima such as hours 6, 7, 12, 13
and discharge at local maxima such as hour 9.

There are also other charging bids placed for the DAM in hours 16, 18 and 19. The results
seem to indicate that they are placed to take advantage of the DAM price rise in hour 17
and the peak in hours 20 and 21, since these discharging baselines also allow to make bids
for FCR-D-down reserve, taking advantage of the high price.
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(b) BESS bidding strategy

Figure 7.5: Bidding strategy results, test day 3

7.2.4 Test Day 4
The last test day studied presents a more variable price configuration, with the reserve
prices crossing the DAM prices in several hours. In this case, a combination of strategies
similar to those seen on the previous test days is presented. When FCR-N prices are higher
than FCR-D, the BESS bids on the former unless the DAM prices have a local maximum,
as is the case in hour 2. However, it can be seen that if FCR-N prices are not sufficiently
higher than FCR-D, as is the case in the middle hours of the day, it is more optimal to
bid on FCR-D, which allows for simultaneous FCR-D bids in the other reserve direction
or in the DAM. The DAM peak events are again used for discharging in hours 20 and 21.
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Figure 7.6: Bidding strategy results, test day 4

7.3 Profitability
In the previous section, the strategies adopted by the APP in terms of the expected
electricity prices have been analyzed. However, these prices are actually forecasts, so the
impact of the wrong prediction on the results has not been analyzed. In this section, the
expected revenue when planning the bidding strategy will be compared with the actual
perceived revenue, as well as the revenue that would have been obtained if perfect prices
and wind power information had been available at the time of calculating the optimal
bids.
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7.3.1 Expected vs. Realized revenue
The revenue expected by the APP is the result of the objective function defined in (5.6).
On the other hand, the realized revenue is the actual revenue that the APP will receive
based on the actual wind power realization and actual electricity prices.

The realized revenue is calculated as the sum of the revenues from the energy markets
(DAM + Imbalance settlement) and the FCR-D and FCR-N services, following (5.2), (5.4)
and (5.5) respectively. However, in this case, the actual market prices and the bidding
strategy resulting from the optimization model are used. Furthermore, the realization of
the WF is also considered to calculate the imbalance settlement for deviations from the
DAM schedule. Finally, actual frequency measurements from different days transformed to
hourly frequency data are used to calculate reserve activations due to frequency deviations.
Although the frequency measurements corresponding to the days studied are not available,
the use of actual data corresponding to other dates is representative of a typical daily
situation. It should be noted that for calculating the imbalance settlement and FCR-N
activated energy payments it is no longer necessary to perform scenario indexing, since
the system state and final imbalance price is known when calculating the realized revenue.

The expected and realized revenues over the four testing days are listed in Table 7.1. It can
be seen that although the revenues are similar for test day 1 and test day 4, the optimal
bidding strategy for test day 2 represents a very optimistic scenario, while for test day 3
it represents a pessimistic scenario.

Test Day 1 Test Day 2 Test Day 3 Test Day 4
Expected revenue (€) 37,648 43,157 37,535 36,777
Realized revenue (€) 34,258 14,058 52,634 31,343

Table 7.1: Expected vs. realized revenue

Before analyzing these deviations in depth, the realized revenue per hour over the four
days (96 hours) is illustrated in Figure 7.7, where the final height of each stacked bar
reflects the total revenue for that hour. FCR-N revenues include both reservation and
activation payments.
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Figure 7.7: Hourly realized revenue per market for the APP over four testing dates
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The graph shows variability in terms of the most influential market on total revenue. In
general, the DAM has a significant influence, especially on the first day. However, on the
second day, FCR-N acquires more relevance, as does FCR-D down-regulation on the third
day. The total contribution of each market for each day is shown in Table 7.2.

