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Abstract
Given a non-negative recursion matrix describing higher order recurrence relations for mul-
tiple orthogonal polynomials of type II and corresponding linear forms of type I, a general
strategy for constructing a pair of stochastic matrices, dual to each other, is provided. The
Karlin–McGregor representation formula is extended to both dualMarkov chains and applied
to the discussion of the corresponding generating functions and first-passage distributions.
Recurrent or transient character of the Markov chain is discussed. The Jacobi–Piñeiro mul-
tiple orthogonal polynomials are taken as a case study of the described results. The region
of parameters where the recursion matrix is non-negative is given. Moreover, two stochastic
matrices, describing two dual Markov chains are given in terms of the recursion matrix and
the values of the multiple orthogonal polynomials of type II and corresponding linear forms
of type I at the point x = 1. The region of parameters where the Markov chains are recurrent
or transient is given, and the connection between both dual Markov chains is discussed at the
light of the Poincaré’s theorem.
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1 Introduction

In this paper we will show that multiple orthogonality, of both types I and II, are related to
Markov chains beyond birth and death chains. This paper is a revised and shortened version
of our previous prepublication [8].

The interplay of orthogonal polynomials and stochastic processes is quite old. We can
refer the role played by Hermite polynomials in the theory of stochastic processes and the
integration with respect to the Wiener process [22, 40].

The 1950switnessed important advances in the understanding of the links between orthog-
onal polynomials and stochastic processes. Indeed, highly influential papers on the role of
spectral representation of birth and death processes probabilities appeared in those years.
Let us mention the celebrated papers by Kendal, Ledermman and Reuter [27–29] and also
the seminal works by Samuel Karlin and James McGregor. In particular, the works [23, 24]
were devoted to birth and death Markov processes touching differential and classification
aspects. In these works the authors presenting an integral representation of the transition
probability matrix reveals the intimate relation between the theory of birth and death pro-
cesses and the theory of the Stieltjes moment problem. Moreover, in [25] the authors studied
random walks, that is uncountable Markov chains, and presented one of theirs key findings:
the Karlin–McGregor representation formula. These formula allow an interpretation of rel-
evant probabilistic objects in terms of orthogonal polynomials and their recurrence. For an
account on this see [35] as well as [12, 19].

Nowadays, a birth-death polynomial sequence is defined as a standard orthogonal poly-
nomial sequence which is orthogonal with respect to a measure on [−1, 1] and which is such
that the three term recurrence relation coefficient are nonnegative, and the corresponding
Jacobi matrix is stochastic. Randomwalk polynomials have become a classical subject in the
literature on orthogonal polynomials, for example, see [21, Chapter 4] for a recent account
of some of its relevant aspects.

The contents of the paper are as follows. In Sect. 2 we define type I and II multiple
orthogonal polynomials, their biorthogonality, and for the step line case we present the
homogeneous linear recurrence relations satisfied by both types of polynomials as well as the
reproducing kernel and the corresponding Christoffel–Darboux formula within the sequence
of multiple orthogonal polynomials.

The next two sections are the core of the paper. In Sect. 3 we give a general strategy for
constructing stochastic matrices once a non negative recursion matrix is known. For this aim
we assume the zeros of the orthogonal polynomials of type II and linear forms of type I
belong to a bounded set, which is satisfied as an example for AT-systems. In Theorem 2
we provide a candidate for an invariant distribution constructed in terms of the orthogonal
polynomials of type II and linear forms of type I. Then, in Theorem 3, we extend to multiple
orthogonal polynomials of type I and II the representation formula of Karlin and McGregor,
and in Theorem 4 the generating functions for transition probabilities and first passage are
given. Theorem 5 gives the integral formula characterizing recurrent and transient Markov
chains.

Finally, in Sect. 4 we use the Jacobi–Piñeiro multiple orthogonal polynomials as a case
study. We recall the explicit expressions for Jacobi–Piñeiro multiple orthogonal polynomials
of type II, and in Theorem 6 we give the explicit expressions for the two families of Jacobi–
Piñeiro multiple orthogonal polynomials of type I. To our best knowledge this is the first time
such an expression is found. In Theorem 8 the region of parameters in which the Jacobi–
Piñeiro’s recursion matrix is nonnegative is determined. In Theorem 9 and Corollary 3 the
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stochastic matrix of type II is given and the coefficients are explicitly determined as rational
functions in the Jacobi–Piñeiro parameters α1, α2, γ and n. Then, in Theorem 10 the Jacobi–
Piñeiro type I stochastic matrix is given. In Proposition 3 it is proven, using Poincaré’s
theorem and the Christoffel–Darboux formula that, in the large n-limit, the dual stochastic
matrices are transposed to each other. In Proposition 4 the region of parameters classifying
recurrent and transient Markov chains is determined. Finally, some particular examples, of
types I and II, recurrent and transient, are discussed in more detail.

2 Multiple orthogonal polynomials

LetM(�) denote the finite Borel measures which have support, with infinitely many points
in the interval � ⊂ R, where they do not change sign. A weight on � is a real integrable
function defined on � which does not change its sign on �. For a finite Borel measure
μ ∈ M(�) we consider a system of weights �w = (w1, . . . , wp) on �, with p ∈ N, and
a multi-index �ν = (ν1, . . . , νp) ∈ N

p
0 , and denote |�ν| = ν1 + · · · + νp. Then, there exist

polynomials, A�ν,1, . . . , A�ν,p, not all identically equal to zero, which satisfy the following
orthogonality relations

∫
�

x j
p∑

a=1

A�ν,a(x)wa(x)dμ(x) = 0, deg A�ν,a ≤ νa − 1, j ∈ {0, . . . , |�ν| − 2}. (1)

Analogously, there exists a polynomial B�ν not identically equal to zero, such that∫
�

B�ν(x)wa(x)x jdμ(x) = 0, deg B�ν ≤ |�ν|, j = 0, . . . , νa − 1, a = 1, . . . , p.

(2)

These families of polynomials are, respectively called, type I and type II multiple orthogonal
polynomials, with respect to the combination (μ, �w, �ν) of the measure μ, the system of
weights �w and the multi-index �ν. We also refer to Q�ν(n+1)(x) = ∑p

a=1 A�ν(n+1),a(x)wa(x)

as type I linear forms associated with (μ, �w, �ν).

When p = 1 both definitions coincide with standard orthogonal polynomials on the real
line. The existence of a system of polynomials (A�ν,1, . . . , A�ν,p) and a polynomial B�ν defined
from (1) and (2) respectively, is ensured by solving a system of |�ν| linear homogeneous
equations with |�ν| + 1 unknown coefficients.

From the theory of orthogonal polynomials it is well known that when p = 1 each
polynomial A1 ≡ B has exactly degree |�ν| = ν1; for p > 1 that is not true in general. For
instance, if �w = (w1, w1, . . . , w1) the solution linear space has dimension bigger than one,
and we can find two solutions which are linearly independent. Hence, there is at least an
a ∈ {1, . . . , p} such that deg A�ν,a < νa − 1 and deg B < |�ν|. Given a measure μ ∈ M(�)

and a system of weights �w on � a multi-index �ν is called type I or type II normal if deg A�ν,a
is equal to νa − 1, a = 1, . . . , p or deg B must be equal to |�ν| − 1, respectively. These two
conditions are equivalent (cf. [38]) When for a pair (μ, �w) all the multi-indices are type I
normal (or equivalently, type II normal), then the pair is called perfect.

Multiple orthogonal polynomials satisfy a finite order recurrence relation but, since we
are working with multi-indices, there are several ways to decrease or increase the degree of
the multiple orthogonal polynomials. In this work we stay on the step line case, i.e.

�ν( j) ∈ {(0, . . . , 0), (1, 0, . . . , 0), . . . , (1, . . . , 1, 0), (1, . . . , 1), (2, 1, . . . , 1), . . .},
|�ν( j)| = j,
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for j ∈ {0, 1, . . .}. In this case we denote

B(n)(x) = B�ν(n)(x) and Q(n)(x) = Q�ν(n+1)(x).

The following multiple biorthogonality relations
∫ 1

0
B(l)(x)Q(k)(x)dμ(x) = δl,k, l, k ∈ N0, (3)

hold.
Vector of type II multiple orthogonal polynomials and associated type I linear forms are

defined by

B :=
⎡
⎢⎣

B(0)

B(1)

...

⎤
⎥⎦ , Q :=

⎡
⎢⎣

Q(0)

Q(1)

...

⎤
⎥⎦ .

For further information on multiple orthogonal polynomials, we recommend consulting [1,
9, 21, 32].

It is well known (cf. [38]) that the type II multiple orthogonal polynomials and the type I
linear forms verify recurrence relations for the step line case. Defining

the recursion relations can be written as the following eigenvalue properties that the vec-
tor type II multiple orthogonal polynomials and the corresponding vector type I multiple
orthogonal polynomials verify

T B = x B, T �Q = x Q.

That is, for n ∈ N0, the following order N + 1 homogeneous linear recurrence relations are
satisfied

Tn,n−N B(n) + · · · + Tn,n B(n) + B(n+1) = x B(n),

Q(n−1) + Tn,n Q(n) + · · · + TN+n,n Q(N+n) = x Q(n) where Q(−1) = 0.

