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Abstract: The recent energy crisis has renewed interest in forecasting crude oil prices. This paper 
focuses on identifying the main drivers determining the evolution of crude oil prices and proposes 
a statistical learning forecasting algorithm based on regression analysis that can be used to generate 
future oil price scenarios. A combination of a generalized additive model with a linear transfer func-
tion with ARIMA noise is used to capture the existence of combinations of non-linear and linear 
relationships between selected input variables and the crude oil price. The results demonstrate that 
the physical market balance or fundamental is the most important metric in explaining the evolution 
of oil prices. The effect of the trading activity and volatility variables are significant under abnormal 
market conditions. We show that forecast accuracy under the proposed model supersedes bench-
mark specifications, including the futures prices and analysts’ forecasts. Four oil price scenarios are 
considered for expository purposes. 

Keywords: oil prices forecasting; Brent futures; GAM model; transfer function models;  
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1. Introduction 
Oil markets have exhibited multiple regime changes over the last two decades. This 

has created renewed interest in modeling and forecasting oil prices. Oil is a crucial factor 
in the global economy as it is not only a significant component of gross domestic product 
but also a key driver of inflation and interest rates. Therefore, the accurate forecast of oil 
prices is critical for central banks, financial analysts, energy corporations, utilities, inves-
tors, governments, and international organizations to implement policy responses to 
achieve an optimal allocation of resources. 

The time series evolution of crude oil prices has been impacted by a wide range of 
variables, including global demand and supply disruptions, macroeconomic factors, geo-
political events, as well as regulation changes designed to foster the transition to a low-
carbon economy. The interplay of different factors over the last two decades gave rise to 
four unanticipated steep oil price shocks, including the 2007–2008 Global Financial Crisis, 
the 2014 oil price collapse, the COVID pandemic, the June 2021–August 2022 energy crisis, 
and the war in Ukraine [1–3]. The persistence of underinvestment initiated during the 
2014–2016 oil price shock [4] has been enhanced by the energy transition, which is ex-
pected to restrict long-term supply and add further shocks to the behavior of energy 
prices. Indeed, the global push to phase out fossil fuels is gaining new momentum as the 
COP28 celebrated, in November 2023, advocates for a historical transition from fossil fuels 
in energy systems to achieve net zero by 2050 (see “Ten key conclusions from COP28: a 
farewell to fossil fuels”, January 2023, the Oxford Institute for Energy Studies) and avoid 
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a climate catastrophe. Such institutional developments suggest that there will be time-
changing patterns on the demand side for oil in the medium term (see F.T. article “Peak 
in fossil fuel demand will happen this decade”, by Faith Birol, 12 September 2023). 

A significant strand of the literature has developed statistical methods to establish 
the relationship between fundamentals and generate accurate energy price forecasts. 
Benchmark contributions include [5–9]. This literature concludes that an appropriate se-
lection of fundamentals can lead to price forecasts that improve the random walk and no-
change benchmarks. Vector autoregression (VAR) techniques have been extensively used 
in this literature, which has also applied the cointegration approach and the vector error 
correction model (VECM) as a forecasting algorithm for oil [10] and for agricultural com-
modities [11]. On a parallel dimension, the role of financial variables in predicting com-
modity prices gained significant momentum with the development of the financialization 
literature. Ref. [12] highlights the increased exposure to commodity futures of financial 
institutions and retail investors, empirically demonstrating the emergence of speculative 
investment flows impacting commodity futures prices [13–15]. Financial variables have 
also been used in the recent forecasting literature. Ref. [16] compiled a set of indicators to 
construct a new measure of global economic activity using a multidimensional approach 
that includes financial indicators. 

One of the benchmark sources of crude oil price forecasts is the U.S. Energy Infor-
mation Administration (EIA), which provides monthly, quarterly, and yearly forecasts for 
the crude oil price for horizons up to two years. Ref. [6] analyzes the EIA short forecasts, 
demonstrating that they do not outperform the naïve or no-change forecast. Ref. [17] an-
alyzes the performance of Bloomberg analysts’ (1-year) forecast, demonstrating that these 
underperform the forecast of future prices at the aggregate level. 

