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Abstract: The increasing demand for efficient and safe transportation systems has led to the de-
velopment of autonomous vehicles and vehicle platooning. Truck platooning, in particular, offers
numerous benefits, such as reduced fuel consumption, enhanced traffic flow, and increased safety.
In this paper, we present a drone-based decentralized framework for truck platooning in highway
monitoring scenarios. Our approach employs multiple drones, which communicate with the trucks
and make real-time decisions on whether to form a platoon or not, leveraging Model Predictive
Control (MPC) and Unscented Kalman Filter (UKF) for drone formation control. The proposed frame-
work integrates a simple truck model in the existing drone-based simulation, addressing the truck
dynamics and constraints for practical applicability. Simulation results demonstrate the effectiveness
of our approach in maintaining the desired platoon formations while ensuring collision avoidance
and adhering to the vehicle constraints. This innovative drone-based truck platooning system has the
potential to significantly improve highway monitoring efficiency, traffic management, and safety. Our
drone-based truck platooning system is primarily designed for implementation in highway monitor-
ing and management scenarios, where its enhanced communication and real-time decision-making
capabilities can significantly contribute to traffic efficiency and safety. Future work may focus on
field trials to validate the system in real-world conditions and further refine the algorithms based on
practical feedback and evolving vehicular technologies.

Keywords: truck platooning; MPC; UKF; drones; V2V communication; connected vehicles

1. Introduction

The rapid growth of the transportation industry has led to increased demand for
efficient and safe vehicular systems. In particular, truck platooning has emerged as a
promising solution to enhance fuel efficiency, reduce traffic congestion, and improve road
safety [1,2]. Truck platooning involves a group of trucks traveling in close proximity
to each other, taking advantage of the reduced air resistance and improved traffic flow.
However, the current centralized approaches to truck platooning have limitations, such
as reliance on infrastructure-based communication systems and the need for extensive
pre-planning [3,4]. On the other hand, drones have become increasingly popular due to
their versatile applications in various domains, including monitoring, surveillance, and
communication [5,6]. Drones’ ability to operate in complex environments, combined with
their real-time data acquisition capabilities, make them ideal candidates for assisting truck
platooning systems.

In this paper, we propose a decentralized drone-based truck platooning framework
that leverages the capabilities of drones to improve the efficiency and safety of highway
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monitoring. Our approach integrates Model Predictive Control (MPC) and Unscented
Kalman Filter (UKF) techniques for drone formation control while considering the dynamics
and constraints of both trucks and drones. The A* [7] search algorithm is a well-known
pathfinding and graph traversal method that is primarily used for waypoint navigation in
our context.

The main objective of this study is to develop a decentralized framework for drone-
based truck platooning that addresses the challenges posed by the dynamic highway
environment. The proposed framework should be able to:

• Maintain a desired formation for the drones while avoiding collisions.
• Adapt to the changes in truck dynamics and constraints.
• Make decentralized decisions for platooning based on real-time data acquired by

the drones.

The primary contributions of this paper are as follows:

• We propose a novel decentralized drone-based truck platooning framework that
integrates MPC and UKF techniques for drone formation control.

• We develop a simulation model that considers the dynamics and constraints of both
trucks and drones, providing a realistic evaluation of our proposed framework.

• We present a comprehensive performance analysis of the proposed framework, demon-
strating its effectiveness in improving the efficiency and safety of highway monitoring.

Recent advancements have broadened the Internet of Things (IoT) applications beyond
conventional domains, unveiling a multitude of innovative use cases. These applications,
by offering new data collection and processing methodologies, enhance connectivity and
efficiency across several sectors. This paper delves into the realm of highway monitoring
and transportation, examining drone-based truck platooning as a novel IoT application.
Our proposed model harnesses the robust connectivity and adaptability of IoT devices,
facilitating decentralized, real-time collaboration between drones and trucks. Moreover,
employing sophisticated control and estimation methods like MPC and the UKF underlines
the capacity of IoT-driven solutions to address intricate issues, propelling the evolution
of more intelligent and sustainable transportation systems. In this work, we introduce a
unique combination of MPC, the UKF, and drone-IoT technology to optimize highway
truck platooning.

This paper is organized as follows: Section 2 presents a comprehensive literature
review of the relevant background and prior works in the areas of truck platooning, drone-
based monitoring, and decentralized control approaches. Section 3 introduces the system
model and provides a detailed mathematical representation of the truck and drone dy-
namics. In Section 4, the UKF and MPC techniques are discussed along with the potential
integration of A* for waypoint navigation. Section 5 describes the proposed decentral-
ized drone-based truck platooning framework, including its formulation and algorithmic
implementation. Section 6 presents the simulation setup and results, demonstrating the
performance and effectiveness of the proposed framework. Finally, Section 7 provides
a comparison with other V2V approaches, and Section 8 concludes the paper and gives
possible directions for future work in this area.

2. Related Work

Truck platooning [3,8] has been widely studied, aiming to improve efficiency and
safety. Initial research focused on Adaptive Cruise Control (ACC) systems for maintaining
safe distances between vehicles [9], while newer studies have shifted toward cooperative
adaptive cruise control (CACC), exploiting vehicle-to-vehicle (V2V) communication for
enabling closer truck spacing, and thereby enhancing performance [10–12]. Benefits such as
reduced fuel consumption [13] and improved traffic flow [14] have also been highlighted.

However, most of the existing methods depend on centralized control systems and
extensive pre-planning, which may limit adaptability to dynamic environments. This is
where the decentralized control, studied in various domains like robotics [15] and multi-
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agent systems [16], comes into the picture. The decentralized control, relying on local
interactions and decision-making processes, ensures adaptability and resilience. Within
this context, the subfield of formation control coordinates multiple agents to achieve a
desired formation or pattern, using techniques like MPC [17] and UKF [18,19], which are
known for their robustness and efficiency.

To further enhance the dynamic adaptability [20,21] of this approach, we incorporate
drones, which are recognized for their versatility and real-time data acquisition capabilities.
Drones have already been utilized in transportation applications like traffic monitoring [5],
infrastructure inspection [6], and emergency response [22], indicating their potential to
improve the efficiency and safety of transportation systems. Thus, their application in
truck platooning provides a promising solution to overcome the limitations of existing
methodologies, contributing to a more effective and sustainable transportation system.

The integration of drones in truck platooning systems has been relatively unexplored
in the literature. A few studies have proposed the use of drones for monitoring and com-
munication purposes in platooning systems [23]. However, these works mainly focus on
centralized control approaches and do not address the challenges associated with decentral-
ized decision making and formation control. In summary, while there has been extensive
research on truck platooning and drone applications in transportation, the potential of
combining these technologies in a decentralized framework has not been fully realized. Our
proposed drone-based truck platooning framework addresses this gap by integrating MPC
and UKF techniques for decentralized formation control while considering the dynamics
and constraints of both trucks and drones.