Notice that in order to have multiple orthogonality, it is necessary that TN+i,i �= 0 for
i ∈ N0. This condition implies the irreducibility of the matrix. Consequently, there cannot
exist a permutation matrix that, upon conjugation, transforms the matrix into the direct sum
of two blocks. In other words, there are no proper invariant subspaces in such a scenario.

When dealing with the case where matrix T is nonnegative, this condition is tantamount
to the existence of an integer q for which T q becomes a positive matrix.

Daems and Kuijlaars found a CD formula for near neighbours (cf. [16, 17]). Notice that
this formula involves polynomials that are not in the step-line. In our analysis we required a
CD formula adapted to the step-line. In this context Sorokin and Van Iseghem [37] derived
such a CD formula in a general context, that can be particularized to multiple orthogonal
polynomials scenario (see also [3, 13, 15]). The Christoffel–Darboux (CD) kernel is given
by
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K (n)(x, y) :=
n−1∑
m=0

B(m)(y)Q(m)(x),

fulfills a reproducing property and Christoffel–Darboux formulas, i.e.

For example, for N = 2, the CD formula reads as follows

(y − x)K (n)(x, y) = Q(n−1)(x)B(n)(y)

− Q(n)(x)
(
Tn,n−2B(n−2)(y) + Tn,n−1B(n−1)(y))

− Q(n+1)(x)Tn+1,n−1B(n−1)(y).

Taking y = x in the previous CD formulas leads to

Q(n−1)(x)B(n)(x) = Q(n)(x)
(
Tn,n−2B(n−2)(x) + Tn,n−1B(n−1)(x))

+ Q(n+1)(x)Tn+1,n−1B(n−1)(x). (4)

3 Stochastic matrices, Markov chains for AT systems

A set of functions {ϕ}s
i=1is said a Chebyshev system in [a, b] if the set is linearly

independent and any linear combination a1ϕ1 + · · · + asϕs has at most s − 1 zeros
in [a, b]. We say that {μ, �w} is an algebraic Chebyshev system (AT system, T is from
the French transliteration Tchebycheff) if for any index �ν = (ν1, . . . , νp) it holds that
{w1, . . . , xν1−1w1, . . . , wp, . . . , xνp−1wp} is a Chebyshev system in the support ofμ, [a, b]
(cf. [32, 38]). In this case the zeros of type II polynomials and the ones of the type I linear
forms are confined to (a, b), and the index (ν1, . . . , νp) is normal, so the system {μ, �w} is
perfect.

We give two definitions of bounded banded Hessenberg semi-infinite matrices:

(i) A semi-infinite stochastic matrix PI I is said to be a multiple stochastic matrix of type II
if it has the form
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(ii) A semi-infinite stochastic matrix PI is said to be a multiple stochastic matrix of type I if
it has the form

The same definition holds for the semi-stochastic case.
Now, we describe a method for deriving two stochastic matrices from a set of multiple

biorthogonal polynomials associated with an AT system.
Given the corresponding recursion matrix T we will get a stochastic matrix P using the

linear recurrence relation in its eigenvalue form T B(x) = x B(x), and consequently using
properties of the sequence of multiple orthogonal polynomials of type II {B(l)(x)}∞l=0. These
ideas extend to the transposed recursion matrix T �, and we will use the eigenvalue property
T �Q(x) = x Q(x) for the type I linear form Q(x) = ∑p

a=1 Aa(x)wa(x).

Theorem 1 (Multiple stochastic matrix) Let us assume that {B(n)} and {Q(n)} are the type
II monic multiple orthogonal polynomial and type I linear form sequences, with respect to
an AT system {μ, �w} on the interval [0, 1]. If the recursion matrix T is nonnegative and
Q(n)(1) > 0, then

is such that

PI I := σI I T σ−1
I I , PI I ,n,m = B(m)(1)

B(n)(1)
Tn,m,

PI := σI T �σ−1
I , PI ,n,m = Q(m)(1)

Q(n)(1)
Tm,n

are, respectively, a multiple stochastic matrix of type II, and multiple stochastic matrix of
type I.

Proof Notice that each of the type IImultiple orthogonal polynomials B(n) is amonic polyno-
mial whose zeros are in the interval (0, 1), cf. [32, Corollary of Theorem 4.3], so B(n)(1) > 0
and we can assert that B(1) is a positive vector. By definition of σI I , we have 1 = σI I B(1).
As for n ∈ N0 we have σI I ,n > 0, and by hypothesis σI ,n > 0, the matrices PI I and PI are
nonnegative and

PI I 1 = σI I T σ−1
I I σI I B(1) = σI I T B(1) = σI I B(1) = 1,

PI 1 = σI T �σ−1
I σI Q(1) = σI T Q(1) = σI Q(1) = 1,

as desired. 
�
As we have seen, we have two stochastic matrices PI and PI I , we say that they are dual

stochastic matrices. The corresponding Markov chains are said to be dual.
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Corollary 1 Both dual stochastic matrices, PI and PI I are connected by

σ−1
I PI σI = (

σ−1
I I PI I σI I

)�
.

That is, the stochastic matrices coefficients fulfill

PI ,n,n−k = B(n−k)(1)Q(n−k)(1)

B(n)(1)Q(n)(1)
PI I ,n−k,n, (5)

with m = n − k, k ∈ {−1, 0, 1, . . . , N }, where N is the number of nonzero subdiagonals of
the recursion matrix T .

We now present a candidate for an invariant distribution.

Theorem 2 (Invariant measure) Let us assume conditions in Theorem 1. Then,

(i) The row vector κ = (B(0)(1)Q(0)(1), B(1)(1)Q(1)(1), . . .) is a nonnegative vector,
which is a left eigenvector of both dual multiple stochastic matrices PI I and PI with
unit eigenvalue κ PI I = κ and κ PI = κ .

(ii) If

lim
n→∞ K (n)(1, 1) =

∞∑
k=0

B(k)(1)Q(k)(1) < ∞,

then π = κ
‖κ‖1 , is an invariant distribution for both dual Markov chains. In this situation

the Markov chain is positive recurrent, and whenever the chain is aperiodic is also
ergodic.

(iii) If

lim
n→∞

B(n+1)(1)Q(n+1)(1)

B(n)(1)Q(n)(1)
< 1

we have π = κ
‖κ‖1 , is an invariant distribution.

Proof (i) We have the eigenvalue property of the recursion matrix (Q(1))� = (Q(1))�T ,

so that

(Q(1))�σ−1
I I = (Q(1))�σ−1

I I σI I T σ−1
I I .

Thus, as (Q(1))�σ−1
I I = κ, we get one the assertions. For the other we recall (B(1))� =

(B(1))�T � so that

(B(1))�σ−1
I = (B(1))�σ−1

I σI T �σ−1
I .

and now, we notice (B(1))�σ−1
I = κ, and we get the other case.

(ii) If κ ∈ 	1, as ‖κ‖1 = κ 1, the row vector π = κ
‖κ‖1 is a probability vector, π 1 = 1.

Therefore, we have found an invariant distribution.
Finally, applying d’Alembert’s ratio test we see that (iii) holds true. 
�
Remark 1 Nowwe comment on ergodic states as discussed in [25]. The πn introduced in [25]
correspond to B(n)(1)Q(n)(1) in the standard tridiagonal scenario, observe also that the
corresponding vector (π0, π1, . . .) in [25] is not a probability vector yet as it needs to be
normalized. Recall also that for a birth and death Markov chain; i.e., a tridiagonal case, we
have 1/ρ = ∑∞

n=0 πn = limn→∞ K (n)(1, 1), being ρ = C(1), the Christoffel function
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evaluated at 1. Therefore, following [36] for the standard situation described in [25] the
process is ergodic if and only if 1 is a mass point of the measure dψ, in the notation used
in [25]. This is what in [25] is referred as a jump of ψ.

We now bring the results of Karlin andMcGregor concerning tridiagonal stochastic matri-
ces [25] to the multi-diagonal situation of multiple orthogonal polynomials.

We have seen in Theorem 1 that certain sets of multiple orthogonal polynomials give two
families of stochastic matrices PI I and PI . Here PI I models a Markov chain with allowed
jumps backward farther than near neighbors, and PI models a random walk with allowed
jumps forward farther than near neighbors.

Theorem 3 (KMcG representation formula) Let us assume the conditions requested in The-
orem 1. Then, for a Markov chain with transition matrix PI I , the probability, after r steps
from state n to state m is given by

Pr
I I ,nm = B�ν(m)(1)

B�ν(n)(1)

∫ 1

0
xr B�ν(n)(x)Q�ν(m+1)(x)dμ(x). (6)

Moreover, for a Markov chain with transition matrix PI , the probability, after r steps from
state n to state m is given by

Pr
I ,nm = Q�ν(m+1)(1)

Q�ν(n+1)(1)

∫ 1

0
xr B�ν(m)(x)Q�ν(n+1)(x)dμ(x). (7)

Proof In terms of the recursion matrix T we have

Pr
I I ,nm = (T r )n,m

B(m)(1)

B(n)(1)
.

