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The microstructure and solvation mechanics of binary liquids are key for predicting mixture permittivity. 
However, since traditional mixing rules do not consider this complexity, they must be modified to address the 
mixture characteristics through an interaction factor (𝑘𝑖𝑛𝑡). This paper evaluates this parameter for several mixing 
rules, applying Support Vector Regressor models trained with glycerin-water reflective signals acquired with a 
Dielectric Resonator sensor. The regression error of these models indicates both the optimal interaction factor 
and the mixing rule that fits the most with experimental permittivity values. Kraszewski and Hashin-Shtrikman 
mixing rules achieved the best performance with an RMSE of around 1. In addition, this paper suggests that 
the interaction factor can be estimated through the molar volume and the dielectric contrast between liquids 
(𝑘𝑖𝑛𝑡 = 2.67) without acquiring experimental data. Moreover, after analyzing the physical limitations of a linear 
modification formula, this paper proposes an alternative based on a Gaussian function that avoids unrealistic 
volume fractions. Both contributions enhance mixing rule accuracy and improve the flexibility to model mixture 
dielectric behavior.
1. Introduction

Any heterogeneous material is a complex physical-chemical system 
with inclusions of another material or different phases of the same mate-

rial. The structural characteristics of these materials such as size, shape, 
spatial distribution, or the mutual interaction of the heterogeneities, 
are critical to understanding the macroscopic properties. This paper fo-

cuses on dielectric permittivity, which can reveal information about the 
intramolecular interaction of mixture components, helping to charac-

terize liquid solutions as well as composite materials [1]. It also has 
particular relevance for designing and validating microwave sensors 
that measure permittivity changes as a detection method for chemical 
or biological samples [2].

Nevertheless, estimating the dielectric permittivity in binary mix-

tures is still challenging, and so far, the best alternative is perform-

ing a direct measurement of the mixture of interest. The open-ended 
probe is the most popular dielectric spectroscopy technique for liq-

uid characterization. Connected to a Vector Network Analyzer (VNA), 
the coaxial probe is submerged in the liquid sample to measure the 
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reflective wave’s scattering parameters in a long range of frequencies 
[3]. However, the relationship between the scattering parameters and 
the medium permittivity relies on algorithms and the probe equivalent 
circuit. Depending on these models, the measured permittivity could 
present variations [4]. Moreover, the experimental setup imposes con-

straints in terms of probe dimensions and positioning, sample size, and 
frequency range, which affect the method accuracy [5]. The lack of di-

electric data for many binary mixtures hinders the validation of the 
measurements. Therefore, a theoretical permittivity estimation would 
be useful to contrast any experimental results and detect possible sys-

tematic errors. In addition, this methodology requires expensive equip-

ment, which is not always available, and developing an accurate mixing 
rule would be faster and cost-saving to estimate the permittivity of bi-

nary solutions.

First, Section 2 discusses the state-of-the-art of permittivity estima-

tions with mixing rules and their limitations in modeling the dielectric 
behavior of binary mixtures. Therefore, this section also introduces a 
novel Machine Learning approach for validating and optimizing mixing 
rules through an interaction parameter. Section 3 details the data and 
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the algorithms employed and discusses two contributions to improve 
mixing rules: a formula to estimate the interaction factor through pure 
liquid properties and a new Gaussian modification formula. Finally, Sec-

tion 4 shows our approach results for the glycerine-water mixture and 
discusses the effect of both contributions to improve permittivity esti-

mation.

2. Theory

2.1. The search for a general solution

In an extensive review, Brosseau [6] summarized the historical ap-

proaches addressing the permittivity estimation of binary mixtures, 
from theoretical formulations, using Maxwell’s electromagnetic (EM) 
theory, to relatively recent electromagnetic simulations of these mate-

rials. As a result, many formulas have been proposed to estimate the 
permittivity of heterostructures from the permittivity value of the pure 
compounds without performing experimental measurements [7]; how-

ever, none of them has been proved as a general solution. Indeed, one 
of the critical issues detected by Brosseau is the excessive number of 
formulas with uneven estimations that hinder their interpretation and 
validation.

In general, the formulas aim to calculate the permittivity of an 
effective homogeneous medium, which conceptually replaces the het-

erogeneous medium while keeping the same dielectric properties. It 
should be noted that this approximation is only valid when the incident 
electromagnetic (EM) waves have a wavelength significantly greater 
than the dimensions of the inhomogeneities. Besides, many of these 
formulas are constructed under the assumption of isotropy, which is 
rarely the case for complex materials. However, regardless of their the-

oretical grounding, all these formulas have limited success fitting the 
experimental data, thus giving poor permittivity estimations. In con-

trast, other formulas follow an empirical approach, and although they 
allow adjusting experimental data, they are limited to specific systems 
and cannot be generalized.

As has been observed, most theoretical formulas only work ade-

quately for a minimal fraction of heterogeneities, while for larger vol-

umes of inclusions, the formula’s error becomes excessive [6]. It has 
been suggested that these formulas only consider volume fraction or 
molar fraction as unique parameters, without indicating the structure 
of the mixture or the possible interaction between components. In addi-

tion to the bibliography examined by Brosseau, later works comparing 
mixing rules also demonstrate these discrepancies between experimen-

tal data and permittivity estimation [7][8]. However, it should be noted 
that the lack of experimental data limits this mixing rule validation, and 
the existing data have been extracted with different methods, many of 
which lack an estimate of the error.

Qin et al. [9] conducted an extensive review of the calculation of the 
electromagnetic properties of composites based on their structural pa-

rameters at the microscopic (atoms and dipoles), mesoscopic (phases, 
inclusions, agglomerates), and macroscopic (sample volume) scales. 
Knowing the relationship between scales is essential for understand-

ing the propagation of EM waves in these materials and, therefore, for 
designing tailored composites for different technological applications. 
The importance of the mixture structure is strongly related to the very 
definition of permittivity: a physical parameter that indicates the polar-

ization capability of the material and, therefore, how easily its internal 
charges can be aligned to the incident electric field [10]. Permittivity 
depends on the density and the separation of charges; therefore, the 
heterogeneities in a material cause a non-uniform polarization, which 
depends not only on the position and distribution of the inclusions, but 
also on the electric interaction between them and the solvent matrix 
containing them [9]. In conclusion, there is an effective permittivity, 
but this can only be accurately calculated by knowing the microstruc-
2

ture of the mixture and the set of electrical interactions between the 
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phases. However, even knowing the geometry, the permittivity calcula-

tion is a high-complexity problem and relies on EM simulation as the 
only feasible method.