The prevalent limitations in current truck platooning systems stem from their reliance
on centralized control mechanisms [24] and lack of robustness in dynamic environments.
Centralized systems often struggle with scalability and are vulnerable to unique points
of failure, hindering their adaptability to unpredictable road conditions and traffic pat-
terns. Our work addresses these challenges by proposing a decentralized, drone-assisted
framework for truck platooning. By leveraging the agility and real-time data acquisition ca-
pabilities of drones, combined with the robustness of MPC and UKF techniques, we enable
more dynamic and resilient platoon formation and maintenance. This approach not only
enhances the adaptability of truck platoons to changing traffic scenarios but also improves
the overall efficiency and safety of the transportation system. Moreover, the integration of
drones in the platooning process fills a significant gap in the existing literature, providing a
novel perspective on leveraging aerial support for ground vehicle coordination.

Furthermore, an emerging area of interest in truck platooning research is the stability
of platoons under variable communication conditions. The impact of communication qual-
ity on the safety and efficiency of truck platoons is crucial, particularly in dynamic highway
environments. Studies such as those in [25,26] have focused on this aspect, examining how
fluctuations in V2V communication can affect platoon stability and proposing mechanisms
to mitigate these effects. These works highlight the importance of robust communication
frameworks and adaptive control strategies in maintaining platoon integrity, especially
when faced with communication delays or disruptions. The integration of such considera-
tions into a decentralized, drone-assisted framework could further enhance its resilience
and adaptability, aligning with the growing emphasis on reliable and flexible platooning
systems in contemporary transportation research.

3. System Model

In this section, we introduce the system model for our proposed decentralized drone-
based truck platooning system. The bicycle model for trucks is a well-adopted approach in
automotive engineering, offering a balance between simplicity and accuracy in capturing
essential vehicular movements [27,28]. For the dynamics of drones, the double integrator
model is widely recognized for its effectiveness in representing the fundamental aspects of
quadcopter flight [29].
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3.1. Dynamics of the Truck

We model the dynamics of each truck using a simple bicycle model [27,28], which
captures the longitudinal and lateral motion of the vehicle. The state of the zth truck at
time t is represented by its position pz(t) ∈ R2, velocity vz(t) ∈ R, and heading angle
θz(t) ∈ R. The control inputs for each truck are the acceleration az(t) ∈ R and the steering
angle δz(t) ∈ R. The dynamics of the truck can be described by the following equations:

ṗz(t) = vz(t)
[

cos(θz(t))
sin(θz(t))

]
, (1)

v̇z(t) = az(t), (2)

θ̇z(t) =
vz(t)

L
tan(δz(t)), (3)

where L is the effective wheelbase of the truck. The bicycle model is a common approach
in vehicular dynamics that strikes a balance between simplicity and realism. Despite being
a simplified representation, it captures the essential dynamics of the truck, including its
longitudinal (forward/backward) and lateral (left/right) motion. It characterizes a vehicle
as a rigid body moving in a 2D plane, representing the two axles of a truck as one axle,
hence the term ‘bicycle’.

3.2. Dynamics of the Drone

We assume that the drones have a simplified double integrator model [29], which is
commonly used to represent the dynamics of quadcopters. The state of the oth drone at
time t is represented by its position qo(t) ∈ R2 and velocity wo(t) ∈ R2. The control input
for each drone is the acceleration bo(t) ∈ R2. The dynamics of the drone can be described
by the following equations: q̇o(t) = wo(t), and ẇo(t) = bo(t).

4. Advanced Control and Navigation Techniques

In this section, we briefly describe the UKF and MPC techniques used in our frame-
work as well as the possibility of integrating A* for waypoint navigation.

4.1. Unscented Kalman Filter

The UKF [18] is a state estimation technique that extends the traditional Kalman Filter
to nonlinear systems. The UKF uses a deterministic sampling approach called Unscented
Transformation, which propagates a set of sigma points through the nonlinear system
to obtain an approximation of the posterior distribution. The UKF equations are given
as follows:

1. Sigma point generation: Generate 2n + 1 sigma points X (z)
k and weights W(z)

k from
the current state estimate xk and covariance matrix Pk.

2. Prediction: Propagate the sigma points through the nonlinear process model, f (·), to

obtain the predicted sigma points X (z)
k+1|k = f (X (z)

k , uk).

3. State prediction: Compute the predicted state estimate, xk+1|k = ∑2n
z=0 W(z)

k X
(z)
k+1|k,

and covariance, Pk+1|k = ∑2n
z=0 W(z)

k (X (z)
k+1|k − xk+1|k)(X

(z)
k+1|k − xk+1|k)

>.

4. Update: Incorporate the measurements zk+1 using the nonlinear measurement model

h(·), the predicted sigma points X (z)
k+1|k, and the Kalman gain Kk+1 to update the state

estimate xk+1 and covariance Pk+1.

In the UKF framework, the primary input variables include the current state estimate
xk, covariance matrix Pk, control input uk, and the latest measurements zk+1. The state
estimate xk represents the best guess of the system’s current state, whereas Pk quantifies the
uncertainty in this estimate. The control input uk pertains to external actions applied to the
system, and zk+1 are the new measurements obtained from sensors or other sources. The
output variables of the UKF process are the updated state estimate xk+1 and covariance
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matrix Pk+1, which reflect the new, refined estimates of the system’s state and associated
uncertainty after considering the latest measurements and the dynamics of the system. This
iterative process allows the UKF to adaptively refine its understanding of the system state
over time, even in the presence of nonlinearities and uncertainties.

4.2. Model Predictive Control

MPC [17] is an advanced control technique that computes the optimal control inputs
by solving an optimization problem over a finite prediction horizon. The objective is to
minimize a cost function subject to the constraints of the system’s dynamics and limitations.
The MPC equations are formulated as follows:

min
uk:k+N−1

N−1

∑
z=0

[
(xk+z|k − xre f )

>Q(xk+z|k − xre f )

+(uk+z − ure f )
>R(uk+z − ure f )

]
(4)

s.t.
xk+z+1|k = f (xk+z|k, uk+z),

z = 0, . . . , N − 1
(5)

xk|k = xk (6)

xmin ≤ xk+z|k ≤ xmax, z = 1, . . . , N (7)

umin ≤ uk+z ≤ umax, z = 0, . . . , N − 1 (8)

After solving the optimization problem, the first control input u∗k in the optimal control
sequence is applied to the system. The process is repeated at each time step, making MPC
a receding horizon control strategy.