But, T r B(x) = xr B(x) so that
∑∞

m=0(T
r )n,m B(m)(x) = xr B(n)(x) and using biorthogo-

nality (3) we get

(T r )n,m =
∫ 1

0
xr B(n)(x)Q(m)(x)dμ(x),

and (6) follows.
In terms of the transposed recursion matrix T � we have

Pr
I ,nm = ((T �)r )n,m

Q(m)(1)

Q(n)(1)
= (T r )m,n

Q(m)(1)

Q(n)(1)

and we obtain (7). 
�
For this discussion see for instance [18, 25]. The generating functions of the probability Pn

i j

and first-passage-time probability f n
i j given by Pi j (s) = ∑∞

n=0 Pn
i j s

n, Fi j (s) = ∑∞
n=1 f n

i j s
n,

are connected by Pi j (s) = Fi j (s)Pi j (s), for i �= j, and Pj j (s) = 1 + Fj j (s)Pj j (s). That
allows us to express the generating functions of the first time passage distributions after n
transitions in terms of the generating functions for the transition probability after n transitions.

Theorem 4 In the conditions of Theorem 1, then for |s| < 1, the transition probability
generating function reads as

PI I ,nm(s) = B�ν(m)(1)

B�ν(n)(1)

∫ 1

0

B�ν(n)(x)Q�ν(m+1)(x)

1 − sx
dμ(x),
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while for the first passage generating function we have

FI I ,nm(s) = B�ν(m)(1)

B�ν(n)(1)

∫ 1

0
B�ν(n)(x)Q�ν(m+1)(x)

1−sx dμ(x)∫ 1

0
B�ν(m)(x)Q�ν(m+1)(x)

1−sx dμ(x)
, n �= m,

Fnn(s) = 1 − 1∫ 1

0
B�ν(n)(x)Q�ν(n+1)(x)

1−sx dμ(x)
.

Moreover, for |s| < 1, the transition probability generating function reads as

PI ,nm(s) = Q�ν(m+1)(1)

Q�ν(n+1)(1)

∫ 1

0

B�ν(m)(x)Q�ν(n+1)(x)

1 − sx
dμ(x),

while for the first passage generating function we have

FI ,nm(s) = Q�ν(m+1)(1)

Q�ν(n+1)(1)

∫ 1

0
B�ν(m)(x)Q�ν(n+1)(x)

1−sx dμ(x)∫
�

B�ν(m)(x)Q�ν(m+1)(x)

1−sx dμ(x)
, n �= m,

Fnn(s) = 1 − 1∫ 1

0
B�ν(n)(x)Q�ν(n+1)(x)

1−sx dμ(x)
.

Proof Let us denote by PI I (s) = (
PI I ,nm(s)

)
n,m∈N0

the semi-infinite matrix whose coeffi-
cients are the transition probability generating functions. Then, as |s| < 1 and ‖PI I ‖∞ = 1,
we know that for the first Neumann type expansion PI I (s) = ∑∞

k=0 Pk
I I sk = (

I − s PI I
)−1

,

uniformly in norm. Now, as

PI I σI I B(x) = σI I T σ−1
I I σI I B(x) = xσI I B(x),

we conclude that
(
I − s PI I

)
σI I B(x) =

(
1 − sx

)
σI I B(x),

and, consequently,

(
I − s PI I

)−1
σI I B(x) = 1

1 − sx
σI I B(x).

Therefore,

∞∑
m=0

PI I ,nm(s)σI I ,m B(m)(x) = 1

1 − sx
σI I ,n B(n)(x).

Now, using biorthogonality (3) we get

PI I ,nm(s) = σI I ,n

σI I ,m

∫ 1

0

1

1 − sx
B(n)(x)Q(m)(x)dμ(x).

For the type I we proceed analogously. For |s| < 1, the following first Neumann expansion
converges uniformly PI (s) = ∑∞

k=0 Pk
I sk = (

I −s PI
)−1

.Now, analogously to the previous
discussion, we have

PI σI Q(x) = σI T �σ−1
I σI Q(x) = xσI Q(x),
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so that
(
I − s PI

)
σI Q(x) =

(
1 − sx

)
σI Q(x)

and, consequently,

(
I − s PI

)−1
σI Q(x) = 1

1 − sx
σI Q(x).

Hence,

∞∑
m=0

PI ,nm(s)σI ,m Q(m)(x) = 1

1 − sx
σI ,n Q(n)(x)

and biorthogonality (3) leads to

PI ,nm(s) = σI ,n

σI ,m

∫ 1

0

1

1 − sx
B(m)(x)Q(n)(x)dμ(x),

as desired. 
�
Lemma 1 For both Markov chains, the n-th state is recurrent or transient whenever∫ 1

0

B�ν(n)(x)Q�ν(n+1)(x)

1 − x
dμ(x) (8)

diverges or converges, respectively.

Proof The limit F∞
nn = lims→1− Fnn(s) describes the probability that the n-th state is visited

again, that is that the state is recurrent.
According to the previous results,

lim
s→1− Fnn(s) = 1 − 1∫ 1

0
B�ν(n)(x)Q�ν(n+1)(x)

1−x dμ(x)
.

Thus, the n-th state is visited again whenever the integral in (8) diverges to +∞, so that
lims→1− Fnn(s) = 1, as we wanted to show. 
�
Lemma 2 The Markov chains corresponding to the stochastic matrices PI I and PI are
irreducible; that is, they have only one class.

Proof Since the recurrence matrix T is irreducible, both PI I and PI , being conjugations of T
by positive diagonal matrices, are also irreducible. Consequently, these Markov chains have
only one class. 
�
Theorem 5 The Markov chains corresponding to the stochastic matrices PI I and PI are
recurrent if and only if the integral

∫ 1

0

w1(x)

1 − x
dμ(x)

diverges. Both dual Markov chains are transient whenever the integral converges.

Proof As there is only one class of states, one needs only to check if the state 0 is recurrent
or transient. Using the previous Lemma 1 the result follows. 
�
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4 The Jacobi–Piñeiro Markov chains

In this section we analyze an example of multiple orthogonal polynomials that fulfill the
requirements of Theorem 1 in the previous section. Therefore, we will have type I and II
multiple stochastic matrices and corresponding Markov chains.

The general context is as follows. In our notation we take p = 2 and two recursion type
weights

w1(x) = xα1 , w2(x) = xα2 , dμ(x) = (1 − x)γ d x

supported in� = [0, 1]. It is known [32] that {(1−x)γ , (xα1 , xα2} is an AT systemwhenever
α1, α2, γ > −1 and α1 − α2 /∈ Z. These polynomials for γ = 0 where considered for the
first time by Luis Piñeiro in [33] and in [32] the general situation was studied.

4.1 Jacobi–Piñeiro multiple orthogonal polynomials of type II

Here we follow Van Assche and Coussement [39] and Aptekarev et al. [2]. In [2], using the
Rodrigues formula, the polynomials of type II where computed (cf. [2, 32, 33, 39]).

Proposition 1 The monic Jacobi–Piñeiro multiple orthogonal polynomials of type II are

B(2n)(x) = B(n,n)(x), B(2n+1)(x) = B(n+1,n)(x),

where

B(n1,n2)(x) = Nn1,n2

n1∑
k=0

n2∑
j=0

Bk, j
n1,n2(x − 1) j+k x− j−k+n2+n1 ,

= Nn1,n2

n1∑
k=0

n2∑
j=0

B̃k, j
n1,n2

n1+n2− j−k∑
i=0

(
n1 + n2 − k − j

i

)
(−1) j+k xk+ j+i , (9)

with

Bk, j
n1,n2 := (γ + j + k + 1)n2− j (γ + k + n2 + 1)n1−k(α1 − k + n1 + 1)k(α2 − j − k + n2 + n1 + 1) j

j !k!(n2 − j)!(n1 − k)! ,

B̃k,k
n1,n2 := (γ + n1 + n2 − j − k + 1) j (γ + n1 + n2 − k + 1)k(α1 + k + 1)n1−k(α2 + j + k + 1)n2− j

j !k!(n2 − j)!(n1 − k)! ,

Nn1,n2 := 1∑n1
k=0

∑n2
j=0 Bk, j

n1,n2

= n1!n2!
(n1 + n2 + α1 + γ + 1)n1 (n1 + n2 + α2 + γ + 1)n2

,

where we have used the Pochhammer symbol (z)k = z(z + 1) · · · (z + k − 1), z ∈ C and
k ∈ Z.

