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Abstract 

Accelerated longitudinal designs (ALDs) provide an opportunity to capture long 

developmental periods in a shorter time framework using a relatively small number of 

assessments. Prior literature has investigated whether univariate developmental 

processes can be characterized with data obtained from ALDs. However, many 

important questions in psychology and related sciences imply working with several 

variables that are intercorrelated as they unfold over time, such as cognitive and cortical 

development. Therefore, bivariate developmental models are required. This study aimed 

to assess the effectiveness of continuous-time bivariate Latent Change Score (CT-

BLCS) models for recovering the trajectories of two interdependent developmental 

processes using data from diverse ALDs. Through a Monte Carlo simulation study, the 

efficacy of different sampling designs and sample sizes was examined. The study fills a 

gap in the literature by examining the performance of ALDs in bivariate systems, 

providing specific recommendations for future application of ALDs for studying 

interrelated developmental variables. 

Keywords: Accelerated longitudinal design, bivariate latent change score, continuous 

time modeling, state-space models, bivariate developmental process  



Recovering trajectories of bivariate dynamics in ALDs with CT    4 

 

Recovering developmental bivariate trajectories in accelerated longitudinal 

designs with dynamic continuous time modeling 

Accelerated longitudinal designs (ALDs; Bell, 1953, 1954; Duncan et al., 1996) also 

referred to as cohort-sequential (Nesselroade & Baltes, 1979), overlapping cohort 

designs (Oud, 2001) or cross-sequential designs (Schaie, 1965), emerge from the need 

to study developmental processes that unfold over long periods of time. In psychology, 

among other fields, some processes such as the development of cognitive skills or brain 

structure from infancy to adulthood are costly to measure due to the large number of 

years involved or the expense of measuring certain variables —e.g., through the use of 

neuroimaging techniques. Such developmental processes are usually studied by 

collecting repeated measures of variables and analyzing their changes over the years. In 

an accelerated longitudinal design, participants from different age groups or cohorts are 

measured over less time and with fewer assessments. For example, instead of measuring 

participants annually from childhood to early adulthood (e.g., from 5 to 20 years old), in 

an ALD, different cohorts of participants enter the study at different ages (e.g., at ages 

from 5 to 18). They are repeatedly measured over two or three years, and then their 

trajectories are aggregated. This way, the complete developmental period is covered but 

each age cohort provides only information about a fraction of this period. By combining 

the overlapping information from each cohort, it is possible to obtain a complete 

coverage of the target age range in the span of a few years (Duncan et al., 1996; Estrada 

& Ferrer, 2019). Figure 1 depicts an example of trajectories from a longitudinal design, 

and the same trajectories under an ALD, where individuals from different cohorts were 

measured three times with intervals of two years in between.  

Figure 1 

Trajectories from a standard longitudinal design (left) and an ALD (right) 
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Note. All cases come from the same population. Subjects in the right panels were 

measured three times in alternate years. The top and bottom panels represent, 

respectively, the observed values of two developmental processes that influence each 

other over the years. 

The process of aggregating segments of trajectories is made possible because it 

relies on the assumption of cohort equivalence. We consider two or more cohorts to be 

equivalent if their trajectories can be characterized by the same set of parameter values, 

indicating that they come from the same population. This assumption holds true in 

populations where there are minimal or negligible changes over time (Bell, 1953, 1954; 

Cáncer et al., 2023; Estrada & Ferrer, 2019). 

ALDs have been employed in a variety of fields to investigate longitudinal 

processes, including recent studies in developmental psychology. For instance, they 

have been used to examine the behavior of children with autism and the adjustment of 

their mothers from childhood to pre-adolescence (Benson, 2014), as well as to track 
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changes in brain structure and function over the course of an individual's life (Liu et al., 

2021). Other examples are the study of empathy throughout the entire lifespan (Oh at 

al., 2019) or temporal order memory through childhood (Canada et al., 2020). ALDs 

have found extensive application in the field of cognitive development, with a particular 

focus on childhood, adolescence, and early adulthood. Studies by Estrada et al. (2019), 

Fandakova et al. (2017), Ferrer et al. (2009), Ferrer and McArdle (2004), Green et al. 

(2017), or Wendelken et al. (2017) have employed these designs to examine cognitive 

development during the first years of life. It is worth mentioning that these studies are 

typically based on developmental theories that are multivariate and dynamic, as they 

involve multiple variables and processes that unfold together over time. 

One of the objectives of this manuscript is to help popularize ALDs. Depending 

on the specific sampling schedule, these designs typically require collecting only 15%-

25% of the data points needed in a conventional longitudinal study (i.e., left panels of 

Figure 1). This substantial reduction implies a great saving of resources. Importantly, in 

conditions of limited funding, an ALD may be the only viable choice for studying 

development over a long period of time (e.g., 15 years), as researchers can cover such a 

period in a study spanning only 3 to 5 years. We aim to contribute to the still limited 

literature exploring ALDs effectiveness, and to provide specific recommendations on 

how to apply these designs and analyze the data obtained through them. 