Day 1 Day 2 Day 3 Day 4
Expected Realized Expected Realized Expected Realized Expected Realized

DAM 22,026 21,321 2,813 2,645 6,706 14,496 15,158 17,097
Imbalance 0 400 0 36 0 488 0 32
FCR-D up 154 112 638 996 1,671 1,447 2,740 3,347
FCR-D down 8,828 6,269 20,564 2,769 29,157 36,204 15,943 8,385
FCR-N 6,224 5,478 18,860 7,174 0 0 2,852 2,421
FCR-N activations 415 677 285 440 0 0 84 63

Table 7.2: Expected vs. realized revenue in € per market for four test days

Several conclusions can be drawn from the above table. On the one hand, the difference
between expected revenue and realized revenue from the DAM is within an acceptable
range except for day 3. On the other hand, for the days studied, the final imbalance
settlement ends up resulting in an extra profit beyond what was expected. As seen, the
WF offers its most accurate forecast in the DAM, making the expected imbalance null.
The extra profit comes from the imbalance created because of the realization of the WF,
which has the net effect of helping with the total imbalance of the system.

As for the reserves, the largest differences in revenue are created from FCR-D down-
regulation and FCR-N participation, being the main factors that explain the largest dif-
ference between expected and realized revenue for days 2, 3 and 4. The revenue for FCR-N
activations also varies considerably in relative terms when using real frequency measures
instead of the fixed parameters used in this thesis. However, its contribution to total APP
revenue is minor, so it does not explain the total difference.

It has been seen that the biggest differences between expected revenue and realized revenue
come from the DAM and FCR markets. Obviously, the revenue of these markets is sensitive
to the forecasts used for prices and wind power, so the differences between these forecasts
and actual values are presented below.

Figure 7.8 shows the difference between expected and realized revenue in the DAM, wind
power, and DAM price. It can be clearly seen how the difference in revenue can be
explained based on prediction errors, with the third day serving as an example of an
incorrect forecast, which is precisely the day that experiences the largest deviation in
terms of DAM revenues.

Although significant wind power deviations are not present in this case, the contribution to
price discrepancies can still be observed. For instance, between hours 5 and 10, the actual
price is considerably higher than the forecasted price. However, since the WF produces
2 MW less than expected, the realized revenue does not exceed expectations by a large
margin.

The next market where significant differences are observed in terms of expected and re-
alized revenue is FCR-D down-regulation. For this market, three of the tested days show
optimistic revenue estimates, particularly exaggerated for days 2 and 4. Conversely, day 3
proves to be pessimistic, with actual revenues exceeding expectations. To analyze the four
days on an hourly basis, Figure 7.9 is included, following the same format as Figure 7.8
but showing revenues and price forecasts for FCR-D down-regulation.
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Figure 7.8: Hourly DAM realization. (From top to bottom: Realized vs Expected profit,
Wind Power Imbalance, DAM price forecast)
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Figure 7.9: Hourly FCR-D down-regulation realization. (From top to bottom: Realized
vs Expected profit, Realized vs Expected wind power, FCR-D price forecast)

As mentioned, days 2 and 4 result in higher-than-expected revenues in FCR-D down-
regulation. It can be clearly seen that this is due to a significantly deviated price estimate
on day 2 and a combination of both price and wind power deviations on day 4. Conversely,
day 3 results in higher revenue than expected due to a price deviation in the early hours
of the day (hours 48 to 57).

It is worth noting that the reserve price prediction was based on a naive predictor, so the
deviations were to be expected.

Finally, the same analysis is carried out for FCR-N, as it shows a significant deviation
in revenue on day 2. In Figure 7.10, it can be clearly seen that this difference is due to
an extremely optimistic price forecast. It is also observed that the forecast was highly
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deviated during the early hours of the third day, but since it was not considered optimal
to participate in this market, it has no impact on the revenue.
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Figure 7.10: Hourly FCR-N realization. (From top to bottom: Realized vs Expected
profit, Realized vs Expected wind power, FCR-N price forecast)

7.3.2 Forecasts vs. perfect information
With the previous result analyses, it has been demonstrated how the expected revenue of
the plant, based on the bidding strategy, is sensitive to the forecasts used. Therefore, this
section analyzes the outcomes of the model in an ideal situation where perfect forecasts are
available for planning the strategy. To achieve this, the same model described in Chapter 5
is executed, but using actual wind power and market price data as inputs.