Proof These results have been proved in the references quoted. However, the value of Nn1,n2
requires a discussion. Recalling the definition of the binomial function(

z

k

)
:= (z − k + 1)k

k!
we immediately see that

Bk, j
n1,n2 =

(
γ + k + n2

n2 − j

)(
γ + n1 + n2

n1 − k

)(
α1 + n1

k

)(
α2 + n1 + n2 − k

j

)
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in agreement with §3.3. in [2]. Thus, the normalization factor is

N−1
n1,n2 =

n1∑
k=0

n2∑
j=0

Bk, j
n1,n2 =

n1∑
k=0

(
α1 + n1

k

)(
γ + n1 + n2

n1 − k

)

×
n2∑
j=0

(
α2 + n1 + n2 − k

j

)(
γ + k + n2

n2 − j

)

=
n1∑

k=0

(
α1 + n1

k

)(
γ + n1 + n2

n1 − k

)(
α2 + γ + n1 + 2n2

n2

)

=
(

α1 + γ + 2n1 + n2

n1

)(
α2 + γ + n1 + 2n2

n2

)

= (α1 + γ + n1 + n2 + 1)n1(α2 + γ + n1 + n2 + 1)n2

n1!n2! ,

where we have used the Chu–Vandermonde identity twice. A similar argument was used
in [39]. 
�
Corollary 2 The values of the multiple orthogonal polynomials at 1 is

B(n1,n2)(1) = (γ + 1)n2+n1

(α1 + γ + n2 + n1 + 1)n1(α2 + γ + n2 + n1 + 1)n2
. (10)

Moreover, at the origin we have

B(n1,n2)(0) = (−1)n2+n1 (α1 + 1)n1(α2 + 1)n2

(α1 + γ + n2 + n1 + 1)n1(α2 + γ + n2 + n1 + 1)n2
.

Proof It follows from (9). 
�
Using the generalized hypergeometric function 3F2 we have [38]

(1 − x)γ B(n,m)(x) = (−1)n+m(α + 1)n(β + 1)m

(n + m + α + γ + 1)n(n + m + β + γ + 1)m

× 3F2

[−n − m − γ, α + n + 1, β + n + 1
α + 1, β + 1

; x

]
.

4.2 Jacobi–Piñeiro multiple orthogonal polynomials of type I

Theorem 6 The Jacobi–Piñeiro multiple orthogonal polynomials of type I are

A(n1,n2),i (x) = (−1)n1+n2−1

× (α1 + γ + n1 + n2)n1(α2 + γ + n1 + n2)n2

(ni − 1)!(α̂i − αi )n̂i

�(αi + γ + n1 + n2)

�(γ + n1 + n2)�(αi + 1)

× 3F2

[−ni + 1, αi + γ + n1 + n2, αi − α̂i − n̂i + 1

αi + 1, αi − α̂i + 1
; x

]
=

ni −1∑
l=0

Cl
(n1,n2),i

xl

(11)

where we have defined α̂i ≡ δi,2α1 + δi,1α2, n̂i ≡ δi,2n1 + δi,1n2 and

123



Jacobi–Piñeiro Markov chains Page 13 of 29    15 

Cl
(n1,n2),i

≡ (−1)n1+n2−1

× (α1 + γ + n1 + n2)n1(α2 + γ + n1 + n2)n2

(ni − 1)!(α̂i − αi )n̂i

�(αi + γ + n1 + n2)

�(γ + n1 + n2)�(αi + 1)

× (−ni + 1)l

l!
(αi + γ + n1 + n2)l(αi − α̂i − n̂i + 1)l

(αi + 1)l(αi − α̂i + 1)l

In order to prove the orthogonality relations we need the following theorem due to Karp
and Prilepkina [26, Theorem 2.2]

Theorem 7 Let be r ∈ N0, a, b, f1, . . . , fr ∈ C, p ∈ N, m1, . . . , mr ∈ N0. If Re(p − a −
m1 − · · · − mr ) > 0 then

r+2Fr+1

[
a, b, f1 + m1, . . . , fr + mr

b + p, f1, . . . , fr
; 1

]

= �(1 − a)�(b + p)

(p − 1)!�(b − a + 1)

( f1 − b)m1 · · · ( fr − b)mr

( f1)m1 · · · ( fr )mr

× r+2Fr+1

[ −p + 1, b,− f1 + b + 1, . . . ,− fr + b + 1

b − a + 1,− f1 + b + 1 − m1, . . . ,− fr + b + 1 − mr
; 1

]
.

and the following lemma

Lemma 3 Given a polynomial q(x) with deg q < n then

n∑
l=0

(−1)l
(

n

l

)
q(x + l) = 0.

Proof Is a well known fact in the theory of finite differences that any polynomial p(x) with
deg p ≤ n − 2 is such that

n−1∑
j=0

(−1) j
(

n − 1

j

)
p( j) = 0.

This can be shown by taken consecutive derivatives of the relation

(x + 1)n−1 =
n−1∑
j=0

(
n − 1

j

)
x j ,

up to the (n − 2)-th derivative, evaluating at x = 1 and taking linear combinations to get

n−1∑
j=0

(−1) j
(

n − 1

j

)
j k = 0, k ∈ {0, 1, . . . , n − 2}.

Obviously p(x) = q(α + x) is a polynomial with deg q ≤ n − 2. 
�
Now, we can prove the orthogonality relations

Proposition 2 The polynomials described at (11) satisfy the orthogonality relations
∫ 1

0

(
A(n1,n2),1(x)w1(x) + A(n1,n2),2(x)w2(x)

)
x jdμ(x) = 0 if j ∈ {0, . . . , n1 + n2 − 2}
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∫ 1

0

(
A(n1,n2),1(x)w1(x) + A(n1,n2),2(x)w2(x)

)
xn1+n2−1dμ(x) = 1

respect to the weight functions wi (x) = xαi , i = 1, 2 and measure dμ(x) = (1 − x)γ d x .

Proof Let’s start finding a convenient expression for

I j
(n1,n2),i

≡
∫ 1

0
A(n1,n2),i (x)wi (x)x jdμ(x)

Replacing the polynomials and the weight functions, we have

I j
(n1,n2),i

=
ni −1∑
l=0

Cl
(n1,n2),i

∫ 1

0
xαi +l+ j (1 − x)γ d x

=
ni −1∑
l=0

Cl
(n1,n2),i

�(αi + l + j + 1)�(γ + 1)

�(αi + γ + l + j + 2)

Replacing the coefficients Cl
(n1,n2),i

and simplifying, we find

I j
(n1,n2),i

= (−1)n1+n2−1 (αi + γ + n1 + n2)ni (α̂i + γ + n1 + n2)n̂i

(γ + 1)n1+n2−1

× (αi + 1) j (αi + γ + j + 2)n1+n2−2− j

(ni − 1)!(α̂i − αi )n̂i

× 4F3

[−ni + 1, αi − α̂i − n̂i + 1, αi + 1 + j, αi + γ + n1 + n2

αi − α̂i + 1, αi + 1, αi + γ + j + 2
; 1

]
.

Now if j < n1 + n2 − 1 we can apply Theorem 7 over the previous 4F3 function to get

4F3

[−ni + 1, αi − α̂i − n̂i + 1, αi + 1 + j, αi + γ + n1 + n2

αi − α̂i + 1, αi + 1, αi + γ + j + 2
; 1

]

= (ni − 1)!
(n̂i − 1)!

�(αi − α̂i + 1)

�(αi − α̂i − n̂i + 1 + ni )

(α̂i + n̂i ) j (α̂i + γ + n̂i + j + 1)n1+n2−2− j

(αi + 1) j (αi + γ + j + 2)n1+n2−2− j

× 4F3

[ −n̂i + 1, αi − α̂i − n̂i + 1,−α̂i − n̂i + 1,−α̂i − γ − n̂i − j

αi − α̂i − n̂i + 1 + ni ,−α̂i − n̂i + 1 − j,−α̂i − γ − n̂i − n1 − n2 + 2
; 1

]
.

Finally we can apply the following formula

p+1Fq

[−n, a1, . . . , ap

b1, . . . , bq
; 1

]

= (−1)n (a1)n · · · (ap)n

(b1)n · · · (bq)n
p+1Fq

[−n,−b1 − n + 1, . . . ,−bq − n + 1

−a1 − n + 1, . . . ,−ap − n + 1
; 1

]

to get that

4F3

[−ni + 1, αi − α̂i − n̂i + 1, αi + 1 + j, αi + γ + n1 + n2

αi − α̂i + 1, αi + 1, αi + γ + j + 2
; 1

]

= (ni − 1)!
(n̂i − 1)!

�(αi − α̂i + 1)

�(αi − α̂i − n̂i + 1 + ni )

(α̂i + n̂i ) j (α̂i + γ + n̂i + j + 1)n1+n2−2− j

(αi + 1) j (αi + γ + j + 2)n1+n2−2− j

× (−1)n̂i −1 (αi − α̂i − n̂i + 1)n̂i −1

(αi − α̂i − n̂i + 1 + ni )n̂i −1

(−α̂i − n̂i + 1)n̂i −1

(−α̂i − n̂i + 1 − j)n̂i −1
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× (−α̂i − γ − n̂i − j)n̂i −1

(−α̂i − γ − n̂i − n1 − n2 + 2)n̂i −1

× 4F3

[−n̂i + 1, α̂i − αi − ni + 1, α̂i + j + 1, α̂i + γ + n1 + n2

α̂i − αi + 1, α̂i + 1, α̂i + γ + j + 2
; 1

]
.

So, taking i = 1, we can replace the previous expression in (4.2) and simplifying we get for
j = 0, . . . , n1 + n2 − 2

I j
(n1,n2),1

= −I j
(n1,n2),2

.

