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Abstract: In this paper, we address the research gap in efficiently assessing Generative Adversarial
Network (GAN) convergence and goodness of fit by introducing the application of the Signature
Transform to measure similarity between image distributions. Specifically, we propose the novel
use of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) Signature, along with
Log-Signature, as alternatives to existing methods such as Fréchet Inception Distance (FID) and Multi-
Scale Structural Similarity Index Measure (MS-SSIM). Our approach offers advantages in terms of
efficiency and effectiveness, providing a comprehensive understanding and extensive evaluations of
GAN convergence and goodness of fit. Furthermore, we present innovative analytical measures based
on statistics by means of Kruskal–Wallis to evaluate the goodness of fit of GAN sample distributions.
Unlike existing GAN measures, which are based on deep neural networks and require extensive
GPU computations, our approach significantly reduces computation time and is performed on the
CPU while maintaining the same level of accuracy. Our results demonstrate the effectiveness of the
proposed method in capturing the intrinsic structure of the generated samples, providing meaningful
insights into GAN performance. Lastly, we evaluate our approach qualitatively using Principal
Component Analysis (PCA) and adaptive t-Distributed Stochastic Neighbor Embedding (t-SNE) for
data visualization, illustrating the plausibility of our method.

Keywords: GAN; FID; generative models; Signature Transform; PCA; t-SNE; clustering

1. Introduction

Generative Adversarial Networks (GANs) [1] have gained significant attention in re-
cent years as a powerful tool for generating realistic synthetic images, with a wide range
of applications in computer vision [2,3], graphics [4,5], and Machine Learning (ML) [6,7].
Despite their remarkable successes, assessing the quality of the generated samples and
measuring the convergence of GANs remain challenging tasks. Existing metrics, such as
Fréchet Inception Distance (FID) [8] and Multi-Scale Structural Similarity Index Measure
(MS-SSIM) [9] have been widely used, but they suffer from certain limitations. These limita-
tions include the requirement of substantial computational resources and time, dependence
on specific Deep Learning (DL) architectures, and limited interpretability, which restrict
their practical applicability and hinder further advancements in the field.

To address these challenges, there is a pressing need for a novel approach that can
efficiently and effectively assess GAN-generated images while maintaining the same level
of accuracy as existing metrics. Moreover, such an approach should provide a deeper
understanding of the underlying distributions of the generated samples and be applicable
across different GAN architectures and problem domains.
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In this paper, we present a novel approach to study empirical distributions generated
with GANs, leveraging the well-established Signature Transform and Log-Signature as
powerful mathematical tools [10–13]. Our work is the first to introduce the use of Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) Signature, along with Log-
Signature, as alternatives for measuring GAN convergence. Furthermore, we propose the
application of analytical measures based on statistics to study the goodness of fit of the
GAN sample distribution, which are both efficient and effective. In contrast to existing
GAN metrics that involve considerable GPU-based computation, our approach significantly
reduces computation time and resources while maintaining the same level of accuracy.

We propose a two-fold approach. First, we introduce a score function based on the
Signature Transform [14] to evaluate image quality in a novel manner, offering reliability,
speed, and ease of computation for each epoch. Second, we employ statistical techniques to
study the goodness of fit of the generated distribution, providing a standardized pipeline
for interpreting the results of the converged sample distribution. A key contribution of
this paper is the introduction of Kruskal–Wallis for GAN assessment, which enables a
robust comparison of the goodness of fit between the generated and target distributions.
These statistical techniques are computationally efficient, requiring minimal overhead and
enabling on-the-fly computation. To qualitatively illustrate the good performance of our
measure, we also utilize Principal Component Analysis (PCA) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) [15] for data visualization, enabling a visual assessment
of the effectiveness of our proposed method in capturing the intrinsic structure of the
generated samples.

The remainder of this paper is organized as follows: Section 2 provides an overview of
the field and reviews related work. Section 3 discusses Generative Adversarial Networks.
Section 4 covers non-parametric statistical analysis with a focus on Kruskal–Wallis, whereas
Section 5 introduces the Signature Transform. Section 6 presents our methodology, with
Sections 6.1 and 6.2 detailing the introduced techniques for statistical analysis of the
generated distribution and the RMSE and MAE Signature and Log-Signature, respectively.
Section 7 presents the evaluation of our approach, Section 7.1 presents the computational
complexity of the proposed approaches in comparison against other methodologies, and
Section 7.2 discusses visualization techniques. Finally, Section 8 concludes the paper and
offers suggestions for future work.

2. Overview and Related Work

The advent of DL has revolutionized numerous fields and disciplines, enabling game-
changing applications that rely on vast amounts of data [16–18]. These advancements have
significantly improved accuracy and speed, opening the door for the use of automated learning
techniques in critical scenarios, such as safety-critical systems and self-driving cars [6,19–24].

Some notable works in this area include the development of object detection and
image segmentation algorithms [16,18,25,26], as well as pioneering research in image
synthesis and style transfer [27–29]. Additionally, breakthroughs in image recognition and
classification [17,30], attention mechanisms in natural language processing [31,32], and
various other domains [33] exemplify the widespread impact of DL. As DL techniques
continues to advance, their influence is becoming more pervasive, pushing the boundaries
of what is possible in research and real-world applications.

Generative models, particularly Generative Adversarial Networks (GANs), have emerged
as a powerful and influential area of research within the DL domain. These models have
shown remarkable success in a wide range of applications, such as image synthesis and style
transfer [27–29], pushing the boundaries of what is possible in research and real-world ap-
plications, whereas DL has also brought advancements in other areas, including object detec-
tion and image segmentation [16,18,25,26], image recognition and classification [17,30,33],
and attention mechanisms in Natural Language Processing (NLP) [31,32]. The focus of
our study is in the realm of generative models and their applications, as they hold great
potential for further exploration and innovation [34].
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The domain of synthetic image generation has witnessed remarkable advancements
in recent years. Driven by the demand for synthetic imagery in various applications, such
as simulated environments [35], additional training data [36], and style transfer [27], sig-
nificant research efforts have been devoted to establishing stable and principled methods
for achieving these goals. Prominent approaches like Generative Adversarial Networks
(GANs) [1,4,37–43] and Variational AutoEncoders (VAEs) [44] offer stable training mecha-
nisms for convergence.

However, there is still room for improvement in this field, as the capacity of these net-
works is often limited by the available GPU memory and training resources [6,20,29,35,45,46].
This limitation can lead to reduced performance, effectiveness, and applicability of GANs
in real-world scenarios. Challenges such as mode collapse [47] and gradient explosion [48]
persist, and the effectiveness of these methods in handling complex tasks, such as generating
additional multi-view frames [49], remains to be validated. Furthermore, the development
of more efficient training and optimization algorithms could potentially alleviate resource
constraints and unlock the full potential of GANs in various applications.