Bivariate Latent Change Score Models for Dynamic Processes 

Numerous psychological variables are theoretically and empirically interrelated, and 

they develop over time in an interconnected fashion. A very flexible tool for capturing 

such interrelated processes is the Bivariate Latent Change Score model (BLCS; Cáncer 

et al., 2021; Cáncer & Estrada, 2023; Ferrer & McArdle, 2010, Ghisletta & McArdle, 

2012; Kievit et al., 2018; McArdle & Hamagami, 2001; McArdle, 2001, 2009). This 
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model, usually specified in a structural equation modeling framework (SEM), has been 

frequently used in the literature on psychological development and allows examining 

the interrelations between two variables that unfold over time as a dynamic system, 

where any given state is defined as a function of its preceding states. This model is a 

valuable tool for longitudinal studies, as it characterizes the latent change process of a 

nonlinear system, which allows modelling a wide range of trajectories (Cáncer et al., 

2021). 

A BLCS model represents the observed state of two variables X and Y for an 

individual i at any given time t as a function of: 1) an initial level (xi0 and yi0), 2) the 

history of latent changes up to that time, which consist of the sum of the k previous time 

intervals (∆xik and ∆yik), and 3) a measurement error term (εi[t]). These measurement 

errors follow a time-invariant normal distribution, with mean zero (μεx = μεy = 0) and 

variances (σ2
ex and σ2

ey), which are typically allowed to covary (σexey). 

𝑋𝑖[𝑡] = 𝑥𝑖,0 + ∑ ∆𝑥𝑖𝑘

𝑡

𝑘=1

+ ε𝑥,𝑖[𝑡] 

𝑌𝑖[𝑡] = 𝑦𝑖,0 + ∑ ∆𝑦𝑖𝑘

𝑡

𝑘=1

+ ε𝑦,𝑖[𝑡] 

(1) 

The history of latent changes is often the focus of these models and, depending 

on the interests and hypotheses of the researchers, various mathematical specifications 

are possible for characterizing the mechanism affecting them. For instance, when 

investigating the cortical and cognitive development of children and adolescents, BLCS 

models allow to examine how changes in cortical development from one measurement 

to the next are related to past measurements of both cortical development and cognitive 
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abilities (e.g. Estrada et al., 2019). A very common specification of the latent changes in 

a bivariate system is1: 

∆𝑥𝑖[𝑡] = 𝑥𝑎,𝑖 + β𝑥 · 𝑥𝑖[𝑡−1] + γ𝑥 · 𝑦𝑖[𝑡−1] 

∆𝑦𝑖[𝑡] = 𝑦𝑎,𝑖 + β𝑦 · 𝑦𝑖[𝑡−1] + γ𝑦 · 𝑥𝑖[𝑡−1] 

(2) 

Here, the latent change in each variable (Δx and Δy) is a function of: 1) an 

additive component (xa,i and ya,i) that adds a constant amount of change at each new 

time point, 2) a self-feedback effect that captures the effect from the latent level of the 

same process at the previous occasion (β) and 3) a coupling effect that captures the 

effect of the latent level of the other variable at the previous occasion (γ). The initial 

levels (x0 and y0) and the additive components (xa and ya) are typically allowed to 

covariate with the covariance structure defined in Equation 5 (see the next section). The 

variances of these latent variables capture individual differences within the population. 

Figure 2 depicts a path diagram of the BLCS described in Equation 2. Following 

the previous example, the change in cognitive development at any given time point t 

(e.g. ∆xt) is influenced by 1) a constant amount of change (xa), 2) an effect of the 

previous cognitive level (βx) and 3) an effect of the previous cortical development level 

(γx). In a hypothetical scenario where the initial level of cognitive development 

positively correlates with the additive component of cortical development (σx0ya > 0), 

individuals with higher cognitive level at t=0 experience a greater linear addition in 

 
1 In some cases, dynamic errors are included in the model to consider the influence of random shocks at 

the latent level, although these stochastic models are not commonly used (see Cáncer et al., 2023 for 

further explanations of deterministic and stochastic BLCS models)  
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cortical development at each time point, resulting in higher asymptotic values, that is, 

higher maximum values that the trajectories reach in the long run (Cáncer et al., 2021). 

Some recent examples of longitudinal associations that have been studied using 

BLCS models include the dynamic relationships between executive functions and 

anxiety severity (Zainal & Newman, 2021), the interdependence between loneliness and 

social engagement across the years (Power et al., 2019) or the interplay between 

emotional regulation and evaluative threat in young adults (Rice et al., 2019). 

Figure 2 

Path diagram of a Bivariate Latent Change Score model 

 

Continuous Time Dynamic Modeling 

The BLCS model described above is defined in discrete time (DT), which implies that 

time is divided into constant intervals. These models have limited flexibility, as they 

need the time interval between measurements to remain constant during the entire study, 
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both across participants and across repeated measures for every participant. However, 

such a regularly spaced time sampling is rarely found in empirical studies. This is why 

longitudinal research in psychology can benefit greatly from the use of continuous-time 

(CT) modeling, which has been proposed in recent years as a robust and effective 

approach to longitudinal data analysis (de Haan-Rietdijk et al., 2017; Deboeck & 

Preacher, 2016; Oud & Jansen, 2000, Voelkle et al., 2012; Voelkle & Oud, 2015). 

