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Counting Minimal Triples for a Generalized Markoff Equation

A. Srinivasan and L. A. Calvo

ICADE, Universidad Pontificia de Comillas, Madrid, Spain

ABSTRACT
If the generalized Markoff equation a2 + b2 + c2 = 3abc + m has a solution triple, then it has infinitely many
solutions. For a positive integer m > 1, we show that all positive solution triples are generated by a finite set
of triples that we call minimal triples. We exhibit a correspondence between the set of minimal triples with the
first or second element equal to a, and the set of fundamental solutions of m − a2 by the form x2 − 3axy + y2.
This gives us a formula for the number of minimal triples in terms of fundamental solutions, and thus a way
to calculate minimal triples using composition and reduction of binary quadratic forms, for which there are
efficient algorithms. Additionally, using the above correspondence we also give a criterion for the existence
of minimal triples of the form (1, b, c), and present a formula for the number of such minimal triples.
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1. Introduction

A Markoff triple is a solution (a, b, c) of positive integers of the equation

a2 + b2 + c2 = 3abc. (1)

These triples made their first appearance in the work of Markoff [7] on the minima of quadratic forms. Since then this remarkable
equation has been studied in a variety of ways. In this work, we consider the generalized equation

a2 + b2 + c2 = 3abc + m, (2)

where m > 1 is a positive integer. Mordell [9] analyzed the general equation x2 + y2 + z2 = axyz + b by considering solution triples
of three types and outlining ways to find them. However, he does not give a method to find all solution triples. Equation (2) has been
studied in works such as [1, 2, 4]. These authors, among other things, were interested in values of m for which there are no solutions
(Hasse failures). The objective of our study is to provide a method for enumerating all solutions. We achieve this via a special set of
positive solution triples of (2), that we call minimal triples. A minimal triple (a, b, c) is defined as a positive ordered solution triple
for which 3ab − c ≤ 0. These triples generate all positive solution triples of (2) that we call m-Markoff triples. Moreover, they satisfy
the condition that a2 + b2 ≤ m, which allows us to find them explicitly. Observe that this condition implies that for m = 1, there are
no positive solution triples of equation (2).

Markoff exhibited a tree containing all solution triples of equation (1). It is not so well known that this is also the case for equation
(2). In contrast to the Markoff equation, in this case, there could be more than one tree of solution triples. Each m-Markoff triple is
found on a tree of solutions. Furthermore, each minimal triple generates a distinct tree of solution triples, enabling us to count the
number of trees as given in the following theorem.

Theorem 1.1. Every positive solution triple of (2) is contained in a unique tree. Furthermore, the number of solution trees is equal to the
number of minimal triples.

Minimal triples are connected in a very natural way to fundamental solutions of representations by binary quadratic forms as
follows. Let

F(x, y) = x2 − 3axy + y2

be a binary quadratic form of discriminant d = 9a2 − 4. We may re-write equation (2) as b2 − 3abc + c2 = m − a2, that is,
F(b, c) = m − a2. Therefore every solution triple (a, b, c) of (2) gives rise to a representation of m − a2 by the form F(x, y). For a
given a, all representations (x, y) such that F(x, y) = m − a2 may be put into equivalence classes, where in each class there is a unique
representation called the fundamental solution (see Theorem 3.1). Now, if (a, b, c) is minimal, then it is associated with a unique
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2 A. SRINIVASAN AND L. A. CALVO

fundamental solution (see (13)). This sets up a correspondence between minimal triples (a, b, c) (with a fixed) and fundamental
solutions of F(x, y) = m − a2, which allows us to find and count these triples efficiently (as there are fast reduction algorithms to find
fundamental solutions). To understand better the correspondence mentioned above, we define the set

Ta = {(a, b, c) : (a, b, c) or (b, a, c) is a minimal triple}. (3)

Note that the cardinality of Ta is the number of minimal triples that have a as the first or second component. In Theorem 1.2 below, we
present a formula that connects the number of fundamental solutions to the number of minimal triples and the number of improper
minimal triples (triples with equal first and second components).

Theorem 1.2. Let m > 1 and 0 < a <
√

m. Suppose that Sa is the set of all fundamental solutions of F(x, y) = m − a2. Then Sa and
Ta have the same cardinality. Moreover∑

a<
√

m

#Sa = 2#{minimal triples} − #{improper minimal triples} .

Remark 1.1. The proof of the above theorem is achieved by defining a bijective mapping between the sets Ta and Sa (see (13)).
Thus, to find the set of minimal triples, we find all fundamental solutions of m − a2 by F(x, y) (for each a <

√
m). This involves the

composition and reduction of binary quadratic forms, for which we have efficient algorithms. Moreover, it is conjectured that for a
given m, the number of minimal triples is �ε mε [2, Conjecture 10.1]. This means that we look for solutions only for a small number
of a′s. For example, for m = 480492, there are only 4 minimal triples, that we are able to find in a few seconds using Theorem 1.2 (a
brute force search would take much longer).