The work presented in [50] introduced an innovative generative model based on an-
nealed Langevin [51,52], which was further developed in [53] to demonstrate competitive
image generation capabilities. Building on the principles derived from diffusion-based
methods [54], Diffusion Probabilistic Models [55] attained state-of-the-art results on the
CIFAR10 dataset. However, Score-Based Generative Models [56] face similar challenges
as GANs, making their real-time implementation unfeasible due to the sampling step
that requires the output dimension to match the input dimension. Consequently, these
models are heavily reliant on GPU memory resources and demand extensive computing
time, which poses significant limitations to their applicability and performance in practical
scenarios. As the field continues to advance, addressing these challenges will be crucial for
unlocking the full potential of generative models and expanding their use across diverse
applications. Supplemental recent approaches [3,5,57] are based on the attention mecha-
nism [31] building mainly on Vision Transformers [58]. Other techniques like NeRF [23]
could be essential to add structure to the learning paradigm.

Moreover, Stable Diffusion [59,60] has emerged as a promising direction for generative
models, building upon the success of earlier diffusion-based methods [61–63]. These models
are designed to address some of the limitations and challenges faced by their predecessors,
such as training instability and poor sample quality [64]. By refining the diffusion process
and optimizing the training procedure, Stable Diffusion has shown significant improvements
in terms of sample diversity, fidelity, and overall performance [65–67]. More recently, ap-
proaches inspired by Reinforcement Learning from Human Feedback (RLHF) have also
presented a new autoregressive model for images [68].

In this context, our proposed method offers a computationally efficient and effective
alternative for assessing GAN convergence [69] and the goodness of fit of the generated
sample distribution. By leveraging the Signature Transform and statistical techniques
through the use of a non-parametric test, our approach addresses the limitations of existing
methods and provides a more practical solution for real-world applications; whereas our
focus is on GAN convergence, it is worth noting that the proposed metrics can also be
applied to Stable Diffusion or any other generative models capable of producing high-
fidelity imagery.

3. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of DL models introduced in [1].
They consist of two neural networks, a generator, and a discriminator that are trained
simultaneously in a game-theoretic framework. The generator creates synthetic samples,
whereas the discriminator learns to distinguish between real samples from the training data
and fake samples generated by the generator. This competition between the two networks
drives the generator to produce more realistic samples over time, eventually leading to the
generation of samples that are difficult to distinguish from the true data.
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3.1. GAN Architecture

Let X represent the true data distribution and Z represent the noise distribution.
The generator G : Z → X is a neural network that transforms noise samples z ∼ Z into
synthetic samples x f ake = G(z). The discriminator D : X → [0, 1] is a neural network that
takes either real samples xreal ∼ X or fake samples x f ake and outputs the probability that
the given sample is from the true data distribution.

3.2. GAN Training

The training process of GANs involves finding the optimal parameters for the genera-
tor and discriminator networks by solving a minimax optimization problem:

min
G

max
D
L(D, G) = Exreal∼X [log D(xreal)] +Ez∼Z [log(1− D(G(z)))]. (1)

The discriminator tries to maximize the objective function L(D, G) by correctly clas-
sifying real and fake samples, whereas the generator tries to minimize it by generating
samples that the discriminator misclassifies as real. This is achieved by alternating be-
tween updating the weights of the discriminator and the generator using gradient-based
optimization methods, such as stochastic gradient descent or Adam.

3.3. GAN Convergence

One of the main challenges in training GANs is the convergence issue. Ideally, the
training process should converge when the generator produces samples that are indistin-
guishable from the true data distribution, and the discriminator is unable to differentiate
between real and fake samples. In practice, however, GANs may suffer from various issues,
such as mode collapse, where the generator produces only a limited variety of samples, or
oscillations, where the generator and discriminator keep outperforming each other without
reaching a stable equilibrium.

Several metrics have been proposed to measure GAN convergence and assess the
quality of the generated samples, such as the Fréchet Inception Distance (FID) [8], the
Inception Score (IS), and the Kullback–Leibler (KL) divergence. In this paper, we introduce
the use of Signature Transform and Log-Signature as alternative methods for evaluating
GAN convergence, providing a novel perspective on the problem.

Other additional metrics that are relevant to the problem are:

• LPIPS (Learned Perceptual Image Patch Similarity) is a perceptual similarity metric
introduced in [69]. It computes the similarity between two images by comparing their
feature representations in a deep neural network (typically pretrained on a large-scale
image classification task). The metric has been shown to correlate well with human
perceptual judgments of image similarity, and it has been used in various image
synthesis and image quality assessment tasks.

• PSNR (Peak Signal-to-Noise Ratio) is a widely-used metric for image quality assess-
ment, particularly in the field of image compression. It is a simple, easy-to-compute
measure that compares the maximum possible power of a signal (in this case, an image)
to the power of the corrupting noise (differences between the reference and distorted
images). It is calculated as the logarithmic ratio of the maximum possible pixel value
squared to the mean squared error (MSE) between the reference and distorted images.
Although PSNR is widely used, it has been criticized for not always correlating well
with human perception of image quality, as it is based on pixel-wise differences and
does not consider higher-level semantic or structural features.

In our study, we have focused on introducing the Signature Transform as a novel
approach for evaluating GAN-generated images and measuring their convergence; whereas
LPIPS and PSNR are relevant metrics for image quality assessment, they may not be the
most appropriate metrics for our specific context, as our goal is to develop a computationally
efficient and reliable measure for GAN convergence.



Electronics 2023, 12, 2192 5 of 25

3.4. Stylegan2-ADA

Stylegan2-ADA is an extension of the StyleGAN2 architecture, which was devel-
oped in [70] to generate high-quality synthetic images. StyleGAN2 builds on the original
StyleGAN [4] by introducing several improvements to address issues such as artifacts
and training stability. The main contribution of Stylegan2-ADA is the use of Adaptive
Discriminator Augmentation (ADA) to enhance the performance of GANs with limited
training data.

StyleGAN2 consists of a Generator (G) and a Discriminator (D), which are trained
adversarially. The Generator creates images, whereas the Discriminator evaluates their
authenticity. The objective function for the Generator, G, and the Discriminator, D, can be
written as:

min
G

max
D

Ex∼pdata [D(x)]−Ez∼pz [D(G(z))]. (2)

The generator in StyleGAN2 consists of a mapping network f (z) and a synthesis
network g(w). The mapping network f (z) converts the input latent vector z ∈ Z to an
intermediate latent space w ∈ W :

w = f (z). (3)

The synthesis network g(w) then generates an image x from the intermediate latent
space w:

x = g(w). (4)

StyleGAN2 introduces an adaptive instance normalization (AdaIN) operation in the
synthesis network, which applies learned style information from w to each feature map:

AdaIN(yz, w) =
yz − µ(yz)

σ(yz)
· σ(w) + µ(w). (5)

Here, yz is the feature map, µ(·) and σ(·) denote the mean and standard deviation,
respectively, and w is the style vector derived from the intermediate latent space.