In contrast to the DT framework, a CT model considers time as a continuous 

variable and defines the changes in a system for an infinitesimal time interval (dt, 

instead of Δt, Ryan et al., 2018; Voelkle et al., 2012). As a result, CT models are 

considered to account for the process between observations, whereas DT models are 

assumed to reflect only changes occurring at discrete time points (Oud & Delsing, 

2010). A highly practical advantage is that CT models allow researchers to collect data 

at varying intervals, which can increase efficiency and provide more precise estimates 

of change (Ryan et al., 2018). In contrast, DT models require consistent time intervals 

between measurements, which can limit the sampling design options. Another important 

advantage of using CT models is that their parameters are independent of the specific 

time intervals used in any given study, and therefore they make it possible to compare 

parameters obtained in studies that use different time intervals (Voelkle, 2012). 

In CT modeling, differential equations are used to describe the change of the 

variables of interest. The latent changes specified in DT in Equation 2 can be expressed 

in a CT framework as a first order ordinary differential equation containing the same 

dynamic parameters (although with a somewhat different interpretation, since effects 

are defined for an infinitesimally small time lag): 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝑥𝑎,𝑖 + 𝛽𝑥 · 𝑥𝑖(𝑡) + 𝛾𝑥 · 𝑦𝑖(𝑡) 
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𝑑𝑦𝑖(𝑡)

𝑑𝑡
= 𝑦𝑎,𝑖 + 𝛽𝑦 · 𝑦𝑖(𝑡) + 𝛾𝑦 · 𝑥𝑖(𝑡) 

(3) 

These CT values provide information for computing the analogue DT values at 

any desired time interval (Δt). For more detailed information of the relation between CT 

and DT parameters and their interpretation, see Voelkle and Oud (2015) and Voelkle et 

al. (2012).  

Because in ALDs different individuals are expected to be measured at different 

ages, and (as in any longitudinal study) the measurement occasions are almost never 

evenly spaced (i.e., time intervals are not constant), CT models appear to be a very 

suitable tool for modeling this data. In fact, previous works have shown that CT models 

perform better in recovering generating parameters of a univariate system, particularly 

when observations are unevenly spaced, compared to LCS models in DT (Estrada & 

Ferrer, 2019). 

State-Space Models 

In recent years, various modeling frameworks have been proposed in the psychological 

literature for estimating CT models including latent variables. A very interesting one is 

State-Space Modeling (SSM), which was specifically designed for dynamic systems 

with longitudinal data (Chow et al., 2010; Hunter, 2018; Voelkle & Oud, 2015). In this 

study, we use a state-space model in continuous time to analyze the recovery of 

trajectories of bivariate systems in ALDs. SSMs consist of two equations: the state 

equation and the output equation. For a deterministic CT-BLCS, the state (or transition) 

equation describes change in a vector of the four latent variables for an infinitesimally 

brief time interval (dt): 
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𝑑

𝑑𝑡
[

𝑥𝑙,𝑖

𝑦𝑙,𝑖

𝑥𝑎,𝑖

𝑦𝑎,𝑖

] = [

𝛽𝑥 𝛾𝑥

𝛽𝑦 𝛾𝑦

1 0
0 1

0 0
0 0

1 0
0 1

] · [

𝑥𝑙,𝑖

𝑦𝑙,𝑖

𝑥𝑎,𝑖

𝑦𝑎,𝑖

] 

(4) 

where xl and yl represent the time-varying latent level of each variable for each 

individual, and xa and ya represent the time-invariant linear components—related to the 

additive component in the SEM BLCS model described previously—, which influence 

the latent levels of their corresponding process (either x or y). Here, latent states at t=0 

(xi0 and yi0), are defined by 1) a latent mean vector within the means from the additive 

components (xa and ya) and 2) a latent covariance matrix that informs about the 

interrelations between the four latent variables which follows a multivariate normal 

distribution (see Cáncer & Estrada, 2023):  

[

𝑥0

𝑦0
𝑥𝑎

𝑦𝑎

]~𝑁

(

 
 

𝜇 = [

𝜇𝑥0

𝜇𝑦0

𝜇𝑎

𝜇𝑎

] , Σ =

[
 
 
 
 
𝜎𝑥0

2  

𝜎𝑥0𝑦0 𝜎𝑦0
2   

  
  

𝜎𝑥0𝑥𝑎 𝜎𝑦0𝑥𝑎

𝜎𝑥0𝑦𝑎 𝜎𝑦0𝑦𝑎

𝜎𝑥𝑎
2  

𝜎𝑥𝑎𝑦𝑎 𝜎𝑦𝑎
2 ]
 
 
 
 

)

 
 

 

(5) 

The output equation is similar to the measurement model from structural 

equation models (SEM; Chow et al., 2010; Hunter, 2018). It connects the latent 

variables defined in continuous time (Equation 4) with the observed measurements (X 

and Y) for each subject i: 

[
𝑋𝑖

𝑌𝑖
] = [

1
0

0
1

0
0

0
0
 ] ·  [

𝑥𝑙,𝑖

𝑦𝑙,𝑖

𝑥𝑎,𝑖

𝑦𝑎,𝑖

] + [
𝜀𝑥,𝑖

𝜀𝑦,𝑖
] 

(6) 
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Therefore, the SSM consist of a latent, unobservable equation that captures the 

time-lagged dynamics of both processes and a measurement equation linking the 

unobserved and observed variables, which includes measurement errors (ε). These 

errors have zero mean and a covariance matrix with three parameters (σ2
ex, σ

2
ey and 

σexey). For a detailed explanation of the mathematical specification of a complete general 

SSM, see Chow et al. (2010) and Hunter (2018). 