If j = n1 + n2 − 1 we can rewrite the discrete integral as

I n1+n2−1
(n1,n2),i

= (−1)n1+n2−1 (α1 + γ + n1 + n2)n1(α2 + γ + n1 + n2)n2

(γ + 1)n1+n2−1

× 1

(ni − 1)!
ni −1∑
l=0

(−1)n̂i +l
(

ni − 1

l

)

× (αi + 1 + l)n1+n2−1

(αi + γ + n1 + n2 + l)(αi − α̂i − n̂i + l + 1)n̂i

. (12)

Let’s remind now that if f (z) is a polynomial of degree m then we can decompose

f (z)

(z − b)(z − a)n
= q(z) + f (b)

(z − b)(b − a)n

+ 1

(n − 1)!
n−1∑
p=0

(−1)p
(

n − 1

p

)
f (a − p)

(a − p − b)(z − a + p)

with q(z) a polynomial of degree m − n − 1 if m ≥ n + 1 and q(z) = 0 if m < n + 1.
We can apply this to the fraction within the sum of (12) to get that

(αi + 1 + l)n1+n2−1

(αi + γ + n1 + n2 + l)(αi − α̂i − n̂i + l + 1)n̂i

= q(αi + l) + (−γ − n1 − n2 + 1)n1+n2−1

(−γ − n1 − n2 − α̂i − n̂i + 1)n̂i

1

(αi + l + γ + n1 + n2)

+ 1

(n̂i − 1)!
n̂i −1∑
p=0

(−1)p
(

n̂i − 1

p

)
1

(αi + l − α̂i − n̂i + 1 + p)

× (α̂i + n̂i − p)n1+n2−1

(α̂i + γ + n1 + n2 + n̂i − 1 − p)
(13)

where q is a polynomial with deg q = ni − 2. Replacing (13) in (12) for i = 1 we find that

I n1+n2−1
(n1,n2),1

= (−1)n1+n2−1 (α1 + γ + n1 + n2)n1(α2 + γ + n1 + n2)n2

(γ + 1)n1+n2−1

× 1

(n1 − 1)!
n1−1∑
l=0

(−1)n2+l
(

n1 − 1

l

)

×
(

q(α1 + l) + (−γ − n1 − n2 + 1)n1+n2−1

(−γ − n1 − n2 − α2 − n2 + 1)n2

1

(α1 + l + γ + n1 + n2)

123



   15 Page 16 of 29 A. Branquinho et al.

+ 1

(n2 − 1)!
n2−1∑
p=0

(−1)p
(

n2 − 1

p

)
1

(α1 + l − α2 − n2 + 1 + p)

× (α2 + n2 − p)n1+n2−1

(α2 + γ + n1 + n2 + n2 − 1 − p)

)

= (−1)n1+n2−1 (α1 + γ + n1 + n2)n1(α2 + γ + n1 + n2)n2

(γ + 1)n1+n2−1

(−1)n2

(n1 − 1)!

×

0 by lemma 3︷ ︸︸ ︷
n1−1∑
l=0

(−1)l
(

n1 − 1

l

)
q(α1 + l)

+

1︷ ︸︸ ︷
(−1)n1+n2−1(−γ − n1 − n2 + 1)n1+n2−1

(γ + 1)n1+n2−1

1︷ ︸︸ ︷
(−1)n2 (α2 + γ + n1 + n2)n2

(−γ − n1 − n2 − α2 − n2 + 1)n2

× (α1 + γ + n1 + n2)n1
1

(n1 − 1)!
n1−1∑
l=0

(−1)l
(

n1 − 1

l

)
1

(α1 + l + γ + n1 + n2)︸ ︷︷ ︸
1

(α1+γ+n1+n2)n1

− (−1)n1+n2−1 (α1 + γ + n1 + n2)n1(α2 + γ + n1 + n2)n2

(γ + 1)n1+n2−1

× 1

(n2 − 1)!
n2−1∑
p=0

(−1)n2−1−p
(

n2 − 1

p

)
(α2 + n2 − 1 − p + 1)n1+n2−1

(α2 + γ + n1 + n2 + n2 − 1 − p)

× 1

(n1 − 1)!
n1−1∑
l=0

(−1)l
(

n1 − 1

l

)
1

(α1 + l − α2 − n2 + 1 + p)︸ ︷︷ ︸
1

(α1−α2−n2+1+p)n1
= (−1)n1

(α2−α1−n1+1+n2−1−p)n1
.

Finally, doing the index change p → n2 − 1 − p we find that

I n1+n2−1
(n1,n2),1

= 1 − (−1)n1+n2−1 (α1 + γ + n1 + n2)n1(α2 + γ + n1 + n2)n2

(γ + 1)n1+n2−1

× 1

(n2 − 1)!
n2−1∑
p=0

(−1)n1+p
(

n2 − 1

p

)

× (α2 + p + 1)n1+n2−1

(α2 + γ + n1 + n2 + p)

1

(α2 − α1 − n1 + 1 + p)n1
= 1 − I n1+n2−1

(n1,n2),2

which ends the proof. 
�

Remark 2 To the best of our knowledge, the initial instance of the explicit presentation of
the Jacobi–Piñeiro multiple orthogonal polynomials of type I can be traced back to the
prepublication [8]. Subsequently, in [4], we provided an alternative simplified derivation for
theHahnmultiple orthogonal polynomials of type I. Through utilization of themultipleAskey
scheme, we derived the corresponding expressions for its subsequent forms, encompassing
the noteworthy Jacobi–Piñeiro case.
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The proof presented here is an adaptation of the aforementioned proof, tailored to the
context of the Jacobi–Piñeiro multiple orthogonal polynomials of type I. For the original
proof, we direct the reader to [8].

4.3 The recursionmatrix

The coefficients of the recursion matrix

(14)

were determined in [39]. Inspired by [2] we obtain, for n = 0, 1, . . . ,

bα1−1,α2−1,γ−1
n,n = Bn,n

B̃n,n
, bα1−1,α2−1,γ−1

n+1,n = Bn+1,n

B̃n+1,n
,

cα1−1,α2−1,γ−1
n+1,n+1 = Cn+1,n+1

C̃n+1,n+1
, cα1−1,α2−1,γ−1

n+1,n = Cn+1,n

C̃n+1,n
,

dα1−1,α2−1,γ−1
n+1,n+1 = Dn+1,n+1

D̃n+1,n+1
, dα1−1,α2−1,γ−1

n+2,n+1 = Dn+2,n+1

D̃n+2,n+1
,

with

Bn,n = (α1 + n)(α2 + γ + 2n − 1)(α1 + γ + 2n − 1)

(α1 + γ + 3n)(α2 + γ + 3n − 1)

+ n(γ + 2n − 1)(α1 + γ + 2n − 1)

(α2 + γ + 3n − 2)(α2 + γ + 3n − 1)

+ n(γ + 2n − 1)(α2 + γ + 2n − 2)

(α1 + γ + 3n − 2)(α2 + γ + 3n − 2)
,

B̃n,n = α1 + γ + 3n − 1,

Bn+1,n = (α2
2 + (γ + 3n − 1)α2 + 2n(γ + 2n))α2

1

+ (2γ + 5n)(α2
2 + (γ + 3n − 1)α2 + 2n(γ + 2n))α1

+ (γ + 2n)(18n3 + (14α2 + 15γ + 5)n2 + (2α2 + γ + 2)(2α2 + 3γ − 1)n

+ (α2 + 1)(γ + 1)(α2 + γ − 1)),

B̃n+1,n = (α1 + γ + 3n)(α1 + γ + 3n + 1)(α2 + γ + 3n − 1)(α2 + γ + 3n + 1),

Cn+1,n+1 = n(γ + 2n + 1)(α1 + γ + 2n)(α2 + γ + 2n)
(
(α2 + n)(α2 + γ + 2n)

+ (α1 − α2 + n + 1)(γ + 2n)(α2 + γ + 3n + 1)

α1 + γ + 3n

+ (α2 + n)(α1 + γ + 2n + 1)(α1 + γ + 3n + 1)

α2 + γ + 3n + 2

)
,

C̃n+1,n+1 = (α1 + γ + 3n + 1)2(α1 + γ + 3n + 2)(α2 + γ + 3n)(α2 + γ + 3n + 1)2,

Cn+1,n = (γ + 2n)(−1 + α1 + γ + 2n)(−1 + α2 + γ + 2n)

(
α3
1n(−1 + α2 + n)
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+ α2
1n(−1 + α2 + n)(−1 + 3γ + 8n)

+ α1

(
α3
2(1 + n) + γ 3(1 + n) + α2

2(1 + n)(−3 + 3γ + 8n)

+ 3γ 2(−1 + n + 4n2) + γ (2 + n(−13 − 9n + 42n2))

+ α2
(
2 + γ 2(3 + 6n) + γ (−6 + 9n + 33n2) + n(−15 + n + 44n2)

)
+ n

(
6 + n(−13 + n(−26 + 45n))

))

+ n
(
α3
2(1 + n) + α2

2(1 + n)(−3 + 3γ + 8n)

+ (−1 + γ + 3n)(γ + 3n)(−2 + γ + 3γ n + 6n2)