The main innovation of Stylegan2-ADA is the use of Adaptive Discriminator Augmen-
tation to improve GAN training with limited data. ADA applies random augmentations to
the real and generated images before feeding them to the Discriminator. The augmentation
strength is controlled by a hyperparameter p, which is adapted during training.

ADA introduces a new objective function for the Discriminator:

min
G

max
D

Ex∼pdata [D(Ap(x))]−Ez∼pz [D(Ap(G(z)))]. (6)

Here, Ap(·) represents the augmentation function with probability p. During training,
the augmentation probability p is gradually increased if the Discriminator becomes too
strong, ensuring that the Discriminator focuses on higher-level features instead of relying
on the low-level details introduced by the augmentations. In summary, Stylegan2-ADA
combines the advanced architecture of StyleGAN2 with Adaptive Discriminator Augmen-
tation to generate high-quality synthetic images even with limited training data. The use of
adaptive augmentations allows the model to maintain a balance between the Generator
and Discriminator, improving the stability and performance of the training process.

3.5. Fréchet Inception Distance (FID)

FID measures the similarity between the true data distribution and the generated data
distribution by comparing their statistics in a feature space. Given a pre-trained Inception
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network I, the feature representations for real samples xreal and fake samples x f ake are
obtained as µreal = I(xreal) and µ f ake = I(x f ake), respectively. The FID is then defined as:

FID(X , G) = ||µreal − µ f ake||2 + Tr(Σreal + Σ f ake − 2(ΣrealΣ f ake)
1/2), (7)

where µreal and µ f ake are the mean feature vectors, Σreal and Σ f ake are the covariance
matrices, and Tr denotes the trace of a matrix.

3.6. Inception Score (IS)

The Inception Score is another metric that evaluates the quality of generated samples
by measuring both the diversity and realism of the samples. It is computed as:

IS(G) = exp(Ex f ake∼G[DKL(p(y|x f ake)||p(y))]), (8)

where DKL(p||q) denotes the KL divergence between probability distributions p and q,
p(y|x f ake) represents the conditional class probability given a generated sample, and p(y)
is the marginal class probability.

FID has emerged as one of the most widely used and accepted metrics for evaluating
the quality of GAN-generated images. Its extensive application in numerous studies has
established its reputation as a reliable and effective metric. However, its computational
complexity and time consumption, as studied in Section 7.1, primarily due to the use of the
Inception Module as feature extractor, make it less than ideal for real-time assessment. This
constraint can be a critical factor in applications where real-time performance is essential.
By introducing the Signature Transform and Log-Signature as alternative methods for
evaluating GAN convergence, we provide a new perspective on the problem, offering a
powerful and efficient approach for capturing and comparing the features of empirical
distributions generated by GANs.

4. Non-Parametric Statistical Analysis: Kruskal–Wallis

Kruskal–Wallis is a non-parametric statistical method used for comparing multiple
independent samples to determine if they originate from the same population. This test
is an extension of the Mann–Whitney U test for more than two groups and is particu-
larly useful when the underlying assumptions of parametric tests, such as normality and
homoscedasticity, are not met.

Kruskal–Wallis

In our methodology, we employ Kruskal–Wallis as a crucial component for assessing
the goodness of fit of the GAN sample distribution. By comparing the generated samples
with real data, we can evaluate the degree to which the generated samples resemble the
target distribution. This non-parametric statistical test allows us to determine whether
there are significant differences between the generated and real samples without making
assumptions about the underlying distribution of the data. Using Kruskal–Wallis in our
approach is beneficial because it provides an efficient and effective way to compare the gen-
erated samples with the target distribution while maintaining robustness to non-normality
and unequal variances.

Given k independent samples with sizes n1, n2, . . . , nk, Kruskal–Wallis is based on
the ranks of the combined data across all groups. The null hypothesis H0 states that all
samples are drawn from the same population, with the same distribution and median.
The alternative hypothesis H1 states that at least one sample is drawn from a different
population with a distinct distribution or median. Kruskal–Wallis statistic, denoted as H, is
computed as:

H =
12

N(N + 1)

k

∑
o=1

R2
o

no
− 3(N + 1), (9)
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where N = ∑k
o=1 no is the total number of observations and Ro is the sum of the ranks in the

o-th group. Under the null hypothesis, the test statistic H follows a chi-square distribution
with k− 1 degrees of freedom, and the p-value can be computed accordingly. If the p-value
is less than a predetermined significance level (e.g., 0.05), the null hypothesis is rejected,
indicating that the samples are not from the same population.

Our decision to use this particular statistical test was based on several factors that make
it a suitable choice for the analysis of GAN-generated images in the context of our study.

1. Non-parametric nature: Kruskal–Wallis is a non-parametric test, meaning it does not
rely on any assumptions about the underlying distribution of the data. This is particu-
larly important when dealing with GAN-generated images, as the distributions of the
generated samples may not necessarily follow a known parametric form, especially
during the early stages of training. The non-parametric nature allows us to compare
the goodness of fit between the generated and target distributions without making
restrictive assumptions about their forms.

2. Robustness: Kruskal–Wallis is robust against outliers and deviations from normality,
which can be a common occurrence in the context of GAN-generated images. As the
test is based on the ranks of the data rather than the raw values, it is less sensitive to
extreme values that may arise from the generative process.

3. Multiple group comparison: Kruskal–Wallis allows us to compare more than two
groups simultaneously, which is useful when evaluating multiple GAN models or
different categories within a dataset. This capability makes the test a versatile choice
for our study, as it enables us to compare the performance of various GAN models on
different datasets in a single analysis.

4. Scalability: Kruskal–Wallis is computationally efficient, making it suitable for the large-
scale datasets that are often encountered in GAN research. Its computational efficiency
allows for the rapid evaluation of GAN-generated images and their convergence,
which is a key advantage of our proposed methodology.

Moreover, an alternative such as the Friedman test could indeed be a suitable choice
in cases where the observations are not independent; however, we have reasons to believe
that even in these cases the Kruskal–Wallis H-test is still a good fit for our study. In our
experiments, we have taken care to ensure that the generated samples from different GAN
models are, in fact, independent. We achieve this by using different random seeds when
sampling from the latent space of each GAN model, thus generating independent sets of
synthetic images. By doing so, we maintain the independence assumption required by the
Kruskal–Wallis H-test. Moreover, the Kruskal–Wallis H-test is a non-parametric test that
compares the medians of multiple groups without making any distributional assumptions.
This feature aligns well with our goal of evaluating GAN-generated samples, which often
exhibit complex and unknown distributions. On the other hand, the Friedman test assumes
that the observations are structured according to a block design, which may not be an
accurate representation of our experimental setup. In summary, whereas the Friedman
test could be a suitable alternative in certain scenarios, we believe that the Kruskal–Wallis
H-test is more appropriate for our study, given the independence of our observations and
the non-parametric nature of the test.