The work of [8] shows that while some fundamental-based econometric models have 
outperformed the EIA forecast for some horizons, no methodology is available in the lit-
erature performs well at all horizons for which the EIA generates predictions. This issue 
motivated them to use a combination of six different models considered in the literature, 
including the no-change forecast, oil futures prices, and VAR models of the global oil mar-
ket. They concluded that forecast combinations help to improve accuracy and that all 
models are essential in contributing to forecast accuracy except for the no change. The 
naïve forecast is vital for comparing the forecast with different horizons as it controls for 
the maturity and volatility effect [17]. 

Statistical learning models are essential for accounting for non-linear interactions be-
tween input and output variables. This paper introduces the hybrid combination of a gen-
eralized additive model (GAM) combined with a linear transfer function time series ap-
proach as an oil price forecasting tool. 

The existence of non-linear relations between price-driving factors and the price pro-
cess implies that linear models cannot fully capture the underlying functional relation-
ships. This singularity has motivated the use of machine learning approaches. Particularly 
noteworthy machine-learning applications in the crude oil forecasting literature include 
the LASSO regressions in [18]. The authors of that work show that the proposed regres-
sion LASSO method significantly improves the forecasting accuracy of prices compared 
to alternative benchmarks. 

The proposed GAM model aims to explain the occurrence of remarkable price 
changes by capturing the different states and factor dynamics that determine the evolu-
tion of the price process. In doing this, it exploits the EIA expert forecast information in 
two dimensions. First, it uses IEA fundamental forecast data to feed the fundamental var-
iable. Secondly, it uses the quarter Brent price forecast as a benchmark model for assessing 
predictive accuracy. 

By allowing for non-linear relationships, the GAM model adds flexibility to the linear 
regression framework in analyzing data related to time-changing distributions by consid-
ering different price states assigned to the corresponding data of driving factors. GAM 
models are more interpretable than fully non-linear methods such as bagging, boosting 
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support vector machines, and neural networks (deep learning). These methods are more 
flexible than the GAM algorithm because they can generate a more comprehensive range 
of possible shapes to estimate the explained variable. However, they are also less inter-
pretable than linear regressions because predictors and responses are modeled using 
black-box non-linear functions. The crude oil forecasting literature has acknowledged the 
importance of considering possible non-linearities in model settings. Ref. [19] proposes a 
combination forecasting approach that accounts for structural breaks and then applies a 
time-varying transition probability Markov regime switching (TVIP-MRS) model, show-
ing superior forecasting ability in four statistical tests. 

The motivation for using the GAM approach to forecast oil prices is threefold. First, 
the literature has not identified a decisive outperforming framework for forecasting oil 
prices. Secondly, many financial time series, such as crude oil prices, contain non-linear 
characteristics that machine-learning methods can model. Third, within the statistical 
learning methods, the GAM specification provides the best trade-off between predictive 
accuracy and interpretability [20]. 

We aim to contribute in the following areas: First, we address the non-linearities doc-
umented in the crude oil price literature pertaining to the aftermath of the Global Financial 
Crisis. We use calculation and prediction methodologies that move away from the tradi-
tionally used linear models [21–23]. Second, we provide a price forecasting algorithm that 
incorporates the complex interplay of fundamental, financial, and economic factors that 
determine the evolution of oil prices, maintaining model interpretability. The error 
measures of simulated prices under the proposed algorithm supersede competing bench-
marks, including futures prices. Outperformance with respect to the no-change and the 
futures price in terms of MAPE reductions is as high as 8% and 7%, respectively. Third, 
we develop a tool to provide oil price scenarios based on the selected input variables that 
can be used for the assessment of price risk and optimal decision making. This allows for 
exploring how much a given forecast would change relative to the baseline prediction 
under alternative hypotheses about future oil demand and supply conditions. Such a sce-
nario analysis is crucial for end-users of oil price forecasts who are interested in evaluating 
the risk underlying a given prediction. 

Our results have important implications for oil consumers, producers, and investors 
as accurate forecasts of oil prices lead to an improved allocation of resources. The reported 
findings are also relevant for regulators that use crude oil prices to set future inflation 
targets. As underlined by [24], central banks consider the price of oil as one of the instru-
mental variables in generating macroeconomic projections and determining macroeco-
nomic risk. Accurate forecasting is also important for project investment decision making. 
Increases in oil price uncertainty complicate the appropriate discount rate for estimations 
of the net present value [1]. 