+ α2
(
2 + γ 3 + 3γ 2(1 + 4n) + γ (−7 + 9n + 42n2) + n(−17 + n(2 + 45n))

)))
,

C̃n+1,n = (−1 + α1 + γ + 3n)(α1 + γ + 3n)2(1 + α1 + γ + 3n)(−2 + α2 + γ + 3n)

× (−1 + α2 + γ + 3n)2(α2 + γ + 3n),

Dn+1,n+1 = (n + 1)(α1 + n)(α1 − α2 + n + 1)(γ + 2n)(γ + 2n + 1)(α1 + γ + 2n − 1)

× (α1 + γ + 2n)(α2 + γ + 2n − 1)(α2 + γ + 2n)

D̃n+1,n+1 = (α1 + γ + 3n − 1)(α1 + γ + 3n)2(α1 + γ + 3n + 1)2(α1 + γ + 3n + 2)

× (α2 + γ + 3n − 1)(α2 + γ + 3n)(α2 + γ + 3n + 1),

Dn+2,n+1 = n(α2 + n)(−α1 + α2 + n + 1)(γ + 2n + 1)(γ + 2n + 2)(α1 + γ + 2n)

× (α1 + γ + 2n + 1)(α2 + γ + 2n)(α2 + γ + 2n + 1),

D̃n+2,n+1 = (α1 + γ + 3n + 1)(α1 + γ + 3n + 2)(α1 + γ + 3n + 3)

× (α2 + γ + 3n)(α2 + γ + 3n + 1)2

× (α2 + γ + 3n + 2)2(α2 + γ + 3n + 3).

Lemma 4 Let us consider the coefficients of the recursion matrix T given in (14) for the
Jacobi–Piñeiro multiple orthogonal polynomials given in (9). Then:
(i) The coefficient bα1−1,α2−1,γ−1

n,n is positive for n ∈ N0 and α1, α2, γ > 0

(ii) The coefficient cα1−1,α2−1,γ−1
n,n is positive for n ∈ N, α1, α2, γ > 0 and α1−α2+1 > 0.

(iii) The coefficient cα1−1,α2−1,γ−1
n+1,n is positive for n ∈ N0 and α1, α2, γ > 0.

(iv) The coefficient dα1−1,α2−1,γ−1
n,n is positive for n ∈ N, α1, α2, γ > 0 and α1−α2+1 > 0.

(v) The coefficient dα1−1,α2−1,γ−1
n+1,n is positive for n ∈ N, α1, α2, γ > 0 and −α1+α2+1 >

0.

Proof (i) Forn ∈ Nwe immediately see that the denominator B̃n,n is positive. The numerator
Bn,n for n ∈ N is the sum of three positive rational expressions in α1, α2, γ > 0. For
n = 0 we have bα1−1,α2−1,γ−1

0,0 = α1
α1+γ

.

(ii) For n ∈ N the denominator B̃n+1,n is positive. The numerator Bn+1,n requires more
analysis. We need to check the positivity of

T = 18n3 + (14α2 + 15γ + 5)n2 + (2α2 + γ + 2)(2α2 + 3γ − 1)n

+ (α2 + 1)(γ + 1)(α2 + γ − 1),

that ensures the positivity of Bn,n+1. To understand that this positivity is not obvious we
write T as follows

T = 18n3 + (14α2 + 15γ + 5)n2 + (2α2 + γ + 2)(2α2 + 3γ )n
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+ (α2 + 1)(γ + 1)(α2 + γ ) − (2α2 + γ + 2)n − (α2 + 1)(γ + 1).

But further manipulation do show that is a positive term. Indeed,

T = 18n3 + (12α2 + 14γ + 3)n2 + (2α2 + γ + 2)(2α2 + 3γ )n

+ (α2 + 1)(γ + 1)(α2 + γ ) + (2α2 + γ + 2)n(n − 1) − (α2 + 1)(γ + 1)

= 18n3 + (12α2 + 14γ + 3)n2 + (
(α2 + γ + 1)(2α2 + 3γ ) + 2(α2 + 1)(α2 + γ )

)
n

+ (α2 + 1)(γ + 1)(α2 + γ ) + (2α2 + γ + 2)n(n − 1) + (α2 + 1)γ (n − 1) − (α2 + 1)

= 18n3 + (11α2 + 14γ + 2)n2 + (
(α2 + γ + 1)(2α2 + 3γ ) + 2(α2 + 1)(α2 + γ )

)
n

+ (α2 + 1)(γ + 1)(α2 + γ )

+ (2α2 + γ + 2)n(n − 1) + (α2 + 1)γ (n − 1) + (α2 + 1)(n2 − 1),

and we see that T is a positive number whenever n ∈ N and α1, α2, γ > 0, and so is
bα1−1,α2−1,γ−1

n+1,n . Now, for n = 0 we find

bα1−1,α2−1,γ−1
1,0 = α2α

2
1 + 2α2γα1 + (α2 + 1)γ (γ + 1)

(α1 + γ )(α1 + γ + 1)(α2 + γ + 1)
,

which is again positive.
(iii) For n ∈ N, the positivity of the denominator C̃n,n for α1, α2, γ > 0 is obvious by

inspection. For the numerator Cn,n, the positivity is ensured whenever α1 − α2 + 1 > 0.
(iv) For n ∈ N, the positivity of the denominator C̃n,n for α1, α2, γ > 0 is obvious. The

numerator Cn+1,n after inspection of its long expression, is also seen to be positive after
checking the positivity of all its summands for n = 1, 2, . . . . Moreover, for n = 0 we
have

cα1−1,α2−1,γ−1
1,0 = α1γ

(α1 + γ )2(α1 + γ + 1)
.

Therefore, the positivity holds in this case, as well.
(v) For n ∈ {2, 3, . . .}, the positivity of the denominator D̃n,n forα1, α2, γ > 0 is immediate.

For the numerator Dn,n, the positivity is ensured whenever α1 − α2 + 1 > 0. For n = 1
we have

dα1−1,α2−1,γ−1
1,1 = α1(α1 − α2 + 1)γ (γ + 1)

(α1 + γ )(α1 + γ + 1)2(α1 + γ + 2)(α2 + γ + 1)

and the result is proven.
(vi) For n ∈ N, the denominator D̃n+1,n for α1, α2, γ > 0 is positive. The numerator Dn+1,n

is positive whenever −α1 + α2 + 1 > 0.
Which completes the proof. 
�

Theorem 8 For the Jacobi–Piñeiro multiple orthogonal polynomials as in (9) the corre-
sponding recursion matrix given in (14) is a nonnegative matrix whenever α1, α2, γ > −1
and |α1 − α2| < 1.

Proof From Lemma 4 (recall the shift of the parameters α1 → α1 − 1, α2 → α2 − 1, γ →
γ − 1) we see that when α1, α2, γ > −1:

(i) The coefficients bα1,α2,γ
n,n and cα1,α2,γ

n+1,n are positive.
(ii) The coefficients cα1,α2,γ

n,n and dα1,α2,γ
n,n are positive for α1 − α2 + 1 > 0.

(iii) The coefficient dα1,α2,γ
n+1,n is positive if −α1 + α2 + 1 > 0.
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Hence, for x = α1−α2,weneed to fulfill the couple of inequalities x+1 > 0 and−x+1 > 0,
that is x ∈ (−1, 1). 
�

Next we present a picture illustrating the possible values of the couple of parameters
(α1, α2), the filled region that represents the possible values is an infinite band.

The dashed lines are excluded of the allowed region for the parameters α1 and α2, as those
lines correspond to resonances, i.e., the difference α1 − α2 = ±1, 0, over those semi-lines.

It is easy to see that, cf. for example [14]:

lim
n→∞ bn,n = lim

n→∞ bn+1,n = 3κ, lim
n→∞ cn,n = lim

n→∞ cn+1,n = 3κ2,

lim
n→∞ dn,n = lim

n→∞ dn+1,n = κ3, (15)

with κ = 4
27 .

4.4 Type II Jacobi–Piñeiro’s

Now, we explain how to turn stochastic the recursion matrix for the type II given in (14). The
zeros of the Jacobi–Piñeiro polynomials, being an AT-system, are in (0, 1). Moreover, their
density distribution of zeros fills that open interval and accumulate at the boundaries [31].

Theorem 9 Let us assume for the Jacobi–Piñeiro system that α1, α2, γ > −1, α1 �= α2 and
|α1 − α2| < 1. Then, the semi-infinite matrix
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with coefficients given in terms of the coefficients of the recursion matrix (14) and the multiple
orthogonal polynomials of type II evaluated at x = 1, B�ν(1), �ν = (n + 1, n) or (n, n), for
n = 0, 1, . . . , as follows

PI I ,2n,2n+1 = B(n+1,n)(1)

B(n,n)(1)
, PI I ,2n+1,2n+2 = B(n+1,n+1)(1)

B(n+1,n)(1)
,

PI I ,2n,2n = bn,n, PI I ,2n+1,2n+1 = bn+1,n,

PI I ,2n+2,2n+1 = B(n+1,n)(1)

B(n+1,n+1)(1)
cn+1,n+1, PI I ,2n+1,2n = B(n,n)(1)

B(n+1,n)(1)
cn+1,n,

PI I ,2n+2,2n = B(n,n)(1)

B(n+1,n+1)(1)
dn+1,n+1, PI I ,2n+3,2n+1 = B(n+1,n)(1)

B(n+2,n+1)(1)
dn+2,n+1.

is a multiple stochastic matrix of type II. Here the b, c and d coefficients are those in the
recursion matrix (14). The corresponding Markov chain is irreducible.

