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Abstract—This paper presents an in-depth study on the fea-
sibility of implementing Dynamic Line Rating (DLR) in power
distribution systems without physical field devices. The study
focuses on Iberdrola’s distribution lines, evaluating the potential
of replacing physical sensors with third-party meteorological
services for estimating essential environmental variables. The
research assesses the accuracy of data from three selected
providers (Copernicus, MeteoFlow, and Open-Meteo) against
measurements from sensors installed on six power lines. Python-
based tools were developed to normalize electrical lines, facili-
tating accurate DLR calculations.

The analysis includes statistical techniques to evaluate dis-
persion, correlation, error metrics, and uncertainty, alongside a
global and regional sensitivity analysis of meteorological variables
according to IEEE-738 and CIGRE-TB 601 standards. Sensitivity
analyses, including Delta, PWAN, and Sobol methods, were
conducted to assess the impact of these variables on DLR
calculations.

Results indicate that while meteorological data can effectively
replace temperature and solar radiation sensors, challenges
remain in accurately estimating wind speed and direction, the
most influential variables for DLR. The study concludes that
while full sensor replacement is not feasible in all scenarios,
a hybrid approach combining physical measurements with ad-
vanced meteorological modeling can enhance grid reliability and
efficiency.

Index Terms—Smart Grids, Dynamic Line Rating, Mete-
orological Services, Sensor Replacement, Sensitivity Analysis,
Uncertainty Analysis, Power Grid Reliability

I. INTRODUCTION

The electric sector is currently undergoing a significant
transformation driven by the urgent need to reduce greenhouse
gas emissions and mitigate the impacts of climate change. The
revised Renewable Energy Directive of 2023 sets a binding
target to achieve at least 42.5% renewable energy by 2030,
with an aspiration to reach 45% [4]. This transition presents
considerable challenges to traditional power grids, originally
designed for a centralized and stable supply model, where
electricity was distributed from large power plants to end users
through transmission and distribution networks.

The increasing integration of renewable energy sources,
such as wind and solar, along with the adoption of electric
vehicles and battery storage, is shifting the power generation

model from centralized to distributed (DERs). These non-
dispatchable energy sources introduce variability and uncer-
tainty in generation, complicating network planning and oper-
ation, and potentially compromising system reliability [10].
Moreover, aging infrastructure, which was not designed to
handle current and future demands, coupled with increasingly
frequent and severe extreme weather events, poses significant
challenges to grid resilience [5]. As a result, there is an urgent
need for the expansion and modernization of power grids to
meet growing demand, driven by the electrification of various
sectors and the new energy flows resulting from DERs.

To address these challenges, the adoption of smart grids
is emerging as a promising solution. Smart grids, character-
ized by digitalization and automation, enable more efficient
energy management, facilitate the integration of renewable
sources, and enhance the reliability of power supply. These
advancements allow for greater visibility and control of the
network, supporting the identification and resolution of issues,
and leading to a more efficient and secure power grid [10].

Iberdrola, one of the world’s leading power companies, is
at the forefront of this transition, managing a vast distribution
network in Spain through its subsidiary i-DE, which spans
270,000 kilometers and serves over 11 million customers
[7]. The company faces significant challenges, including the
aging infrastructure, high costs, long lead times for traditional
investments, and growing energy demand. To optimize the
use of existing resources and improve network flexibility and
efficiency, Iberdrola is exploring innovative solutions such as
the implementation of Dynamic Line Rating (DLR).

DLR is a technology that allows the real-time calculation
of the thermal capacity of power lines based on actual envi-
ronmental conditions, rather than relying on static seasonal
ratings. Preliminary results from DLR deployment projects
and studies like Beatriz Morales’ Master’s Thesis [13], have
demonstrated the potential of DLR to optimize network capac-
ity and improve efficiency. However, challenges remain, such
as the significant variability of DLR calculations over time and
the complexity of installing and maintaining field devices in
remote locations.

In response to these challenges, this study proposes to



evaluate the feasibility of replacing physical field sensors
with third-party meteorological data for DLR calculations. By
comparing data from selected meteorological services against
physical sensor measurements on six distribution lines, the
study aims to assess whether these services can provide reli-
able estimates of the environmental variables needed for DLR,
such as ambient temperature, wind speed and direction, and
solar radiation. Additionally, this work will explore sensitivity
analysis to evaluate the impact of these variables on DLR
calculations, using standards like CIGRE-TB 601 and IEEE-
738, and examine forecasting techniques to predict DLR based
on short-term weather forecasts.

II. STATE OF THE ART

A. Line Rating

Line Rating refers to the maximum electrical current that a
power line can safely transport without causing overheating of
the conductor. Traditionally, this limit was determined using
conservative and constant environmental conditions, known as
Static Line Rating (SLR). While SLR ensures safety, it often
leads to underutilization of line capacity because it does not
account for real-time variations in weather conditions. With
the advent of advanced information and communication tech-
nologies, DLR has emerged, allowing the real-time adjustment
of line capacity based on actual weather conditions, thereby
optimizing the use of the existing infrastructure [8, 9].