This paper is organized as follows: Section 2 describes the model methodology. Sec-
tion 3 describes the data used in the forecasting exercise, including summary statistics, 
feature engineering, the GAM model approach, and preliminary statistical tests. The same 
also describes the factor selection process. Section 4 presents empirical results, including 
a sensibility analysis and forecasting results. The proposed forecasting algorithm is ap-
plied in Section 5 to generate future price scenarios. We conclude in Section 6. 

2. Methodology: Combining the Generalized Additive Model with the Linear  
Transfer Function 

Generalized additive models (GAMs) offer a general framework for extending a 
standard linear model by allowing non-linear functions of each variable while maintain-
ing additivity. They offer a natural way to extend the multiple regression model to allow 
for non-linear relationships between each explanatory variable (feature) and the explained 
variable (response variable). The smooth functions are used as a replacement for the alter-
native detailed parametric relationship on the covariates. Moreover, this methodology is 
appropriate for the monthly data required in this study due to the low-frequency 
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availability of oil fundamental data. The GAM methodology supersedes competing ma-
chine learning algorithms, such as neural networks, when large volumes of data are una-
vailable. It is also a preferred method because it allows a straightforward interpretation of 
results. This method calculates the sensibilities of the forecasted variable with respect to 
changes in input values, allowing a deeper understanding of underlying relationships 
than under competing machine learning models. 

In essence, a generalized additive model (GAM) is a generalized linear model (GLM) 
in which the linear predictor is given by a sum of smooth non-linear functions of at least 
some (or possibly all) covariates [25]). The family of smooth functions is defined as the 
basis functions. The logarithmic function and a polynomial cubic spline are good exam-
ples of this specification class. Each basis function transforms the vector of explanatory 
variables x in terms of the type of basis considered. 

The GAM can be formally expressed as follows: 

𝑦௧ = 𝛽଴ + ෍ 𝑓௜(𝑥௜,௧)௡
௜ୀଵ + 𝜀௧ (1)

where i = 1, …, n, and xi are the n independent input variables, fi is the unknown non-
parametric smooth functions of xi, and εt is a i.i.d random error. This structure captures 
the non-linear relationships while providing a flexible framework for understanding the 
(linear or non-linear impact) of every variable considered. 

We impose restrictions on the number of smooth functions allowed in the framework 
to prevent problems related to overfitting. For this reason, the specified models are usually 
fit by penalized likelihood maximization, and each penalty is multiplied by an associated 
smoothing parameter to control the balance between over- and underfitting. The MGCV 
implementation of GAM in R is applied. This module characterizes the smooth functions 
using penalized regression splines with smoothing parameters selected by the restricted 
maximum likelihood (REML).  

In order to make the reported method robust to the existence of residual autocorre-
lation and dynamic causal effects, we consider a linear transfer function (LTF) with 
ARIMA noise [26] for the variables transformed by the GAM model. 

We assume the series, yt and x1,t, …, xn,t are stationary variables. The classical multiple 
linear regression model given by 𝑦௧ = 𝑐 + 𝛽ଵ𝑥ଵ,௧ + 𝛽ଶ𝑥ଶ,௧ + ⋯ + 𝛽௡𝑥௡,௧ + 𝜀௧     (2)

which assumes that the system’s noise εt is white noise and uncorrelated with the explan-
atory variables. In order to guarantee uncorrelated residuals and no cross-correlation be-
tween the residuals and the regressors, the LTF method with ARIMA noise, introduced 
by [27], is applied. The dependent variable is modeled as a function of its past values and 
lagged values of the explanatory variables. The following specification is used for this 
purpose: 𝒚𝒕 = 𝒄 + 𝝎(𝑳)𝜹(𝑳) 𝒙𝒊,𝒕ି𝒃ᇱ + 𝒗𝒕                       (3)

𝝎(𝑳) = (𝝎𝟎 − 𝝎𝟏𝑳 − 𝝎𝟐𝑳𝟐 − ⋯ − 𝝎𝒔𝑳𝒔) (4)𝜹(𝑳) = (𝟏 − 𝜹𝟏𝑳 − 𝜹𝟐𝑳𝟐 − ⋯ − 𝝎𝒔𝑳𝒓) (5)