If the integer m − a2 is represented by some form of discriminant d, then we can determine the total number of fundamental
solutions by all forms that represent m − a2 (this depends on the number of prime divisors of m − a2). Only those fundamental
solutions that correspond to representations by F(x, y) will give rise to minimal triples (a, b, c). In the case when a = 1 (or d = 5),
all fundamental solutions correspond to F(x, y) as there is only one form in the class group of Q(

√
5). Also, the set T1 contains all

minimal triples which contain 1 as the first or second component. It follows that the number of minimal triples (1, x, y) is equal to the
cardinality of T1, and hence of S1 by Theorem 1.2. As a result, in the following theorem, we are able to give a formula for the number
of minimal triples of the kind (1, b, c).

Theorem 1.3. Let m > 1. Let w(N) denote the number of distinct primes in N and let (N
5 ) represent the Legendre symbol. Then the

following hold.

1. There exists an m-Markoff triple (1, b, c) if and only if m − 1 = S2C, where C is square-free such that if p is prime and p|C then
(

p
5 ) �= −1.

2. Suppose that there exists an m-Markoff triple (1, b, c). Let m − 1 = 52αA2B2C, where α ≥ 0 and C satisfies the conditions given in
1. Furthermore, assume that if p is prime with p|B, then (

p
5 ) = 1 and if p|A, then (

p
5 ) = −1. Then the number of minimal triples

(1, b, c) is equal to
∑
d|B

2w
(

B2C
d2

)
+l−1, where l = (C

5 ).

One may pose several interesting questions about minimal triples, such as whether there are infinitely many m’s with exactly one
minimal triple. This is the subject of Section 5 where we make several conjectures on minimal triples of the kind (1, b, c).

The outline of the paper is as follows. In Section 2 we present results on minimal triples and associated trees. Section 3 contains the
theory of binary quadratic forms and fundamental solutions. In Section 4 we present the proofs of the main theorems. In Section 5
we pose some conjectures and questions, and in the last section we present computations that support our conjectures.

2. Minimal triples and trees

Henceforth m will denote a positive integer greater than 1. An m-Markoff triple is a solution (a, b, c) of positive integers satisfying

x2 + y2 + z2 = 3xyz + m.

It is proper if a, b, c are distinct and improper if it is not proper. A triple (a, b, c) is ordered if a ≤ b ≤ c. As in the case of Markoff
triples, each solution triple (a, b, c) of (2) has three neighboring triples, obtained by applying the Vieta involutions given below.

Definition 2.1. Let (a, b, c) be a solution triple for (2). The Vieta involutions V1,V2,V3 of (a, b, c) are also solution triples:

V1(a, b, c) = (3bc − a, b, c),
V2(a, b, c) = (a, 3ac − b, c),
V3(a, b, c) = (a, b, 3ab − c).
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In the lemma below we give a property that is true for the usual ordered Markoff triples. The proof in [5, Lemma 2.1] of this
property essentially works for our generalized equation. However, as there are some minor differences in the proof, we present it
here, especially since while the property is not new, it applies to a new equation.

Lemma 2.1. If (a, b, c) is an ordered m-Markoff triple, then 3ab < b + c.

Proof. Let us first consider the case when a = b = c. We have in this case 3a2 = 3a3 + m, which gives a = 1, which is not possible,
as (1, 1, 1) is not an m-Markoff triple when m > 0.

Next, let us assume that a < b = c. Then from equation (2) we have a2 + 2c2 = 3ac2 + m, which means 3ac2 < 3c2 (as a < c). It
follows that a = 0, which is not possible.

Therefore we have b < c and from (2) we have 3abc < 3c2, and hence a2 ≤ ab < c. It follows that a2 + b2 < c + b2 and hence
a2+b2

c < 1 + b2

c < 1 + b (as b < c) and we have

a2 + b2

c
< b + 1. (4)

Now, from (2) and (4) above, we have

3ab <
a2 + b2

c
+ c < b + c + 1 (5)

and hence

3ab ≤ b + c. (6)

To conclude the proof we will show that 3ab = b + c is not possible. Let us suppose on the contrary, that for an ordered triple (a, b, c)
we have 3ab = b + c. It follows that V3(a, b, c) = (a, b, b) is an ordered triple and on applying (6) to this triple, we obtain 3ab ≤ 2b,
which is not possible. Hence the inequality of the lemma holds.

Definition 2.2. An m-Markoff triple (a, b, c) is minimal if a ≤ b ≤ c and

3ab − c ≤ 0.