The Sequential Least Squares Quadratic Programming (SLSQP) method is an opti-
mization algorithm used to solve nonlinear optimization problems with constraints. It is
particularly well-suited for MPC problems, where the goal is to find a sequence of control
inputs that minimize a cost function while satisfying system constraints. In the context
of MPC, the SLSQP algorithm works as follows: (1) linearize the nonlinear constraints at
the current solution estimate, (2) solve the Quadratic Programming (QP) problem formed
by the linearized constraints and the quadratic objective function, (3) update the solution
estimate using the solution of the QP problem, and (4) check the convergence criteria. If
the criteria are met, stop the algorithm and return the solution. If not, go back to step 1
and continue the iterations. In our drone-based truck platooning problem, we used the
SLSQP algorithm to solve the MPC problem for each drone. The algorithm helps determine
the optimal accelerations for the drones to maintain their assigned formation positions
relative to the trucks while minimizing the control effort and ensuring constraints on drone
dynamics are satisfied.

The SLSQP algorithm is integral to our MPC formulation, enabling the efficient compu-
tation of optimal control actions for drones in the platooning scenario. Table 1 summarizes
the steps of the SLSQP algorithm along with their respective inputs and outputs.

Table 1. SLSQP algorithm steps with input and output variables in the MPC framework for drone-
based truck platooning.

Step Description Input Variables Output Variables

(1) Linearize constraints Current solution, Nonlinear constraints Linearized constraints
(2) Solve QP problem Linearized constraints, Quadratic objective QP solution
(3) Update solution QP solution Updated solution estimate
(4) Check convergence Updated solution, Convergence criteria Convergence status

Each step of the SLSQP algorithm plays a crucial role in ensuring that the drones in
our system effectively maintain formation while navigating around trucks. By iteratively
refining the solution based on the linearized constraints and quadratic objective function,
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the algorithm adeptly balances the need for precision in control with the constraints
imposed by drone dynamics and platooning requirements. This results in an efficient and
effective control strategy for our complex, multi-agent system.

4.3. Integration with A* for Waypoint Navigation

In addition to UKF and MPC, the framework can be extended to incorporate the A*
algorithm [30] for waypoint navigation. A* is an informed search algorithm that computes
the shortest path between an initial position and a goal position while considering the
constraints of the environment. A* uses a cost function f (n) = g(n) + h(n) to evaluate the
nodes in the search space, where g(n) is the cost from the start node to the current node n,
and h(n) is the heuristic cost from node n to the goal node. The heuristic function should
be admissible and consistent to guarantee optimality.

In our framework, the A* algorithm can be used to generate a sequence of waypoints
that guide the drones through the environment while avoiding obstacles. The generated
waypoints can serve as intermediate reference positions for the MPC controller, allowing
the drones to navigate complex environments while maintaining the desired formation and
tracking the trucks. In summary, our proposed framework integrates UKF, MPC, and A* to
enable decentralized drone-based truck platooning in various scenarios. The combination
of these techniques allows the drones to estimate their states accurately, compute optimal
control inputs considering system constraints, and navigate the environment efficiently
while avoiding obstacles.

4.4. Formation Control

We define the desired formation of drones relative to the trucks using a set of formation
positions { fk ∈ R2}N

k=1, where N is the number of drones. Each formation position fk is
associated with a specific truck and a relative position in the truck’s local coordinate frame.
The objective of the formation control is to minimize the distance between the actual drone
positions and the target positions derived from the formation positions and the current
truck positions:

min
bo(t)

N

∑
o=1
‖qo(t)− (ptruck(o)(t) + frel(o)(t))‖2, (9)

subject to the drone dynamics and the constraints on the maximum drone acceleration. bo(t)
represents the control input that should be chosen such that it adjusts the drone’s position
to follow the target positions while respecting the drone’s dynamics and constraints on
maximum acceleration.

4.5. Model Predictive Control and Unscented Kalman Filter

To achieve decentralized formation control, we employ MPC and UKF techniques for
each drone. MPC is used to optimize the drone’s acceleration based on its current state
and the target position, considering a finite time horizon and constraints on the maximum
acceleration. UKF is used to estimate the state of the trucks and drones based on noisy
measurements, providing a robust and efficient solution for the state estimation problem.
In our framework, each drone computes its optimal acceleration using MPC and updates
its state estimate using UKF based on the available measurements. This decentralized
approach allows the drones to adapt their behavior in real time based on the changing
positions and velocities of the trucks as well as the other drones in the formation.

In our decentralized approach, each drone communicates with the trucks and other
drones using a wireless communication system. This system allows the drones to exchange
information about their states and the trucks’ states while maintaining the decentralized
structure of the control algorithm. The communication model is based on a periodic
broadcast of state information, including position and velocity measurements, from the
trucks and drones. Each drone receives the measurements from the trucks and other drones
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in its communication range and then uses this information to update its state estimate with
the UKF and determine its optimal acceleration using MPC.

To elucidate the interactions and workflows of the UKF, MPC, and A* algorithm within
our framework, we present a sequence diagram in Figure 1. This diagram visually repre-
sents the flow of data and control among distinct components of the system, illustrating a
clear understanding of how these advanced techniques collaboratively contribute to the
effective functioning of the decentralized drone-based truck platooning system.

Truck Drone Control Unit

Broadcast State

Collect Data

State Estimation (UKF)

Control Computation (MPC)

Waypoint Navigation (A*)

OptimizationOptimization MPC and UKF Processing

Send Commands

Relay Commands

Figure 1. Sequence diagram of the advanced control and navigation techniques in the decentralized
truck platooning system.

5. Decentralized Truck Platooning with Drones

In this section, we present the Decentralized Drone-Based Truck Platooning (DDTP)
algorithm, which combines the decentralized formation control of drones with the truck
platooning problem. The DDTP takes into account the truck dynamics and constraints, the
drone dynamics, and the communication model between the trucks and drones.

The truck platooning problem aims to optimize the trucks’ behavior, such as their
velocities and distances, to improve fuel efficiency, traffic flow, and safety. To achieve
this, we define a cost function Ot for the trucks, which takes into account their velocities,
accelerations, and the distances between them:

Ot =
Nt

∑
z=1

[
α1(vz − vre f )

2 + α2(az)
2 + α3(dz − dre f )

2
]
, (10)

where Nt is the number of trucks, vz and az are the velocity and acceleration of truck z,
dz is the distance between truck z and the preceding truck, vre f and dre f are the reference
velocity and distance, and α1, α2, and α3 are weighting factors.

The trucks use a distributed control algorithm to minimize Ot, taking into account the
constraints on their velocities, accelerations, and distances:

vmin ≤ vz ≤ vmax, amin ≤ az ≤ amax, dsa f e ≤ dz, (11)
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where vmin, vmax, amin, amax, and dsa f e are the minimum and maximum velocity, acceleration,
and safe distance constraints.