B. Dynamic Line Rating (DLR)

DLR dynamically determines the maximum current a power
line can carry by considering real-time weather conditions.
The calculation of DLR involves a detailed thermal model of
the conductor, taking into account factors such as wind speed,
wind direction, ambient temperature, solar radiation, and the
conductor’s material properties. These factors can be measured
directly using sensors installed along the line or estimated
using mathematical models [9, 15].

One of the primary advantages of DLR is its ability to
fully exploit line capacity under favorable weather conditions,
reducing the need for building new transmission lines and op-
timizing energy flow within the grid. Moreover, DLR enables
greater integration of renewable energy sources, which are
often variable and dependent on weather conditions. However,
challenges such as dependency on data quality, complexity
in implementation, potential network instability, and possible
premature aging of conductors must be managed [8, 15].

C. Methods and Techniques for DLR Calculation

The precise determination of a power line’s load capacity,
crucial for the implementation of DLR systems, is based on
various measurement and calculation methods that can be
classified into two main categories:

1) Direct Methods: Direct methods provide accurate mea-
surements of physical parameters of the conductor but are usu-
ally more expensive and complex to implement. These include
the use of infrared thermometers, thermocouples for temper-
ature measurement, load cells for measuring the mechanical

tension of the conductor, and optical or ultrasonic sensors for
sag and clearance measurement. While these methods offer
high precision, they require physical contact or proximity to
the conductor, which can be a limitation in certain scenarios
[15].

2) Indirect Methods: Estimate the conductor’s temperature
and other relevant parameters using mathematical models and
data analysis, without requiring direct physical measurements.
These methods are generally more flexible and can be imple-
mented over larger areas.

Thermal Models: Fundamental to the calculation of DLR, as
they simulate the heat balance of the conductor by considering
the heat generated by the current (Joule effect) and the heat
exchanged with the environment. The balance of these forces
is mathematically expressed as:

PJ + PS = Pc + Pr (1)

Where:
• PJ is the power dissipated by the Joule effect (I2 · R),

where I is the current and R is the conductor’s resistance.
• PS is the power gained from solar radiation.
• Pc is the heat loss by convection to the surrounding air.
• Pr is the heat loss by radiation.
From this equation, the maximum allowable current I for a

given conductor temperature can be calculated as:

I =

√
Pc + Pr − PS

R(Tcond)
(2)

This calculation is influenced by meteorological variables
such as ambient temperature, wind speed, wind direction, and
solar radiation, which affect the thermal balance of the con-
ductor. The IEEE-738 and CIGRE-TB 601 standards provide
detailed guidelines for these calculations, with each standard
using slightly different approaches and assumptions [8, 9].

Methods Based on Wide Area Measurement Systems
(WAMS): Utilize data from phasor measurement units (PMUs)
to estimate line impedance, which correlates with conductor
temperature. This method, particularly useful for long trans-
mission lines, enhances the accuracy of DLR calculations by
integrating real-time data from multiple sources [10].

D. Standards for DLR Calculation

The methods for calculating DLR are guided by interna-
tional standards, which provide frameworks and mathematical
models for assessing the thermal capacity of conductors.
The most widely used standards are IEEE-738 and CIGRE-
TB 601. These standards have evolved to incorporate more
sophisticated models and consider a broader range of variables,
reflecting the complex and dynamic nature of power line
operations.

Both standards perform a thermal balance of the conductor,
ensuring that the heat gained from the current and solar
radiation is equal to the heat lost through convection and
radiation. However, there are key differences between the two:



• IEEE-738: Tends to use simpler, more empirical formu-
las, focusing on practical, easy-to-apply methods for real-
time operations.

• CIGRE-TB 601: Offers a more detailed analysis, in-
corporating factors like conductor albedo and specific
wind effects, which can provide more accurate results
but require more complex calculations [1, 18].

These differences can lead to variations in the calculated
thermal limits, which are crucial for determining the DLR.
Comparative studies have shown that the CIGRE standard
often provides more conservative temperature estimates, par-
ticularly under low wind speed conditions, making it more
suitable for regions with highly variable weather conditions
[3].

E. Meteorological Estimates and Prediction Models

Accurate meteorological data is essential for reliable DLR
calculations. Meteorological models are categorized by scale:

1) Macroscale models: Cover large geographic areas and
predict broad weather patterns. Examples include the ECMWF
and GFS models, which operate on a global scale and provide
long-term forecasts.

2) Mesoscale models: Focus on smaller regions, with
higher resolution, often used to predict local weather events
such as storms or fronts. Models like HARMONIE-AROME
and WRF fall into this category.