Recall that improper triples are those for which all three components are not distinct. These triples when ordered are minimal as
seen in the following result.

Proposition 2.1. Let (a, b, c) be an ordered improper m-Markoff triple. Then a = b and (a, a, c) is minimal.

Proof. Let (a, b, c) be an ordered m-Markoff triple that is improper, that is, its three components are not distinct. If b = c, then the
inequality 3ab < b + c from Lemma 2.1 yields 3a < 2, which is not possible. Hence we may assume that a = b < c, so that by (2) we
have 2a2 + c2 = 3a2c + m or

2a2 − m = c(3a2 − c). (7)

If 2a2 − m > 0, then c|2a2 − m and hence c ≤ 2a2 − m < 2a2. From Lemma 2.1, we have 3a2 < a + c. Combining the last two
equations, we have 3a2 < a + 2a2, a contradiction. Hence 2a2 − m ≤ 0, and we have 3a2 − c ≤ 0 from (7). It follows that (a, a, c) is
minimal by definition.

In the following lemma, we collect some bounds for minimal triples.

Lemma 2.2. Let (a, b, c) be an ordered m-Markoff triple. Then the following hold.

1. (a, b, c) is minimal if and only if a2 + b2 ≤ m.
2. If (a, b, c) is minimal then 1 ≤ a ≤

√
m
2 .

3. If (a, b, c) is minimal then c >
√

m and if c �= 3ab, then c < m.
4. If (a, b, c) is minimal then 3ab ≤ c ≤ 3ab + √

m − a2 − b2.

Proof. 1. Recall that by definition (a, b, c) is minimal if and only if c − 3ab ≥ 0. Hence the first statement is a consequence of
re-writing (2) as

a2 + b2 + c(c − 3ab) = m. (8)

2. If (a, b, c) is minimal, by part 1 proved above, we have a2 + b2 ≤ m. Since (a, b, c) is ordered, we have 1 ≤ a ≤ b, so 2a2 ≤ m,
giving a ≤

√
m
2 .
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3. For any two natural numbers n1, n2 it is true that

n2
1 + n2

2 < 9n2
1n2

2.

Taking n1 = a, n2 = b and assuming that 3ab ≤ c (as (a, b, c) is minimal) we have

a2 + b2 < 3abc.

Thus, since a2 + b2 − 3abc < 0, we have

c >
√

c2 + (a2 + b2 − 3abc) = √
m.

Finally, if (a, b, c) is minimal, with c �= 3ab, then c − 3ab > 0 and from (8) we obtain c ≤ c(c − 3ab) < m.
4. If (a, b, c) is minimal, then 3ab ≤ c and so 0 ≤ c − 3ab < c. Therefore c − 3ab ≤ √

c(c − 3ab) = √
m − a2 − b2.

Remark 2.1. Note that the above lemma allows us to compute all minimal triples, for a given m > 0. Indeed, by statements 1 and 2,
we obtain the bounds 1 ≤ a ≤

√
m
2 and a ≤ b ≤ √

m − a2. On the other hand, c is also bounded according to 4. Now we can iterate
through all the triples within the bounds, checking if they satisfy equation (2). However, it should be noted that for large values of m
this brute force algorithm is inefficient. Theorem 1.2 gives us another way to compute minimal triples using fundamental solutions,
which involves reduction algorithms of binary quadratic forms which are typically more efficient.

Remark 2.2. There are natural numbers m for which there are no m-Markoff triples (and hence no minimal triples). Looking at
equation (2) modulo 4, it is easy to see that if m ≡ 3 (mod 4), then (2) has no solutions. Indeed, there are infinitely many such m as
shown in [1] and [2]. On the other hand, in the case when m is a sum of two nonzero squares, the set of minimal triples is non-empty.
This is because each representation of m as a sum of two nonzero squares, say m = a2+b2, corresponds to a minimal triple (a, b, 3ab).

The following lemma is crucial to prove Theorem 1.2, as it is used to set up a correspondence between a set of minimal triples and
a set of fundamental solutions.

Lemma 2.3. Let (a, b, c) be an m-Markoff triple such that either (a, b, c) or (b, a, c) is minimal. Then one of b or c − 3ab is less than or
equal to

√
m−a2
3a+2 .

Proof. By definition of minimality, we have 3ab ≤ c. If 3ab − c = 0, then we are done and hence we assume that c − 3ab > 0.
Suppose that both b and c − 3ab are greater than

√
m−a2
3a+2 . Re-writing (2) as b2 + c(c − 3ab) = m − a2, we have

m − a2

3a + 2
+ c

√
m − a2

3a + 2
< m − a2

or

c

√
m − a2

3a + 2
<

3a + 1
3a + 2

(m − a2),

which gives

c <
(3a + 1)

√
m − a2

√
3a + 2

. (9)

Now

c − 3ab < c − 3a

√
m − a2

3a + 2
<

√
m − a2

3a + 2
(using inequality (9)), which contradicts our assumption and hence the result follows.