The drones’ formation control problem aims to maintain a desired formation relative
to the trucks while taking into account the truck dynamics, the communication model, and
the drone dynamics. To achieve this, we define a cost function Od for the drones, which
takes into account their velocities, accelerations, and the distances to their target positions:

Od =
Nd

∑
o=1

[
β1(vo − vre fo )

2 + β2(ao)
2 + β3(po − pto )

2
]
, (12)

where Nd is the number of drones, po, vo, and ao are the position, velocity, and acceleration
of drone o, pto and vre fo are the target position and reference velocity for drone o, and β1,
β2, and β3 are weighting factors.

The drones use a decentralized MPC algorithm to minimize Od, taking into account
the constraints on their velocities, accelerations, and the communication model:

vmin ≤ vo ≤ vmax, (13)

amin ≤ ao ≤ amax, (14)

where vmin, vmax, amin, and amax are the minimum and maximum velocity and acceleration
constraints for the drones.

The communication between drones and trucks is essential for the decentralized
framework. Each drone receives information about the position, velocity, and acceleration of
its assigned truck. The drones also exchange information with their neighboring drones to
maintain the formation. We model the communication as a time-varying graph G = (V, E),
where V is the set of vertices representing the drones and trucks, and E is the set of edges
representing the communication links.

We assume a communication range Rc for each drone and truck. An edge (z, o) ∈ E
exists if the distance between vertices z and o is within the communication range:

|pz − po| ≤ Rc. (15)

Based on the communication graph, the drones and trucks can exchange information and
update their states using the distributed algorithms described in the previous subsections.

5.1. DDTP Algorithm

The DDTP algorithm combines the truck platooning, drone formation control, and
communication model to provide a decentralized solution for the problem of truck platoon-
ing with drones. The algorithm is summarized as follows:

1. Initialize the states of the trucks and drones, including their positions, velocities, and
accelerations.

2. Update the communication graph G based on the current positions of the trucks
and drones.

3. Each truck computes its optimal acceleration to minimize Ot using the distributed
control algorithm, taking into account the constraints and the information received
from the drones.

4. Each drone computes its optimal acceleration to minimize Od using the decentralized
MPC algorithm, taking into account the constraints and the information received from
the trucks and neighboring drones.

5. Update the states of the trucks and drones based on their optimal accelerations and
the system dynamics.

6. Repeat steps 2–5 until the desired time horizon is reached.
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By following the DDTP algorithm, the drones can adapt their behavior in real time
based on the trucks’ dynamics and constraints, maintaining the desired formation, and
assisting the trucks in platooning efficiently and safely.

The DDTP algorithm delineates the dynamics of both drones and trucks in the pla-
tooning system, incorporating decentralized decision making for optimal coordination.
Table 2 identifies the input and output variables for each step of the DDTP algorithm.

Table 2. Input and output variables for each step of the DDTP algorithm.

Step Description Input Variables Output Variables

1 Initialize states Initial conditions Positions, velocities, accelerations
2 Update communication graph Current positions Updated graph G
3 Truck optimal acceleration G, Truck constraints, Drone data Truck accelerations
4 Drone optimal acceleration G, Drone constraints, Truck data Drone accelerations
5 Update states Optimal accelerations, System dynamics Updated positions, velocities
6 Iterative process Current states, G Final platooning state

This detailed analysis of the DDTP algorithm shows the intricate interplay between
trucks and drones in achieving efficient and safe platooning. By continuously updating the
communication graph and adapting to the dynamic environment, the algorithm ensures
that both trucks and drones respond optimally to the evolving platooning scenario.

Figure 2 represents the DDTP scenario, where trucks (To) are forming a platoon on
the road and are being monitored and assisted by drones (Do). The dashed lines represent
communication links between trucks and drones. The dashed circles around the drones
illustrate their communication range. The drones can communicate with each other and
with the trucks within this range.

T1 T2 T3 T4

D1 D2

Figure 2. Decentralized Drone-Based Truck Platooning (DDTP). Trucks (To) form a platoon on the
road while being monitored and assisted by drones (Do). Dashed lines represent communication
links between trucks and drones. Drones communicate with each other and with the trucks within
their communication range, which is illustrated by the dashed circles.

The DDTP algorithm is designed to manage the coordination between autonomous
trucks and drones for efficient platooning. A formal description is proposed in Algorithm 1.

The algorithm starts by initializing the states of the trucks and drones. In each iteration,
the communication graph G is updated based on the current positions of the trucks and
drones. Each truck then computes its optimal acceleration to minimize the truck cost func-
tion Ot, taking into account the constraints and the information received from the drones.
Each drone computes its optimal acceleration to minimize the drone cost function Od,
considering the constraints and the information received from the trucks and neighboring
drones. The states of the trucks and drones are then updated based on their computed
optimal accelerations. This process is repeated until the desired time horizon is reached,
resulting in an optimal platoon configuration.
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Algorithm 1 Decentralized Drone-Based Truck Platooning (DDTP)

1: Input: Number of trucks Nt, number of drones Nd, initial states of trucks and drones,
time horizon T

2: Output: Optimal platoon configuration
3: Initialize: Truck and drone states (positions, velocities, accelerations)
4: for t = 1 to T do
5: Update the communication graph G
6: for all Trucks o = 1 to Nt do
7: Compute optimal acceleration a∗o to minimize Ot using distributed control
8: Update truck state based on a∗o
9: end for

10: for all Drones z = 1 to Nd do
11: Compute optimal acceleration a∗z to minimize Od using decentralized MPC
12: Update drone state based on a∗z
13: end for
14: end for
15: return Final platoon configuration

5.2. Addressing Realism and Justification for Drones in DDTP

Recent advancements in UAVs and vehicular communications have opened new av-
enues for enhancing vehicle platooning strategies. While traditional V2V communication
systems offer robust solutions for platooning, the integration of drones in a DDTP system
presents unique advantages. Drones, due to their aerial perspective and maneuverability,
can provide comprehensive real-time data about the platoon and its surrounding environ-
ment, which may not be fully captured by ground-based sensors. This aerial surveillance
facilitates more informed decision making and enhanced safety measures, particularly in
complex traffic situations or hazardous road conditions [31].

Moreover, the inclusion of drones allows for the mitigation of challenges posed by
line-of-sight issues and signal obstruction common in V2V communications. Drones
can serve as dynamic relay points, ensuring consistent and reliable communication links
among trucks, especially in areas with poor network coverage or in scenarios where direct
communication between vehicles is hindered by obstacles or terrain. Furthermore, drones
equipped with advanced sensors can provide additional data on environmental conditions,
traffic patterns, and potential hazards, contributing to more efficient route planning and
energy management within the platoon [6,32].

However, it is crucial to acknowledge that while drones can significantly enhance
data accuracy, they are not immune to measurement errors and uncertainties inherent in
any real-world system. To address these challenges, robust sensor fusion techniques and
sophisticated estimation algorithms, such as Extended Kalman Filters or Particle Filters,
can be employed to integrate data from multiple sources, thereby improving the reliability
and accuracy of the system’s state estimation [33,34]. Additionally, the development of
advanced algorithms for real-time data processing and decision making is essential to
handle the dynamic and uncertain nature of real-world driving environments.