3) Microscale models: Provide very high-resolution data,
crucial for predicting conditions in complex terrains. These
models, such as those used in CFD simulations, are essential
for refining wind predictions and are often coupled with
mesoscale models for enhanced accuracy [12].

The combination of these models allows for accurate short-
term predictions. Statistical and dynamic downscaling tech-
niques further enhance the precision of these models by
adjusting them to local conditions.

F. DLR Implementations and Use Cases

DLR technology has been implemented in various regions,
with significant benefits for grid efficiency and renewable
energy integration. Below are some notable examples:

• Slovenia (ELES, 2019): ELES, the Slovenian transmis-
sion operator, introduced the SUMO system, an indirect
DLR approach based on mesoscale weather models. This
system provided a 48-hour forecast capability, signifi-
cantly improving grid reliability during critical weather
events by preventing conductor icing and optimizing line
flows [11].

• China (State Grid, 2017): State Grid implemented a
DLR system using Monte Carlo simulation techniques
to evaluate line capacity reliability. This system reported
a 30% increase in line capacity under optimal conditions,
utilizing real-time data and high-resolution weather mod-
els, demonstrating the potential for significant operational
improvements [6].

• Norway (Statnett, 2021): Statnett, the Norwegian trans-
mission system operator, implemented a DLR system

incorporating machine learning algorithms to predict line
capacity based on real-time weather data. This system
has been crucial in managing the integration of wind
power into the grid, particularly during periods of high
variability in weather conditions [17].

These cases underscore DLR’s role as a critical tool for
enhancing grid efficiency and integrating renewable energy,
aligning with global sustainability goals.

III. METHODOLOGY

This section outlines the methodological approach taken
to assess the feasibility of implementing DLR using mete-
orological data from third-party providers, in comparison to
traditional physical sensors. The methodology covers data
collection, normalization, comparative analysis, DLR calcu-
lation, sensitivity analysis, and error propagation studies. The
developed tool for the study is depicted visually in Figure 1.

Fig. 1: Workflow of the tool developed for DLR calculation
using meteorological data and field data.

A. Data Collection and Normalization

The methodology began by gathering meteorological data
from three external services: Copernicus, MeteoFlow, and
Open-Meteo. These services were selected based on their
ability to provide essential meteorological variables, including
ambient temperature, wind speed, wind direction, and solar
radiation, across diverse geographic locations. Concurrently,
historical weather data was retrieved from sensors installed
on six distribution lines within Iberdrola’s network.



To enable a reliable comparative analysis, a normalization
process was applied to the collected data. This process in-
volved standardizing the meteorological data to ensure con-
sistency across different service providers. The weather data
was acquired through API requests at consistent time intervals,
which allowed for the comparison of real-time sensor data with
forecasted values. To address missing data points and outliers,
time filtering and interpolation techniques were applied, which
facilitated the reconstruction of temporal resolution gaps in the
datasets.

Electrical power line data was also normalized by collecting
detailed information on pylon coordinates, span sequence, and
conductor characteristics. This normalization ensured that the
meteorological data could be accurately associated with each
span of the power line for subsequent DLR calculations.

B. Comparative Analysis of Meteorological Data

The accuracy of meteorological data provided by external
services was evaluated by performing a comparative analysis
against sensor-based measurements from the selected dis-
tribution lines. The comparison employed several statistical
methods and metrics, including boxplot comparison, scatter
plots, Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Pearson correlation coefficient, to quantify the
agreement between service estimates and sensor data.

To facilitate this comparison, a resampling process was
employed to ensure consistent timestamps across the various
datasets, thereby enabling a reliable comparison of time series
data.

C. Dynamic Line Rating Calculation

DLR calculations were conducted following the standards
outlined in IEEE-738 and CIGRE-TB 601. Python-based sub-
routines were developed and integrated into a tool designed
for this purpose. These subroutines incorporated environmental
variables—such as ambient temperature, wind speed, wind di-
rection, solar radiation, and conductor constraints that directly
influence the ampacity of overhead conductors.

The tool can calculate the DLR for each span of the power
lines, considering the time conditions of each span and the
conductor characteristics used for the construction of the line.
This approach allowed for the calculation of the DLR at any
span, with any kind of weather conditions. With this tool, all
the analysis and comparisons could be done.

D. Sensitivity Analysis

To assess the impact of individual meteorological variables
on DLR calculations, a comprehensive sensitivity analysis was
conducted using both local and global methods. A Latin Hy-
percube Sampling (LHS) approach was employed to generate
100,000 samples of the input variables, ensuring a thorough
exploration of the input space [14]. The distributions used for
these variables are summarized in Table I.