5. The Signature Transform

The Signature Transform [12,13], also known as the path signature, is a mathematical
tool used to represent a sequence of data points or a path in a Euclidean space. The signature
provides a unique and concise representation of the path while encoding its structural
properties, making it suitable for various applications, such as ML and data analysis.

Given a continuous path X : [0, T] → Rd in the Euclidean space Rd, the Signature
Transform S(X) is a collection of iterated integrals of all orders:

S(X) = (1, S1(X), S2(X), . . . , SN(X)), (10)
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where Sk(X) represents the k-th level of the signature and is a tensor in the tensor product
space (Rd)⊗k, for k = 1, 2, . . . , N. Each element of the k-th level tensor is defined as:

Sk
z1,...,zk

(X) =
∫ T

0

∫ s1

0
· · ·

∫ sk−1

0
dXz1(s1) . . . dXzk (sk), (11)

where s1, s2, . . . , sk ∈ [0, T] and z1, z2, . . . , zk ∈ {1, 2, . . . , d}.
The Log-Signature is a compressed representation of the signature that can be com-

puted efficiently using Chen’s identity, which relates the Log-Signature to the signature
through a shuffle product. The Log-Signature L(X) is defined as:

L(X) = (L1(X), L2(X), . . . , LN(X)), (12)

where Lk(X) represents the k-th level of the Log-Signature and is a tensor in the tensor
product space (Rd)⊗k, for k = 1, 2, . . . , N. Each element of the k-th level tensor can be
calculated using Chen’s identity:

Lk
z1,...,zk

(X) = Sk
z1,...,zk

(X)− ∑
π∈P(z1,...,zk)

S|π1|π1(X)⊗ · · · ⊗ S|πm |πm(X), (13)

where P(z1, . . . , zk) denotes the set of all partitions of the index sequence (z1, . . . , zk), |πo|
denotes the length of the o-th partition πo, and ⊗ represents the tensor product.

The Signature Transform and Log-Signature can be used to capture and compare the
features of empirical distributions generated by GANs, offering a powerful alternative to
traditional measures of GAN convergence. The mathematical properties of these transforms
provide a solid foundation for their use in various applications, such as the study of
empirical distributions generated with GANs, as proposed in this paper.

6. Methodology

We focus on the problem of generating synthetic images with a limited amount of
data, choosing Stylegan2-ADA [70] as the baseline method for our studies. The motivation
behind this choice is twofold. First, Stylegan2-ADA has been specifically designed to
address the challenges of data efficiency, providing high-quality image synthesis even with
limited training data. This property makes it an ideal candidate for applications where
large-scale datasets are not available or impractical to collect. Second, StyleGAN2-ADA
demonstrates improved training stability and convergence properties compared to its
predecessors, which contributes to reduced training time and computational resources.
These factors are critical in real-world scenarios, where rapid model development and
deployment are often essential. By using Stylegan2-ADA as our baseline, we aim to
showcase the effectiveness of our proposed methods in the context of an advanced and
widely-used generative model.

6.1. Statistical Analysis of the Generated Distribution

In this study, we perform a preliminary statistical analysis using Kruskal–Wallis [71]
to evaluate the goodness of fit between the original and synthetic samples generated by
GANs. We use the mean raster image intensities or gray-scale values as a simple image
descriptor to capture rough texture information. Prior to conducting Kruskal–Wallis, we
assess homoscedasticity using Levene’s test and normality of the distributions using a
normality test, such as the Shapiro–Wilk test.

As a result of this preliminary analysis, we find that the original samples do not
follow a normal distribution, whereas the synthetic samples do. This is consistent with
the GAN architecture, which initially models the samples as White Gaussian and then
modifies them to fit the original distribution. However, Kruskal–Wallis does not support
the null hypothesis for goodness of fit, suggesting that a more sophisticated method for
measuring sample quality in GANs is necessary. Existing measures such as MS-SSIM [37]
and FID [8] are commonly used for this purpose. Despite its simplicity, the proposed non-
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parametric analysis can serve as a unit test for GANs and other variational methods after
the model is trained, providing a quick assessment of the sample quality. This approach
depicted in Figure 1 has not been extensively explored in the literature and offers a valuable
contribution to the field.

Populations 
to

Compare 

Input Data

Original Data
Subset (     )

Synthetic Data
Subset (     )

Extraction 
of 

Features

Image Descriptor

Mean of RGB / 
Grayscale

Image intensities

Rough texture information
for an initial assessment

Statistical Mesures (*)

       p-value        
   : equality of variances /

Normality

(*) Tests performed under 
the following assumptions:

Homoscedasticity

Normality

Goodness of Fit

Test of Levene

Test of Kruskal-Wallis

1

2

3
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Figure 1. An illustrative representation of the proposed pipeline for the evaluation of generative
models using a non-parametric test, Kruskal–Wallis. The process begins with input data comprising
two populations: real-world images and synthetic images generated by a model under evaluation.
An image descriptor is then employed to extract relevant features from the images, transforming
the high-dimensional image data into a form amenable to statistical analysis. Following this, a
series of three statistical tests are conducted: Homoscedasticity, Normality, and Goodness of Fit
(Kruskal–Wallis).

Description and interpretation of statistical measures are provided in Table 1:

(a) Necessary condition but not sufficient to assert that both populations originate from
the same distribution.

(b) There is not enough statistical evidence to attest both populations’ samples originate
from the same distribution.

(c) With high probability the synthetic distribution generated is still close enough to the
initial distribution of noise from the GAN architecture. The samples may not show
enough fidelity, and there is probably bad generalization behavior.

(d) The synthetic distribution is far from the initial distribution of noise and has deviated
from the original Normal, and may be close to the target distribution.

(e) If (a) then there is enough statistical evidence to confirm that both populations originate
from the same distribution given this image descriptor. If (a) is not fulfilled, then we
can only ascertain that the synthetic population is a good approximation.

(f) There is not enough statistical evidence to attest both populations are from the same
distribution.



Electronics 2023, 12, 2192 10 of 25

Table 1. Interpretation of statistical measures given the proposed pipeline under study (Figure 1).
The symbol ‘X’ means we accept the null hypothesis, while the symbol ‘x’ indicates we reject the
null hypothesis.

Test Population Result Interpretation

1 C1 and C2
X (a)
x (b)

2 C2
X (c)
x (d)

3 C1 and C2
X (e)
x (f)

In Table 2, we present the evaluation test measures for homoscedasticity (T1), normal-
ity (T2), and goodness of fit (T3) on NASA Perseverance, AFHQ [72], and MetFaces [70]
datasets. Based on the interpretation outlined in Table 1 and using the given image de-
scriptor, we deduce that the Stylegan2-ada models trained on AFHQ Cat and Wild datasets
provide excellent approximations of the original distributions, as the null hypothesis for
goodness of fit is accepted. However, we cannot conclude that the distributions are identical
since the equality of variances is not confirmed.