5.3. Energy Considerations in DDTP

The practicality and realism of implementing a drone-assisted truck platooning system,
such as DDTP, raise several significant concerns, particularly regarding energy management
and operational complexities. Drones, as integral parts of this system, are inherently con-
strained by their battery life and energy consumption patterns, which directly impact their
operational duration and efficiency. To enhance the realism of our model, incorporating
energy considerations into the mathematical framework is essential for realistic decision
making regarding drone trajectories.

One approach to integrate energy constraints is by modifying the cost function Od for
drones, including a term that accounts for energy consumption. This could be related to
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the distance traveled, time in operation, or specific maneuvers performed by the drone.
Such a term would require the drones to not only maintain the desired formation and assist
in platooning but also optimize their flight paths for energy efficiency. This consideration
ensures that the drones can operate effectively throughout the required duration of the
platooning mission without necessitating frequent recharging or replacements.

Additionally, the potential complexities associated with drone operations, such as
regulatory constraints, varying weather conditions, and the need for sophisticated control
algorithms, must be acknowledged. These factors can significantly influence the feasibility
and reliability of deploying drones for truck platooning support. For instance, adverse
weather conditions can impede drone operations, requiring the system to have contingency
plans or alternative communication strategies.

Furthermore, while drones offer distinct advantages in terms of providing an aerial
perspective and potentially overcoming line-of-sight communication issues common in V2V
systems, it is worth considering whether a connected vehicle solution with advanced V2V
communication could provide comparable performance. Such a solution might involve
trucks communicating directly with a centralized system, which could coordinate the
platoon without the need for aerial support. This approach could potentially offer similar
benefits in terms of platoon coordination and safety while avoiding the complexities and
energy constraints associated with drone usage.

Enhanced Energy-Aware Cost Function for Drones: To incorporate energy considera-
tions into the drone cost function, we can introduce an energy term Eo for each drone. The
energy consumption Eo can be modeled as a function of its velocity vo, acceleration ao, and
time in operation t:

Eo = γ1 fv(vo) + γ2 fa(ao) + γ3t, (16)

where γ1, γ2, and γ3 are weighting factors. The revised drone cost function O′d becomes:

O′d =
Nd

∑
o=1

[
β1(vo − vre fo )

2 + β2(ao)
2 + β3(po − pto )

2 + δEo

]
, (17)

Operational Complexity Considerations: To account for operational complexities, we
introduce a stochastic component ξo(t) representing environmental factors affecting drone
o at time t. The acceleration constraint can be revised as shown below:

ao = acmdo + ξo(t), (18)

Comparative Effectiveness Analysis with V2V Systems: To compare the DDTP system
with a V2V communication-based system, we can define a performance metric Π for both
systems:

ΠDDTP = ηe f f

Nd

∑
o=1

O′d(o) + ηsa f etySDDTP, (19)

ΠV2V = ηe f f

Nt

∑
o=1

Ot(o) + ηsa f etySV2V , (20)

where ηe f f and ηsa f ety are factors prioritizing efficiency and safety. SDDTP and SV2V are
safety performance indicators for each system.

6. Simulation and Results

To evaluate the performance of the DDTP algorithm and analyze its effectiveness
under various scenarios, we conducted a series of simulations using the Mesa multi-agent
simulation framework. Mesa is a powerful Python library that allows for the creation,
analysis, and visualization of agent-based models. In our case, the agents are the trucks
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and drones, each with their own set of characteristics and behaviors. The simulation
environment facilitates the interaction between these agents, allowing us to observe the
emergent behavior of the system as a whole.

The implementation of the agents and their interactions is based on object-oriented
programming principles, making it easy to define the various components of our model
and their interactions. The trucks and drones are represented as agents with their own state
and behavior, and the environment is represented as a grid where these agents interact. The
agents update their state in each time step of the simulation based on their own behavior
and the state of the environment and other agents.

In the following use cases, we will delve into the specifics of the simulation scenarios,
the behavior of the agents, and the results obtained. The goal is to provide a comprehensive
understanding of how the DDTP algorithm performs in different conditions and to highlight
its strengths and potential areas for improvement.

We first test the UKF in the following scenario: we track the position and velocity of a
drone in 2D space with some process and measurement noise, as depicted in Figure 3.
Steps:

• Initialize the UKF with a certain state and covariance.
• Simulate the drone’s movement with a constant velocity and some noise.
• Use the UKF to estimate the drone’s state over time.
• Compare the estimated state with the actual state.

Figure 3. Actual vs. estimated trajectory of the drone. The red line represents the actual trajectory,
which is plotted in 2D space with units in meters (m). The green dashed line shows the trajectory
estimated by the UKF, which is also in meters. The blue dots symbolize the noisy measurements with
their positions reflecting the drone’s coordinates in meters (m).

The UKF seems to be doing a good job of estimating the drone’s state despite the
presence of process and measurement noise. The estimated trajectory closely follows
the actual trajectory, and the measurements are scattered around the actual positions, as
expected due to the added noise.

In Figure 3, the actual trajectory is depicted by a red line, representing the true path
that the drone has taken. This trajectory shows a smooth and continuous movement,
reflecting the simulated physics of the drone’s motion. The estimated trajectory, shown as a
dashed green line, represents the UKF’s best estimate of the drone’s path given the noisy
measurements. The close alignment of the estimated trajectory with the actual trajectory
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demonstrates the effectiveness of the UKF in accurately tracking the drone’s state even in
the presence of noise. The scattered points in blue represent the noisy measurements of the
drone’s position. These points are visibly scattered around the actual trajectory, showcasing
the impact of noise on the measurements. Despite this noise, the UKF is able to filter out
the noise and provide a smooth and accurate estimate of the drone’s trajectory, showcasing
its robustness and reliability.

To evaluate the performance of DDTP, we conducted a series of simulations using
various scenarios. In this section, we describe the simulation setup, which is followed by
the results and analysis.

The simulation environment consists of highway segments with multiple lanes, where
a group of trucks aims to form a platoon assisted by a swarm of drones. We consider the
following parameters: number of trucks, number of drones, truck length, maximum truck
velocity, maximum truck acceleration, maximum truck steering angle, maximum drone
velocity, maximum drone acceleration, and communication range. The trucks and drones
are initialized with random positions and velocities within the specified constraints. The
desired platoon formation is set, and the drones are assigned to follow specific trucks.
The simulations run for a predefined time horizon. Figure 4 illustrates the UKF-Based
Multi-Drone Collision Avoidance.