Variable Dist Type Parameters
Ambient Temp Beta a=10.8, b=6.7, loc=-19.3, scale=63.7
Wind Speed Weibull shape=1.7, loc=1.32, scale=2.8
Wind Direct Uniform Range = [0, 90]
Solar Radiation Dirac + Unif Dirac at 0 + Range [0, 1000]
Altitude Uniform Range = [0, 1000]
Conductor Type Uniform Discrete: LA 175, 180, 280, 300
Conductor Temp Uniform Range = [60, 90]
Absorptivity Uniform Range = [0.5, 1]
Emissivity Uniform Range = [0.5, 1]

TABLE I: Distributions used for LHS in Sensitivity and Error
Propagation Analyses

The following techniques were utilized:
• Sobol Analysis [19]: This method decomposed the vari-

ance in the DLR results to quantify the contribution of
each input variable. Sobol indices were used to measure
the sensitivity of DLR to each meteorological variable
and their interactions.

• PAWN Analysis [16]: PAWN, a global sensitivity analysis
method, was used to evaluate the influence of each
input variable by analyzing the differences in cumulative
distribution functions (CDFs). The Kolmogorov-Smirnov
statistic was applied to quantify the distance between
conditional and unconditional CDFs, providing insight
into the distributional effects of each variable on DLR.

• Delta Analysis [2]: This non-parametric method focused
on measuring the variability in the output distribution due
to the variability in each input variable. The Delta index
provided a clear understanding of how uncertainties in
the input variables propagate through the DLR model.

These analyses highlighted the relative importance of differ-
ent variables needed for the DLR calculation with the weather
conditions approach.

E. Error Propagation and DLR Prediction Simulation

An error propagation study was conducted to quantify the
impact of uncertainties in meteorological data on DLR calcula-
tions. Similar to the sensitivity analysis, 100,000 samples were
generated using LHS to ensure extreme scenarios coverage.
Various error magnitudes were then applied independently to
each variable, simulating both positive and negative deviations
to reflect more favorable environmental conditions than actual
ones, resulting in an overestimated DLR.

Subsequently, DLR was calculated for both the base case
and the altered scenarios. The differences between the over-
estimated DLR and the base case DLR were measured, and
error values were determined for different confidence levels.

For the DLR prediction simulation, a specific example was
conducted using Open-Meteo data for the location of Device
1 on Line 2. Error margins were applied to each predicted
variable, with 50% and 95% confidence intervals calculated
to simulate the most and least favorable environmental con-
ditions. The DLR was then calculated for these scenarios,
providing a robust framework for understanding the potential
range of DLR values under varying conditions.



IV. RESULTS

A. Comparative Analysis of Meteorological Services and Line
Sensors

1) Methods and Statistical Comparisons: This subsection
details the statistical methods and metrics used to compare
data from meteorological services with line-installed sensors.
Box plots were employed to visualize the distribution of each
variable provided by the meteorological services, comparing
these with the distributions from the sensors. The correlation
between external service data and sensor measurements was
evaluated using scatter plots, distribution functions, and the
correlation coefficient, helping to quantify the similarity be-
tween the datasets.

Error metrics, including Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE), were calculated to identify
which services provided the most accurate data relative to
actual sensor measurements. Finally, the error range of each
service was determined, allowing for the calculation of the
95% confidence interval and establishing the reliability of each
service’s data.

2) Comparison between Service Estimates and Sensor Mea-
surements:

a) Data Box Plot Analysis:

Fig. 2: Ambient Temperature Box Plot for Device 1 Location
on Line 1

Fig. 3: Wind Speed Box Plot for Device 1 Location on Line
1

Fig. 4: Wind Roses for Device 1 Location on Line 1

Fig. 5: Solar Radiation Box Plot for Device 1 Location on
Line 1



b) Correlation, Scattering and Distribution Analysis:

Fig. 6: Ambient Temperature Device 1 on Line 1

Fig. 7: Wind Speed Device 1 on Line 1

Fig. 8: Wind Direction Device 1 on Line 1

Fig. 9: Solar Radiation Device 1 on Line 1



c) Error Metrics between Services and Sensors:

Fig. 10: Error Metrics for Ambient Temperature per Line and
Service

Fig. 11: Error Metrics for Wind Speed per Line and Service

Fig. 12: Error Metrics for Wind Direction per Line and Service

Fig. 13: Error Metrics for Solar Radiation per Line and Service



d) Uncertainty of Meteorological Services:

Fig. 14: Error Intervals for Ambient Temperature

Fig. 15: Error Intervals for Wind Speed

Fig. 16: Error Intervals for Wind Direction

Fig. 17: Error Intervals for Solar Radiation



B. Analysis of DLR Calculation for IEEE and CIGRE Stan-
dards

1) Sensitivity Analysis of DLR Calculation:
a) PAWN Analysis: The PAWN analysis results are

shown in Tables II and III for the CIGRE-TB 601 and
IEEE-738 standards. These tables summarize the minimum,
maximum, mean, median, and coefficient of variation (CV) of
the PAWN index for each variable.