This problem is particularly complex in the case of liquid solutions 
since the fluid microstructure cannot be observed as easily as a solid ma-

terial. Tang et al. [11] analyze the severe difficulties in observing and 
determining cluster structures in aqueous solutions, even when spec-

tral techniques or computational simulations are used. The formation 
of solute clusters in the primary solvent in aqueous solution defines the 
mesostructure and microstructure. This solvation process is determined 
by the network of hydrogen bonds and Coulombic forces, which largely 
depends on parameters such as chain length and solute concentration, 
but also on solution thermodynamic properties [11]. The rearrangement 
process can generate different geometries of clusters: spheres, cubes and 
chains [12]. The studies reviewed by Tang et al. indicate that con-

formational changes occur at critical concentrations [11]. Therefore, 
the microstructure changes (structural transition) should be observed 
through trend changes in the permittivity-volume fraction function. 
These insights can be extended to other polar solvents as shown by 
Pradhan et al. in a review of molecular interactions of non-aqueous 
solutions [13]. Moreover, if the solute is also a polar substance, the sys-

tem will undergo a competition between solute-solute, solvent-solute, 
and solvent-solvent interactions. In that case, the solvation process will 
be too specific to extract a general rule [14].

In summary, defining the exact dielectric behavior of a solution is 
a high-complexity problem that has not yet been solved. For this rea-

son, despite the drawbacks discussed in this section, mixing rules seem 
the only feasible method for estimating the effective permittivity of bi-

nary liquids. Therefore, new approaches are required to improve mixing 
rules, including other parameters to approximate molecular interaction 
or microstructure.

2.2. Improving mixture rules, from the thermodynamic approach to 
Puranik modification

The works of Reis et al. [15] and Iglesias et al. [1] propose a ther-

modynamic approach to define the ideal dielectric behavior of a mix-

ture. The electric polarization results in the reorientation of the sample 
dipoles and is therefore equivalent to an energy change of the system, 
allowing the application of thermodynamic formulation. According to 
this approach, the ideal permittivity of the mixture is the volume-

fraction weighted average of each component permittivity (1) [15], 
being 𝜙𝐴−𝐵 and 𝑉𝐴−𝐵 the respective volume fraction and volume of 
each liquid.

𝜀𝐼𝑑𝑒𝑎𝑙 = 𝜀𝐴𝜙𝐴 + 𝜀𝐴𝜙𝐴

𝜙𝐴 =
𝑉𝐴

𝑉𝐵 + 𝑉𝐴

= 1 −𝜙𝐵

(1)

The ideal value assumes a linear, isotropic, and homogeneous 
medium between the parallel plates of a capacitor [16]. The excess be-

tween the ideal and the measured permittivity is strongly related to 
the deviation from the ideal thermodynamic behavior. Peon Iglesias 
[1] proposed a method to estimate this excess and concluded that it 
is mainly attributable to the dielectric contrast (𝜀𝐴/𝜀𝐵) and the effect 
of the molecular interaction through electrostatic bonds and induced 
dipoles, which none of the traditional formulas consider. The excess 
due to variations in the void volume of the mixture is apparently less 
significant. Every binary mixture is indeed the mixture of each sub-

stance and the free space between them. This volume can vary due to 
the rearrangement of the molecules and interactions upon mixing. If 
the void volume increases, the dipole density is sparser; if it decreases, 
the dipoles condense. These findings support the idea of modifying the 
mixing formulas to model somehow the excess. For example, Puranik et 
al. [17] proposed a modification formula (2) to replace the solvent vol-

ume fraction (𝜙𝐴) by an effective volume fraction (𝜙𝐴𝑒𝑓𝑓
) through an 
interaction parameter (𝑘𝑖𝑛𝑡).
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𝜙𝐴𝑒𝑓𝑓
= [𝑘𝑖𝑛𝑡 ∗ (1 −𝜙𝐴) +𝜙𝐴] ∗ 𝜙𝐴

𝜙𝐵𝑒𝑓𝑓
= 1 − 𝜙𝐴𝑒𝑓𝑓

(2)

The interaction parameter 𝑘𝑖𝑛𝑡 aims to synthesize how the in-

tramolecular interactions rearrange the molecules in the mixture struc-

ture, changing the volume fraction. Moreover, this effect should be 
practically null in non-polar liquids, giving a 𝑘𝑖𝑛𝑡 value close to 1 [17]. 
This is consistent with the insights from the bibliography introduced so 
far, which question the suitability of the volume fraction as a parameter 
to estimate the mixture permittivity beyond isotropic, ideal, or homo-

geneous liquids [15]. The modification formula was tested to fit the 
predictions of Bruggeman’s formula to the permittivity measurements 
of water-alcohol mixtures. Unfortunately, the authors did not provide 
a deeper theoretical justification for this modification. However, it has 
been tested by Amooey et al. [7] and Sarami et al. [8] applying the 
modification to compare an extensive list of mixing rules, with positive 
results: all the formulas fit their experimental data better. Neverthe-

less, this methodology has two drawbacks. Firstly, the parameter 𝑘𝑖𝑛𝑡
is calculated with an optimization algorithm in order to reduce the er-

ror between the experimental and mixing rules values. Therefore, the 
reliability of this estimation depends on the quality of the data and 
the number of data points measured for each concentration. If data are 
scarce, there is a risk of overfitting, and if the data contain systematic 
errors, the adjustment will also be wrong. Secondly, each mixture has 
a unique 𝑘𝑖𝑛𝑡 value, and consequently, the modification formula has no 
predictive value for new mixtures; therefore, it serves only to validate 
known permittivity mixtures.

The first objective of this paper is to present a methodology based on 
Machine Learning models to calculate the 𝑘𝑖𝑛𝑡 value and the effective 
volume fraction without the risk of overfitting. The second objective 
is to propose a formula to estimate 𝑘𝑖𝑛𝑡 requiring only pure liquid 
properties to fulfill the need for a general predictive formula of binary 
mixtures.

2.3. The Machine Learning approach

The starting point for this paper is our previous research [2], in 
which a Dielectric Resonator (DR) sensor was used to classify glycer-

ine solutions. While techniques such as the open-ended coaxial probe 
acquire a direct permittivity measure, DR sensors detect substances 
measuring variations in its resonance frequency, which is closely re-

lated to medium permittivity around the sensor. When a liquid sample 
is dropped in a small cavity on top of the sensor, there is a change of 
permittivity resulting in a resonance frequency shift that can be de-

tected. Therefore, the signal acquired is an indirect measure of the 
liquid permittivity within the narrow frequency range of the sensor 
resonant behavior. This change in technology simplifies the measuring 
protocol, enabling a faster acquisition and reducing the liquid sample 
volume. In addition, the DR sensor is designed to be portable, made of 
economical ceramic materials, and used alongside low-cost electronics. 
Although the sensor cannot directly measure the permittivity value for 
each concentration, the signals clearly indicate permittivity variations 
[2].

The initial objective was to develop a regression model that cor-

relates the reflected DR signal to the corresponding permittivity value 
of the solution. However, achieving a correct regression prediction re-

quires knowing with precision the real permittivity values as the pre-

dictive variable. Which brings back the key issue of this paper: what 
is the permittivity of a binary mixture? Given the lack of dielectric 
data for many chemical and biomedical solutions of interest, this can 
be a critical issue. To the authors knowledge, there is just one refer-

ence with glycerine-water permittivity measures in the frequency range 
of the sensor [18] (Table 1). Consequently, without other experiments 
to contrast these values, how far is it reasonable to trust them for a re-

gression model? This problem demands either more experimental data, 
which is not always possible, or theoretical or computational models to 
3

contrast with the experimental data.
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Table 1

Permittivity of glycerin-water solutions extracted from [18]

and [25].