It is worth noting that even if perfect forecasts of balancing energy prices (up-regulation
and down-regulation) are used, it is still considered that a reliable forecast of the system
state for each hour cannot be made. Therefore, scenario-based indexing is still maintained.
The same applies to the activation of reserves; the method for calculating them does not
change.

Firstly, the expected vs. realized values are listed in Table 7.3. As expected, when using
perfect information forecasts, the volatility between the expected and realized values is
much lower than when using imperfect forecasts as the ones studied in this thesis. The
difference between both revenues is precisely due to the uncertainty introduced by the
system state and the activation of reserves. If they were known exactly, the revenues
should be the same.

Test Day 1 Test Day 2 Test Day 3 Test Day 4
Expected revenue (€) 32,484 14,736 52,615 31,846
Realized revenue (€) 33,408 14,882 52,615 32,265
Table 7.3: Realized vs. expected revenue using perfect information forecasts

Additionally, the realized revenues for each market are analyzed for the case with perfect
information and real forecasts. The results are presented in Table 7.4. Firstly, it is
observed that the payment for imbalance disappears, as the wind power is known exactly
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and offered in the DAM market. Again, the remaining differences between both cases are
due to the uncertainty of reserve activation and the final imbalance price. Generally, the
perceived revenue from the DAM, FCR-N market, and reserve activation tends to increase,
while the income from FCR-D decreases.

Day 1 Day 2 Day 3 Day 4
Perfect info Forecasts Perfect info Forecasts Perfect info Forecasts Perfect info Forecasts

DAM 20,760 21,321 2,707 2,645 15,314 14,496 17,491 17,097
Imbalance 0 400 0 36 0 488 0 32
FCR-D up 165 112 718 996 1,452 1,447 2,951 3,347
FCR-D down 6,225 6,269 1410 2,769 35,849 36,204 7,834 8,385
FCR-N 5,393 5,478 9403 7,174 0 0 3,565 2,421
FCR-N activations 865 677 644 440 0 0 424 63
Total [€] 33,408 34,258 14,882 14,058 52,615 52,634 32,265 31,343

Table 7.4: Comparison of realized revenue using perfect and imperfect forecasts

When using perfect information forecasts, the BESS participation strategies change slightly
throughout the day. However, since the explanation of these follows the same principles
as those already explained with real forecasts, they have not been included.

All comparative graphs between perfect information forecasts and real forecasts, including
strategies for the WF and BESS, can be found in Appendix A, as well as the considered
system state scenarios.
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8 Discussion
In Chapter 4, different wind power prediction models have been tested and analyzed,
and in Chapter 6, the remaining inputs used for the bid optimization model developed
in Chapter 5 have been defined. These inputs include DAM forecasts, for which different
models have been analyzed, and reserve and regulation price forecasts, for which naive
predictors have been employed. Other analyzed inputs include the scenarios of power
need for the electrical system and historical frequency values to define the activation
parameters. The outcome of all these analyses are the results presented in Chapter 5,
where the different bidding strategies adopted by the APP and their economic performance
have been analyzed.

Based on all the analysis of results done so far, this chapter elaborates on them, summa-
rizing the main findings and developing insights.

8.1 Wind power forecasts
A correct estimation of wind power has proven important in defining optimal market
participation strategies, as it has been shown that a significant contributor to the APP’s
final revenue has been the participation of the WF in the DAM on most of the days
studied. This does not mean that it always provided the highest income, as depending on
the price configuration, there were days when bids in reserve markets were more lucrative.
However, the revenue from participation in the DAM was never neglectable.