Parameter minimum mean median maximum CV
AmbientTemp 0.017 0.099 0.084 0.235 0.660
WindSpeed 0.090 0.270 0.238 0.525 0.515
AngleOfAttack 0.030 0.118 0.113 0.277 0.592
SolarRadiation 0.010 0.028 0.023 0.059 0.547
Altitude 0.006 0.014 0.013 0.021 0.327
ConductorType 0.220 0.227 0.224 0.239 0.036
MaxTempCond 0.008 0.051 0.050 0.091 0.560
Absorptivity 0.005 0.008 0.007 0.015 0.369
Emissivity 0.007 0.019 0.020 0.036 0.453

TABLE II: Sensitivity PAWN Results for CIGRE-TB 601

Parameter minimum mean median maximum CV
AmbientTemp 0.017 0.105 0.088 0.248 0.667
WindSpeed 0.090 0.246 0.211 0.487 0.536
AngleOfAttack 0.026 0.124 0.114 0.311 0.625
SolarRadiation 0.012 0.029 0.023 0.059 0.528
Altitude 0.006 0.013 0.011 0.020 0.331
ConductorType 0.228 0.237 0.232 0.250 0.040
MaxTempCond 0.008 0.055 0.052 0.099 0.562
Absorptivity 0.005 0.009 0.008 0.017 0.407
Emissivity 0.007 0.019 0.019 0.036 0.458

TABLE III: Sensitivity PAWN Results for IEEE-738

b) Sobol Analysis: Figure 18 presents the first-order
indices from the Sobol analysis for different combinations of
ambient temperature, wind speed, and wind angle of attack.

Fig. 18: Regional Sensitivity Analysis for CIGRE-TB 601 and
IEEE738 Standards

C. Error Propagation Analysis of Meteorological Variables

The results of the error propagation analysis are summarized
in Tables IV and V, showing the impact of errors in meteoro-
logical variables on the DLR calculation for both standards.

CIGRE-TB 601 50% 90% 95% 99%
Amb Temp Err (A) (%) (A) (%) (A) (%) (A) (%)

-1 ºC 7 1.0 9 1.3 10 1.4 11 1.6
-2 ºC 15 2.0 18 2.5 19 2.7 21 3.2
-3 ºC 22 2.9 27 3.8 29 4.1 32 4.7
-4 ºC 29 3.9 36 5.0 38 5.4 42 6.2

Wind Speed Err (A) (%) (A) (%) (A) (%) (A) (%)
+0.5 m/s 31 4.3 40 5.4 42 5.6 46 6.0

+1 m/s 61 8.3 77 10.5 82 10.9 89 11.7
+3 m/s 165 22.4 207 27.9 218 28.9 236 31.0
+5 m/s 253 34.4 314 42.2 330 43.7 358 46.6

Wind Dir Err (A) (%) (A) (%) (A) (%) (A) (%)
±5º 0 0.0 24 3.9 28 4.5 34 5.1

±11º 0 0.0 51 8.1 60 9.8 73 11.2
±45º 0 0.0 160 26.0 187 31.0 228 35.8
±90º 0 0.0 212 34.6 245 40.8 298 46.7

Solar Rad Err (A) (%) (A) (%) (A) (%) (A) (%)
-100 W/m² 4 0.6 5 0.9 6 1.0 6 1.3
-300 W/m² 13 1.7 16 2.7 17 3.1 19 3.9
-500 W/m² 21 2.8 26 4.4 28 5.1 31 6.4
-800 W/m² 33 4.4 42 7.0 44 8.0 49 10.1

TABLE IV: DLR Errors for Different Cases. CIGRE-TB 601
Standard

IEEE-738 50% 90% 95% 99%
Amb Temp Err (A) (%) (A) (%) (A) (%) (A) (%)

-1 ºC 7 1.0 9 1.2 9 1.4 10 1.6
-2 ºC 14 1.9 17 2.5 18 2.7 20 3.1
-3 ºC 21 2.8 26 3.7 27 4.0 30 4.6
-4 ºC 28 3.8 34 4.9 36 5.3 40 6.1

Wind Speed Err (A) (%) (A) (%) (A) (%) (A) (%)
+0.5 m/s 23 3.2 30 4.1 32 4.3 35 4.6

+1 m/s 45 6.1 58 7.8 61 8.2 67 8.8
+3 m/s 119 16.3 151 20.3 159 21.1 173 22.6

+ 5 m/s 180 24.6 226 30.2 237 31.3 258 33.4
Wind Dir Err (A) (%) (A) (%) (A) (%) (A) (%)

±5º 0 0.0 27 4.1 32 5.3 39 6.5
±11º 0 0.0 55 8.7 67 11.2 83 13.7
±45º 0 0.0 163 26.6 195 33.4 238 40.0
±90º 0 0.0 205 33.7 244 42.0 297 50.2