Figure 4. UKF-based multi-drone collision avoidance simulation: This plot visualizes the performance
of a multi-drone system using UKFs for state estimation and a collision avoidance algorithm. The
trajectories of each drone (indicated by different colored lines; a total of 30 drones) demonstrate
effective collision avoidance in the presence of simulated wind effects and noisy measurements of
drone positions. The drones’ positions and velocities are measured in meters and meters per second
(m/s), respectively. The decentralized approach enables drones to adapt their behavior in real time,
ensuring safe operation in a dynamic environment.

Figure 4 is a comprehensive visualization of the paths taken by 30 drones in a two-
dimensional space over 100 time units. The trajectories are influenced by both the consensus
algorithm for target position calculation and the UKF for state estimation and collision
avoidance. Each drone is represented by a unique trajectory, which is distinguished by color
and labeled for identification. The trajectories showcase the effectiveness of the collision
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avoidance algorithm, as they do not intersect, indicating that drones successfully avoid
each other throughout the simulation. The grid provides a clear reference for assessing
the positions of the drones at any given time, and the square shape of the plot ensures
an undistorted view of their movements. The enhanced plot size improves visibility and
readability, ensuring that even with 30 drones, their paths are distinguishable and can be
analyzed individually.

Next, in Figure 5, the simulation incorporates a dynamic wind field to evaluate the
drones’ performance under varying environmental conditions. The wind field is generated
using a combination of sine and cosine functions, ensuring a smooth and continuous varia-
tion in wind speed and direction over time and space. Specifically, the wind components in
the X and Y directions (Wx and Wy) are calculated as follows:

Wx(t, X) = Wmax · sin
(

0.1 · t + 0.5 · π · X
Lx

)
, (21)

Wy(t, Y) = Wmax · cos
(

0.1 · t + 0.5 · π ·Y
Ly

)
, (22)

where Wmax represents the maximum wind speed, t is the time, X and Y are the spatial
coordinates, and Lx and Ly are the dimensions of the simulation grid. The factors of 0.1 and
0.5π in the sine and cosine functions introduce temporal and spatial periodicity, creating a
varying wind pattern that influences the drones’ movement.

Figure 5. UKF-based multi-drone collision avoidance simulation with dynamic wind field: This plot
illustrates the trajectories of 30 drones navigating in a 2D simulation space (dimensions in meters,
m) over a 100-second time horizon. Each drone’s trajectory, represented by a unique colored line,
demonstrates its ability to adapt to a sinusoidal wind field (wind speed measured in meters per
second, m/s) and avoid collisions with other drones.

The wind velocities at the specific positions of the drones are then interpolated from
the generated wind field, providing a continuous and smooth variation in wind influence
across the simulation grid. This dynamic and spatially varying wind field introduces
an additional layer of complexity to the simulation, challenging the drones’ navigation
algorithms and highlighting their ability to maintain stable and collision-free trajectories
under perturbed conditions.
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Figure 5 provides a detailed visualization of 30 drones navigating through a dynamic
environment influenced by wind and avoiding collisions using UKF for state estimation.
Each drone’s trajectory is distinctly presented, demonstrating their ability to adapt to envi-
ronmental conditions while ensuring safe navigation. The sinusoidal wind field introduces
varying challenges across the space, testing the robustness of the drones’ control and esti-
mation algorithms. The figure’s size and square shape provide a clear and undistorted view
of the drones’ paths, highlighting the effectiveness of the collision avoidance mechanism.
The grid enhances the visualization, making it easier to follow the drones’ movements
and assess their responses to the wind field and each other. The legend ensures clarity in
distinguishing between the different drones.

Figure 6 depicts the advanced coordination strategy involving truck platooning. Figure 7
shows the performance metrics: distance traveled by each drone, time to reach goal positions,
and average inter-drone distance over time.

Figure 6. Advanced coordination using UKF and MPC: multi-drone collision avoidance with A* path
planning and truck platooning simulation with 10 drones and 5 trucks.

The collision avoidance strategy for the multi-drone system is implemented using
MPC in conjunction with the UKF for state estimation. The drones are assumed to operate
in a two-dimensional space, and their states are represented by their positions and velocities.
The UKF is employed to estimate these states in the presence of process and measurement
noise, enhancing the robustness of the system.

The MPC is formulated to minimize the distance between the drones’ positions and
their respective target positions while ensuring collision avoidance. The optimization prob-
lem is subject to constraints that prevent the drones from coming closer than a predefined
safety distance. The optimization problem is solved using the SLSQP method.

The simulation is set up with a variable number of drones operating in a defined space
with initial random positions and velocities. The drones are tasked to reach target positions
while avoiding collisions, which is influenced by a dynamic wind field.

The A* path-planning algorithm is integrated to guide the drones toward their target
positions while avoiding obstacles. The space is discretized into a grid, and the algorithm
finds the shortest path from the drone’s current position to its target.
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Figure 7. Performance analysis of the multi-drone collision avoidance system with A* path planning
and truck platooning. The figure depicts three key metrics with distances measured in meters (m):
(1) the total distance traveled by each drone, represented as individual bars for each drone indexed
from 1 to 10; (2) the time taken, measured in seconds, by each drone to reach its assigned goal position,
which is also displayed as bars corresponding to each drone; and (3) the average distance maintained
between drones over time, which is plotted as a continuous line. The x-axis in the first two subplots
represents the drone index, while in the third subplot, it indicates elapsed time in seconds.

The drones are configured to fly in a formation, and performance metrics such as
distance traveled, time to reach the goal, and average inter-drone distance are calculated
and visualized.

This implementation and simulation demonstrate the effectiveness of the integrated
MPC and UKF approach in ensuring the collision-free navigation of multiple drones in a
dynamic environment.

Figures 6 and 7 provide a comprehensive view of the multi-drone navigation scenario,
showcasing the path planning, collision avoidance, and drone dynamics handling capabili-
ties of the implemented algorithms. They also offer insights into the performance of the
system, helping to evaluate its efficiency and safety.

In particular, Figure 6 showcasing the drone trajectories and positions provides a vivid
representation of the complex dynamics involved in multi-drone navigation and collision
avoidance. The different colored lines illustrate the unique path taken by each drone,
revealing how they navigate through space to reach their respective goal positions while
adhering to the constraints imposed by the UKF and A* path-planning algorithms. The red
circles, representing the initial positions, indicate a random starting point for each drone.
The trajectories emanate from these points, showcasing the movement of the drones as
they progress through the simulation. The blue circles at the end of each trajectory signify
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the final positions of the drones, providing a clear visual indication of where each drone
ended up at the conclusion of the simulation. The green crosses mark the goal positions,
serving as the target destinations for the drones. The trajectories show how each drone
maneuvers toward its goal, taking into account the need to avoid collisions with other
drones. The orange squares represent the formation positions, which are intermediary
targets for the drones as they make their way toward their final destinations. These
positions help maintain an organized structure among the drones, ensuring a coordinated
movement that minimizes the risk of collisions. The grid overlay adds a layer of precision
to the visualization, allowing for a more accurate interpretation of the drones’ positions in
the 2D space. The legend helps distinguish the paths of different drones, providing clarity
in the midst of the complex web of trajectories.