Purpose of the study  

Previous research has shown that the dynamics underlying univariate developmental 

processes can be adequately recovered in accelerated longitudinal designs, both when 

the different cohorts are equivalent (Estrada & Ferrer, 2019; Estrada et al., 2020), and 

when they are not (Cáncer et al., 2023; Estrada et al., 2021; Miyazaki & Raudenbush, 

2000). However, as stated previously, psychological phenomena are typically conceived 

as multivariate, and the dynamics of two or more processes that unfold over time are 

considerably more difficult to recover. 

Therefore, the present study aims to examine the extent to which the features of 

a bivariate developmental system (e.g., co-development of reading and mathematics 

abilities, or cognitive ability and cortical thickness) can be recovered when data are 

gathered through accelerated longitudinal designs. To the best of our knowledge, this is 

the first exploration of the performance of ALDs with bivariate systems. For this reason, 

we started in a relatively simple scenario and assumed the different cohorts to be 

equivalent. This implies that they come from the same population and share a common 

developmental trajectory. 

Particularly, we explore the effectiveness of the bivariate latent change score 

model described above, estimated in continuous time as a state-space model. We 
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evaluate the performance of this model in various ALDs, with the aim of identifying the 

optimal sample designs and sizes for recovering the true trajectories while remaining 

cost-effective. Hopefully, the results from this study will provide novel insights and 

guidelines for designing future substantive studies. 

Method 

Monte Carlo Study 

We generated repeated measurements of two interrelated latent processes that unfold 

over time for 15 years, according to the SSM defined in Equations 4 and 5. We selected 

parameters for generating the populational data describing trajectories that are typical of 

the development of cognitive abilities from childhood to early adulthood. Such 

trajectories typically follow exponential decelerated growth, as they show rapid 

increases at the beginning of the time period considered, and progressively decelerate 

until they reach a peak during early adulthood (McArdle et al., 2002). 

Our specific generating parameters were adapted from a previous paper that 

examined the effectiveness of the BLCS model for developmental processes (Cáncer & 

Estrada, 2023). In this previous work, a set of generating parameters was selected by 

conducting a literature review on developmental processes and identifying typical 

values for the parameters in a bivariate LCS system. However, in that study, the model 

was specified in the classic DT SEM version (i.e., with constant time intervals, ∆t = 1). 

In order to generate a bivariate system unfolding in truly continuous time, we rescaled 

those parameters to plausible values in CT. For this, we simulated scores for multiple 

samples with constant time intervals between measurements according to the original 

DT parameters. To facilitate the estimation of the model and subsequent interpretations, 

we standardized the resulting scores with respect to the first measurement occasion: for 

all the scores, we subtracted the mean of the first measurement occasion, and then 
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divided by the standard deviation of such first occasion. Later, we fitted a continuous 

time SSM to the resulting datasets and saved the corresponding CT values. We repeated 

this process 20 times (i.e., 20 samples of size 250) and averaged the estimates from the 

SSMs. These averaged estimates were then used for the Monte Carlo simulation in our 

study. They are reported in Table 1. The graphs from Figure 1 depict examples of the 

generated trajectories in the two variables from 5 to 20 years of age in one of the 

simulated samples (n = 100).  
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Table 1.   

Generating population parameters values for the simulation study 

Parameter 

Value in DT  

(∆t = 1) 

Value in CT 

 

Initial level means    

μx0 -0.8 -0.022 

μy0 -0.2 0.018 

Initial level variances   

σ2
x0 0.3 1.014 

σ2
y0  0.6 1.037 

Additive component means   

μxa 0.8 2.279 

μya 1 1.105 

Additive component variances   

σ2
xa 0.02 0.095 

σ2
ya 0.08 0.174 

Self-feedbacks   

βx  -0.35 -0.461 

βy  -.25 -0.313 

Couplings    

γx 0.1 0.212 

γy 0.2 0.211 

Covariances between initial levels and additive 

components 

  

σx0y0 0.212 0.513 

σxaya 0.016 0.051 

σx0xa 0.046 0.186 

σx0ya 0.031 0.084 

σy0xa 0.033 0.094 

σy0ya 0.131 0.254 

Correlations between initial levels and additive 

components 

  

rx0y0 0.5 0.5 

rxaya 0.4 0.4 

rx0xa 0.6 0.6 

rx0ya 0.2 0.2 

ry0xa 0.3 0.3 

ry0ya 0.6 0.6 

Variances, covariance and correlation between 

measurement errors* 

  

σ2
x  0.1 0.333 

σ2
y  0.2 0.335 

σxy 0.02 0.0473 

rxy 0.14 0.14 

Note: Measurement error values changed to maintain the rate of error once the data was 

standardized. Values in DT were based on Cáncer and Estrada (2023). 
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Regarding the simulation conditions of the study, we manipulated two factors: 

(1) the sampling schedule and (2) the sample size. For the first one, we sampled the 

generated trajectories of both variables according to three ALDs. Namely, we chose 

three sampling designs that could be applied in less than five years. Each design implied 

a different duration of the study, average time interval between assessments, and 

number of measurement occasions per person. Figure 3 depicts the sampling schemes 

evaluated.   