Solar Rad Err (A) (%) (A) (%) (A) (%) (A) (%)
-100 W/m² 4 0.6 5 0.9 6 1.0 6 1.3
-300 W/m² 13 1.7 16 2.7 17 3.1 19 3.9
-500 W/m² 21 2.8 26 4.4 28 5.1 32 6.5
-800 W/m² 33 4.5 42 7.0 44 8.0 50 10.2

TABLE V: DLR Errors for Different Cases. IEEE-738 Stan-
dard

D. Example of Use for DLR Predictions

Considering the inherent uncertainty in meteorological es-
timates, error margins were applied to each variable to assess
their impact on conductor temperature. This approach sets
maximum and minimum environmental limits, ensuring that
the most unfavorable DLR prediction remains below the actual
DLR, enabling safe and reliable operational decisions.

Figures 19 and 20 show DLR forecasting examples using
the CIGRE-TB 601 and IEEE-738 standards, with confidence
intervals (colored areas) representing the possible DLR ranges
based on meteorological uncertainties.



Fig. 19: DLR Forecasting Example using CIGRE-TB 601

Fig. 20: DLR Forecasting Example using IEEE-738

V. DISCUSSION

The discussion focuses on the implications and challenges
identified in the comparative analysis between meteorological
services and line sensors, along with insights from sensitivity
and error propagation analyses, highlighting key factors that
influence the accuracy and reliability of DLR calculations.

A. Ambient Temperature

The comparison between sensor measurements and mete-
orological service estimates for ambient temperature, reveals
a consistent pattern where the temperatures recorded by the
devices (GE devices) are generally higher than those estimated
by meteorological services (Figure 2). This discrepancy is
particularly evident during the winter and autumn seasons,
where sensor measurements can be up to 5°C higher than the
estimates.

An underestimation of ambient temperature by meteorologi-
cal services could lead to assigning operational limits that are
less restrictive than necessary, potentially compromising the
safety of the lines by allowing for higher ampacities than the
conductors can safely handle under actual conditions.

Further analysis across different lines (Figure 6) confirms
that this discrepancy is not isolated to a single location. The
same trend is observed across various locations, suggesting
that the meteorological models used by these services may
not fully capture the microclimatic conditions present along
the distribution lines. While Open-Meteo shows slightly better
alignment with sensor data, the overall trend of underestima-
tion remains a concern (Figure 14.

B. Wind Speed

Wind speed shows an even more pronounced discrepancy
between sensor data and meteorological service estimates. As
shown in Figure 3, the wind speeds recorded by the sensors are
consistently lower than those estimated by the services, with
the most significant differences observed during periods of low
wind speed. This is further corroborated by the correlation ana
lysis (Figure 7), which reveals moderate positive correlations,
suggesting that while the services can track the general trend
of wind speed variations, they consistently overestimate the
actual values.

Wind speed plays a vital role in the cooling of overhead
conductors, and overestimation by meteorological services
could result in DLR calculations that suggest higher line
capacities than are safe. The tendency towards overestimation
observed in all lines highlights the need to carry out more
wind speed measurements with different sensors to guarantee
the veracity of the study.

C. Wind Direction

Wind direction is another variable where discrepancies
between sensor data and meteorological service estimates were
observed. As shown in the wind roses (Figure 4), the direction
measured by the sensors often differs significantly from the
estimates provided by the services. This discrepancy differs
depending on the location and season.

The orientation of wind relative to the conductor is crucial
for calculating the effective cooling due to wind. Errors in
wind direction estimates can thus lead to significant inaccura-
cies in DLR calculations. The negative correlations observed
in the scatter plots (Figure 8) further indicate that the sensors
may be oriented differently from the reference direction used
by the meteorological models, complicating the veracity of the
study.

The substantial uncertainty of wind direction estimates, as
indicated by the wide error intervals (Figure 16), underscores
that better wind models with spatial and temporal resolution
are needed.

D. Solar Radiation

The boxplot analysis (Figure 5) shows that the peaks
of solar radiation measured by the devices are consistently
higher than those estimated by the meteorological services.
This overestimation by the services, especially during periods
of high cloud cover, could lead to more conservative DLR
estimates, as seen in Figure ??.

While conservative estimates can provide an additional
safety margin, they also reduce the operational efficiency of the
power lines by underutilizing their capacity. The error metrics
(Figure 13) show that the services tend to overestimate solar
radiation during low-radiation periods, leading to higher than
necessary operational limits. The impact of these errors is most
pronounced during summer months when the discrepancy
between sensor data and service estimates is greatest.