Table 2. Evaluation of the statistical test measures of homoscedasticity (T1), normality (T2), and
goodness of fit (T3) on AFHQ and MetFaces using state-of-the-art pretrained models of Stylegan2-
ADA [70] and Stylegan3-ADA [43] and NASA Perseverance. The symbol ‘X’ means we accept the
null hypothesis, while the symbol ‘x’ indicates we reject the null hypothesis. The best outcome for
the proposed pipeline would be for Test 1 and Test 3 to yield positive results (accepting the null
hypothesis), and for Test 2 to yield a negative result (rejecting the null hypothesis). However, an
alternate good approximation would be when Test 1 and Test 2 yield negative results (rejecting the
null hypothesis) and Test 3 yields a positive result (accepting the null hypothesis).

Model Dataset T1 T2 T3

Stylegan2-ADA

NASA
Perseverance x X x

AFHQ

Cat x x X

Dog x X x

Wild x x X

MetFaces

x x x

r-Stylegan3-ADA x x x

t-Stylegan3-ADA x x x

For the AFHQ Dog dataset, additional training is required as the null hypothesis
for T2 (normality of the synthetic distribution) is accepted, indicating that the learned
distribution is close to the original white noise. A similar conclusion applies to the model
trained on the NASA Perseverance dataset, which also needs further training. In the case of
MetFaces, the learned distribution is considerably different from the original white noise,
but the null hypothesis for goodness of fit is not accepted. This finding suggests several
possible interpretations: the model may be overfitting, it might require increased capacity
to represent all features of the original distribution, or additional training might be needed.

We have introduced statistical measures and a visualization pipeline to examine
and comprehend the data at hand. Nevertheless, the high-dimensional nature of images,
coupled with the sequential aspect of video streams, brings forth a sense of time and space
that our current analysis does not accommodate. In fact, the data comprise a series of
images captured over a linear time span, following a specific trajectory. To address this
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aspect, we will employ tools from harmonic analysis in the subsequent section to offer a
more comprehensive interpretation.

6.2. RMSE and MAE Signature and Log-Signature

The Signature Transform [10,73–76] is roughly equivalent to Fourier; instead of ex-
tracting information about frequency, it extracts information about order and area.

However, the Signature Transform differs from Fourier by the fact that it utilizes a
basis of the space of functions of paths, a more general case to the basis of space of paths
found in the preceding.

Following [10], the truncated signature of order N of the path x is defined as a collection
of coordinate iterated integrals

SN(x) =






∫
· · ·

∫

0<t1<···<ta<1

a

∏
c=1

d fzc

dt
(tc)dt1 · · ·dta




1≤z1,...,za≤d




1≤a≤N

. (14)

The Signature is a homomorphism from the monoid of paths into the grouplike
elements of a closed tensor algebra; see Equation (16). It provides a graduated summary of
the path x. These extracted features of a path are at the center of the definition of a rough
path [14]; they remove the necessity to take into account the inner detailed structure of
the path.

S :
{

f ∈ F | f : [x, y]→ E = Rd
}
−→ T(E), (15)

where T(E) = T(Rd) =
∞

∏
c=0

(
Rd
)⊗c

. (16)

It has many advantages over other tools of harmonic analysis for ML. It is a universal
non-linearity, which means that every continuous function of the input stream may be
approximated arbitrarily by a linear function of its signature. Furthermore, among other
properties, it presents outstanding robustness behavior to missing or irregularly sampled
data, along with optional invariance in terms of translation and sampling. It has recently
been introduced in the context of DL to add some structure to the learning process, and
it seems a promising tool in Generative Models and Reinforcement Learning, as well as
a good theoretical framework. It mainly works on streams of data which could describe
from video sequences to our entire life experiences. That is to say, under the correct
assumptions and the right application, it could potentially compress all human experiences
into a representation that could be stored and processed efficiently. Here, we propose to
conduct a preliminary study in terms of harmonic analysis and understand its properties
to compare the original and synthetic samples.

The Signature [11,14,77–80] of an input data stream encodes the order in which data
arrive without being concerned with the precise timing of its arrival. This property, known
as invariance to time reparameterizations [81], makes it an ideal candidate for measuring
GAN-generated distributions against an original data stream. Notably, when sampling the
GAN model, instances of the latent space are retrieved in no specific order, even though the
original data are inherently time-dependent, as recorded video streams or images captured
by sensors are constrained by the temporal nature of the physical world. However, GANs
are not yet capable of generating data linearly in time and space, making comparisons
using other methods potentially biased or unable to capture all relevant cues.

Furthermore, it is essential to note that the number of components in the truncated
signature does not depend on the number of data samples under consideration. Specifically,
it maps the infinite-dimensional space of data streams, S(Rd), into a finite-dimensional
space of dimension (dN+1 − 1)/(d− 1), where N corresponds to the order of the truncated
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signature. This characteristic makes the Signature Transform highly suitable for processing
long sequential data with varying lengths or unevenly sampled data.

At the same time, we can introduce the concept of Log-Signature [75,76], which is a
more compact representation than the Signature.

Definition 1. If γt ∈ E is a path segment and S is its Signature, then

S = 1 + S1 + S2 + . . . ∀c, Sc ∈ E⊗c,

log(1 + x) = x− x2/2 + . . . ,

log S =
(

S1 + S2 + . . .
)
−
(

S1 + S2 + . . .
)2

/2 + . . .

The series log S =
(
S1 + S2 + . . .

)
−
(
S1 + S2 + . . .

)2/2 + . . . which is well-defined, is
referred to as the Log-Signature of γ.

In practice, the Log-Signature calculation involves a series expansion that is typically
truncated at a certain level to obtain a finite-dimensional representation. The choice of
the truncation level depends on the specific application and the desired trade-off between
computational complexity and the level of detail captured by the Log-Signature. In our
experiments, we have chosen a truncation level that balances these considerations and
yields satisfactory performance for our GAN evaluation task.

Unlike the Signature, the Log-Signature does not guarantee universality [14], and
as a result, it needs to be combined with non-linear models for learning. However, it is
empirically more robust to sparsely sampled data. There is a one-to-one correspondence
between the Signature and the Log-Signature, as the logarithm map is bijective [13,75]. This
statement also holds true for the truncated case up to the same degree.

In this study, we perform a comparison of the mean signature and Log-Signature for
original and synthetic samples at a size of 64× 64. We observe that synthetic samples
encompass the most relevant information from the original harmonic distribution. We
compare against sets of 1000 and 5000 synthetic samples, with each instance considered a
path x of dimension 64 to which we apply the Signature and Log-Signature transforms.