𝒗𝒕 = ൫𝟏 − 𝜽𝟏𝑳 − 𝜽𝟐𝑳𝟐 − ⋯ − 𝜽𝒒𝑳𝒒൯൫𝟏 − 𝝋𝟏𝑳 − 𝝋𝟐𝑳𝟐 − ⋯ − 𝝋𝒑𝑳𝒑൯(𝟏 − 𝑳)𝒅 𝜺𝒕 (6)

where yt is the dependent output variable at time t, xi,t represents the i-th independent or 
explanatory input variables, νt is an autocorrelated ARIMA(p,d,q) noise, r, s, and b are 
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constant integers, ω(L) and δ(L) are lagged polynomials, εt is white noise, and 𝑥௜,௧ᇱ = 𝑓(𝑥௜,௧) 
are the input variables transformed by the GAM model. 

3. Data and Preliminary Results 
The primary data used in this analysis have three main sources: The Energy Infor-

mation Administration (EIA), the Commodity Futures Trading Commission (CFTC), and 
Bloomberg. We have a sample of monthly observations covering the period from Jan 1995 
to December 2023. A detailed description of the initial variables considered is provided in 
Table A1. The EIA Short-Term Energy Outlook reports data series related to the funda-
mental balance in the crude oil market. It publishes monthly data on aggregate crude oil 
production, supply, and inventories. As shown below, these are used to construct the fun-
damental variable measure and provide input forecasts based on EIA data. Other funda-
mental variables that are initially considered but not selected as input variables include 
OPEC production, spare OPEC production, OECD consumption, OECD total inventory, 
China consumption, and the stocks–consumption ratio. 

The CFTC releases weekly data on investor positions used to construct the financial 
variable. Data on long and short positions of non-commercial agents and open contracts 
are obtained for the entire sample period. Other position data that were initially consid-
ered but not selected as input data are specified in Table A1. Weekly data are transformed 
into monthly averages for analysis. Front-month Brent Intercontinental Exchange (ICE) 
crude oil daily data are downloaded from Bloomberg. This is used to calculate the 
monthly average price. The log of the monthly Brent price is the target variable within the 
model. However, model forecasts (provided in logs) are transformed into level Brent spot 
data to allow a comparison with benchmark forecasting models (the forecasting literature 
usually is designed to predict the nominal spot price of Brent or WTI prices. See [6]). The 
nominal Brent spot price returns are used to construct the historical (realized) volatility 
measure. We use daily quotations of the DXY dollar index to calculate a monthly measure 
of the dollar variable. We also download daily Brent ICE futures prices for the remaining 
available maturities (2–12 months) to construct the futures price benchmark as an alterna-
tive forecast measure. 

3.1. Data Input Selection 
The final input variables are selected based on the correlation coefficient between the 

logarithm of the Brent spot crude oil price and the input variables. Table A2 describes the 
four selected variables. A detailed correlation analysis of the raw data is provided in Table 
A3 in the Appendix. In what follows, we briefly describe the variables selected for the 
model. The level of these variables is used in the forecasting algorithm. 

Note that the variable selection is closely related to specifications similar to those in 
the crude oil forecasting literature. For example, [19] uses fundamental (demand, supply, 
and stock), financial market (dollar index, exchange rate of the euro against the U.S. dollar, 
S&P500 index, speculative factor based on crude oil non-commercial long ratio), and tech-
nology indicators. These are the final variables built for the proposed model: 
(i) Balance in the physical market (FUN): 