Medium 𝜀experimental Medium 𝜀experimental

Air 1.00 Glycerine 40% 58.78

Glycerine 80% 17.00 Glycerine 30% 65.25

Glycerine 70% 27.45 Glycerine 20% 69.23

Glycerine 60% 39.00 Glycerine 10% 74.32

Glycerine 50% 51.55 Water 78.30

Unfortunately, as was briefly discussed in the previous section, the 
use of suboptimal formulas is mostly forced in the case of liquid mix-

tures. However, as was stated before, achieving a correct regression 
requires knowing the real permittivity values, which implies that the 
regression error will be lower when more realistic permittivity val-

ues are considered within the model. In contrast, the regression error 
will increase when these values deviate more from reality. Using this 
methodology, this paper aim to evaluate both the experimental data 
and the formula predictions. In addition, the optimal interaction factor 
(𝑘𝑖𝑛𝑡) could be estimated by minimizing the regression error. Unlike the 
works of Amooey et al. [7] and Saramy et al. [8], optimization algo-

rithms such as Levenburg-Marquarts cannot be employed since the DR 
sensor signals do not directly give the mixture permittivity. Thus, the 
𝑘𝑖𝑛𝑡 cannot be fitted to match the mixing rules estimations with the DR 
data.

It must be noted that the success of this method depends on how 
this error is measured and the regression technique selected, consid-

ering that DR signals are high-dimensionality data. Linear regression 
is a standard method to analyze the relationship between independent 
variables or features and a dependent variable, such as the mixture per-

mittivity. As a result, the regression model can predict the outcome of 
new input data, even interpolating unseen data points [19]. Neverthe-

less, linear regression is not able to fit non-linear relationships between 
the dependent and independent variables and requires more advanced 
methods such as LASSO or Ridge regression, which enable polynomial 
fitting of m-degree without the risk of overfitting [20]. However, the 
main disadvantage of traditional regression is the parametric approach: 
any statistical modeling formalizes the relationships between variables 
in the form of mathematical equations. In the case of non-linear rela-

tionships, finding a useful model could be challenging, especially when 
the number of features or independent variables is too large, as in any 
signal analysis problem.

Machine Learning (ML) is a set of computational algorithms that aim 
to imitate human learning by developing flexible data-driven models for 
identifying complex patterns, including non-linear relationships [21]. 
In contrast to linear regression, ML models assume a non-parametric 
approach where the algorithm is trained to resolve an optimization 
problem to fit the data with the model architecture. In a paramet-

ric model, the number of parameters is limited, and the optimization 
only finds the set of values that best fits the data. By contrast, in non-

parametric approaches, the model complexity and internal parameters 
change according to the training data [22]. As a result of this flexi-

bility, ML models are able to approach a more complex feature space 
without human intervention, just learning from the data structure. For 
this reason, we propose ML regression as the most suitable approach for 
permittivity regression from DR signals. Our previous work [2] tested 
the first concept of this approach, but without applying the volume 
fraction modification [17], and considering only the Maxwell–Garnett 
(MG) mixing rule [23] (3) to compare and validate the experimental 
reference with the 𝜀𝑀𝑎𝑥𝑤𝑒𝑙𝑙−𝐺𝑎𝑟𝑛𝑒𝑡𝑡 estimation.

𝜀𝑀𝑎𝑥𝑤𝑒𝑙𝑙−𝐺𝑎𝑟𝑛𝑒𝑡𝑡 = 𝜀𝐵 + 3𝜀𝐵𝜙𝐵

𝜀𝐴 − 𝜀𝐵

𝜀𝐴 + 2𝜀𝐵 − 𝜙𝐵(𝜀𝐴 − 𝜀𝐵)
(3)

We found that the permittivity value differed drastically between 
the MG mixing rule and the experimental reference (Table 1), and it was 

not possible to determine a priori if either was correct. A Support Vector 
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Regressor (SVR) model was trained for each permittivity set to estimate 
the mixture permittivity. The model performance differed, with a Root 
Mean Square Error (RMSE) of 1.119 for the experimental values and 
2.091 for the Maxwell-Garnett estimated values, pointing to the mis-

match between this formula with the experimental values. In addition, 
while the experimental error was uniformly distributed, the Maxwell-

Garnett permittivity (3) was highly concentrated in the low glycerine 
concentrations. This different pattern in the error distribution indicates 
that SVR models can validate the fitness of a mixing rule. In this re-

search, this methodology is extended for other mixing rules to perform 
a comparative analysis of mixing rules for glycerine solutions with and 
without the modification formula proposed by Puranik et al. [17].

3. Methods

3.1. Dataset description

The main dataset for this work was collected during our previous 
research [2], testing a microwave Dielectric Resonator (DR) sensor for 
classifying glycerine solutions. The dataset is available in a GitHub 
repository and includes 180 reflected signals acquired with a low-

cost electronic reader based on Arduino and designed by the authors 
[24][dataset]. The dataset contains air and nine distinct glycerine con-

centrations from 0% to 80% in 10% intervals. In order to correlate the 
sensor response with the permittivity of these concentrations, reference 
values are extracted from the following studies: Meaney P. et al. [18]

for glycerine solutions at 21 °C and Ellison W. et al. for pure water at 
20 °C [25] (Table 1). Other data extracted from bibliographic references 
to validate our approach include: the interaction factors fitted by Pu-

ranik for water-alcohol mixtures [17] (Table 3); the permittivity values 
at several concentrations for anisole-alcohol mixtures [26], propanoic 
acid mixed with ethyl acetate, ethyl benzoate, and ethyl acrylate [27]; 
and mixtures of toluene with methanol, ethanol, and propanol [28].

3.2. Machine Learning techniques to predict the mixture permittivity

Due to the high dimensionality of the DR signals, feature reduction 
techniques are required to improve the training efficiency of ML models. 
Principal Component Analysis (PCA) is a mathematical technique that 
detects the directions with greater variability within the data structure 
and creates a new mathematical space where each signal is projected. 
This method preserves and condenses the information of each signal in a 
vector defined by the axes of the new PCA space, which are called prin-

cipal components [29]. This vector will be the input feature (X) used to 
train the ML regression model, while the permittivity estimation will be 
the training target (y) (Fig. 1). For the glycerine-water mixture dataset, 
the number of principals was established at seven, which condense 95% 
of the explained variance within the dataset.

Prior screening showed that the most optimal ML model for permit-

tivity regression was Support Vector Regressor (SVR), an extension of 
the Support Vector Machine (SVM) classification model. While the SVM 
finds the hyperplane in the feature space, which maximizes the sepa-

ration between classes [30], the SVR calculates the hyperplane with a 
flexible error margin that defines the volume containing most of the 
training data. Thus, the SVR predictions will be inside this volume, 
which is optimized through model training to make it as narrow as 
possible [31]. This training is tuned by two hyperparameters: C, which 
defines the hyperplane exclusion margin, and 𝛾 , which regulates the 
influence distance of a single training point.