We now look at solution trees generated by minimal triples. Each minimal triple is a root of a tree that we call an m-Markoff tree.
The tree of solutions with root (a, b, c) is constructed as follows: a node representing an m-Markoff triple (x, y, z), gives rise to the two
neighboring triples, (x, z, 3xz − y) and (y, z, 3zy − x). As a particular example, in Figure 1, we display the beginning of the 5-Markoff
triple with root (1, 2, 6).

It should be noted that when the root is an improper minimal triple, then the two neighbors of the root above are the same, and
hence we have two identical branches of the tree emanating from this root.

Example 2.1. In the case m = 5, there is only one root and hence only one tree of solutions. For m = 4, there are no solutions and
for m = 12, there are two roots (1, 5, 14) and (1, 2, 7), and thus two different solution trees.
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Figure 1. Beginning of the 5-Markoff tree with root (1, 2, 6).

3. Binary quadratic forms and fundamental solutions

In this section, we present the basic theory of binary quadratic forms. An excellent reference for this topic is [10], where in particular,
the reader may consult Chapter 6, Sections 4–7 for the material presented here.

3.1. Binary quadratic forms

A primitive binary quadratic form f = (a, b, c) of discriminant d is a function f (x, y) = ax2 + bxy + cy2, where a, b, c are integers
with b2 − 4ac = d and gcd(a, b, c) = 1. Note that the discriminant d is always 0 or 1 mod 4. All forms considered here are primitive
binary quadratic forms and henceforth we shall refer to them simply as forms.

Two forms f and f ′ are said to be equivalent, written as f ∼ f ′, if for some A =
(

α β

γ δ

)
∈ SL2(Z) (called a transformation

matrix), we have f ′(x, y) = f (αx + βy, γ x + δy) = (a′, b′, c′), where a′, b′, c′ are given by
a′ = f (α, γ ), b′ = 2(aαβ + cγ δ) + b(αδ + βγ ), c′ = f (β , δ). (10)

It is easy to see that ∼ is an equivalence relation on the set of forms of discriminant d. The equivalence classes form an abelian group
called the class group with group law given by composition of forms.

The identity form is defined as the form (1, 0, −d
4 ) or (1, 1, 1−d

4 ), depending on whether d is even or odd respectively. The inverse
of f = (a, b, c) denoted by f −1, is given by (a, −b, c). A form f is said to represent an integer m if there exist integers x and y such
that f (x, y) = m. If gcd(x, y) = 1, we call the representation a primitive one. Observe that equivalent forms primitively represent the
same set of integers, as do a form and its inverse. Observe that the identity form represents the integer 1. Moreover, any form that
represents 1 is equivalent to the identity form.

The following lemma tells us when an integer is represented by a form of a given discriminant.

Lemma 3.1. [10, Solution of Problem 1] Let d ≡ 0 or 1 mod 4. Then there exists a primitive representation of an integer N by a form
of discriminant d if and only if d ≡ x2 (mod 4N) for some integer x.

3.2. Fundamental solutions

It is well known that all representations of an integer N by a given binary quadratic form may be put into equivalence classes. In this
section we consider representations of m − a2 by the form x2 − 3axy + y2, namely,

F(x, y) = x2 − 3axy + y2 = m − a2, (11)
where the form in question is of discriminant d = 9a2 − 4, for 0 < a <

√
m. In each equivalence class there is a unique fundamental

solution (u, v) with least non-negative value of v. The following result from [8, Theorem 4.1] (modified to fit our case) gives us the
fundamental solutions of (11), where we have used the fact that the fundamental solution of the Pell equation x2 − dy2 = 4 is
(x, y) = (3a, 1).
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Theorem 3.1. [8, Theorem 4.1] Let m > 1 and a <
√

m be positive integers. Let V = √
(m − a2)/(3a + 2) and U =√

(m − a2)(3a + 2). Then a solution (u, v) with v ≥ 0 of (11) is a fundamental solution if and only if one of the following holds:

1. 0 < v < V.
2. v = 0 and u = √

m − a2.
3. v = V and u = (U + 3aV)/2.

Corollary 3.1. Let m > 1 and a <
√

m. Let V = √
(m − a2)/(3a + 2) and U = √

(m − a2)(3a + 2). Let (a, b, c) be an m-Markoff
triple such that either (a, b, c) or (b, a, c) is minimal. Suppose that either b = V or c − 3ab = V. Then c = 3ab + b and (c, b) is a
fundamental solution for (11) with N = m − a2.