The performance metrics in Figure 7, divided into three subplots, offers a compre-
hensive analysis of the efficiency and safety of the drone navigation system. Each subplot
focuses on a specific aspect of performance, providing insights that are crucial for eval-
uating the success of the algorithms and identifying areas for improvement. In the first
subplot, the distance traveled by each drone is displayed, allowing for a comparison across
all drones. The variation in the distances traveled highlights the individual challenges faced
by each drone in navigating to its goal position. Drones that had to travel longer distances
or navigate around obstacles and other drones would have longer trajectories, which are
reflected in the higher bars. The second subplot provides a look into the time efficiency
of the system, displaying the time taken by each drone to reach its goal position. Shorter
times indicate a more efficient path, while longer times may suggest the need for detours
to avoid collisions or navigate around obstacles. This metric is crucial for applications
where time efficiency is of the essence, such as in delivery drones or emergency response
scenarios. The third subplot shows the average inter-drone distance over time, serving as
a key indicator of the safety of the system. Maintaining a safe distance between all pairs
of drones reduces the risk of collisions and ensures a safer operational environment. A
consistent high average distance throughout the simulation is indicative of the effectiveness
of the collision avoidance algorithm.

To sum up, our simulation environment implemented in Python allowed us to evaluate
the DDTP under various conditions. We analyzed the performance of the DDTP algorithm
in terms of drone formation maintenance, which is evaluated by measuring the deviation
of the drones from their assigned formation relative to the trucks. The results indicate
that the drones successfully maintained their formation with minor deviations from their
target positions. The average deviation stayed within acceptable limits, suggesting that the
drones effectively adapted their behavior based on the trucks’ dynamics and constraints.

While our actual simulations provide a detailed analysis of the DDTP algorithm, fo-
cusing primarily on drone behavior and their interaction with trucks, we acknowledge the
need for a broader evaluation that includes additional critical aspects. The current frame-
work has not explicitly addressed the nuances of truck platooning dynamics, particularly
in terms of platoon stability under varying conditions and the impact of uncertainties like
communication delays and packet loss. These elements are crucial for a comprehensive
assessment of the DDTP system in real-world scenarios.

Future enhancements to our simulation could include the implementation of more
sophisticated models to simulate communication challenges, such as delays and packet
loss, which are inherent in real-world networks. Incorporating these aspects would provide
a more realistic representation of the communication constraints and their impact on the
system’s performance. Moreover, a deeper focus on platoon stability, considering external
disturbances and the effectiveness of control algorithms, would significantly enhance our
understanding of the system’s robustness and reliability.

Additionally, exploring the integration of energy consumption and battery life con-
straints in drone operations would add another layer of realism, reflecting the practical
limitations and operational challenges in drone-swarm coordination. The dynamic nature
of the environment and the system’s uncertainties also suggest the potential benefit of
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implementing adaptive control algorithms. These would allow the system to adjust to
changing conditions and maintain optimal performance. Lastly, the dynamic changes
in network topology, due to drone movements or communication range limits, present
an interesting avenue for future research to evaluate the resilience and efficiency of the
communication network among the drones.

Consideration on System Dynamics and Drone Assistance

To provide a more comprehensive understanding of the DDTP algorithm’s perfor-
mance in realistic scenarios, we have expanded our simulation framework qualitatively
to include factors such as traffic density, environmental conditions, and the efficacy of
drone-assisted communication. This enhanced approach allows us to evaluate the system’s
robustness under varying conditions and to assess the potential improvements offered by
drone technology in communication systems.

The simulation considers three levels of traffic density (Low, Medium, High) and three
types of environmental conditions (Clear, Moderate, High). We investigate the impact of
these factors on two critical communication metrics: communication delay and packet loss
rate. These metrics are crucial in assessing the efficiency and reliability of the DDTP system
in real-world conditions.

The communication delay, measured in milliseconds, is assumed to increase with
higher traffic density and worse environmental conditions. The delay is formulated to
be dependent on both the number of trucks and the conditions of the environment. The
base delay is set for clear conditions and low traffic with additional increments for each
level of traffic density and environmental condition. This approach provides a realis-
tic representation of the challenges faced in high-density traffic scenarios and adverse
environmental conditions.

Similarly, the packet loss rate, represented in percentage, is influenced by traffic
density. The base packet loss rate is defined for clear conditions, with additional incre-
ments for higher traffic densities. This metric is essential to understand how reliable the
communication is among the trucks and drones under different traffic conditions.

Recognizing the potential of drones in enhancing communication systems, we intro-
duce reduction factors to simulate the improvements brought about by drone-assisted
communication. These factors represent the anticipated enhancements in communication
delay and packet loss rate due to the efficiency of drone communication systems. The
simulation compares the original and drone-assisted communication metrics to highlight
the impact of drones in improving the system’s performance.

The simulation results are visualized through a series of plots, comparing the com-
munication delay and packet loss rate across different traffic densities, environmental
conditions, and numbers of trucks. The plots distinctly illustrate the improvement in
communication metrics when drone assistance is factored in, showcasing the potential of
integrating drone technology by means of the DDTP system.

In Figure 8, the first set of plots presents the original communication delay and packet
loss rate without drone assistance. Following this, another set of plots demonstrates the
expected reduced communication delay and packet loss rate when drone assistance is
incorporated. This comparative analysis shows by means of visualization the benefits of
using drones for communication purposes in complex traffic and environmental scenarios.

Figure 9 incorporates confidence intervals while focusing on a side-by-side comparison
of the communication metrics with and without the intervention of UAV technology.

In developing our communication model for the DDTP system, several key assump-
tions were made to ensure a realistic representation of real-world scenarios. Firstly, we
assumed that the communication range between drones and trucks is limited, reflecting
the practical constraints of wireless communication systems. This range limitation plays a
crucial role in the formation and maintenance of the communication network, particularly
in dense traffic conditions or complex environments.
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Figure 8. Visual comparative analysis of communication metrics in a simplified DDTP system with
and without drone assistance: The figure comprises four plots illustrating the impact of traffic density
and environmental conditions on communication delay and packet loss rate for different numbers
of trucks. The top two plots display the original communication delay and packet loss rate without
drone assistance, revealing how these metrics escalate with increasing traffic density and deteriorating
environmental conditions. The bottom two plots demonstrate the expected improvements achieved
through drone-assisted communication with noticeable reductions in both communication delay and
packet loss rate.