The SVR models were implemented with Python using the scikit-

learn library [32]. The radial basis function kernel was selected to learn 
the non-linear relationships within the dataset. Bayesian optimization 
implemented with scikit-optimize library was used for the hyperparam-

eter tuning [33]. This search algorithm found through training itera-

tions that the hyperparameter combination with the lowest RMSE was 
4

C=7500 and 𝛾=0.003. Besides dividing the dataset into train and test 
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Fig. 1. Summary of the ML approach for a given mixing formula considering a 
𝑘𝑖𝑛𝑡 value between 0 and 4. This protocol will be repeated for each formula.

to prevent overfitting (70%-30%), the K-fold Cross-Validation method 
was applied during the model training with k=5 folds [34].

A set of SVR models were trained to fit the permittivity estimations 
given by each mixing rule, considering an interaction factor between 
0 and 4. After training, each SVR model is fed with the test dataset to 
generate predictions (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ) (Fig. 1). The RMSE measures the model 
accuracy with respect to the test permittivity values (𝑦𝑡𝑒𝑠𝑡). Therefore, 
this score evaluates the performance of each mixing rule for a particular 
𝑘𝑖𝑛𝑡 interaction value.

3.3. Mixing rule selection

As the literature indicates, finding the best mixing rule may be not 
possible since it could depend on the binary mixture. Thus, the aim 
of this work is proposing new methods to enhance any mixing rule. 
The mixing rule selection to show the fitting improvement is a subset 
from the selection made by Sarami et al. [8]. In a preliminary assess-

ment, the whole was tested but all mixing rules show a similar trend but 
with displaced values, including high-order mixing rules such as Oster 
[35] or Onsager-Bottcher [36], therefore; for clarity, just the first-order 
equations were considered. Other mixing rules, such as the Bruggeman 
asymmetric [37] or Bottcher-Bordewijk [38], achieved a good fitting; 
however, they were not included to avoid an excessive overlap that 
made the figures unclear. The final mixing rule selection is a represen-

tative set that cover the range of values between the upper a lower 
bound established by the Ideal (1) and Wiener (9) mixing rules. Besides 
the Maxwell-Garnett (3) and Ideal (1), the following mixing rules were 
considered: Hashin-Strikman (4) [39], Looyenga (5) [40], Peon-Iglesias 
(6) [41], Lichtenecker-Rother (7) [42], Kraszewski (8) [43], Wiener (9)

[44].

(𝜀𝐻𝑎𝑠ℎ𝑖𝑛−𝑆𝑡𝑟𝑖𝑘𝑚𝑎𝑛 − 𝜀𝐴)
(𝜀𝐻𝑎𝑠ℎ𝑖𝑛−𝑆𝑡𝑟𝑖𝑘𝑚𝑎𝑛 + 2𝜀𝐵)

=
𝜙𝐴(𝜀𝐴 − 𝜀𝐵)

3𝜀𝐴
(4)

𝜀𝐿𝑜𝑜𝑦𝑒𝑛𝑔𝑎 = [𝜀1∕3
𝐴

+ 𝜙𝐵(𝜀
1∕3
𝐵

− 𝜀
1∕3
𝐴

)]3 (5)

𝜀𝑃𝑒𝑜𝑛−𝐼𝑔𝑙𝑒𝑠𝑖𝑎𝑠 = 𝜀𝐼𝑑𝑒𝑎𝑙 ∗ [1 −
2
3
ln

1 + 𝜙𝐴((
𝜀𝐴

𝜀𝐵
) − 1)

( 𝜀𝐴
𝜀𝐵

)𝜙𝐴

] (6)

𝜀𝐿𝑖𝑐ℎ𝑡𝑒𝑛𝑒𝑐𝑘𝑒𝑟−𝑅𝑜𝑐ℎ𝑡𝑒𝑟 = 𝜀
𝜙𝐴

𝐴
∗ 𝜀

𝜙𝐵

𝐵
(7)

√
(𝜀𝐾𝑟𝑎𝑠𝑧𝑒𝑤𝑠𝑘𝑖) = 𝜙𝐴 ∗

√
(𝜀𝐴) + 𝜙𝐵 ∗

√
(𝜀𝐵) (8)

1
𝜀𝑊 𝑖𝑒𝑛𝑒𝑟

=
𝜙𝐴

𝜀𝐴
+

𝜙𝐵

𝜀𝐵
(9)

3.4. The Gaussian modification and a novel formula to estimate the 
interaction factor

However, the proposed methodology still demands a significative 
amount of data acquisition to train the ML models and find the optimal 

interaction factor. Therefore, to avoid the need for experimental data, 



Journal of Molecular Liquids 399 (2024) 124290M. Monteagudo Honrubia, F.J. Herraiz-Martínez and J. Matanza Domingo

Fig. 2. (a) Comparison of the mixing rules permittivity estimations with the experimental values. (b) Boxplot distribution of permittivity predictions from SVR 
models trained with different mixing rules.
𝑘𝑖𝑛𝑡 should ideally be estimated with a formula requiring only pure liq-

uid properties, enabling a priori prediction of the mixture permittivity. 
According to Puranik et al. [17] the change in the effective volume frac-

tion is due to the rearrangement of the molecules within the mixture. 
This paper proposes that this rearrangement depends on the dielectric 
strength but also the size of the molecules involved, and therefore 𝑘𝑖𝑛𝑡
could be estimated as a function of the dielectric contrast and molar vol-

ume relation between both liquids (10). Consequently, this estimation 
formula considers that the interaction factor is not a constant since the 
permittivity depends on the frequency of the incident wave. In addition, 
it also depends on thermodynamic conditions since the molar volume is 
proportional to the liquid density, which depends on variables such as 
temperature or pressure.

𝑘𝑖𝑛𝑡 =
𝜀𝐴 ∗ 𝑉 𝑚𝐴

𝜀𝐵 ∗ 𝑉 𝑚𝐵

(10)

To prove this hypothesis, the 𝑘𝑖𝑛𝑡 estimated for glycerin-water mix-

ture is compared with the 𝑘𝑖𝑛𝑡 optimal values obtained with the SVR 
models for each formula, but also with the interaction factor calculated 
by Puranik [17] for several polar binary liquids. Moreover, in order to 
test the whole methodology, additional measurements with DR sensor 
were taken for water-𝑃𝐸𝐺400 and water-acetone mixtures. Afterwards, 
the best SVR models trained with the glycerin-water dielectric data and 
the best mixing rule using our 𝑘𝑖𝑛𝑡 estimation (10) will predict the per-

mittivity of these unseen samples. Finally, the model predictions will be 
contrasted with the values given by the mixing rule itself. On the other 
hand, as Puranik et al. state in their article, the volume fraction modi-

fication proposed (2) is not based on any theoretical justification [17]. 
This is a critical issue since all the methods rely on the soundness of the 
formula. Therefore, the mathematical domain and the fitness with the 
physical conditions of the problem will be analyzed. After studying its 
limitations, a new Gaussian modification formula is proposed.