We consider the crude oil forecasting literature and define oil-related supply and de-
mand metrics to define the fundamental variable. Ref. [8] include the percentage change 
in global oil production, the change in global crude oil inventories, and global economic 
activity, among other factors. Similar ratios as proxies of fundamentals are considered in 
[28] in their study of the bubble characteristics of non-ferrous metals. They define the con-
sumption–supply ratio (CSR) as a measure of market fundamentals. This is measured as 
the ratio of metal consumption in the quarter in question to production in the same quar-
ter plus the stock level at the end of the previous quarter. Specifically, we construct the 
ratio where the numerator is defined as the sum of aggregate OECD crude oil stocks to 
aggregate crude oil production over a 30-day period. The denominator includes the sum 
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of world oil consumption over the same 30-day period. This fundamental variable (FUN) 
is specified under Equation (7) and measures the physical market balance. We can see 
from Table A4 in the Appendix that it exhibits an inversely proportional relationship with 
Brent crude oil with a correlation equal to −0.887. 𝐹𝑢𝑛= 𝑀𝐴𝑉൫6𝑀(𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑂𝐸𝐶𝐷 𝑆𝑡𝑜𝑐𝑘𝑠)൯ + 30 ∙ 𝑀𝐴𝑉(12𝑀(𝑊𝑜𝑟𝑙𝑑 𝑆𝑢𝑝𝑝𝑙𝑦))30 ∙ 𝑀𝐴𝑉(12𝑀(𝑊𝑜𝑟𝑙𝑑 𝐷𝑒𝑚𝑎𝑛𝑑))  

(7)

(ii) Speculation in the crude oil market (FIN): 
The variable used to capture the speculative activity and investors’ sentiment con-

cerning oil prices is constructed with CFTC data. This requires the definition of the fol-
lowing input ratios. Open interest is the total amount of futures and/or option contracts 
that remain open overnight (and thus not offset by a transaction, delivery, or exercise). 
Note that all long open interest aggregates equal short open interest. Secondly, we use 
“commercial” or “non-commercial” CFTC classifications and define a “net non-commer-
cial ratio” that considers net (long minus short) “non-commercial” positions in the numer-
ator and total open interest in the denominator. The objective is to provide a metric gaug-
ing the direction of the market sentiment as “non-commercial” positions are defined as 
trades not designed for hedging purposes. The second measure is the sum of long and 
short “non-commercial” positions divided by the total open interest. This aims to provide 
the magnitude or impact of investors (or speculators) taking oil market positions. The 
proposed financial variable (denoted as FIN) is defined as the product of two ratios. Note 
that this metric is related to Working’s T-index, which has been used as a futures specu-
lation proxy by [29] in the crude oil price case by [30] for multiple commodity markets 
and [31] for food commodities. See also [28,32] for the non-ferrous and agricultural market 
cases, respectively. While the FIN variable correlates with Working’s T index, it better fits 
the proposed forecasting model and is more closely related to the speculation-related 
measures used in the crude oil forecasting literature [19]. The underlying presumption is 
that a high (low) level of speculation will encourage higher (lower) prices, as shown by a 
correlation coefficient between the FIN variable and the crude oil Brent price, which is 
reported to be 0.51 in Table A4 in the Appendix. The financial variable is therefore defined 
as follows: 𝐹𝑖𝑛 = 𝑁𝑒𝑡 𝐿𝑜𝑛𝑔 𝑁𝑜𝑛𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ∙ 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑛𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡  (8)

(iii) Realized Volatility (VOL): 
We follow [33] and use a metric of uncertainty related to the crude oil market. Spe-

cifically, the realized volatility of Brent front-month futures prices is used. Volatility is 
often related to market risks and therefore has a negative impact on the price of oil. As 
reported in Table A4 in the Appendix, the correlation coefficient of realized volatility with 
the oil price is equal to −0.21. 
(iv) U.S. Dollar (DXY): 

The U.S. dollar is the numeraire in most oil contracts quoted in U.S. dollars. We use 
the DXY index to address the effect of the U.S. dollar on the oil price. As underlined by 
[34], changes in the exchange rate can be translated into changes in oil consumption for 
oil-importing countries and non-US-based investors. The dollar index (as well as the euro-
dollar exchange rate) is considered by [19] in a recent oil forecasting exercise. Table A4 in 
the Appendix shows that the correlation coefficient of the DXY index and the log of the 
Brent price is −0.52. 

3.2. Descriptive Statistics 
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Table A2 in the appendix summarizes the series selected to construct the final varia-
bles, including data sources. Table A3 shows the correlations across the log of the Brent 
price and the main variables selected by the algorithm. The results show that the reported 
correlations between explanatory variables remain below 0.55, suggesting that the model 
will not suffer from multicollinearity problems. 