The analysis of the WF’s SCADA data available for this thesis has identified wind speed
as the main factor for wind power prediction, as expected due to their cubic relationship.
The strong correlation presented led to the exploration of regression-based models. Thus,
a simple linear regression model was tested first, followed by an autoregressive model in
which past values of wind power were considered as features for the model. Both methods
had the drawback of predicting particularly poorly during periods of low wind power,
although the use of autoregressive variables proved more efficient in accurately predicting
peak power values. Finally, given the cubic relationship between wind speed and power, a
model based on local weighted regression was implemented, which allowed for a smoother
fit curve and achieved the best prediction results.

However, the use of external variables requires their own forecasts. Although external
forecasts obtained from DMI have been used, the difficulty of adapting these forecasts to
the particular conditions of the WF has resulted in predictions with considerable errors,
highlighting the importance of having proprietary forecasts for the exogenous variables to
be considered.

8.2 Electricity prices forecasts
Price forecasting has been the most important factor both for planning market partici-
pation strategies and for the final revenue obtained on the studied days, with deviations
between expected revenue and realized revenue coinciding with deviations in price fore-
casts.

Unlike with wind power, from the analysis of the day-ahead market price time series, it
was decided to evaluate time series forecasting methods of varying complexity. The first
model tested was Prophet, which resulted in worse outcomes than a SARIMA model that
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considered the seasonality of the price time series. For this model, it was more accurate to
manually tune it by selecting parameters based on the ACF and PACF functions rather
than automatically with predefined functions. Finally, the possibility of incorporating
exogenous variables into the model was explored, resulting in a SARIMAX model, which
proved to be the best both in absolute and relative terms.

As with the wind power forecasts, external forecasts for the exogenous variables were
used, in this case from the ENTSO-E platform. These forecasts were useful for improving
the model, although there was still significant variability in results depending on the day
tested. Therefore, for a real application, more complex models should be studied.

Regarding the FCR reserve market prices, it has been analyzed that during the first
half of 2024, FCR-N prices have generally been higher than FCR-D prices, with up-
regulation prices being lower than down-regulation prices. This price profile may indicate
that participation in FCR-N could be more lucrative than in FCR-D. However, since the
objective of this thesis is not to conduct an economic study on the integration of the APP
into the markets, and given the need to simplify the methodology due to time constraints,
the decision was made to opt for naive predictors. While these predictors have resulted in
significant error, they have allowed this price trend to be roughly maintained.

Although the price trend has been maintained with these simplifications and has allowed
for the identification of potential bidding strategies for the BESS, they have produced a
significant deviation between the expected revenue and the final perceived revenue. This
has highlighted the need for accurate predictions.

The same applies to the prediction of balancing energy prices, where the simplification
of methods has induced a lot of error in price prediction. However, these errors have
not significantly influenced the final strategies or the final revenue, as they were used
to quantify the benefit from reserve activations, which have turned out to be a minimal
fraction of the final revenue.

8.3 Other modelling considerations
Other areas where assumptions have been made when implementing the optimization
algorithm include the creation of scenarios to model the system’s state at each hour, as
well as the creation of reserve activation parameters.

The first aspect has been implemented to define the final regulation and imbalance prices
of the system, as these depend on the net state of the system at each hour (power deficit,
excess, or balanced). Due to the difficulty in predicting the above, considering various
scenarios and calculating the average revenue across all of them allows for an adequate
modeling of these conditions. These scenarios have been created based on historical data
regarding the system’s state for the first half of 2024, aiming to reflect this frequency in
the set of scenarios. The implementation of this technique allows for a more conservative
bidding strategy and reduces the potential error between expected and realized revenue.
Additionally, when evaluating expected and realized revenue in the case of exact price
forecasts, where scenario indexing has been maintained, the difference between them has
not been significant, so this technique has proven adequate. This is also related to the
fact that, as mentioned, the revenue from FCR-N reserve activations constitutes a small
fraction of the total profits.