Proof. Let us first assume that b = V . Then

b2 = m − a2

3a + 2
= b2 + c2 − 3abc

3a + 2

giving

b2(3a + 1) = c2 − 3abc

or

3ab2 + b2 = c2 − 3abc.

It follows that

c2 − b2 = 3ab(b + c)

and hence

c = 3ab + b. (12)

As b = V , from Theorem 3.1, part 3), to conclude the proof we will show that c = U+3aV
2 . We have U = b(3a + 2) (follows from

V = b) and hence U+3aV
2 = b(3a+2)+3ab

2 = 3ab + b = c (from (12)).
The case when c − 3ab = V follows on applying the above proof to the minimal triple (a, c − 3ab, 3a(c − 3ab) + b).

The following lemma is well known and the result is classical. However as a clear reference seems to be lacking, we provide a proof.

Lemma 3.2. Suppose that a = 1. Let N > 1 be a positive integer and let w(N) denote the number of distinct prime divisors of N. Suppose
that N = AB2, where A is square-free. Then there exists a primitive representation F(x, y) = N if and only if 5 � B and (

p
5 ) �= −1 for

every p|N. Furthermore, the number of fundamental solutions is equal to 2w(N) if N �≡ 0 (mod 5) and equal to 2w(N)−1 if 5|N.

Proof. We start with the observation that F(x, y) = x2 − 3xy + y2 is the only form in the class group here (as the class number
of Q(

√
5) is 1). Therefore all fundamental solutions of N correspond to F(x, y). Next, by Lemma 3.1 we have that F(x, y) = N is a

primitive representation if and only if 5 ≡ l2 (mod 4N) for some integer l (which means that N is odd). It follows that there exists a
primitive representation F(x, y) = N if and only if (

p
5 ) �= −1 for every p|N (note that since N is odd, so is p, and thus (

p
5 ) = ( 5

p ) by
the quadratic reciprocity theorem). Moreover, 25 � N as 5 ≡ l2 (mod 25) has no solutions, and thus 5 � B. It is well known that every
fundamental solution F(x, y) = N corresponds to a solution d ≡ X2 (mod 4N), where 1 ≤ X ≤ 2N and vice-versa (see for example,
[10, Solutions of Problem 2, 3, Problems 4, 5, pp. 120–121] and [8, (1.1)–(1.4)]). Therefore the number of fundamental solutions is
equal to the number of solutions of this congruence. It follows from elementary number theory [3, Theorem 122] that the number of
solutions of this congruence is as stated in the lemma.

4. Proofs of the main theorems

Proof of Theorem 1.1 We start with the observation that if (a, b, c) is an ordered m-Markoff triple, then V3(a, b, c) = (a, b, 3ab − c)
has maximal element b (by Lemma 2.1). Continuing in this way (as long as all components of the triple are positive), ordering the
triples each time and applying the Vieta involution V3, we will arrive at a triple (a0, b0, c0) such that c0 ≤ 0. It follows that the triple
V3(a0, b0, c0) is minimal and hence the given triple is on the tree with this triple as root. To complete our proof, we observe that an
m-Markoff triple cannot belong to two different trees by the reasoning above, as each tree has a unique root. �
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Proof of Theorem 1.2
Let 0 < a <

√
m be a fixed integer. Note that Ta(defined in (3)) contains all the minimal triples that contain a as the first or

second component, reordering the triple in the latter case, so as to have the first component as a. We will show there is a one-to-one
correspondence between Ta and Sa, the set of all fundamental solutions of F(x, y) = m − a2.

We first define a map G from Ta to Sa as follows. Let (a, b, c) ∈ Ta and let U, V be as given in Theorem 3.1. Then

G(a, b, c) =

⎧⎪⎨
⎪⎩

(c, b) if b ≤ V
(−b, c − 3ab) if b > V , c − 3ab > 0
(b, 0) if c − 3ab = 0.

(13)

Observe that G is well-defined, as if b ≤ V then from Theorem 3.1 and Corollary 3.1 we have that (c, b) is a fundamental solution
for N = m − a2.

If b > V , then by Lemma 2.3 we have c − 3ab ≤ V . If c − 3ab = 0, then F(b, 0) = m − a2 with b = √
m − a2 and so by

Theorem 3.1, part 2 we have (b, 0) is a fundamental solution. Assume now that 0 < c − 3ab. Note that c − 3ab = V is not possible
as then c − 3ab = b by Corollary 3.1 (and b > V). Thus 0 < c − 3ab < V and so by Theorem 3.1 the solution (−b, c − 3ab) is
fundamental.

We proceed now to show that G is surjective. Suppose that (c, b) is a fundamental solution. If b = 0, then c > 0 (by Theorem 3.1
part 2). Moreover, m = a2 + c2 and G(a, c, 3ac) = (c, 0).