Table 1 in the main text reports descriptive statistics of the selected input variables 
and the output or forecasted variable, which is the log of the Brent spot price labeled as 
log(Brent). Estimates are based on a sample of monthly data ranging from January 1995 
to December 2023 (358 observations). We can see that the Brent spot price level exhibits 
the highest standard deviation and maximum level. 

Table 1. Summary statistics. 

Variables n Mean Median Std Skew Kurtosis Min Max 
Brent 348 58.18 56.81 32.28 0.353 −0.972 10.19 133.81 

log(Brent) 348 1.68 1.75 0.28 −0.442 −0.947 1.01 2.13 
Fun 348 2.05 2.03 0.09 0.673 −0.336 1.88 2.28 
Fin 348 0.03 0.02 0.03 0.476 −0.869 −0.03 0.11 
Vol 348 0.32 0.30 0.16 2.788 14.452 0.08 1.54 

DXY 348 92.29 92.83 10.69 0.366 −0.428 72.08 119.04 
Note: This table reports summary statistics of the Brent spot price, the log of the spot Brent price 
(log(Brent)), as well as the selected variables used in the forecasting exercise. The table shows mean, 
median, standard deviation (Std), skew, kurtosis, minimum (Min), and maximum (Max) variable 
values. 

The normality and unit root test results are reported in Table 2. The results of the 
Jarque-B test and Ljung–Box show that the null hypothesis of normality and white noise 
errors is rejected for all variables considered. This table also reports results for the aug-
mented Dicky–Fuller (ADF) [35], the Phillips–Peron (P.P.) [36], and Kwiatkowski–Phil-
lips–Schmidt–Shin (KPSS) [37] unit root tests. The reported results show that the unit root 
hypothesis is accepted for all variables except the volatility variable (Vol). This motivates 
the use of the LTF model. 

Table 2. Normality and unit root test results. 

Variables Jarque-B Ljung–Box ADF PP KPSS 
Brent 21.06 ***  338.26 *** −2.85  −2.51 1.04 *** 

log(Brent) 24.39 *** 340.21 *** −2.51 −2.22 1.38 *** 
Fun 28.42 *** 338.99 *** −3.48 ** −2.80 0.89 *** 
Fin 24.21 *** 322.99 *** −3.19 * −3.99 *** 1.04 *** 
Vol 3489.10 *** 129.37 *** −9.15 *** −9.07 *** 0.13 

DXY 10.49 *** 339.84 *** −1.77 −1.60 1.09 *** 
Note: This table provides normality and unit root test results. ***, **, and * denote rejection of the 
null hypothesis at the 1, 5, and 10 percent levels, respectively. 

The Bai and Perron test [38] for detecting multiple structural changes has also been 
performed for the logarithm of the Brent spot price as well as for the regression with the 
selected input and explained variables in differences. The results are reported in Tables 
A5 and A6, respectively. They show that the log of Brent prices exhibits five breakpoints 
along our sample period (these correspond to September 1999, October 2004, August 2010, 
and November 2014. Such points are consistent with those detected in for crude oil in the 
bubble literature [4].). When we run the regression in differences (with log Brent as ex-
plained variable and the changes in the fundamental, financial dollar, and volatility as 
input variables), the reported results do not show evidence of structural breaks. The fact 
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that structural breaks are no longer reported for the regression in differences shows that 
the input variables have been appropriately selected. 

Figure 1 illustrates the complete process of the proposed methodology to forecast oil 
prices. The starting point is the data obtained from multiple sources, such as EIA or the 
Commodity Futures Exchange Commission (CFTC). The data are then used to build four 
variables (FUN, FIN, VOL, and DXY), which are transformed through a GAM model into 
the final input variables used by the linear transfer function model. 

 
Figure 1. Process of the proposed methodology: This figure exhibits the steps required for GAM 
method development. Step 1 involves raw data extractions; step 2 requires the creation of featured 
variables; step 3 performs the transformation through a GAM model into the final variables used by 
the linear transfer function model in step 4 to create the Brent forecast. 