E. Sensitivity Analysis of DLR Calculation

The PAWN analysis (Tables II and III) reveals signifi-
cant insights into the influence of various parameters on the
DLR calculations according to IEEE-738 and CIGRE-TB 601
standards. The analysis highlights that wind speed, ambient
temperature, and wind angle of attack are the most influential
factors, with wind speed showing the highest sensitivity across
different scenarios (Figure 18). Particularly under high wind
conditions, the cooling effect on the conductor significantly
increases the DLR, consistent with both standards.

Interestingly, the type of conductor, while important, ex-
hibits a relatively constant influence, as indicated by its low
coefficient of variation. This suggests that once the conductor
type is chosen, it does not lead to variations in DLR under
varying environmental conditions, making it a less critical
factor in sensitivity analysis compared to meteorological vari-
ables.

The analysis also indicates that as ambient temperature rises,
the influence of wind speed diminishes, and the maximum
conductor temperature becomes more critical. This shift em-
phasizes the need to consider temperature-related parameters
more carefully in regions or scenarios where high ambient
temperatures are expected. Solar radiation, while less influ-
ential than wind speed and ambient temperature, still plays a
role in the DLR calculations, particularly in scenarios of zero
wind speed, as reflected in Figure 18.

In comparing the two standards, the overall hierarchy of
parameter importance remains similar, but specific sensitivity
values differ slightly. The CIGRE-TB 601 standard places
greater emphasis on wind speed, whereas the IEEE-738 stan-
dard gives more weight to ambient temperature, conductor
temperature, and wind angle of attack. These differences imply
that while both standards capture the essential effects of
the variables, they do so with varying degrees of emphasis
on certain factors, which could lead to different operational
decisions depending on the standard used.

F. Error Propagation Analysis of Meteorological Variables

The error propagation analysis (Tables IV, V) provides
valuable insights into the potential risks associated with in-
accuracies in meteorological data when calculating DLR. For
ambient temperature, the analysis indicates that underestima-
tions of -4ºC can result in a maximum error of around 6.2%
for both standards, which, while significant, is less severe
than the errors associated with wind speed. This suggests that
while temperature measurements are crucial, the impact of
their inaccuracies may be more manageable compared to wind
speed.

The results show that overestimation of wind speed can lead
to significant errors in DLR, particularly under the CIGRE-
TB 601 standard, where the error margin could reach up
to 46.6% for overestimations of 5 m/s. This highlights the
importance of precise wind speed measurements and the
need for conservative safety margins when relying on wind
predictions. Additionally, the analysis shows that reducing

the error in wind speed measurements almost proportionally
reduces the error in DLR calculations.

Wind direction errors, especially at higher wind speeds,
introduce a significant challenge. The analysis indicates that
even small errors in wind direction can lead to substantial
overestimations of DLR, particularly under the IEEE standard,
where a 90º error can result in up to a 50% error in DLR
(Figure 18). For sensors with a resolution of 22º, the maximum
error committed will be around 13%. However, it is important
to note that the reduction in error for wind direction does
not proportionally reduce the DLR error, except for very low
angular errors below 22º.

Lastly, errors in solar radiation have a relatively minor im-
pact on DLR calculations, with maximum errors not exceeding
10%. This reinforces the observation that while solar radiation
is a factor, its influence is less critical compared to wind-
related parameters. The reduction of errors in solar radiation
leads to a proportional reduction in DLR error, similar to what
is observed with temperature and wind speed.

G. Example of Use for DLR Predictions

The practical example of DLR prediction demonstrates the
importance of incorporating safety margins to account for
uncertainties in meteorological forecasts. The results, shown
in Figure 19 and 20, underline that DLR values, when pre-
dicted with conservative margins, can still provide significant
operational benefits over STR, particularly during periods of
favorable weather conditions. However, the variability in pre-
dictions suggests that the reliability of DLR as an operational
tool is highly dependent on the accuracy of meteorological
data.

The analysis also shows that, despite the differences be-
tween the CIGRE and IEEE standards, the overall trends in
DLR predictions remain consistent. This consistency suggests
that either standard could be effectively used for operational
purposes, provided that the appropriate margins for error are
applied.

VI. CONCLUSIONS

This section provides a summary of the main conclusions
of this study, grouped according to the objectives, along with
recommendations and future work.

A. Evaluation of the Accuracy of Meteorological Estimates

Regarding the accuracy of meteorological estimates, the
following conclusions can be drawn:

Ambient Temperature: Meteorological services generally
provide similar temperature estimates. Open-Meteo offers the
most accurate estimates, with an error range of [-2.7, +2.6] ºC
at a 95% confidence level. In winter and autumn, services
tend to systematically underestimate ambient temperature.
Significant deviations were observed in certain locations, such
as Devices 5 and 6 on Line 1, located in a residential area
with the highest errors.