4. Results and discussion

4.1. Mixing rules comparison

Fig. 2a shows the estimated permittivity of the chosen mixing rules 
for the glycerin-water mixture. None of them fit either the extracted 
experimental values from [18], or the curve shape. The Ideal mixing 
rule (1) has the best approximation, despite being a simple line cross-

ing the curve of the experimental values. From the Hashin-Strikman (4)

to the Wiener (9) mixing rules, the estimated values distance progres-
5

sively from the experimental values. The Wiener mixing rule not only 
Table 2

Comparative performance between standard and modified formulas.

Mixing Rule Initial RMSE 𝑘𝑜𝑝𝑡 𝑅𝑀𝑆𝐸𝑚𝑖𝑛

𝑅𝑀𝑆𝐸𝑚𝑖𝑛+5%

[𝑘𝑜𝑝𝑡−𝑟𝑎𝑛𝑔𝑒]

Ideal (1) 1.365 2.29 0.877 
0.921

1.93-2.66

Looyenga (5) 1.820 2.17 1.182 
1.241

1.91-2.49

Peon-Iglesias (6) 1.978 2.21 1.304 
1.369

1.87-2.45

Lichtenecker-Rother (7) 2.102 1.99 1.461 
1.534

1.81-2.37

Kraszewski (8) 1.696 2.23 1.080 
1.134

1.93-2.54

Hashin-Shtrikman (4) 1.579 2.23 1.016 
1.067

1.93-2.52

Maxwell-Garnett (3) 2.216 1.88 1.69 
1.77

1.63-2.12

differs the most from the experimental curve, showing an unrealistic in-

verted shape, but also, it achieved the worst ML performance, and it 
was excluded from the discussion for clarity.

The divergences from the experimental curve are correlated with the 
performance of the trained SVR models (Table 2). The lowest RMSE is 
reached for the model trained with the experimental values, followed by 
the Ideal formula (1). As the mixing rule estimation differs from the ex-

perimental values in Fig. 2a, the RMSE increases. The Maxwell-Garnett 
mixing rule (3) used previously in [2] has the second highest RMSE. 
These results are represented in the boxplot of the predicted permittiv-

ity for each concentration (Fig. 2b). As is clearly depicted, lower RMSE 
implies narrower boxes and a lower standard deviation.

4.2. Interaction factor evaluation

Fig. 3 shows the RMSE as a function of the interaction parameter 
𝑘𝑖𝑛𝑡. The experimental set represents a threshold value since it is not 
modified. All the mixing rules present a similar trend, reaching a min-

imum RMSE in an optimal region of similar 𝑘𝑖𝑛𝑡 values (Table 2). This 
insight indicates that the interaction factor is a mixture property with 
a similar impact on each mixing rule. The mixing rules keep the same 
performance order described in the previous section. The Ideal formula 
(1) achieves the lowest RMSE, even surpassing the performance of the 

experimental value set. The Hashin-Shtrikman (4) and Krazsweki (8)
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Fig. 3. RMSE variation of SVR models trained with different 𝑘𝑖𝑛𝑡 values for 
each mixing rule. The vertical red line corresponds to the 𝑘𝑖𝑛𝑡 estimated with 
equation (10).

mixing rules also achieved a lower RMSE error. This overperformance 
may indicate that the considered experimental values to train the SVR 
could be affected by some measured error.

Table 2 shows that after applying the Puranik modification [17]

each mixing rule has a significant RMSE reduction of around 0.5-0.6. 
However, even with this volume fraction modification, the Maxwell-

Garnett mixing rule (3) is still achieving suboptimal results and there-

fore has been excluded from the following discussions. Considering the 
remaining mixing formulas, the optimal 𝑘𝑖𝑛𝑡 has a mean value of 2.18. 
According to the parabolic relationship between RMSE and 𝑘𝑖𝑛𝑡 (Fig. 3), 
the RMSE variation is decreasing around the minimum. Considering a 
5% error increment (𝑅𝑀𝑆𝐸𝑚𝑖𝑛+5%), an optimal range with a low im-

pact on the SVR performance can be defined between the 𝑘𝑖𝑛𝑡 values of 
1.9-2.5.

However, considering the mean 𝑘𝑜𝑝𝑡 = 2.18, which is the center of 
the optimal range, the new values estimated by the mixing rules do 
not fit the experimental values set either (Fig. 4a). But in contrast to 
the unmodified formulas, the new curves tend to surpass the experi-

mental curve. Although the Peon-Iglesias (6) and Lichtenecker-Rother 
(7) mixing rules achieved a higher RSME, they fit quite well, especially 
for volume fractions (𝜙𝐵) higher than 0.4. Unfortunately, the Ideal for-

mula (1), which obtains the lowest RMSE, does not fit properly with the 
experimental values.

On the other hand, considering now a 𝑘𝑖𝑛𝑡=1.9, at the lower limit 
of 𝑘𝑖𝑛𝑡 optimal range, there is a significant improvement in the match 
between mixing rules estimations and experimental data (Fig. 4b). In 
this scenario, the Looyenga mixing rule (5) obtains the best balance of 
RMSE-fitting. Nevertheless, it is clear that there is not a pure correla-

tion between the RMSE and the mixing rule fitness. The reason why 
could be that the regression error reduction is due to the label distribu-

tion rather than the label values. Therefore, similar curve shapes with 
different permittivity values will score a similar RMSE as in the case of 
Fig. 4a and Fig. 4b. As a consequence, depending on the 𝑘𝑖𝑛𝑡 within the 
optimal range, this method will find the correct mixture permittivity 
distribution displaced in a narrow margin.

Following the insights, the boxplot in Fig. 5 compares values 1, 1.9, 
and 2.18 of 𝑘𝑖𝑛𝑡 for the Ideal formula (1), showing slight differences 
in standard deviation for each concentration. In contrast, Fig. 6 shows 
the fitness of the formulas with a similar RMSE to the experimental set. 
In this case, especially for low glycerine concentrations, the predicted 
permittivity from SVR models is quite similar, with no significant stan-

dard deviation differences by mixing rule. In any case, since the whole 
6

analysis is biased by the reliability of the experimental values extracted 
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Table 3

Summary of interaction factor values for several binary liquids com-

pared with our formula estimation.

Mixture 𝑉𝑚𝐴
| 𝑉𝑚𝐵

𝜀𝐴 | 𝜀𝐵 𝑘𝑖𝑛𝑡 [17] 𝑘𝑖𝑛𝑡 | 𝑘𝑖𝑛𝑡−1 (10)

Methanol (A) 
Water (B)

40.65 
18.02

32.1 
80.1

1.66 0.90 
1.11

Ethanol (A) 
Water (B)

59.53 
18.02

24.5 
80.1

1.53 0.99 
1.01

Propanol (A) 
Water (B)

74-79 
18.02

17.9 
80.1

1.33 0.93 
1.08

Formamide (A) 
Water (B)

33.79 
18.02

111 
80.1

-0.10 2.597 
0.385

DMSO (A) 
Water (B)

71.03 
18.02

46.7 
80.1

2.65 2.29 
0.437

Acetophenone (A) 
Ethanol (B)

116.88 
59.53

17.4 
24.5

2.08 1.394 
0.717

in [18], whose margin of error is unknown, the low dispersion of SVR 
predictions could be within this error.