Design 0 represents a non-cohort design, where all participants are measured 

every year. This is not an ALD, but a traditional longitudinal study spanning 15 years. 

We included this condition as a benchmark for comparing results from the remaining 

ALDs. Design 1 includes two measurements per case, sampled two years apart. 

Therefore, the sample collection would last three years. In Design 2, the two 

measurements are separated three years apart, so the study would take four years. 

Finally, in Design 3, all cases are measured three times, sampled two years apart, so it 

spans five years for each cohort. The examination of these designs is of interest, as 

Designs 2 and 3 incorporate a fewer number of cohorts, while Designs 1 and 2 have a 

smaller number of assessments and therefore shorter time for sample collection. 

Because these developmental processes are better estimated when the data 

density is as high as possible at the region with the greatest curvature (Mistler & 

Enders, 2012; Rhemtulla & Hancock, 2016), we assigned more subjects to cohorts 

covering the age range of 5 to 9 years. We sampled the data points for each subject 

randomly uniformly at any given week within the corresponding year (as depicted in 

Figure 1). That is, in the years scheduled for measurement, the individuals were 

measured once a year in a randomly selected week, with all weeks of the year having 

the same probability. 
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Figure 3 

Sampling schedules for the accelerated longitudinal design (ALD) examined 

 

 The second factor that we manipulated was the sample size. We included seven 

sample conditions: 100, 175, 250, 325, 400, 475 and 550. Therefore, the study included 

7 x 4 = 28 simulation conditions. In each of them, we generated 200 replications (i.e., 

28 x 200 replications in total). 
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Data Analysis 

In each of the simulated samples, we estimated a state space model in continuous time 

(SSM-CT). We used the OpenMx package in R (Boker et al., 2018; Hunter, 2018; Neale 

et al., 2016) and its functions mxExpectationStateSpaceContinuousTime and 

mxFitFunctionML. These functions utilize a set of recursive algorithms termed a 

“hybrid” Kalman Filter to estimate each subsequent state vector and state covariance 

matrix. This is done through a prediction step followed by an update step from the 

observed measurements. The Kalman Filter then adjusts the parameters of the model 

using Maximum Likelihood prediction error decomposition to reduce the prediction 

error (Hunter, 2018; Kalman, 1960; Neale et al., 2016; You et al., 2020). An R script for 

specifying and fitting the model to any sample can be found on this OSF repository: 

https://osf.io/7jzsv/?view_only=5ccfe6cfd2d144969572f37677f4874f. The computation 

time required to fit a model to a sample depends largely on the sample size and the 

number of measurements available for each case. In our study, the condition with the 

most data points included 550 cases with 15 measurements each (Design 0). On a 

commercial computer with regular computing power (i.e., a laptop), the model took no 

more than 5 minutes to converge for any of the samples. 

Results 

Due to the large amount of information generated in the simulation, this paper presents 

the results in graphical format. The tables with all the numerical results, as the R code 

for estimating CT-BLCS models are available at: 

https://osf.io/7jzsv/?view_only=5ccfe6cfd2d144969572f37677f4874f. 

Improper solutions 

During the estimation of the model, convergence problems were found in some 

replications, leading to improper solutions. We defined improper solution as outcomes 

https://osf.io/7jzsv/?view_only=5ccfe6cfd2d144969572f37677f4874f
https://osf.io/7jzsv/?view_only=5ccfe6cfd2d144969572f37677f4874f
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where the estimated parameters contained missing values (NAs) and the standard errors 

exhibited extreme values. The number of replicates that resulted in an improper solution 

varied across different conditions. Figure 4 depicts the rates of improper solutions. 

Figure 4 

Percentage of improper solutions across conditions 

 

According to Figure 4, the majority of improper solutions occurred in conditions 

with a sample size of fewer than 250 subjects in all ALDs. Design 0, which presents a 

conventional 15-year-longitudinal design, did not lead to any improper solution. In 

contrast, Design 1, which involved measuring each subject twice in alternate years, was 

more likely to present converge problems. For example, 44.5% of improper solutions 

were found in samples of 100 participants. Only the samples with proper solutions in 

each condition were considered for subsequent analyses. 

Estimation Accuracy, Variability and Coverage 

To evaluate the model performance, we calculated three indicators: relative bias (RB), 

standard deviation of relative bias (SDRB) and Coverage.  

To evaluate the accuracy of the model, we calculated the relative bias (RB) for 

each parameter using the formula 𝑅𝐵 = (�̅�𝑒𝑠𝑡 − 𝜃)/|𝜃|, where 𝜃 represents the true 

parameter value and �̅�𝑒𝑠𝑡 represents the average estimated value of the parameter from 
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all replications in a given condition. A RB value closer to zero indicates unbiased 

estimates, positive values suggest overestimation, and negative values imply 

underestimation. Previous research has considered estimates to be substantially biased 

when |RB| > 0.10 (Flora & Curran, 2004; Rhemtulla et al., 2012). In cases where the 

true value of an estimate is very close to zero (i.e., initial levels means μx0 and μy0), we 

report the raw bias 𝐵 = (�̅�𝑒𝑠𝑡 − 𝜃), instead of the RB indices. This was done to prevent 

their RB indices from being distorted by dividing by such a small value. 