Wind Speed: Devices record maximum wind speeds of
4.5 m/s, with 50% of measurements below 1.5 m/s. This
suggests installations in low-wind areas where DLR’s contri-
bution over SLR is moderate. The difference between device
measurements and meteorological estimates results in error
intervals between 0 and 5 m/s. Despite systematic differences
in magnitude, the trends between services and sensors show
reasonable correlations (0.5 to 0.7). The Copernicus service
shows the lowest errors, with wind velocity errors ranging
from [0.14, 4.61] m/s.

Wind Direction: Meteorological services agree on the pre-
dominant wind direction, but in situ measurements reveal
deviations due to local factors like topography and obstacles.
Meteorological services, with a ±160° error range, fail to
model these local influences effectively. Open-Meteo provides
the lowest wind direction error, with an error range of ±153°.

Solar Radiation: Meteorological services underestimate
maximum radiation, especially in spring, with Open-Meteo
providing the most accurate estimates, with an error range of
[-100, +570] W/m². Radiation patterns are consistent across
locations, though with varying value ranges.

B. Impact of Variables on DLR Calculation

The variables most influential on DLR calculation are wind
speed (27%) and conductor type (23%), followed by attack
angle (12%) and ambient temperature (10%). The influence
of these variables varies with weather conditions, and while
conductor type consistently influences DLR, it is more a
parameter than a variable for optimization. Local sensitivity
analysis reveals wind speed and temperature as the most
critical factors under varying scenarios.

Error Propagation: Errors in meteorological estimates
propagate into DLR calculations. Open-Meteo’s temperature
error leads to a maximum DLR overestimation of 3.2%
(CIGRE-TB 601) and 4% (IEEE-738). Copernicus’ wind
speed error could overestimate DLR by 46.6% (CIGRE)
and 33.4% (IEEE). Wind direction errors cause significant
overestimations, especially with Open-Meteo’s ±160° error.
Improving the accuracy of these variables could reduce DLR
estimation errors proportionally.

C. DLR Prediction

An example using Open-Meteo estimates shows that trends
in DLR prediction are effectively captured, and even with
wide confidence bands, DLR still offers operational advantages
over the STR. Reducing uncertainty in the meteorological
predictions would narrow these confidence bands, potentially
improving the reliability of DLR predictions. However, it is
important to note that no definitive conclusions can be drawn
from this single example, and further studies are necessary.

D. Recommendations and Future Work

Improvement of Sensor Infrastructure: Address operational
interruptions and improve measurement accuracy, particularly
for wind direction. Conduct studies to verify current sensor
measurements and optimize sensor placement to ensure accu-
rate measurements in critical areas.

Development of a Hybrid System: Consider a cost-effective
hybrid approach that combines high-precision sensors with
meteorological data to minimize prediction errors and optimize
grid operation. This hybrid system could also detect sensor
failures early.

Microscale Model Development: Develop microscale mod-
els to improve local predictions, particularly for wind. Explore
the use of AI to enhance these models with real-time sensor
data. Assess the economic feasibility of deploying these mod-
els and additional sensors.

Improvement of DLR Calculation Accuracy: Verify and
refine DLR calculation standards using modern simulation
techniques. Apply smoothing techniques to DLR calculations
to reduce erratic fluctuations and model cable capacity more
accurately.

VII. ALIGNMENT WITH THE SUSTAINABLE
DEVELOPMENT GOALS (SDGS)

The master thesis ”Evaluating the Feasibility of Replacing
Physical Sensors with Meteorological Services for DLR in
Power Systems” represents a significant step towards smarter,
more efficient, and sustainable electrical grids. It aligns with
the United Nations’ SDGs, demonstrating how innovation can
drive the transition to a cleaner, more resilient, and equitable
energy future [20].

This work particularly supports SDG 7 (Affordable and
Clean Energy), SDG 9 (Industry, Innovation, and Infrastruc-
ture). These goals are part of a global agenda to address
critical challenges, and this thesis contributes to these efforts
by advancing DLR technology.

SDG 7: Affordable and Clean Energy [21]: DLR directly
supports this goal by optimising the capacity of existing
electrical infrastructure, enabling the more efficient integration
of renewable energy sources into the grid. By reducing the
necessity for new infrastructure construction, DLR decreases
the carbon footprint of the electrical system, contributing to a
cleaner and more sustainable energy supply. Additionally, by
improving energy flow management, DLR minimizes trans-
mission and distribution losses, leading to lower energy costs
for consumers and broader access to affordable energy.

SDG 9: Industry, Innovation, and Infrastructure [22]:
DLR fosters innovation by applying advanced solutions to the
management of electrical grids, enhancing the resilience and
capacity of distribution networks. This technology contributes
to the development of more robust and reliable infrastruc-
ture that can withstand extreme weather events and ensure
a continuous electricity supply. By maximising the use of
existing infrastructure, DLR also supports economic efficiency
and sustainable industrialisation, aligning with the goals of
sustainable industry and innovation.
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