4.3. A simple but an effective 𝑘𝑖𝑛𝑡 estimation

Despite the considerable improvement after applying the volume 
fraction modification, the main drawback of this methodology is still 
its dependency on experimental data to calculate the interaction fac-

tor. Therefore, estimating the interaction factor a priori would be a 
significant advantage. Using our estimation formula (10), the interac-

tion factor for glycerin-water mixtures is close to the optimal range of 
𝑘𝑖𝑛𝑡 achieved by the SVR models (11).

𝑘𝑖𝑛𝑡 =
𝜀𝑊 𝐴𝑇 ∗ 𝑉 𝑚𝑊𝐴𝑇

𝜀𝐺𝐿𝑌 ∗ 𝑉 𝑚𝐺𝐿𝑌

= 78.3 ∗ 18.02
7.23 ∗ 73.03

= 2.67

𝑘𝑜𝑝𝑡−𝑆𝑉 𝑅 = [1.9,2.5]
(11)

In addition, the 𝑘𝑖𝑛𝑡 values fitted by Puranik [17] for several binary 
mixtures were compared with the estimation given by the proposed 
formula (10). The results seem promising, with a huge level of concor-

dance between both methods (Table 3). However, more comparisons 
should be made to gather more evidence that our formula could give 
correct estimations.

4.4. Analyzing the limitations of the volume fraction modification. A new 
Gaussian equation to improve permittivity estimations

The core of the previous method is the volume fraction modification 
proposed by Puranik et al. [17], which is not based on any theoretical 
justification as is stated by the authors. Therefore, its suitability depends 
on how well the mathematical formulation (2) is able to model the vol-

ume fraction change due to the interaction between liquids. Under the 
assumption of the proposed estimation formula (10), the interaction 
factor is the relationship between the pure liquid properties that define 
the molecular arrangement. Therefore, if 𝑘𝑖𝑛𝑡 = 1, the volume fraction 
does not change since there is an equilibrium between the properties 
of both liquids. The Puranik modification satisfies this condition, and 
Fig. 7(a) shows how the effective volume fraction changes when the 
equilibrium is broken for several initial solvent volume fractions (𝜙𝐴). 
Thus, if 𝑘𝑖𝑛𝑡 < 1, the solute liquid (B) will have more influence over the 
solvent liquid (A), and 𝜙𝐴𝑒𝑓𝑓

will decrease due to the molecular pack-

ing exerted by liquid B. In contrast, if 𝑘𝑖𝑛𝑡 > 1, liquid A will have more 
influence, and it will expand to compress liquid B, resulting in an incre-

ment of its effective volume fraction (𝜙𝐴𝑒𝑓𝑓
). The Puranik modification 

shows that these volume fraction variations follow a linear behavior 
(Fig. 7(a)). Nevertheless, if 𝑘𝑖𝑛𝑡 > 2 with this modification formula, the 
effective volume fraction will surpass value 1, at a speed depending on 
the initial volume fraction of liquid A. This behavior cannot be realis-
tic since 𝜙𝐴 + 𝜙𝐵 = 1 implies that negative values of 𝜙𝐵 do not have 
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Fig. 4. Comparison of modified mixing rules.

Fig. 5. Boxplot distribution of permittivity predictions of SVR models trained 
with different modifications of the Ideal mixing rule (1).

Fig. 6. Boxplot distribution of permittivity predictions of SVR models trained 

a physical mean. This insight is a serious concern about applying the 
Puranik modification for high interaction factors and high volume frac-

tions of solvent.

After studying these limitations, we propose a new volume fraction 
modification based on a Gaussian formula that satisfies the convergence 
to a maximum volume fraction for a high interaction factor and the 
equality between the effective and initial volume fraction when there is 
no interaction (𝑘𝑖𝑛𝑡=1). The maximum expansion of 𝜙𝐴 due to molec-

ular packing is unknown and should depend on solvent properties. 
Nevertheless, the value one is the physical limit, which was considered 
the maximum 𝜙𝐴 under the assumption that the 𝑘𝑖𝑛𝑡 estimation avoids 
unrealistic 𝜙𝐴𝑒𝑓𝑓

values due to the “overpacking” of liquid B.

lim
𝑘𝑖𝑛𝑡→1

𝐹 (𝑘𝑖𝑛𝑡,𝜙𝐴) = 𝜙𝐴

lim
𝑘𝑖𝑛𝑡→∞

𝐹 (𝑘𝑖𝑛𝑡,𝜙𝐴) = 𝜙𝐴𝑚𝑎𝑥
= 1

(12)

However, these conditions (12) are not fulfilled by one unique func-

tion, in fact there are infinite Gaussian curves defined by the parameter 
𝜇 in the exponent (13). This parameter tunes the steepness of the Gaus-

sian curve alongside the volume fraction and interaction factor. It was 
determined that the optimal value for the glycerine-water mixture is 
𝜇=2.

𝜙𝐴𝑒𝑓𝑓
= 1 − 𝜙𝐵𝑒

−𝜙𝜇

𝐴
(𝑘𝑖𝑛𝑡−1) (13)

Fig. 7(b) shows that the new relationship between the interaction 
factor and the effective volume fraction is a smooth asymptotic curve 
for high-volume fractions of liquid A. In contrast, the relationship is 
mostly linear for lower fractions as with the Puranik modification (2)

but with a lower slope. In addition, for 𝑘𝑖𝑛𝑡 < 2, both modification 
formulas perform in a comparable range. It must be noted that the 
asymptotic steepness is for 𝜇 = 2, but could be modified to enable a 
better adaptation to other liquid mixtures.

In the case of glycerine-water, applying the Gaussian modification 
formula with 𝜇 = 2 and 𝑘𝑖𝑛𝑡 = 2.67 improves the fitting for all the mix-

ing rules (Fig. 8a). Compared to the Puranik modification (Fig. 4b), the 
curve shape of each mixing rule resembles more the sigmoid-like shape 
of experimental permittivity values. In addition, the Hashin-Shtrikman 
(4) and Kraszewski (8) are still the mixing rules that achieve the best fit-

ting, as pointed out in previous insights. In summary, the combination 
of both proposed formulas, the Gaussian modification with the estima-
7

with different modified mixing rules with 𝑘𝑖𝑛𝑡=1.9.
 tion of 𝑘𝑖𝑛𝑡, improves the dielectric behavior modeling.
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Fig. 7. Volume fraction variation as function of the interaction factor (a) Puranik et al. [17] modification (b) Gaussian modification (10).