This analysis applies a feature engineering approach to crude oil price forecasting. 
Feature engineering is the process of using domain knowledge to obtain features (charac-
teristics, properties, and attributes) of the analyzed variables. It involves the extraction 
and transformation of variables from raw data to a more effective set of inputs so that 
these can be used for training and prediction to improve the quality of results arising from 
a machine learning process. This increases model performance as it goes beyond supply-
ing only the raw data to the machine learning process. This study combines a set of trans-
formed variables (using basis functions) to create a parsimonious model specification. The 
proposed framework allows for an improved understanding of the oil price determinants 
through four representative variables that allow the development of a simple tool de-
signed for scenario analysis. Feature engineering has been a successful method in machine 
learning models [39], and in the case of oil price forecasting, it could also be an advantage. 
The data pre-processing step (first applied under the statistical learning algorithm) adds 
different variables to create a combined metric representing some market features. 

4. Model Identification and Empirical Results 
This section describes the building process underlying the two-step method pro-

posed to model the oil price. We first analyze each time series to determine the modeling 
methodology. The variable to be forecasted is the logarithmic monthly average Brent spot 
price. 

The empirical application covers the January 1995 to June 2023 period and aims to 
forecast the monthly crude oil Brent price series as the current global crude oil price bench-
mark. The in-sample period runs up to December 2016. This selection makes the in-sample 
size comparable to the recent literature; ref. [8] uses an in-sample period ranging from 
1997:12 to 2010:6. The model is tested for the 2017–2023 out-of-sample period. Note that 
this constitutes seven years of monthly data leading to 82 observations. While this out-of-
sample window may be considered short compared to other benchmark analyses [8,40], 
recent research in the literature considering the existence of non-linearities [18] has used 
shorter out-of-sample periods. Specifically, it evaluates the out-of-sample forecast 
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performance for the 2009:M5 to 2016:M11 period. We therefore follow the recent literature 
that addresses the sources of non-linearities and use shorter out-of-sample periods in our 
forecasting exercise. The sources of recent non-linearities include the collapse of the 2014–
2016 crude oil price, the 2020 COVID-19 pandemic shock, the ongoing war in Ukraine, 
and a shift to green energy. Forecasting performance is measured in terms of MAPE val-
ues as well as the absolute ratios of MAPE with respect to the no change. The RMSE is 
also computed in the principal analysis as a means of robustness. The same out-of-sample 
period is considered for the sensitivity analysis. Possible scenarios are created for the four 
quarters of 2024. 

4.1. Preliminary Analysis 
Figure 2 illustrates the partial effects obtained with the GAM model of the trans-

formed fundamental, financial, volatility, and dollar variables on the oil price. For in-
stance, the top left-hand side (LHS) panel of Figure 2 illustrates the fundamental variable 
on the x-axis and the transformed variable on the y-axis, indicating the effect of the fun-
damental on the oil price metric. The dotted lines illustrate 5% confidence intervals. The 
model results show non-linearities in every variable considered except for the fundamen-
tal metric. This is corroborated by “EDF” reported in column 2 of Table 3, representing the 
effective degrees of freedom, which measure the degree of non-linearities within a given 
curve. Note that when the reported EDFs are equal to one, as is the case for the fundamen-
tal variable, this implies that the curve is linear. The volatility variable depicted in the 
bottom right-hand side (RHS) panel exhibits the highest level of non-linearity, followed 
by the dollar in the bottom LHS panel and the financial metric in the top RHS panel. 

 
Figure 2. Partial effects illustration under the GAM model: This figure illustrates the non-linear re-
lationship between each of the variables considered and the oil price under the GAM estimation. 
The row input variables (represented by dots on the horizontal axis) are transformed using the basis 
functions (denoted by f()). The transformed variables are introduced in the LTF model at a later 
stage. The effects of the fundamental and financial variables are illustrated under the top left-hand 
side (LHS) and right-hand side (LHS) panels. The dollar and volatility variables are depicted under 
the bottom LHS and RHS panels. Moreover, 95% confidence intervals are depicted as dotted lines. 
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Table 3. Summary of estimated coefficients under a GAM model specification. 