On the other hand, real frequency data measured in the system with a 1-second resolution
have been analyzed. Using the FCR-N and FCR-D activation curves, activation signals
have been calculated and, after averaging them to obtain hourly resolution, the mean has
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been used as the reserve activation parameter. When calculating the realized revenue, the
deviation in revenue related to FCR-N activations is significant, but since the contribution
to the APP’s total revenue is small, this procedure has been sufficient for the modelling
of the reserve algorithm.

8.4 Bidding strategies
The bidding strategies based on prices have been explained in the previous chapter for
each of the four days explored. However, although the price configuration for each day is
different, many strategies are repeated, so they are discussed in this section.

Firstly, the strategy for the WF is repeated for all the study days. It offers its most
accurate prediction in the DAM and the same amount as downward reserve in the FCR-D
market. With the current price level, this occurs because a WT would have to operate
under curtailment if it offered in FCR-D up-regulation or FCR-N to have sufficient capacity
to increase power if a sudden reserve activation occurs. In this situation, the WF prefers
to offer in the DAM and gain extra benefit from the FCR-D down-regulation reserve, as
it does not require curtailment in real time unless activation.

Regarding the BESS, repetitive patterns are also observed throughout the days. On the
one hand, it is observed that the battery prefers to offer in reserve markets rather than
in the DAM. However, during periods when it is more optimal to offer in FCR, it takes
advantage of local maxima in day-ahead prices to discharge and have more reserve to offer
for up-regulation, or local minima to charge and have more reserve to offer for down-
regulation.

It is also observed that the expected revenues from reserve activations in FCR-N are not
significant enough to determine the optimal strategy, and it ends up choosing the reserve
service with the highest price per capacity. Thus, whenever FCR-D prices are higher
than FCR-N prices, it opts for the former, even if the latter allows to earn money from
activated energy. In fact, the BESS opts for FCR-D even when the FCR-N price is slightly
higher. The reason is that since FCR-D is an asymmetric service, it can combine offering
in the DAM with offering in FCR-D to maximize profit. For example, the BESS can offer a
baseline discharge at maximum discharge power in the DAM and a downward reserve of up
to twice its capacity (half by stopping discharge and the other half by charging capacity),
earning money from both the DAM and FCR-D for the same hour. However, these cases
may encounter limitations not studied in this thesis, such as leading to impossible real-
time operation due to SOC limits. This situation could be avoided if the SOC for each
hour is limited by considering that full reserve activations might occur, but this would
lead to overly conservative BESS operation and would not allow for the analysis of a wide
variety of strategies. In addition, it would be interesting to study the price difference at
which the BESS opts for FCR-D or FCR-N.

Regarding the profitability of the results, the expected revenues have been compared with
the realized revenues. While for two of the four days studied the differences are not very
large, the same cannot be said for the other two days. After analyzing the revenues by
market, it has been observed that the largest differences come from erroneous forecasts of
reserve prices. As already mentioned, these prices come from naive forecasts, so the in-
duced error explains the revenue deviations. For that reason, the expected revenue has also
been analyzed against the realized revenue using perfect price forecasts, where it has been
shown that the volatility between expected and realized revenues is reduced, highlighting
once again the need for accurate forecasts to obtain realistic expected revenues.
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9 Conclusions
This thesis has focused on developing a bidding strategy algorithm for the participation
and management of an APP, consisting of a WF and BESS, in electricity markets and
ancillary services. By achieving its specific objectives, this research has addressed the
integration of data-driven models for both electricity prices and wind power forecasting
with optimization models to derive optimal bidding strategies in the joint markets of DAM,
FCR-D, and FCR-N.

The initial step involved the refinement and filtration of SCADA data collected from multi-
ple WTs, ensuring proper data quality for model training. After selecting the explanatory
variables to be considered, forecasting techniques were developed to predict wind power
generation and electricity prices, focusing on regressive methods for the first and time
series models for the second. However, forecasts for reserve and balancing energy prices
have been done with naive predictors. These forecasts served as critical inputs for the for-
mulation of a MILP optimization model designed to determine optimal bidding schedules
for APP participation in the aforementioned markets.