Proof From the explicit expression (10) we know that B(n)(1) is a strictly positive number,
from the AT property for the system {xα1 , xα2}. Hence, using Theorem 1 we can normalize
at x = 1 to get the stochastic recursion matrix using the factors σI I ,n = 1

B(n)(1)
.

The irreducibility follows from the fact that all the elements in the band of the Markov
matrix are positive. 
�

The diagram for this Markov chain is

Corollary 3 The explicit expressions for the type II multiple stochastic matrix coefficients are

PI I ,2n,2n+1 = (γ + 2n + 1)(α1 + γ + 2n + 1)(α2 + γ + 2n + 1)

(α1 + γ + 3n + 1)(α1 + γ + 3n + 2)(α2 + γ + 3n + 1)
,

PI I ,2n+1,2n+2 = (γ + 2n + 2)(α1 + γ + 2n + 2)(α2 + γ + 2n + 2)

(α1 + γ + 3n + 3)(α2 + γ + 3n + 2)(α2 + γ + 3n + 3)
,

PI I ,2n,2n = (α1 + n + 1)(α1 + 1 + γ + 2n)(α2 + γ + 2n + 1)

(α1 + γ + 3n + 1)(α1 + γ + 3n + 2)(α2 + γ + 3n + 1)

+ n(γ + 2n)(α1 + γ + 2n + 1)

(α1 + γ + 3n + 1)(α2 + γ + 3n)(α2 + γ + 3n + 1)

+ n(γ + 2n)(α2 + γ + 2n)

(α1 + γ + 3n)(α1 + γ + 3n + 1)(α2 + γ + 3n)
,

PI I ,2n+1,2n+1 = −n(α2 + n)(−α1 + α2 + n)

(α2 − α1)(α2 + γ + 3n)

+ n(α2 + n)(−α1 + α2 + n)(α1 + γ + 3n + 1)

(α2 − α1)(α1 − α2 + 1)(α2 + γ + 3n)(α2 + γ + 3n + 1)
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− (n + 1)(α1 + n + 1)(α1 − α2 + n + 1)(α2 + γ + 3n + 2)

(α2 − α1)(α1 − α2 + 1)(α1 + γ + 3n + 2)(α1 + γ + 3n + 3)

+ (n + 1)(α2 + n + 1)(−α1 + α2 + n + 1)

(α2 − α1)(α2 + γ + 3n + 3)
,

PI I ,2n,2n−1 = n(α1 − α2 + n)(γ + 2n − 1)

(α1 + γ + 3n − 1)(α1 + γ + 3n)(α1 + γ + 3n + 1)

+ n(α2 + n)(α2 + γ + 2n)

(α1 + γ + 3n)(α1 + γ + 3n + 1)(α2 + γ + 3n)

+ n(α2 + n)(α1 + γ + 2n + 1)

(α1 + γ + 3n + 1)(α2 + γ + 3n)(α2 + γ + 3n + 1)
,

PI I ,2n+1,2n = n(α1 − α2 − n)(α2 + n)(α1 + γ + 3n + 1)

(α1 − α2 + 1)(α2 + γ + 3n)(α2 + γ + 3n + 1)(α2 + γ + 3n + 2)

+ (n + 1)(α1 − α2 + n + 1)(α1 + n + 1)

(α1 − α2 + 1)(α1 + γ + 3n + 2)(α1 + γ + 3n + 3)

PI I ,2n,2n−2 = n(α1 − α2 + n)(α1 + n)

(α1 + γ + 3n − 1)(α1 + γ + 3n)(α1 + γ + 3n + 1)
,

PI I ,2n+1,2n−1 = n(−α1 + α2 + n)(α2 + n)

(α2 + γ + 3n)(α2 + γ + 3n + 1)(α2 + γ + 3n + 2)
.

The corresponding transition diagram for large n is

4.5 Type I Jacobi–Piñeiro’s

In the next theorem we show how to turn stochastic the recursion matrix for the type I given
in (14).

Theorem 10 Let us assume for the Jacobi–Piñeiro system that α1, α2, γ > −1, α1 �= α2

and |α1 − α2| < 1. Then, the semi-infinite matrix

with coefficients expressed in terms of the coefficients of the recursion matrix (14) and the
linear forms of type I evaluated at x = 1, Q�ν(1) with �ν = (n + 1, n) or (n, n), for n =
0, 1, . . . , as follows
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PI ,2n,2n+2 = Q(n+2,n+1)(1)

Q(n+1,n)(1)
dn+1,n+1, P2n+1,2n+3 = Q(n+2,n+2)(1)

Q(n+1,n+1)(1)
dn+2,n+1,

PI ,2n,2n+1 = Q(n+1,n+1)(1)

Q(n+1,n)(1)
cn+1,n, PI ,2n+1,2n+2 = Q(n+2,n+1)(1)

Q(n+1,n+1)(1)
cn+1,n+1,

PI ,2n,2n = bn,n, PI ,2n+1,2n+1 = bn+1,n,

PI ,2n+2,2n+1 = Q(n+1,n+1)(1)

Q(n+2,n+1)(1)
PI ,2n+1,2n = Q(n+1,n)(1)

Q(n+1,n+1)(1)
,

is a multiple stochastic matrix of type I. The corresponding Markov chain is irreducible.

Proof According to [32] the system {xα1 , . . . , xν1−1+α1 , xα2 , . . . , xν2−1+α2} is a Chebyshev
system in any closed interval of the positive semiaxis R+ = {x ∈ R : x > 0}. Consequently,
the linear form Q�ν(x) = A�ν,1(x)xα1 + A�ν,2(x)xα2 has at most |�ν| − 1 zeros in any closed
interval [a, b] ⊂ R+.Thus, themaximumnumber of zeros inR+ will be |�ν|−1.As {xα1 , xα2}
conforms an AT-system on [0, 1] it has |�ν| − 1 zeros in its interior, the open interval (0, 1),
see [32, 38, 39]. Therefore, Q�ν(x) has no zeros for x ≥ 1.

Now, we analyze the behavior of the linear form Q�ν(x) for x → +∞. For �ν = (n +1, n),

n ∈ N we have for x → +∞
A(n+1,n),1(x)xα1 = Cn

(n+1,n),1xn+α1 + O(xn+α1−1),

A(n+1,n),2(x)xα2 = Cn
(n+1,n),2xn+α2−1 + O(xn+α2−2),

where Cn
(n+1,n),1 and Cn

(n+1,n),2 are the conductor coefficients, accompanying the leading
terms, of the polynomials A(n+1,n),1(x) and A(n+1,n),2(x), respectively. Observing that n +
α1 − (n + α2 − 1) = α1 − α2 + 1 > 0, we see that for x → +∞ we have Q(n+1,n)(x) =
Cn

(n+1,n),1xn+α1 + O(xn+α1−1). According to Theorem 6 we have

Cn
(n+1,n),1 ≡ �(α1 + γ + 3n + 2)

�(γ + 2n + 1)�(α1 + n + 1)

(α2 + γ + 2n + 1)n(α1 + γ + 2n + 1)n

n!(α1 − α2 + 1)n
> 0

and, consequently, for n ∈ N, we find limx→+∞ Q(n+1,n)(x) = +∞. For n = 0, we have
Q(1,0) = �(α1+γ+2)

�(γ+1)�(α1+1) , that is always positive. Hence Q(n+1,n)(x) > 0 for x ≥ 1.
For �ν = (n, n) we have for x → +∞

A(n,n),1(x)xα1 = Cn−1
(n,n),1xn−1+α1 + O(xn−2+α1),

A(n,n),2(x)xα2 = Cn−1
(n,n),1xn−1+α2 + O(xn−2+α2).

Hence, the dominant behavior at +∞ of the linear form Q(n,n)(x) depends on whether
α1 ≶ α2. Let us assume, in the first place, that α1 > α2. Then, for x → +∞, we find
Q(n,n)(x) = Cn−1

(n,n),1xn+α1−1 + o(xn+α1−1). According to Theorem 6 we have

Cn−1
(n,n),1 = �(3n − 1 + α1 + γ )

�(n + α1)�(2n + γ )

(2n + α1 + γ )n(2n + α2 + γ )n

(n − 1)!(α1 − α2)n
,

that is positive for α1 > α2.Thus, for n ∈ {1, 2, 3, . . . }we have limx→+∞ Q(n,n)(x) = +∞.

Finally, when α2 > α1, for x → +∞ we have

Q(n,n)(x) = Cn−1
(n,n),2xn+α2−1 + o(xn+α2−1).