 To assess the variability of the parameter estimates, we calculated the standard 

deviation of relative bias (SDRB) across all the samples in each condition by computing 

𝑆𝐷𝑅𝐵 = 𝑆𝐷[(𝜃𝑒𝑠𝑡 − 𝜃)/𝜃]. This index allowed expressing the estimation inefficiency 

in the same scale for all parameters. SDRB values are always positive, and lower values 

indicate less variability in the estimated values within a given condition, indicating 

greater efficiency. 

 Finally, we calculated the Coverage index, which represents the proportion of 

95% confidence intervals around the estimated parameter value that include the true 

parameter value. An optimal Coverage is achieved when at least 95% of the intervals 

contain the true parameter within their boundaries, while an adequate Coverage is 

obtained when at least 90% of the intervals include the true parameter (Collins et al., 

2001; Enders & Peugh, 2004). 

 Given that the BLCS models consist of 21 parameters, we present the indices by 

grouping them into distinct parameter sets. Initially, we examine the recovery of the 

dynamic parameters (β and γ). Subsequently, we present the indices related to the means 

and variances of the latent variables: the initial levels (x0 and y0) and the additive 

components (xa and ya). Next, we analyze the covariances and correlations among these 
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variables. Lastly, we analyze the measurement errors variances and covariance 

recoveries. 

Dynamic parameters 

As depicted in Figure 5, all parameters were adequately recovered across all ALDs 

when the sample sizes exceeded 250 subjects. A notable reduction of bias was observed 

as the sample size increased, which was expected since the model has more information 

for the estimation. For sample sizes smaller than 250, Design 1 showed a poor 

performance. The self-feedback parameters (βx and βy) were underestimated, whereas 

the couplings (γx and γy) were overestimated in those cases. In samples of size 100, none 

of the ALDs produced satisfactory results. Notably, Design 2, as depicted in the third 

column of Figure 5, exhibited superior performance compared to Design 1 and yielded 

comparable results to Design 3. This is an interesting finding because Design 2 includes 

one less assessment and one less year of data collection compared to Design 3. 

Regarding the variability of the estimates, a similar pattern was observed across 

all three ALDs, where the variability decreased with larger sample sizes. Concurrently, 

the coverage levels demonstrated a similar trend in all three designs, attaining adequate 

(>.90) and optimal (>.95) levels with increasing sample size. Hence, confidence 

intervals are more likely to enclose the true parameter as the sample is larger. 
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Figure 5 

Relative bias, Standard deviation of relative bias and Coverage indices for dynamic 

parameters across all conditions

Note: The red lines depict |RB|=.10. for the relative bias panels and 95% coverage for 

the rate of 95% CI coverage panels. 

Latent variables: initial levels and additive components 

Similar to the dynamic parameters, the estimation of the means and variances of the 

initial levels and additive components were adequately recovered in Designs 2 and 3, 

particularly in larger sample sizes (n > 250), as depicted in Figure 6. With smaller 
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sample sizes, Designs 1 and 2 overestimated the variances of the additive components 

(σxa
2 and σya

2).  

 Because the means of the initial levels had a true value very close to zero, we 

computed the raw bias, instead of the relative bias, for them. Consequently, there is no 

specific criterion to assess their estimation accuracy. Nonetheless, a comparison was be 

made with Design 0, which had demonstrated favorable outcomes. Thereby, the 

discrepancy between the estimated and true values did not appear to be substantial in 

any condition.  

This set of parameters showed higher SDRB values, which implies higher 

estimation inefficiency. This is particularly evident in Design 1, where the variances of 

the initial levels (σx0
2 and σy0

2) show higher levels of inefficiency. It is also noteworthy 

that, in terms of coverage, none of the variances exhibited satisfactory results with n = 

100, and with n < 250 in Design 1. 

Coverage exhibited a similar pattern to the dynamic parameters, ranging 

between values of .90 and .95. Nevertheless, it is worth noting that the variances of 

initial levels (σx0
2 and σy0

2) and additive components (σxa
2 and σya

2) displayed lower 

levels in the small sample sizes of Design 1. 
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Figure 6 

Raw bias, relative bias, Standard deviation of relative bias and Coverage indices for 

mean and variances of latent variables across all conditions 

Note: The red lines depict |RB|=.10. for the relative bias panels and 95% coverage for 

the rate of 95% CI coverage panels. 
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Regarding the covariances between latent variables, Figure 7 depicts the 

recovery of covariances between initial levels and additive components. Once again, 

Design 1 presented a poor performance with n < 250 regarding relative bias and 

coverage values. Additionally, a sample size of only 100 participants appeared to be 

inadequate, regardless of the ALD utilized. 

Figure 7 

Relative bias, Standard deviation of relative bias and Coverage indices for covariances 

between latent variables across all conditions 
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Note: The red lines depict |RB|=.10. for the relative bias panels and 95% coverage for 

the rate of 95% CI coverage panels. 