Secondly, we considered the impact of environmental factors, such as weather con-
ditions and physical obstructions, on communication reliability. These factors can cause
fluctuations in signal strength and quality, leading to increased communication delays and
packet loss rates. By incorporating these variables into our model, we aimed to mirror the
challenges encountered in real-world vehicular communication networks.
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Figure 9. Impact of drone assistance on communication delay and packet loss rate: This figure
presents a comparative analysis of communication delay and packet loss rate in a DDTP system
under varying traffic densities and environmental conditions both with and without drone assistance.
The top row illustrates the communication delay, while the bottom row focuses on the packet loss
rate. Each column represents the metrics without (left) and with (right) drone assistance, respectively.
The shaded areas around each line indicate confidence intervals.

Furthermore, our model assumed a time-variant nature of the communication links,
acknowledging that the quality of communication can change dynamically over time.
This aspect is particularly relevant in mobile networks, where the relative positions of
trucks and drones continuously evolve, affecting the connectivity and stability of the
communication links.

In terms of accuracy, our communication model strives to realistically capture the
complexities and uncertainties inherent in vehicular networks. The introduction of drone-
assisted communication is based on the premise that drones can provide more stable and
reliable communication links, especially in scenarios where direct line-of-sight commu-
nication between trucks is not feasible. However, it is important to note that while our
model incorporates key factors affecting communication, it remains a simplified repre-
sentation. Real-world communication systems may face additional challenges, such as
spectrum congestion, interference from other electronic devices, and regulatory constraints
on communication frequencies.

The results from our simulation, as depicted in Figure 9, offer valuable insights into the
potential improvements in communication efficiency through drone assistance. However,
these results should be interpreted with an understanding of the model’s assumptions and
inherent limitations. Future research could focus on refining the communication model
by integrating more detailed environmental data, advanced signal propagation models,
and adaptive communication protocols to enhance its realism and predictive accuracy.
This approach would not only strengthen the validity of the simulation results but also
provide a more comprehensive understanding of the potential impact of drone-assisted
communication in real-world truck platooning scenarios.

7. Discussion

In this section, we present a comparative analysis of various V2V communication and
coordination approaches in the context of platooning and traffic management. The focus is
on contrasting the DDTP method with existing strategies, highlighting key differences in
control algorithms, communication strategies, scalability, performance metrics, limitations,
and applicable scenarios. Table 3 summarizes these comparisons.
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Table 3. Comparative analysis of V2V communication and coordination approaches.

Method/Approach Control Algorithm Communication
Strategy Scalability Performance

Metrics Limitations Application
Scenarios

DDTP MPC and UKF Decentralized High Collision avoidance,
Formation accuracy

Cost, Real-world
validation

Highway truck
platooning

CACC-Based
Platooning [35,36]

Cooperative
Adaptive Cruise
Control (CACC)

V2V Moderate Traffic flow
efficiency, Safety

Communication
reliability

Highway and urban
traffic management

V2V
Communication

[37,38]

Linear Quadratic
Regulator (LQR) Decentralized Moderate Fuel efficiency,

Safety
Communication
latency, Range

Smart city
transportation,

Platooning

Autonomous
Drone-Assisted

Traffic
Monitoring [39]

Simple Heuristics Drone-to-Vehicle Moderate
Traffic congestion
analysis, Response

time

Drone battery life,
Data processing

Urban traffic
surveillance

The DDTP approach, which combines MPC and UKF, is characterized for its decentral-
ized communication strategy and high scalability, making it well-suited for highway truck
platooning. The performance metrics primarily focus on collision avoidance and formation
accuracy with ongoing challenges related to cost and the need for real-world validation.

Comparatively, CACC-based platooning, as explored in [35,36], utilizes V2V commu-
nication to improve traffic flow efficiency and safety. While this approach has moderate
scalability, its reliance on communication reliability can be a limiting factor, especially in
dense urban environments.

The use of Linear Quadratic Regulator (LQR) in V2V communication systems [37,38]
offers improvements in fuel efficiency and safety for smart city transportation and platooning.
However, challenges related to communication latency and range can impact its effectiveness in
dynamic traffic conditions.

Lastly, the autonomous drone-assisted traffic monitoring approach described in [39]
uses simple heuristic algorithms and drone-to-vehicle communications. This method is
particularly useful for urban traffic surveillance, analyzing traffic congestion, and improv-
ing response times. The limitations of this approach include drone battery life and the need
for efficient data processing.

In conclusion, the study of diverse V2V communication and coordination strategies
reveals the multifaceted nature of implementing technology in traffic management and
platooning. While each approach offers unique benefits, the DDTP method shines in
its adaptability and potential for addressing the specific challenges of highway truck
platooning. Our analysis highlights the importance of considering a broad range of factors,
including scalability, communication strategy, and control algorithms, in the development
and application of these technologies. The future of V2V communication and coordination
in vehicular networks holds significant promise, and approaches like DDTP represent
a step forward in harnessing this potential. Emphasizing the continuous evolution and
adaptation of these systems, further research and real-world implementations will be
essential in optimizing their effectiveness and addressing existing limitations.

8. Conclusions and Future Work

In this paper, we presented a Decentralized Drone-Based Truck Platooning (DDTP)
that combines Model Predictive Control (MPC) and Unscented Kalman Filter (UKF) tech-
niques to achieve efficient and safe platooning on highways. The proposed framework
is capable of adapting in real time to the trucks’ dynamics and constraints, maintaining
the desired formation, and assisting the trucks in platooning efficiently and safely. The
simulation results demonstrated the effectiveness of the DDTP algorithm in terms of drone
formation maintenance. As future work, we plan to improve the proposed framework
by addressing (1) handling complex scenarios, such as dynamic traffic and varying envi-
ronmental conditions, requiring advanced control algorithms and additional sensor data;
(2) the implementation of multi-objective optimization for additional objectives, like fuel
consumption minimization and collision risk reduction; (3) improvements in scalability
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and robustness for larger fleets while tackling communication failures and uncertainties
through advanced consensus algorithms and fault-tolerant strategies; and (4) a validation
of the framework via real-world experiments to assess performance, safety, and reliability
under realistic conditions.

In practical terms, the results of our research have significant implications for the
future of automated transportation systems particularly in the realm of long-haul trucking
and logistics. The DDTP framework, leveraging advanced MPC and UKF techniques, is
poised for potential implementation in scenarios where highways are equipped with smart
infrastructure, enabling real-time communication and coordination between drones and
trucks. However, it is important to acknowledge the limitations of our current work. Our
simulation-based study primarily focuses on ideal conditions and controlled environments.
In reality, the performance of DDTP may be influenced by factors such as unpredictable
traffic patterns, diverse weather conditions, and the varying reliability of communication
networks. Additionally, the complexity and cost of the required technology and infras-
tructure pose challenges for widespread adoption. As we move forward, it is crucial to
address these limitations through comprehensive real-world testing, refinement of the con-
trol algorithms to handle dynamic and unpredictable environments, and the exploration of
cost-effective and scalable solutions for technology deployment.
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