Recalling that Aα1,α2
(n,n),2 = Aα2,α1

(n,n),1 we use the previous result interchangingα1 andα2 to get for
n ∈ {1, 2, 3, . . . } that limx→+∞ Q(n,n)(x) = +∞, for α2 > α1. Therefore, Q(n,n)(x) > 0
for x ≥ 1.
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We conclude that

σI ,l = 1

Q(l)(1)
> 0,

so that PI = σI T �σ−1
I is a multiple stochastic matrix of type I, i.e., PI 1 = 1.

Finally, the irreducibility follows from the fact that all the elements in the band of the
Markov matrix are positive. 
�

The diagram for this Markov chain is

Here we require of the Poincaré theory for the ratio asymptotics of homogeneous linear
recurrences [34].

Proposition 3 (Large n limit for the dual Jacobi–Piñeiro Markov chains) The large n limit of
the Jacobi–Piñeiro stochastic matrices of type I and II are the same after transposition, i.e.,

lim
n→∞ PI ,n,n+k = lim

n→∞ PI I ,n+k,n, k ∈ {−2,−1, 0, 1}.

Proof According to (5) we need to show that

B(n−k)(1)Q(n−k)(1)

B(n)(1)Q(n)(1)
−→
n→∞ 1, k = 2, 1,−1. (16)

From (10) we directly deduce that

B(2n+1)(1)

B(2n)(1)
= (γ + 1 + 2n)(α1 + γ + 2n + 1)(α2 + γ + 2n + 1)

(α1 + γ + 3n + 1)(α2 + γ + 3n + 1)(α2 + γ + 3n + 2)
−−−→
n→∞

8

27
,

B(2n+2)(1)

B(2n+1)(1)
= (γ + 2 + 2n)(α2 + γ + 2n + 2)(α1 + γ + 2n + 2)

(α2 + γ + 3n + 3)(α1 + γ + 3n + 2)(α1 + γ + 3n + 3)
−−−→
n→∞

8

27
.

Now, from (4) we get

Q(n−1)(1)B(n)(1) = Q(n)(1)(Tn,n−2B(n−2)(1) + Tn,n−1B(n−1)(1))

+ Q(n+1)(1)Tn+1,n−1B(n−1)(1),

so that we have for the linear forms of type I the following lower degree homogeneous linear
recurrence

−Q(n−1)(1) + an Q(n)(1) + bn Q(n+1)(1) = 0,

with

an = Tn,n−2
B(n−2)(1)

B(n)(1)
+ Tn,n−1

B(n−1)(1)

B(n)(1)
−−−→
n→∞

43

273
272

82
+ 3

42

272
27

8
= 7

27
,
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bn = Tn+1,n−1
B(n−1)(1)

B(n)(1)
−−−→
n→∞

43

273
27

8
= 8

729
,

where we have used the previous result, limn→∞ B(n+1)(1)
B(n)(1)

= 8
27 , and (15). The characteristic

polynomial is

−1 + 7

27
r + 8

729
r2 = 8

729
(r + 27)

(
r − 27

8

)
.

Therefore, fromPoincaré’s theorem, having its characteristic roots {−27, 27
8 }distinct absolute

value, as the linear forms of type I are positive at 1, we get limn→∞ Q(n+1)(1)
Q(n)(1)

= 27
8 and (16)

is satisfied. 
�
Proposition 4 (Recurrent and transient Jacobi–Piñeiro) Both dual Jacobi–Piñeiro Markov
chains are recurrent whenever −1 < γ < 0 and transient for γ ≥ 0.

Proof Is a direct consequence of the irreducibility of the Jacobi–Piñeiro Markov chains and
Theorem5 as the divergence of the integral coincideswith the divergence of

∫ 1
a (1−x)γ−1d x,

for 0 < a < 1, that happens for γ < 0. 
�

4.6 Two type II examples: recurrent and transient Markov chains

For α1 = − 1
4 , α2 = γ = − 1

2 , that gives a recurrent Markov chain, we get the following
transition matrix coefficients

PI I ,2n,2n+1 = 4(4n + 1)(8n + 1)

3(144n2 + 72n + 5)
, PI I ,2n+1,2n+2 = (2n + 1)(8n + 5)

6(9n2 + 9n + 2)
, n ≥ 0,

PI I ,2n,2n = 96n2 + 16n − 17

6
(
36n2 + 3n − 5

) , PI I ,2n+1,2n+1 = 32n2 + 32n + 7

72n2 + 78n + 20
, n ≥ 1,

PI I ,2n,2n−1 = 576n3 − 552n2 + 94n + 7

6(432n3 − 360n2 + 51n + 7)
,

PI I ,2n+1,2n = 192n3 + 104n2 − 22n − 11

8(108n3 + 45n2 − 12n − 5)
, n ≥ 1,

PI I ,2n,2n−2 = 4n(4n + 1)

3(12n − 7)(12n + 1)
, PI I ,2n+1,2n−1 = 8n2 − 6n + 1

24(9n2 − 1)
, n ≥ 1,

with PI I ,0,0 = 3
5 and PI I ,1,0 = 2

5 . Hence, the corresponding transition matrix looks as fol-
lows

For α1 = − 1
4 , α2 = − 1

2 , γ = 1
2 , that gives a transientMarkov chain, we get the following

transition matrix coefficients
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PI I ,2n,2n+1 = 2(2n + 1)(8n + 5)

3(36n2 + 27n + 5)
, PI I ,2n+1,2n+2 = (4n + 5)(8n + 9)

3(36n2 + 63n + 26)
, n ≥ 0,

PI I ,2n,2n = 32n2 + 16n + 1

72n2 + 30n + 2
, PI I ,2n+1,2n+1 = 96n2 + 128n + 25

6(36n2 + 51n + 13)
, n ≥ 1,

PI I ,2n,2n−1 = 576n3 + 120n2 − 74n − 5

6(432n3 + 360n2 + 87n + 5)
,

PI I ,2n+1,2n = 192n3 + 328n2 + 146n + 17

8(3n + 1)(3n + 2)(12n + 13)
, n ≥ 1,

PI I ,2n,2n−2 = 4n(4n + 1)

3
(
144n2 + 72n + 5

) , PI I ,2n+1,2n−1 = 8n2 − 6n + 1

24(9n2 + 9n + 2)
, n ≥ 1,

and PI I ,0,0 = 1
3 and PI I ,1,0 = 2

3 . The corresponding transition matrix is

Inspection of both transition matrices, we see that the probabilities to go to the left are bigger
in the recurrent situation, with γ = − 1

2 , than in the transient case example with γ = 1
2 .

4.7 Two type I examples: recurrent and transient Markov chains

For α1 = − 1
4 , α2 = γ = − 1

2 , that gives a recurrent Markov chain, we get the following
approximate transition matrix in decimal formwith a precision of four significant digits (now
is not possible to find closed rational expressions and several sums involving the Euler’s
Gamma function are required)

For α1 = − 1
4 , α2 = − 1

2 , γ = 1
2 , that gives a transientMarkov chain, we get the following

approximate expression for the transition matrix
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Conclusions and outlook

Considering higher-order recurrence relationships for type II multiple orthogonal polynomi-
als, we focus on a non-negative recursion matrix, along with its counterpart: linear forms of
type I. In this context, we reveal a clear strategy to create a pair of dual stochastic matrices.

Our exploration goes beyond the usual as we expand the Karlin–McGregor representation
formula to include both of these connected dual Markov chains. This expanded approach
helps us to understand the details of generating functions and first-passage distributions. As
we go deeper into the complexities of the Markov chains, we get a better picture of their
nature.

To make our findings more solid, we focus on the Jacobi–Piñeiro multiple orthogonal
polynomials as a good example. This in-depth look at a practical case allows us to better
understand the ideas we’ve introduced. We can determine the exact ranges of parameters
where the recursion matrix stays positive, setting the limits of its usefulness.

It’s worth noting that the ideas we’ve talked about have been used to create finite Markov
chains in [6]. In fact, that work really explored many examples in the finite setting, finding
out lots of conclusions about randomness. It also been looked at breaking down the transition
matrices into smaller parts that are easy to understand, as it is done in [7]. This could be
important when we want to study these Markov chains in certain situations, like in [20] for
the Jacobi–Piñeiro case. Also, in [5], it is done similar developments with hypergeometric
multiple orthogonal polynomials [30].

Following ideas from [25], in [10], we also expanded our view to include Hessenberg
recurrence matrices with a positive bidiagonal factorization. We understood the structure of
these Markov chains, even when they’re not as simple as birth and death. We took this even
further in [11], looking at banded bounded matrices, and showing how they can be broken
down too. But, we still don’t know how to do a similar construction with more complex
situations involving mixed multiple orthogonal polynomials.

Lastly, by looking at real examples of mixed multiple orthogonal polynomials, using gen-
eralized hypergeometric series and theirs extensions, we can make specific types of Markov
chains that break free from the Hessenberg restriction. This is part of a bigger effort to create
these kinds of math expressions and use them in new ways. Stepping into the domain of
higher-order recurrence relations for multiple orthogonal polynomials of type II, the spot-
light falls on a non-negative recursion matrix, accompanied by its counterpart—-the linear
forms of type I. Within this framework, we lay bare a comprehensive strategy that shapes the
creation of a distinct dual pair of stochastic matrices.
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