For wind power forecasts, the explanatory variables chosen from data analysis were in-
corporated into the model using external forecasts. However, the difficulty in adjusting
these forecasts to the specific characteristics of the WF (such as location, hub height, etc.)
resulted in poor forecast accuracy. In contrast, including external forecasts for predicting
DAM prices did not distort the results as significantly.

Given that the objective of this work was not to conduct an economic viability study
of the markets, the developed model was tested only over four days with different price
configurations to analyze various market participation strategies. This approach allowed
the study of optimal participation strategies for the WF, revealing that the best strategy
involves bidding its most accurate forecast into the DAM and FCR-D down-regulation
reserve. Additionally, the strategy for the BESS was analyzed, showing a preference for
reserve markets over the DAM. It was also found that, given the assumptions made, FCR-
N reserve activations generally do not constitute the fundamental criteria for choosing
FCR-N over FCR-D.

The developed strategies were analyzed by comparing expected revenues with realized
revenues. This analysis included scenarios where perfect information forecasts were used,
in which actual electricity prices and wind power were known at the time of planning the
bid offering strategy. This comparison highlighted the necessity for more precise forecasts
to reduce the gap between expected and realized revenues. Achieving more accurate
forecasts could enable the creation of realistic long-term business scenarios, enhancing the
economic viability and strategic planning of APPs in actual market conditions.

9.1 Future Works
Although this thesis has successfully demonstrated the integration of data-driven models
and optimization techniques to define bidding strategies, numerous simplifications and
assumptions were made during the development process. Therefore, this section outlines
potential areas for future work.

9.1.1 Wind power forecasts
• Advanced data filtering techniques: In this thesis, the initial step for wind

power forecasts involved data filtering using the normal operation ranges provided by
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the manufacturer. However, if such operational ranges are not available, it would be
necessary to develop advanced models for data filtering. Examples of such techniques
have been discussed in the literature review.

• Exploration of more complex models: Future research should explore more
complex models, such as time series models, to improve the accuracy of wind power
forecasts. Additionally, it would be advantageous to develop forecasts for the exoge-
nous features considered.

• Consideration of additional inputs: Future work could include other aspects to
improve the final forecast of the WF, such as the layout and orographic obstacles.
These factors were not considered in this thesis due to their complexity, but their
inclusion could improve the accuracy of the forecasts.

9.1.2 Electricity prices forecasts
• Forecast of reserve and balancing prices: Besides improving the DAM price

forecasts with more complex models, future work should focus on developing more
sophisticated models for predicting reserve and balancing energy prices.

9.1.3 Bidding strategy algorithm
• Dynamic bidding strategy: This thesis assumes that the bidding strategy is de-

fined at the closure of the FCR market and not modified afterwards. However, in
practice, DAM offers can be modified until the DAM market closure, which occurs
almost 12 hours later. This allows the use of forecasts with a shorter horizon, po-
tentially increasing accuracy. Future work should consider this dynamic adjustment
capability to refine the bidding strategy. Furthermore, the active participation of
the BESS in the balancing market to reduce deviations could be analysed.

• FCR-D and FCR-N late auctions: Future research could also explore the po-
tential benefits of participating in late auctions for FCR-D and FCR-N.

• Real-time control model: This thesis did not consider a real-time control model
for the plant. Consequently, situations where the BESS might fail to activate reserves
due to state-of-charge (SOC) constraints were not studied. Future work should in-
corporate a real-time control model to address these scenarios, ensuring more reliable
and resilient operation of the APP.