Next assume that c > 0 (with b > 0). From Theorem 3.1 parts 1 and 3, it follows that b ≤ V , that is b2 ≤ (m − a2)/(3a + 2), and
hence a2 + (3a + 2)b2 ≤ m. Since F(c, b) = m − a2, we have c2 − 3abc = m − a2 − b2, which means 3ab < c (as a2 + b2 < m).
Therefore (a, b, c) is minimal and by the definition of G, as b ≤ V , we have G(a, b, c) = (c, b).

In the case when c < 0, note that (a, −c, b − 3ac) is in Ta by definition of minimality. Also from Theorem 3.1 part 3 we see that
b �= V (as b = V implies that u = c but u > 0) and therefore b < V . It follows that −c > V . Indeed assume that c2 ≤ V2. Then as
V3(a, −c, b − 3ac) = (a, −c, −b) we have F(−c, −b) = m − a2 and hence m − a2 = b2 + c2 + 3ab|c| ≤ V2 + V2 + 3aV2 and thus

m − a2 < 2
m − a2

3a + 2
+ 3a

m − a2

3a + 2

which yields m − a2 < m − a2, a contradiction. Thus we have −c > V and hence G(a, −c, b − 3ac) = (c, b).
Next, we show that G is injective. Suppose that G(a, b, c) = G(a, b′, c′). If either c = 3ab or c′ = 3a′b′, it follows from (13) that

c − 3ab = c′ − 3a′b′ = 0. Hence b = b′ which implies that c = c′. If both b and b′ are less than or equal to V , then we have
G(a, b, c) = (c, b) = G(a, b′, c′) = (c′, b′) and it follows that the two triples are the same. The case when both b and b′ are greater
than V is analogous. Now we assume that b ≤ V and b′ > V . Clearly by definition of G, the images here cannot be equal as they are
(c, b) and (−b′, c′ − 3a′b′) where c and b′ are both positive.

Thus we have shown a bijection between Sa and Ta. Observe that each minimal triple (a, b, c) gives rise to two distinct fundamental
solutions (one for m − a2 and another for m − b2), except when it is improper (a = b), and hence the formula given in the theorem
follows. �

Proof of Theorem 1.3
Suppose that (1, b, c) is an m-Markoff triple. It follows that F(b, c) = m − 1. Let gcd(b, c) = g. Then F

(
b
g , c

g

)
= m−1

g2 is a primitive
representation, and hence by Lemma 3.2, for every prime p|m−1

g2 , we have (
p
5 ) �= −1 and the result follows. Conversely let m − 1 =

S2C, where C is square-free and satisfies the condition given in the theorem. Then it follows from Lemma 3.2 again, that there is a
primitive representation of C by some form of discriminant d. As the class number of Q(

√
5) = 1, we have F(b, c) = C and hence

F(Sb, Sc) = S2C = m − 1. Thus R = (1, Sb, Sc) is a solution triple. If Sb and Sc are both positive or both negative then (1, |Sb|, |Sc|) is
an m-Markoff triple. If b or c is less than or equal to 0, then V2(R) or V3(R) respectively, is an m-Markoff triple and the proof of part
1 of the theorem is complete.

For the second part of the theorem, we assume that there exists an m-Markoff triple (1, b, c). By the remarks just above Theorem 1.3,
we have that the number of minimal triples (1, x, y) is equal to the cardinality of T1 and hence of S1. Therefore it remains to find all
fundamental representations of m − 1. It is straight forward to see by Theorem 3.1 that if F(b, c) = m − 1 is a fundamental solution
and gcd(b, c) = g, then F

(
b
g , c

g

)
= m−1

g2 is also a fundamental solution. Moreover, it is a primitive representation. Conversely,
if F(b, c) = m−1

g2 is a primitive fundamental solution, then F(gb, gc) = m − 1 is a fundamental solution. Therefore to find all
fundamental solutions of m − 1 we need to find all the primitive fundamental solutions of m−1

g2 for all possible g. Let us assume that
there is a primitive fundamental solution of m−1

g2 for some g. Given the conditions on A, no prime divisor of A divides m−1
g2 and hence

A|g. Also the highest power of 5 that can divide m−1
g2 is 1 (Lemma 3.2) and so 5α|g. Thus g = 5αAd, where d|B. We have now shown

that to count all fundamental solutions of m − 1, we need to count all the fundamental primitive solutions of B2C
d2 where d varies over

all the divisors of B. The claim now follows on the application of Lemma 3.2 to each integer B2C
d2 . �
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Figure 2. Graph of the function #O(m).