Fig. 8. (a) Comparison of modified mixing rules with 𝑘𝑖𝑛𝑡 = 2.67 and applying the Gaussian modification. (b) Asymptotic reduction of RMSE for SVR models trained 
with mixing rules applying the Gaussian modification. The vertical red line is the 𝑘𝑖𝑛𝑡 threshold estimated by equation (10).
On the other hand, the Gaussian modification also changes the sen-

sitivity of 𝑘𝑖𝑛𝑡 on the regression error of SVR predictions. In contrast to 
the parabolic behavior from Puranik modification (Fig. 3), the RMSE 
is reduced asymptotically to a limit value (Fig. 8b). While the Puranik 
modification defines an optimal region, the Gaussian modification es-

tablishes a threshold value. Indeed, for the glycerin-water system, this 
threshold coincides with 𝑘𝑖𝑛𝑡 = 2.67, estimated with the pure liquid 
properties (10), for the Hashin-Shtrikman (4) and Kraszewski (8) mixing 
rules. Below the threshold, the fitting worsens exponentially (Fig. 9a) 
due to the nature of the Gaussian equation. In comparison, for larger 
𝑘𝑖𝑛𝑡 values beyond the threshold, the fitting deviates slightly (Fig. 9b) 
while the RMSE tends to stabilize. Additionally, it must be noted that 
the mixing rules keep the same performance order as previous sections, 
suggesting that the mixing rule suitability could depend mostly on sol-
8

vation mechanism of each liquid mixture.
4.5. Validation with other liquid mixtures through other experimental data 
from bibliographic references

In order to evaluate if both proposed formulas could be applied to 
other liquid mixtures to obtain accurate permittivity estimations, di-

electric data for several solutions were extracted from the following 
references: [26], [27], [28]. In addition, this data was used to estimate 
the 𝑘𝑖𝑛𝑡 for each solution (Table 4).

The results vary between mixtures of anisole with several alcohols 
[26]; for the anisole-methanol solution, the experimental data and the 
modified mixing rules estimations are drastically outfitted (Fig. 10 (a)), 
while the anisole-hexanol mixture achieves a perfect fitting with the 
Hashin-Shtrikman (4) and Kraszewski (8) mixing rules (Fig. 10 (d)). In-

deed, the fitting seems to worsen as the dielectric contrast increases, 
as is shown between the anisole-propanol and anisole-butanol mixtures 

in Fig. 10 (b-c). This insight could indicate that the influence of dielec-
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Fig. 9. Comparison of modified mixing rules after applying the Gaussian modification below (a) and above (b) the optimal threshold.
9

Fig. 10. Fitting of permittivity estimations for anisole mixtures after applying the Gaussian modification with 𝜇 = 2 (13).
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Table 4

Summary of interaction factor values for several binary liquids from the bibliography [23], [24], [25].

Mixture 𝑉 𝑚𝐴 | 𝑉 𝑚𝐵 𝜀𝐴 | 𝜀𝐵 𝑘𝐸𝑆𝑇 Mixture 𝑉 𝑚𝐴 | 𝑉 𝑚𝐵 𝜀𝐴 | 𝜀𝐵 𝑘𝐸𝑆𝑇

Methanol (A) 
Anisole (B)

40.46 
108.68

30.34 
4.48

2.521 Propanoic acid (A) 
Ethyl benzoate (B)

74.98 
143.03

3.36 
5.94

0.296

Propanol (A) 
Anisole (B)

74.8 
108.68

19.39 
4.48

2.98 Propanoic acid (A) 
Ethyl acrylate (B)

74.98 
106.45

3.36 
6.21

0.381

Butanol(A) 
Anisole (B)

91.51 
108.68

16.02 
4.48

3.011 Toluene (A) 
Methanol (B)

106.29 
40.46

2.46 
33.19

0.193

Hexanol (A) 
Anisole (B)

124.61 
108.68

10.28 
4.48

2.63 Toluene (A) 
Ethanol (B)

106.29 
59.53

2.46 
24.26

0.181

Propanoic acid (A) 
Ethyl acetate (B)

74.98 
97.68

3.36 
6.01

0.428 Toluene (A) 
Propanol (B)

106.29 
74.793

2.46 
19.96

0.175
tric contrast should be adjusted to estimate 𝑘𝑖𝑛𝑡. However, the dielectric 
contrast between glycerine-water is greater than anisole-methanol, yet 
the adjustment worked perfectly. Likewise, the interaction factor could 
also depend on the solvation mechanisms and therefore, a formula to 
estimate 𝑘𝑖𝑛𝑡 should be designed to address how different types of com-

pounds interact. Although our proposed formula (11) estimates 𝑘𝑖𝑛𝑡
correctly for the glycerine-water mixture, improving the formula to in-

clude other parameters could lead to better results for other liquids.

Similar discrepancies can be found in the rest of the liquid mix-

tures analyzed. While the fitting for propanoic acid with ethyl acetate, 
ethyl benzoate, and ethyl acrylate [27] was promising, the mismatch 
for the mixtures of toluene with methanol, ethanol, and propanol [28]

was very significant. However, changing the exponent in the Gaussian 
modification formula can improve the fitting of the mixing rules to 
the experimental data. For example, after applying the equation with 
𝜇=3 (14), the anisole-propanol and anisole-butanol estimations using 
the Ideal mixing rule (1) lead to a better fitting (Fig. 11 (b-c)). In con-

trast, this exponent change hinders the fitting of the anisole-hexanol 
mixture (Fig. 11 (d)). In fact, the increment of 𝜇 moves the curve, ap-

proaching the unmodified ideal mixing rule. On the other hand, the 
estimations for the anisole-methanol mixture are slightly improved for 
high volume fractions, especially for the Ideal mixing rule (1), but it is 
still a bad fitting (Fig. 11 (a)).

𝜙𝐴𝑒𝑓𝑓
= 1 − 𝜙𝐵𝑒

−𝜙3
𝐴
(𝑘𝑖𝑛𝑡−1) (14)

𝜙𝐴𝑒𝑓𝑓
= 1 − 𝜙𝐵𝑒

−𝜙1.5
𝐴

(𝑘𝑖𝑛𝑡−1) (15)

In the same way, the mixtures of propanoic acid with ethyl acetate, 
ethyl benzoate, and ethyl acrylate slightly improve their fitting with the 
Gaussian modifications with 𝜇 = 1.5 (15) (Fig. 12 (a-c)). In addition, 
for the mixtures of toluene-ethanol and toluene-methanol, the Gaussian 
modifications with 𝜇 = 3 (14) achieve a reasonable fitting with Looyen-

ga’s mixing rule (5) (Fig. 12 (d-f)).

These results reinforce the idea that the asymptotic steepness from 
the Gaussian modification could depend on the mixing behavior. As the 
literature indicates, the main drawback to achieving a general mixing 
rule is probably the different solvation processes, which are the key 
to defining the mixture microstructure and, therefore, the volume frac-

tion and relative permittivity. Probably, the interaction factor cannot 
explain by itself the complexity of the mixture permittivity. Therefore, 
a multiparametric approach could be the best option to enhance mixing 
rules. Additional parameters, such as the factor 𝜇, must be considered 
to correlate the mixture permittivity with the solvation mechanics and 
liquid properties. This approach could be applied to other mathemati-

cal expressions beyond the Gaussian formulation. For example, another 
parameter could be included in the linear formulation proposed by Pu-
10

ranik et al. [17].
4.6. Validation with other liquid mixtures through DR measures and SVR 
predictions

Most articles report dielectric measurements in static and near op-

tic frequencies, to address minimum and maximum relaxation, respec-

tively. As a result, finding dielectric data at specific frequency ranges 
for many liquid mixtures is not always possible. Thus, the DR sensor, 
in combination with the Machine Learning approach, can be a low-cost 
method to validate mixing rules estimations and/or the modification 
formulas proposed in this article. To prove this concept, new measure-

ments were performed with our DR sensor for 𝑃𝐸𝐺400 and acetone in 
water at two concentrations: 30% and 60%. The estimated interaction 
factor for the 𝑃𝐸𝐺400-water mixture (16) differs from the glycerine-

water mixture (11); although the 𝑃𝐸𝐺400 has a lower permittivity 
at 2.45 GHz [45] than glycerol, the molecular volume is significantly 
larger, resulting in a 𝑘𝑖𝑛𝑡 < 1. On the other hand, the permittivity of 
acetone at 2.45 GHz [46] is four times lower than water, while the 
molecular volume ratio is just the inverse of the dielectric contrast. 
Thus, the interaction factor for the acetone-water mixture is close to 
𝑘𝑖𝑛𝑡 = 1 (17), indicating that the volume fraction does not change upon 
mixing.