We propose the use of the element-wise mean of the truncated signatures S̃N , depicted
in Figure 2, to analyze the convergence of GAN-learned models by employing RMSE (Root
Mean Squared Error) and MAE (Mean Absolute Error). We refer to these measures as
RMSE and MAE Signature, and RMSE and MAE Log-Signature. For instance, in Figure 3,
we can observe that the model is achieving good convergence, though it is not capturing
all the information present in the original distribution.

RMSE and MAE, when understood through the element-wise mean, can be considered
as score functions built upon the Signature Transform, capable of measuring the quality
of the generated distribution. This perspective on these measures is important for future
applications, as it allows for the possibility of generalizing them to other tasks [11] or
even applying them to other transforms. RMSE and MAE Signature and Log-Signature
can serve multiple purposes, such as comparing models, monitoring performance during
training across several epochs, and analytically detecting overfitting, as demonstrated in
Table 3, whereas all these measures capture information about the visual cues present in
the distributions, RMSE and MAE Signature, as well as MAE Log-Signature, prove to be
more accurate in tracking the convergence of the GAN training procedure. In contrast, the
RMSE Log-Signature exhibits less precision.
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Figure 2. Visual explanation of the use of S̃N to analyze GAN convergence. Samples are resized at
64× 64 and transformed to grayscale previous to the computation of the signatures. The procedure
used for Log-Signature log S̃N is analogous. In the rightmost side plot, each color represents a pair
of functions: the violet curve illustrates one element-wise mean spectrum, while the blue curve
represents the other element-wise mean spectrum. The difference between these two functions is
quantified using RMSE or MAE.

(a) (b)

Figure 3. Spectrum of the element-wise mean of the Signatures (a) and Log-Signatures (b) of order 3
and size 64× 64 of original (‘o’ in blue) against synthetic (‘x’ in orange) samples.

In Table 3, we present the RMSE and MAE Signature and Log-Signature values for
different iterations of Stylegan2-ADA training. These values are calculated to evaluate the
performance of the GAN at various stages of its training process. A closer examination of
the table reveals that the 798th iteration of Stylegan2-ADA achieves the lowest RMSE and
MAE Signature and Log-Signature values, which indicates the highest accuracy among
the listed iterations. This table demonstrates the utility of RMSE and MAE Signature and
Log-Signature metrics in tracking the progress of GAN training and identifying the optimal
model iteration. By comparing the values across different iterations, we can observe
the improvements in GAN performance as it learns to generate more realistic images.
Furthermore, the table showcases the effectiveness of our proposed metrics in detecting
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potential overfitting, as evidenced by the increased RMSE and MAE values in the 983rd
iteration. This increase in values suggests a decline in the GAN’s performance, likely due
to overfitting the training data. In summary, Table 3 highlights the value of our proposed
RMSE and MAE Signature and Log-Signature metrics in evaluating GAN performance,
enabling us to monitor progress, compare different models, and detect overfitting during
the training process.

Table 3. RMSE and MAE Signature and Log-Signature across several iterations of training of
Stylegan2-ADA (lower is better, being the best results highlighted in bold). Our synthetic sam-
ples are generated using the model 798 which achieves the highest accuracy on RMSE and MAE
Signature and Log-Signature.

Iteration
Stylegan2-

ADA
193 371 596 798 983

RMSE
Signature 15,617 13,336 12,353 11,601 25,699

MAE
Signature 11,072 10,686 9801 9086 19,481

RMSE Log-
Signature 9882 7563 7354 7397 15,621

MAE Log-
Signature 6467 5955 5724 5717 12,063

To provide a more comprehensive understanding of the concepts presented in this
section, we will analytically describe the abstraction of a set of images as an unevenly
sampled stream of data, for example, a path, and present the definitions used to measure
the similarity between image distributions.

A stream of data, x ∈ S(Rd), can be understood as a discrete representation of a path.

Definition 2. Let x = (x1, . . . , xn) ∈ S(Rd) be a stream of data. Let X be a linear interpolation
of x. Then the signature of x is defined as

S(x) = S(X), (17)

and the truncated signature of order N of x is defined as

SN(x) = SN(X). (18)

This definition of the signature of a stream of data is independent of the choice of
linear interpolation of X by the invariance to time reparameterizations [10].

Definition 3. Given a set of truncated signatures of order N,
{

SN
c (xc)

}m
c=1, the element-wise

mean is defined by

S̃N(x(z)) =
1
m

m

∑
c=1

SN
c (x(z)c ), (19)

where z ∈ {1, . . . , n} is the specific component index of the given signature.

Then, RMSE and MAE Signature, whose results are presented in Tables 3 and 4, can
be defined as follows.
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Table 4. RMSE and MAE Signature and Log-Signature evaluation and comparison on AFHQ and
MetFaces using state-of-the-art pretrained models of Stylegan2-ADA [70] and Stylegan3-ADA [43].
Lower is better, being the best results highlighted in bold.

Model Dataset RMSE S̃3 MAE S̃3 RMSE log S̃3 MAE log S̃3

Stylegan2-ADA
AFHQ

Cat 61,450 45,968 29,201 22,297

Dog 38,861 30,441 31,686 24,612

Wild 33,306 25,578 26,622 20,359

MetFaces

33,247 23,428 25,685 18,071

r-Stylegan3-ADA 34,977 22,799 24,707 16,539

t-Stylegan3-ADA 30,894 19,872 21,560 13,761

Definition 4. Given n components of the element-wise mean of the signatures {ỹ(c)}n
c=1 ⊆ T(Rd)

from the model chosen as a source of synthetic samples and the same number of components of the
element-wise mean of the signatures {x̃(c)}n

c=1 ⊆ T(Rd) from the original distribution, we define
the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) by

RMSE
({

x̃(c)
}n

c=1
,
{

ỹ(c)
}n

c=1

)
=

√
1
n

n

∑
c=1

(
ỹ(c) − x̃(c)

)2, (20)

and

MAE
({

x̃(c)
}n

c=1
,
{

ỹ(c)
}n

c=1

)
=

1
n

n

∑
c=1
|ỹ(c) − x̃(c)|. (21)

The case for Log-Signature is analogous.

7. Evaluation

We present the results of our proposed measures using several state-of-the-art pre-
trained models in Table 4. For evaluation and testing, we use the standard AFHQ dataset [72]
classes ‘cat’, ‘dog’, and ‘wild’, as well as MetFaces [70], in conjunction with their correspond-
ing pretrained models. To compute the RMSE and MAE for S̃N and log S̃N , we generate
1000 synthetic samples from each model and compare them against the full original dataset.
Prior to the Signature Transform, the samples are converted to grayscale and resized to
64× 64. Figures 4 and 5 provide a visual comparison of the spectrum, demonstrating that
the trained models effectively learn the empirical distribution of the original data.