5. Questions and conjectures

We devote this section to questions and conjectures about the number of minimal triples. In Figure 2 we give the number of minimal
triples for m up to 5000. We start with a few definitions to make our statements precise. Note that if (a, b, c) is a solution of (2), then
(−a, −b, c) is also a solution. Hence we define the following transformations Si that each gives rise to solution triples.

Definition 5.1. Let (a, b, c) be a solution triple for (2). The sign transformations S1,S2,S3 are defined as follows:

S1(a, b, c) = (a, −b, −c)
S2(a, b, c) = (−a, b, −c)
S3(a, b, c) = (−a, −b, c).

If (a, b, c) is a minimal triple, then by definition we have φ = c − 3ab ≥ 0. Two of the neighboring triples (of V3(a, b, c)) give
rise to the triples S2V1V3(a, b, c) = (3bφ + a, b, φ) and S1V2V3(a, b, c) = (a, 3aφ + b, φ), which once ordered are also minimal. We
define the order of a minimal triple (a, b, c) as the number of distinct minimal triples of the three in question. To make this definition
precise, let us write o(a, b, c) for the triple that is obtained after ordering its components.

Definition 5.2. Let (a, b, c) be a minimal triple with φ = c − 3ab. Then the order is defined as

ord(a, b, c) =
{

1 if φ = 0
#{(a, b, c), o(a, 3aφ + b, φ), o(3bφ + a, b, φ)} if φ �= 0

It should be noted in the definition above, that the three triples therein form a single orbit under the actions ofS1V2V3 andS2V1V3.
It is straightforward to verify that when φ �= 0 we have

ord(a, b, c) = #{a, b, φ}.

We denote by O1(m),O2(m), and O3(m) the set of minimal triples of orders 1, 2, and 3, respectively. Let O(m) be the set of minimal
triples. Clearly

O(m) = O1(m) ∪ O2(m) ∪ O3(m).

Furthermore, #O2(m) is multiple of 2 and #O3(m) is multiple of 3. In Table 1, we present the set of minimal triples for m ≤ 50, listed
according to their orders.

One of the questions we are interested in is whether there can be exactly one minimal triple, that is O(m) = 1. Recall that this is
the case for the usual Markoff equation. We prove the following necessary condition in this case.

Proposition 5.1. If m > 1 is such that there is a unique minimal triple (a, b, c), then either c = 3ab, or, a = b and c = 3a2 + a.

Proof. As (a, b, c) is minimal, we have φ = c − 3ab ≥ 0. If φ = 0, then c = 3ab. Consider φ > 0. Note that as (a, b, c) is minimal,
the triples (φ, b, 3bφ + a) and (φ, a, 3aφ + b), once ordered, are also minimal m-triples (using Definition 2.2). As there is exactly one
minimal triple, these triples must equal (a, b, c). Since the maximum elements are 3bφ + a and 3aφ + b, it follows that φ = a = b.
Hence c − 3a2 = a and the claim follows.
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Table 1. Set of minimal triples for m ≤ 50 by order 1, 2, 3.

m O1(m) O2(m) O3(m) #O(m)

2 {(1, 1, 3)} 1
5 {(1, 2, 6)} 1
6 {(1, 1, 4)} 1
8 {(2, 2, 12)} 1

10 {(1, 3, 9)} 1
12 {(1, 1, 5), (1, 2, 7)} 2
13 {(2, 3, 18)} 1
17 {(1, 4, 12)} 1
18 {(3, 3, 27)} 1
20 {(2, 4, 24)} {(1, 1, 6), (1, 3, 10)} 3
21 {(1, 2, 8), (2, 2, 13)} 2
25 {(3, 4, 36)} 1
26 {(1, 5, 15)} 1
29 {(2, 5, 30)} 1
30 {(1, 1, 7), (1, 4, 13)} 2
32 {(4, 4, 48)} {(1, 3, 11), (2, 3, 19), (1, 2, 9)} 4
34 {(3, 5, 45)} 1
36 {(2, 2, 14)} 1
37 {(1, 6, 18)} 1
40 {(2, 6, 36)} 1
41 {(4, 5, 60)} 1
42 {(1, 1, 8), (1, 5, 16)} 2
45 {(3, 6, 54)} {(1, 2, 10), (1, 4, 14), (2, 4, 25)} 4
46 {(1, 3, 12), (3, 3, 28)} 2
50 {(1, 7, 21), (5, 5, 75)} 2

Table 2. m ≤ 405756 with φ �= 0 and #O(m) = 1.

m O(m)

6 {(1, 1, 4)}
36 {(2,2,14)}

108 {(3,3,30)}
1176 {(7,7,154)}

61236 {(27,27,2214)}
111078 {(33,33,3300)}
156066 {(37,37,4144)}
405756 {(51,51,7854)}

Remark 5.1. Observe that for a minimal triple (a, b, c) we have φ = c − 3ab = 0 if and only if m = a2 + b2 is a sum of two nonzero
squares. Every such representation of m as a sum of two nonzero squares gives rise to a minimal triple of order 1, namely (a, b, 3ab).
In Table 2 we list the first few values of m for which there is only one minimal triple and m is not a sum of two squares.