• Stochastic vs deterministic models: The current model is deterministic, relying
on point forecasts. Future work should focus on developing a stochastic model that
incorporates probabilistic forecasts and scenario indexing, similar to the approach
used for regulation prices. This would enable the inclusion of risk aversion metrics
in the objective function.
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A Sustainable Development Goals
A positive outcome of this project for a real application would imply the feasibility of de-
veloping aggregated asset management models that improve the energy efficiency of these
assets and create a business case for their participation in electricity markets and ancillary
services. On the one hand, economic viability would motivate generation companies to
continue installing wind farms and consider hybridization with energy storage assets. On
the other hand, ancillary services have traditionally been performed by non-conventional
plants, so a correct performance of aggregated renewable assets would facilitate the dis-
placement of these non-conventional plants and their replacement by renewables. There-
fore, this project has a clear alignment with Sustainable Development Goals (SDGs) 7,
Affordable and Clean Energy, and 13, Climate Action .
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A Appendix

A.1 Real vs. perfect information forecasts

A.1.1 Test day 1
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Figure A.1: Real vs. Forecasted prices for test day 1
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Figure A.2: WF bidding with real forecasts and perfect information for test day 1
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Figure A.3: BESS bidding with real forecasts and perfect information for test day 1

A.1.2 Test day 2
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Figure A.4: Real vs. Forecasted prices for test day 2
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Figure A.5: WF bidding with real forecasts and perfect information for test day 2
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Figure A.6: BESS bidding with real forecasts and perfect information for test day 2

A.1.3 Test day 3
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Figure A.7: Real vs. Forecasted prices for test day 3
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Figure A.8: WF bidding with real forecasts and perfect information for test day 3
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Figure A.9: BESS bidding with real forecasts and perfect information for test day 3

A.1.4 Test day 4
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Figure A.10: Real vs. Forecasted prices for test day 4
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Figure A.11: WF bidding with real forecasts and perfect information for test day 4
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Figure A.12: BESS bidding with real forecasts and perfect information for test day 4

A.2 Scenario matrix of power system states

Hour Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
0 0 1 1 -1 0
1 0 0 0 0 1
2 1 1 1 -1 1
3 1 0 -1 0 1
4 -1 1 1 -1 0
5 1 0 -1 0 -1
6 1 0 -1 1 0
7 1 1 1 -1 1
8 0 0 1 1 -1
9 0 -1 -1 -1 -1

10 -1 1 -1 1 1
11 -1 -1 -1 -1 1
12 0 1 1 -1 1
13 -1 1 -1 1 1
14 -1 -1 -1 -1 1
15 0 -1 1 -1 1
16 1 1 1 -1 0
17 0 -1 1 1 1
18 1 -1 0 1 -1
19 0 0 1 1 0
20 -1 -1 1 1 1
21 -1 -1 -1 0 -1
22 1 0 -1 -1 -1
23 -1 1 1 -1 1

Table A.1: Power system state per scenario per hour (1 : Power deficit, 0: Balanced, -1:
Power excess)

Aggregated energy intelligence 79


	Abstract
	Acknowledgements
	Abbreviations
	Nomenclature
	1 Introduction
	1.1 Context and motivation
	1.2 Thesis objectives
	1.3 Thesis structure

	2 State-of-the-Art
	2.1 Literature review
	2.2 Contributions and thesis scope

	3 Theoretical Framework
	3.1 Wind turbines
	3.2 Electricity markets
	3.3 Uncertainties and forecasting methods

	4 Wind Power Forecasting
	4.1 Data description
	4.2 Data analysis and feature selection
	4.3 Forecasting models

	5 Bidding Strategy Formulation
	5.1 Considerations
	5.2 Objective Function
	5.3 Constraints
	5.4 Decision Variables

	6 Model Inputs
	6.1 Time Framework
	6.2 Wind Power Forecasts
	6.3 Day-Ahead Market Price
	6.4 Reserve Prices
	6.5 Regulation Prices
	6.6 Frequency Reserve Activations

	7 Results
	7.1 Assumptions and considerations
	7.2 Bidding strategies
	7.3 Profitability

	8 Discussion
	8.1 Wind power forecasts
	8.2 Electricity prices forecasts
	8.3 Other modelling considerations
	8.4 Bidding strategies

	9 Conclusions
	9.1 Future Works

	Bibliography
	A Sustainable Development Goals
	A Appendix
	A.1 Real vs. perfect information forecasts
	A.2 Scenario matrix of power system states