The AFHQ dataset comprises high-quality images of animal faces, which are divided
into three distinct classes: cats, dogs, and wildlife. This dataset provides a challenging
evaluation scenario due to the inherent differences between the classes and the detailed
textures present in the animal faces. MetFaces, on the other hand, is a collection of face
images derived from various art pieces, including paintings, photographs, and sculptures.
It showcases a diverse range of artistic styles, time periods, and image content, making it
an ideal dataset to assess the performance of our proposed metrics on more complex and
varied data distributions. By evaluating our method on both AFHQ and MetFaces, we aim
to demonstrate the adaptability and robustness of our approach across different scenarios
and data complexities.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Spectrum comparison of the element-wise mean of the Signatures S̃3 (top) and Log-
Signatures log S̃3 (bottom) of order 3 and size 64× 64 of original (‘o’ in blue) against synthetic (‘x’ in
orange) samples. (a,d): AFHQcat, (b,e): AFHQdog, (c,f): AFHQwild.

(a) (b) (c)

(d) (e) (f)

Figure 5. Spectrum comparison of the element-wise mean of the Signatures S̃3 (top) and Log-Signatures
log S̃3 (bottom) of order 3 and size 64× 64 of original (‘o’ in blue) against synthetic (‘x’ in orange) samples
from MetFaces. (a,d): Stylegan2-ADA, (b,e): r-Stylegan3-ADA, (c,f): t-Stylegan3-ADA.

In Table 4, we compare the recently developed models r, t-Stylegan3-ADA [43] against
Stylegan2-ADA using MetFaces. We observe that t-Stylegan3-ADA significantly outper-
forms Stylegan2-ADA and r-Stylegan3-ADA, which is consistent with the FID results
reported in [43], as shown in Table 5. Here, we can see that FID closely resembles the
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behavior of RMSE S̃3. Nonetheless, our metrics are both effective and efficient. A visual
comparison of the spectrum of the Signatures for the given dataset can be seen in Figure 5.
Computation is performed on the CPU in seconds, which is orders of magnitude faster and
requires fewer resources than FID or MS-SSIM.

Table 5. Evaluation and comparison of FID (as reported in [43]) and RMSE S̃3 on MetFaces. Lower is
better, being the best results highlighted in bold.

Model FID RMSE S̃3

Stylegan2-ADA 15.22 33,247

r-Stylegan3-ADA 15.33 34,977

t-Stylegan3-ADA 15.11 30,894

Table 4 presents the RMSE and MAE Signature and Log-Signature evaluation re-
sults for different GAN models and datasets, including AFHQ and MetFaces. The table
showcases a comparison of state-of-the-art pretrained models: Stylegan2-ADA [70], r-
Stylegan3-ADA, and t-Stylegan3-ADA [43]. The goal of this comparison is to highlight
the performance differences between these models using the proposed metrics. A close
inspection of the table reveals that the t-Stylegan3-ADA model consistently achieves the
lowest RMSE and MAE Signature and Log-Signature values across all datasets, indicating
superior performance in generating synthetic samples that closely resemble the original
distributions. This result demonstrates the effectiveness of the t-Stylegan3-ADA model in
learning the intricacies of the underlying data distributions and generating high-quality
synthetic samples. Additionally, the table illustrates the performance variations between
different categories within the AFHQ dataset, with AFHQ Cat and Wild categories hav-
ing a closer resemblance to the original distributions than AFHQ Dog. This observation
aligns with the qualitative assessment of the generated samples visualized in Figures 6
and 7, providing further evidence of the accuracy of our proposed metrics in capturing
the characteristics of the generated samples. That is, Table 4 highlights the utility of the
RMSE and MAE Signature and Log-Signature metrics in evaluating and comparing the
performance of different GAN models across various datasets. By analyzing these metrics,
we can gain insights into the quality of the generated samples and their similarity to the
original distributions, as well as assess the effectiveness of the GAN models in capturing
the essential features of the data.

Table 5 presents a comparison of the FID and RMSE S̃3 metrics on MetFaces for
three GAN models: Stylegan2-ADA, r-Stylegan3-ADA, and t-Stylegan3-ADA. The aim
of this comparison is to highlight the relationship between the two evaluation metrics
and demonstrate the efficacy of RMSE S̃3 in capturing the performance differences among
these models. As observed in the table, the FID scores and RMSE S̃3 values show a
similar trend, with t-Stylegan3-ADA achieving the best performance in both metrics. This
consistency between the two evaluation metrics suggests that RMSE S̃3 can serve as a
reliable alternative to FID in assessing GAN performance. Moreover, the lower RMSE
S̃3 values for t-Stylegan3-ADA indicate that the model generates synthetic samples that
are closer to the original distribution compared to the other two models. Notably, the
proposed RMSE S̃3 metric offers significant advantages over FID in terms of computational
efficiency and resource requirements. As mentioned in the text, the RMSE S̃3 computations
are performed on the CPU in seconds, making it substantially faster and less resource-
intensive than FID or MS-SSIM. This efficiency makes the proposed metric more suitable
for practical applications, where rapid evaluation and limited resources may be critical
factors. In summary, Table 5 demonstrates the effectiveness of the RMSE S̃3 metric as
an alternative to FID for evaluating GAN performance. The strong correlation between
the two metrics, coupled with the computational advantages of RMSE S̃3, showcases its
potential as a valuable tool for assessing the quality of synthetic samples generated by
various GAN models.
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(a) (b)

(c) (d)

(e) (f)
Figure 6. Visualization of PCA Adaptive t-SNE on original (left) versus synthetic (right) samples of
AFHQ Cat (a,b), Dog (c,d), and Wild (e,f) using Stylegan2-ada.
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(a)

(b) (c) (d)

Figure 7. Visualization of PCA Adaptive t-SNE on original (a) versus synthetic (bottom) samples of
MetFaces using Stylegan2-ADA (b), r-Stylegan3-ADA (c), and t-Stylegan3-ADA (d).

7.1. Computational Complexity

In this subsection, we elaborate on the computational complexity and time estimates
for the element-wise mean of the Signatures and Kruskal–Wallis in comparison to FID,
MS-SSIM, LPIPS, and PSNR.

1. Element-wise mean of the Signatures: The computation of the Signature Transform
has a time complexity ofO(LM2), where L is the length of the path and M is the order
of the signature. However, since we are computing the element-wise mean of the
Signatures, the complexity becomes O(NLM2), where N is the number of samples.
In practice, the Signature Transform can be efficiently computed using recursive
algorithms, which keeps the computational cost low.

2. Kruskal–Wallis has a time complexity of O(N log N) for sorting the samples, fol-
lowed by O(N) for computing the test statistic, resulting in an overall complexity of
O(N log N). This complexity is relatively low, especially when compared to more
computationally demanding metrics such as FID and MS-SSIM.