Additionally, the estimation inefficiency (i.e., SDRB) for the covariance between 

the initial levels (σx0y0 = 0.51) is distinctively higher compared to the other parameters 

in all conditions. This observation may be attributed to the relatively higher value of the 

covariance itself, which stands out among the other covariances (See Table 1). It is 

important to note that the magnitude of covariances is heavily influenced by the metric 

of variances. Thus, comparing the values of covariances alone does not provide a 

definitive interpretation. To gain a more accurate understanding, we also present 

correlations, which can be directly compared as they are expressed on the same scale. 

Initially, the relative bias for correlations obtained displayed abnormal values at 

smaller sample sizes (see Appendix for further details). Consequently, we computed the 

median (instead of mean) relative bias (depicted in Figure 8), 𝑀𝑅𝐵 =

(𝑀𝑒𝑑𝑖𝑎𝑛(𝜃𝑒𝑠𝑡) − 𝜃)/𝜃. As expected, the correlation estimates were more accurate in 

larger samples. In this case, Design 3 showed better estimation accuracy than Designs 1 

and 2 for smaller samples sizes (n<175) 

Figure 8 

Median relative bias for correlations across all conditions 
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Notes: The red lines depict |MRB|=.10. for the Median relative bias. 

Measurement error 

The recovery of the measurement error was very good across all conditions, regardless 

of the ALD. The results are depicted in Figure 9. We found very small variability across 

replications (SDRB panel of Figure 9). However, the coverage of the measurement error 

did not achieve adequate values in samples below 250 cases, with Design 1 

demonstrating the poorest performance in this regard. This is unexpected, given that 

coverage is not usually bad when estimates are unbiased. Such an outcome could be 

attributed to an underestimation of standard errors, leading to excessively narrow 

confidence intervals. Consequently, these intervals may exclude the true parameter 

value more frequently than expected, even when the point estimates are highly accurate 

in the replications. 
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Figure 9 

Relative bias, Standard deviation of relative bias and Coverage indices for 

measurement error across all conditions   

 

Note: The red lines depict |RB|=.10. for the relative bias panels and 95% coverage for 

the rate of 95% CI coverage panels. 

Discussion 

Summary of Findings 

In this study, our aim was to evaluate the use of a bivariate latent change score model 

estimated in continuous time (CT-BLCS) specified in a state-space modeling 
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framework (SSM) for recovering the trajectories of two interdependent developmental 

processes measured through different accelerated longitudinal designs (ALDs), and to 

provide specific recommendations for the design of future studies. To achieve this, we 

conducted a simulation study with three plausible conditions of sampling design and 

seven conditions of sample size, ranging from 100 to 550.  

Several noteworthy observations have emerged from our analysis. First, 

consistent with expectations, both accuracy and efficiency (i.e., lower variability across 

replications in a condition) of the parameter estimates improved as the sample size 

increased, for all ALDs. However, we found a clear difference between the use of 

smaller (100 and 175) and larger (≥250) sample sizes. This was particularly evident for 

the Design 1, which exhibited inadequate performance with samples of 100 and 175 

cases. Furthermore, most of the improper solutions came from these conditions, which 

indicates that the model had more difficulties in estimating the parameters with such 

limited data. 

Second, Designs 2 and 3 yielded highly satisfactory results, particularly with 

samples larger than 175. Finding a similar performance between these two designs is 

very interesting because Design 2 includes one fewer assessment than Design 3 and it 

costs only three years to complete, whereas Design 3 needs five years. In other words, 

Design 2 leads a similar estimation of true parameters with less information than Design 

3, making it the most cost-effective design.  

Lastly, the different parameters followed a similar pattern of recovery across all 

conditions. However, it is noteworthy that the variances of the initial components show 

a slightly lower estimation efficiency (i.e., higher SDRB) compared to the rest of 

parameters. Additionally, the dynamic parameters and the error variances and 
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covariance showed minimal variation between the different conditions, demonstrating 

the highest accuracy and efficiency in their recovery.  

Theoretical and Methodological considerations 

To the best of our knowledge, this study is the first investigation about the performance 

of accelerated longitudinal designs for the study of bivariate systems. By focusing on 

the bivariate context, we aimed to fill this gap in the existing literature and shed light on 

the potential advantages and challenges associated with employing ALDs in studying 

such systems. Investigating the performance of accelerated longitudinal designs for 

bivariate systems is very important because these designs offer a notable advantage in 

terms of cost-effectiveness compared to conventional longitudinal studies. The 

utilization of ALDs enables the feasibility of studying research questions that would 

otherwise be financially unattainable. 

We note that these results were found in empirically plausible scenarios. Our 

approach involved sampling assessments for each subject randomly throughout the year, 

simulating real-world scenarios where measurements are not obtained at precisely 

constant intervals, resulting in varying time intervals between assessments. This has 

significant implications in the successful recover of trajectories, as prior studies have 

consistently shown large biases in the estimation of all parameters of BLCS when 

measurement intervals differ across cases in discrete time (O'Rourke et al., 2021). 

Furthermore, these authors identified convergence problems associated with these DT 

models under varying time metric.  