𝑘𝑖𝑛𝑡 =
𝜀𝑊 𝐴𝑇 ∗ 𝑉 𝑚𝑊𝐴𝑇

𝜀𝑃𝐸𝐺 ∗ 𝑉 𝑚𝑃𝐸𝐺

= 78.3 ∗ 18.02
6.7 ∗ 354.61

= 0.594 (16)

𝑘𝑖𝑛𝑡 =
𝜀𝑊 𝐴𝑇 ∗ 𝑉 𝑚𝑊𝐴𝑇

𝜀𝐴𝐶𝐸 ∗ 𝑉 𝑚𝐴𝐶𝐸

= 78.3 ∗ 18.02
19.4 ∗ 74.034

= 0.982 (17)

After applying PCA, the new mixture signals were analyzed using 
two SVR models trained with the glycerin-water mixture. The first was 
trained with the permittivity values from the experimental reference 
[18]. The second was trained with the estimations from the modified 
Hashin-Strihkman (4) mixing rule. This formula was selected because 
it achieved the best performance for the glycerine-water mixture and, 
therefore, has the best correlation between the sensor response and the 
relative permittivity of the liquid sample. The predictions of these mod-

els for both liquid mixtures were compared with the estimations from 
the whole set of mixing rules considered in this paper. In agreement 
with previous results, there are significant differences between mixing 
rules depending on the liquid mixture and its solvation mechanisms. 
In the case of the 𝑃𝐸𝐺400 solution, the Ideal formula (1) achieved 
the best results Fig. 13a. In contrast, for the Acetone solution, the 
Kraszewski mixing rule (8) obtained the best fitting (Fig. 13b), with a 
trend quite similar to the results. Both SVR models considered for each 
binary mixture gave similar predictions; once again showing how well 
the modified Hashin–Shtrikman mixing rule (4) models glycerine-water 
permittivity.

Finally, it must be noted that these new measurements for acetone 
and 𝑃𝐸𝐺400 were taken a year after the glycerine-water dataset, which 
was used to train the SVR models. However, since the DR sensor was 
used for other projects during this period, the air reference signal with-
out a sample has been displaced. This sensor drift was detected after 
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Fig. 11. New fitting of permittivity estimations for anisole mixtures after applying the Gaussian modification with 𝜇 = 3 (14).
analyzing the results. Consequently, the predictions for the air refer-

ence present a small shift from the real value (Fig. 13a, Fig. 13b); 
this deviation must affect the rest of the measurements. Therefore, SVR 
predictions for water-𝑃𝐸𝐺400 and water-acetone could be adjusted by 
reducing the permittivity predictions around two points, fitting the ref-

erence air prediction. This modification would slightly improve the 
match between the mixing rule estimated 𝜀 and the SVR predicted 𝜀
for acetone 60% and both 𝑃𝐸𝐺400 60% and 30%, while acetone 30% 
deviates slightly. However, despite the sensor drift, the original results 
were not modified due to its qualitative information about the potential 
of the ML approach to validate mixing rules estimations.

5. Conclusion

Determining the dielectric behavior of a liquid solution is still an un-

solved problem due to the high-complexity relationships between the 
liquid microstructure and the solvation mechanics. Traditional mixing 
rules must be modified to include this complexity in order to enhance 
their accuracy. The literature has proved that considering volume frac-

tion change caused by the molecular interaction can improve the fit-

ting of mixing rules estimations to the experimental values. This paper 
11

presents a novel approach to calculating this interaction factor (𝑘𝑖𝑛𝑡) by 
applying ML regression models trained with glycerin-water reflective 
signals acquired with a Dielectric Resonator sensor.

Modifying the mixing rules by applying the volume fraction mod-

ification improved both the SVR performance and the fitting between 
estimations and experimental values. Therefore, the model RMSE can 
indicate both the optimal range of 𝑘𝑖𝑛𝑡 and the mixing rule that ob-

tains better estimations for the studied binary mixture. However, this 
methodology is limited to validation and is not suitable for a priori 
estimations, since it depends on acquired dielectric data. Therefore, 
we propose an estimation formula for 𝑘𝑖𝑛𝑡, considering only the mo-

lar volume of each liquid and their dielectric contrast (𝜀𝐴/𝜀𝐵), which 
approximately fits both the SVR results and the 𝑘𝑖𝑛𝑡 estimated by Pu-

ranik et al. for water-alcohol mixtures [17].

After studying the mathematical domain of the Puranik et al. mod-

ification [17], we proposed an alternative method to calculate the 
effective volume fraction through a Gaussian function. This new mod-

ification formula fulfills the conditions to obtain a physically realistic 
volume fraction for any 𝑘𝑖𝑛𝑡. For the glycerine-water mixture, combin-

ing the formulas proposed in this article improved both the experimen-

tal fitting of the Puranik modification [17] and the match between 
the minimum RMSE and 𝑘𝑖𝑛𝑡. Afterward, the suitability of the Gaus-

sian modification was tested for several binary mixtures, achieving an 

optimal fitting for most of them. However, the Gaussian modification 
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Fig. 12. Fitting of permittivity estimations for Propanoic acid mixtures (a-c) after applying the Gaussian modification with 𝜇 = 1.5 (15) and Toluene mixtures (d-f) 
after applying 𝜇 = 3 (14).
required the additional parameter 𝜇 to model the dielectric behavior. 
The multiparametric approach can help to improve the understanding 
of the mixture dielectric behavior. However, the relationship between 
the proposed formulas and the nature of the molecular interaction and 
the resulting liquid microstructure is still unknown and demands fur-
12

ther studies.
Finally, the ML approach was also tested for acetone-water and 
𝑃𝐸𝐺400-water mixtures, proving that ML models trained with a specific 
mixture, such as glycerine-water, can obtain reasonable permittivity 
predictions to validate the mixing rules estimations for other mixtures. 
In conclusion, the ML approach is a promising method to validate any 

permittivity characterization. Using the SVR models, the interaction fac-
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Fig. 13. Distribution of SVR permittivity predictions compared to the (a) Ideal (1) and (b) Kraszewski (8) estimations.
tor can be estimated for non-direct permittivity measures from resonant 
techniques without the risk of overfitting. Therefore, this approach is a 
sound alternative to other optimization methods for enhancing mixing 
rules.
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