In comparison:

1. The FID calculation involves computing the Inception features for each sample, which
requires a forward pass through a deep neural network, followed by computing the
mean and covariance of these features. The complexity of the forward pass depends
on the architecture of the Inception network, but it is generally much higher than the
complexity of the Signature Transform and the Kruskal–Wallis. Additionally, FID
requires GPU resources to perform these calculations efficiently, further increasing its
computational cost.

2. MS-SSIM involves computing the structural similarity index at multiple scales, which
requires computing the mean, variance, and covariance for each scale. The complexity
of MS-SSIM is O(NWH), where W and H are the width and height of the images,
respectively, whereas this complexity is not as high as FID, it is still higher than the
complexities of the proposed methods.
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3. LPIPS metric computes the distance between image features extracted from a pre-
trained deep neural network (e.g., AlexNet or VGG). The complexity of LPIPS is
primarily determined by the forward pass through the chosen deep neural network.
The complexity of the forward pass depends on the architecture of the network,
but in general, it is higher than the complexity of the Signature Transform and the
Kruskal–Wallis. Similar to FID, LPIPS also typically requires GPU resources for
efficient computation.

4. PSNR is a simple and widely used metric for image quality assessment. It is computed
as the ratio between the maximum possible power of a signal and the power of
corrupting noise that affects the fidelity of its representation. The complexity of PSNR
is O(NWH), where W and H are the width and height of the images, respectively.
Although the complexity of PSNR is similar to that of MS-SSIM, it is still higher than
the complexities of the proposed methods (element-wise mean of the Signatures and
Kruskal–Wallis).

To summarize, our proposed methods (element-wise mean of the Signatures and
Kruskal–Wallis) have significantly lower computational complexity than FID, MS-SSIM,
LPIPS, and PSNR, allowing for faster computation and reduced resource usage. Based on
the complexity analysis, we can estimate that our methods can be computed on the CPU
in seconds, whereas FID, MS-SSIM, LPIPS, and PSNR require more time and resources,
particularly when GPUs are not available.

7.2. Visualization

In our study, we first apply PCA to reduce the dimensionality of the data, which helps
us to retain the global structure of the dataset. Then, we use t-SNE to visualize the data
in a lower-dimensional space, which emphasizes the local differences between samples.
This two-step approach allows us to capture both the global and local structures within
the data, providing a richer visualization of the generated GAN images compared to using
PCA alone.

In Figures 6 and 7, we visualize the sets of images of AFHQ and MetFaces, both
original and synthetic, used in the evaluations in Tables 2 and 4 using PCA Adaptive t-SNE.
The importance here is to observe the overall distribution of the samples, which is well
captured by our proposed method. For instance, we can observe that the synthetic samples
of AFHQ Cat and Wild closely resemble the original distribution in terms of variability and
quality. In contrast, AFHQ Dog demonstrates less variability but still achieves high-quality
samples, which aligns with the analytical interpretation of the proposed statistical measures
shown in Table 2.

In Figure 7, we can observe that the synthetic samples generated with t-Stylegan3-
ADA exhibit better quality than those produced by Stylegan2-ADA and r-Stylegan3-ADA,
and the model is evidently learning the original distribution. Nonetheless, there is potential
for improvement in terms of variability and scope. These observations are consistent with
the RMSE and MAE Signature and Log-Signature results, as shown in Table 4.

That being said, our proposed method relies on the Signature Transform and Log-
Signature to evaluate GAN-generated samples, which are independent of PCA and t-SNE.
The use of PCA and t-SNE in our study is only to provide a visual representation of the orig-
inal and synthetic distributions, allowing us to better understand and interpret the quality
of the generated images. The sample size and analysis time of the generated GAN images
are not affected by the application of PCA and t-SNE for visualization. Our methodology
remains efficient and effective in assessing the quality of GAN-generated samples without
the need to reduce the dimensionality of the images for the actual evaluation process.

8. Conclusions

GAN evaluation has been one of the central research efforts of the community of
computer vision during these last years. The ability of the networks to generate high-
fidelity samples has inspired researchers all over the world to work on the topic. However,
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although many variants of the original successful DCGAN architecture are able to generate
very realistic samples, neither the advance in proposing metrics to assess the imagery has
been effectual, nor the ability of the metrics to guarantee some level of robustness, and
overall description of the resultant distribution. The best effort of them being FID suffers
from high-computation time and use of GPU resources; it depends mainly on an inception
module that extracts features from lots of samples rather than from analytical measures
that quantify properly their characteristics.

We are the first to propose the use of the Signature Transform to assess GAN conver-
gence by introducing RMSE and MAE Signature and Log-Signature. The measures are
reliable, consistent, efficient, and easy to compute. Additionally, an effective methodol-
ogy to test the goodness-of-fit according to the original distribution by the use of simple
statistical methods is also proposed, being the first to be able to reduce the amount of
computation for accurate GAN Synthetic image quality assessment to the order of seconds.
Worth mentioning is the proposal of a taxonomical pipeline to systematically assess the
resultant distributions using a non-parametric test. Lastly, we also introduce an adaptive
technique based on t-SNE and PCA that, without the need for hyperparameter tuning, puts
forward exceptional visualization capabilities.

Future work that could be pursued under these assumptions, among others, is to
increase the complexity of the descriptor, extend the proposed score functions on top of the
Signature Transform to be used in other tasks or use the metrics inside the training loop to
assess convergence and help the networks train faster.

In this study, we presented a novel approach to assess GAN convergence and good-
ness of fit using the Signature Transform, whereas our methodology provides significant
advantages over existing methods, we acknowledge the following limitations:

1. The proposed RMSE and MAE Signature and Log-Signature metrics are based on the
Signature Transform, which inherently captures information about the underlying
distribution. However, these metrics may not be sensitive to certain aspects of the
generated images, such as fine-grained details or specific structures, which could be
essential for certain applications.

2. Although our proposed method significantly reduces computation time and resource
usage compared to existing GAN evaluation methods, it might still be computationally
expensive for extremely large datasets or high-resolution images. Further optimization
of the computation process may be necessary to address these challenges.

3. The evaluation of GAN performance based on our proposed metrics assumes that
the original and synthetic image distributions are stationary. In cases where the
data exhibit non-stationary behavior, the effectiveness of our approach might be
compromised, and additional methods or adaptations may be required.

4. The goodness-of-fit methodology proposed in this study relies on statistical meth-
ods, which might not always provide definitive conclusions on the quality of the
generated samples. In some cases, additional qualitative assessments or domain-
specific evaluations may be necessary to obtain a comprehensive understanding of
the GAN’s performance.

In conclusion, despite these limitations, our study introduces a promising and efficient
approach to assess GAN convergence and goodness of fit using the Signature Transform.
Future work may involve addressing these limitations and further exploring the potential
of our proposed metrics in other applications and tasks.
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