In the following proposition, we present a sufficient condition for the existence of only triples of order 3, in which case #O(m) is
divisible by 3.

Proposition 5.2. Let m be a positive integer such that 9m − 4 is prime and m is not a sum of two squares. Then O(m) = O3(m). In
particular, #O(m) is divisible by 3.

Proof. If (a, a, c) is an m-Markoff triple then it is easy to verify that

9m − 4 = (3c − 2)(3c − 9a2 + 2). (14)

If (a, a, c) is ordered, then c > 1, so that 3c − 2 > 1. Also, 3c + 2 − 9a2 is positive and clearly not equal to 1 (looking at it modulo
3). Thus 9m − 4 is not prime if there exists any triple with the first two components equal. As a result, if 9m − 4 is prime, there are
no such triples. It follows from Definition 5.2 that for minimal triples with φ �= 0, the order is 3. Moreover, as m is not a sum of two
squares, φ �= 0 and hence O(m) = O3(m) (noting the observation following Definition 5.2 of the order of a triple).

We are ready now to pose some questions and conjectures based on the above two propositions (Figure 2).
Conjecture 1 There are infinitely many natural numbers m with exactly one minimal triple. Moreover the number of such m up

to x is O
(

x
log x

)
(see Figure 3(a) and Table 3).

Conjecture 2 There are infinitely many primes m = p congruent to 1 mod 4 with exactly one minimal triple (see Figure 3(b)).
Conjecture 3 There are infinitely many natural numbers m such that #O(m) is congruent to 0 (mod 3) (see Figures 4 and 5).
Question 1 Are there infinitely many natural numbers m with exactly one minimal m triple of the kind (1, b, c)? (See Figure 6(a)

and Table 4).
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Figure 3. F(x) = number of m ≤ x such that in a) #O(m) = 1 and in (b) #O(m) = 1 with m ≡ 1 (mod 4) prime.

Table 3. m ≤ 100 with O(m) = 1.

m O(m) with φ = 0 O(m) with φ �= 0

2 {(1, 1, 3)}
5 {(1, 1, 6)}
6 {(1, 1, 4)}
8 {(2, 2, 12)}

13 {(2,3,18)}
17 {(1,4,12)}
18 {(3,3,27)}
25 {(3,4,36)}
26 {(1,5,15)}
34 {(3,5,45)}
36 {(2,2,14)}
37 {(1,6,18)}
40 {(2,6,36)}
41 {(4,5,60)}
52 {(4,6,72)}
58 {(3,7,63)}
61 {(5,6,90)}
68 {(2,8,48)}
73 {(3,8,72)}
74 {(5,7,105)}
82 {(1,9,27)}
89 {(5,8,120)}
97 {(4,9,108)}
98 {(7,7,147)}

Figure 4. Values of #O(m) ≡ 0 (mod 3) with 9m − 4 prime, m �= sum of two squares.
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Figure 5. Distribution of #O(m) mod 3, with #O(m) �= 0.

Figure 6. F(x) = number of m ≤ x such that all minimal triples are of the form (1, b, c), where in (a) #O(m) = 1 and in (b) #O(m) > 1.

Table 4. m ≤ 1000 such that all minimal triples have first component equal to 1.

m O(m)

5 {(1, 2, 6)}
6 {(1, 1, 4)}

10 {(1, 3, 9)}
12 {(1, 1, 5), (1,2,7)}
17 {(1, 4, 12)}
26 {(1,5,15)}
37 {(1,6,18)}
42 {(1,1,8), (1,5,16)}
56 {(1,1,9), (1,6,19)}
82 {(1,9,27)}

110 {(1,1,12), (1,9,28)}
156 {(1,1,14),(1,11,34)}
182 {(1,1,15), (1,12,37)}
226 {(1,15,42)}
257 {(1,16,48)}
401 {(1,20,60)}
420 {(1,1,22), (1,19,58)}
462 {(1,1,23), (1,20,61)}
506 {(1,1,24), (1,21,64)}
577 {(1,24,72)}
600 {(1,1,26), (1,23,70)}
812 {(1,1,30),(1,27,82)}
930 {(1,1,32), (1,29,88)}
992 {(1,1,33), (1,30,91)}
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Question 2 Are there infinitely many natural numbers m whose minimal triples are all of the kind (1, b, c)? (See Figure 6(b) and
Table 4).

6. Computations

In this section, we present some graphs and computations that support the conjectures given in Section 5, and that we hope will lead
to new ideas and observations.
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