One notable aspect in our study was the occurrence of improper solutions, 

particularly in samples with fewer than 175 participants and in Design 1, which 

involves two measurements spaced one year apart. A plausible explanation for this 
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observation is the challenge faced by the model in fitting trajectories with limited data. 

Having two measurements of a developmental trajectory that are very close (less than 

one year apart) may not provide sufficient information for accurate estimation. In 

contrast, Design 2, also featuring two measurements but separated by two years, allows 

for more significant changes in the latent trajectory, providing more informative data for 

estimation. 

Our findings align with previous simulation studies, providing further evidence 

that utilizing continuous time models can mitigate biases in parameter estimation when 

dealing with unequal measurement intervals (Estrada & Ferrer, 2019; Voelkle & Oud, 

2013). Therefore, we demonstrate that adopting a continuous-time approach offers 

researchers the flexibility to accommodate exact measurement times of nonlinear 

processes, as it ensures accurate parameter estimation within the Latent Change Score 

model framework. 

Limitations and future directions 

In this study, our focus was on examining a scenario characterized by cohort 

equivalence, where trajectories from different cohorts can be described using the same 

set of parameter values. However, cohorts may differ in some aspects of the 

developmental trajectories due to a number of reasons. This is because, although in 

ALDs such as the ones examined here cohorts are separated only a few years apart, 

some of them could be affected by various environmental factors affecting their 

development (e.g., changes in the educational laws in the country, an international 

pandemic, or gradual changes in ethnic composition of the population, among others.). 

In this paper, we have examined a relatively simple scenario in which cohorts were 

equivalent, but it is important for subsequent investigations to explore strategies for 

handling different types of non-equivalent cohorts. Previous works have both analyzed 
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the effect of such non-equivalence in univariate systems, and proposed tools for 

addressing these situations (Cáncer at al., 2023; Estrada et al., 2021; Estrada & Ferrer, 

2019; Miyazaki & Raudenbush, 2000). Understanding how to address such non-

equivalence in the context of bivariate developmental processes can provide valuable 

insights for refining and expanding the application of longitudinal models in new 

contexts.  

In any longitudinal study, some degree of participant attrition is expected, 

leading to some proportion of unplanned missing data. It is unknown how this 

additional unplanned missing data affects the estimates of statistical models fitted to 

data obtained in a scenario with an already high proportion of planned missing data, 

such as those found in ALDs. Future research should explore this important issue. 

Another challenge for future studies would be the application of ALDs in other 

bivariate dynamic processes with other non-exponential trajectories or spanning other 

life periods, such as old age (e.g. Lee et al., 2023). In these cases, we might encounter 

not only differences between cohorts, but also large individual variability related to 

factors such as medical conditions or life events that could lead to different forms of the 

trajectories.  

While the present study focuses on bivariate developmental systems, there is 

potential for extending this approach to multivariate systems. However, it is important 

to acknowledge that as the number of processes included increases, so does the 

complexity of the model. For instance, a univariate LCS model typically includes 7 

parameters, while the corresponding bivariate model includes 21 parameters. 

Introducing a third or fourth longitudinal variable further can increase the number of 

parameters to 42 and 70, respectively. To the best of our knowledge, such models are 
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very rarely applied in the literature, either in discrete or continuous time. This is 

probably due to their considerable mathematical complexity, the need for very large 

samples, and the very likely convergence problems. Although specifying these models 

is, in principle, feasible, their application must be accompanied by a theoretical basis 

that justifies the inclusion of additional elements and the associated complexities. 

Conclusions and recommendations 

Studying interdependent developmental processes can be challenging for researchers, 

particularly when they unfold over very long periods of time. The present study is the 

first exploration of the efficacy of a bivariate latent change score model in continuous 

time in the framework of accelerated longitudinal designs. Considering the findings 

from our Monte Carlo study, we offer the following recommendations for the design of 

future empirical studies applying ALDs for developmental variables: 

• Our results clearly support the appropriateness of accelerated longitudinal 

designs for examining the dynamics of two interrelated developmental 

variables. Therefore, we recommend using these designs, as they lead to a 

substantial decrease in the time and financial costs required for conducting 

developmental research. 

• Taking two assessments separated two years apart (i.e., a study of four years 

in total; Design 2) leads to very good estimation of true parameters with 

samples of 250 cases or more. 

• If it is not possible to wait for two years before taking the second 

measurement, and the researcher needs to take two measurements separated 

two years apart (i.e., Design 1, spanning three years in total instead of four), 

a sample of at least 325 participants should be used.  
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• In the case of having not having access to very large samples, it is more 

appropriate to plan a design including two measurements separated one year 

apart (i.e., Design 3, spanning five years in total). Nonetheless, it is 

preferable to avoid a sample size smaller than 175. 

By adhering to these recommendations, researchers can optimize their ALDs and 

enhance the accuracy and efficiency of their investigations. We hope this work 

contributes to the popularization of accelerated longitudinal designs and continuous 

time modeling in developmental psychology. 
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Appendix 

Figure A 

Relative bias for correlation between latent variables 

 

Figure B 

Relative bias for correlation between latent variables without abnormal results

 

Note: An abnormal result was considered values >1 or < -1  

 As seen, abnormal values emerged across replicas that lead to improper relative 

bias values. Given this, we computed Median Relative Bias (MRB, Figure 8). 