Approximate Significance of Smooth Terms: 
Variable: Edf Ref Edf F p-Value  

Fundamental 1.00 1.00 293.16 <2 × 10−16 *** 
Financial 3.015 3.985 17.20 7.5 × 10−13 *** 
Volatility 4.385 5.471 13.34 1.57 × 10−12 *** 

Dollar 3.713 4.900 14.34 2.11 × 10−12 *** 
Signif. Codes: 0 �***’, 0.001, �**’ 0.01, �*’ 0.05, �.’ 0.1′’        

R-sq- (adj) = 0.883  Deviance explained = 88.8%  
fREML = −637.32  Scale est. = 0.0035994  

Box–Pierce test = 294.28, df = 1, p-value < 2.2 × 10−16 
Note: This table reports estimates of the GAM model specification. EDF: reflects the degree of non-
linearity of a curve. An EDF equal to 1 is equivalent to a linear relationship. p-values represent cal-
culated p-values from Wald test (significance of each parametric and smooth term of the model). 
Signif. Codes: 0 �***’ 

In what follows, we interpret the plots in Figure 2, illustrating the partial effects for 
every explanatory variable. Note that the four signs of the function slopes are aligned with 
the correlation coefficient calculated with the oil prices, reported in Table A4. The top LHS 
panel in Figure 2 shows that the fundamental variable, which takes a low value under 
fundamental shortages, exhibits a well-fitted negative linear relationship with the oil Brent 
price, showing that excess supply market conditions lead to lower oil prices. While the 
effect of the financial variable on the oil price is almost linear, we can see that the financial 
variable presents some non-linear features. Specifically, we can see that the slope is 
slightly smoothed when the market sentiment becomes bullish so that positive investor 
bets outnumber the negative counterparts. The bottom LHS panel in Figure 2 shows a 
non-linear inverse relationship between the dollar index and oil benchmark that is signif-
icantly smoothed when the index exceeds 105. The negative influence of the dollar value 
on oil prices has been widely documented in the literature [18,41]. The relationship esti-
mated implies that Brent prices increase under low dollar conditions. A lower dollar leads 
to higher demand and higher prices as producers try to protect the dollar-adjusted value 
of their revenues. Oil becomes relatively cheap for foreign investors, and this increases 
demand. However, the results illustrated in the LHS panel of Figure 2 suggest that the 
dollar’s impact on crude oil prices is lower when the dollar is under stronger conditions. 
The results depicted in the bottom RHS panel in Figure 2 show the effect of volatility, 
which is highly significant under high-volatility regimes and negatively affects prices. Ep-
isodes of extreme volatility (such as that seen during the 2014 oil price shock) are expected 
to decrease the oil price, while the volatility effect is reduced under normal market condi-
tions. In fact, we can see that when the volatility is below 40%, it exhibits a reduced impact 
on oil prices. The existence of volatility-driven regime changes has been considered in the 
forecasting literature by the authors of [18], who document a “volatility upward regime” 
via the TVIP-MRS model and forecast the crude oil price. 

The preliminary estimation results reported in Table 3 show that the adjusted R2 and 
the deviance explained demonstrate that the model fits the data correctly. The Box–Pierce 
test suggests that there is residual autocorrelation. The details can be found in Figure A1 
in the Appendix. 

In order to correct this autocorrelation, we include a linear transfer function model 
with ARIMA noise in the second step. We estimate the LTF specification using an identi-
fication, estimation, and diagnosis procedure [42], following a similar approach to con-
structing the univariate Box–Jenkins ARIMA model [26]. The identification requires fitting 
a multiple regression model, adding as many lags of the regressors as required, and a low-
order autoregressive model for the error term to capture most of the autocorrelation and 
be able to estimate the impulse response. If regression errors are not stationary, variables 
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are differentiated. The next stage is identifying the transfer function and selecting the ap-
propriate values for b, r, and s. We can identify the orders (b, r, and s) by visually compar-
ing the estimated impulse response function with some standard theoretical functions. 
Then, the ARMA model for the regression errors must be determined to fit the complete 
model. Finally, several diagnostic tests are applied to determine the model selection 
model based on resulting cross-correlation and autocorrelation tests. 

The explanatory variables are determined using the previously estimated GAM pro-
cess. The final model identification suggests an ARIMA (1,1,0) for the residuals. The esti-
mation results are reported in Table 4. We can see that the four independent variables are 
statistically significant, and the residuals do not exhibit s serial correlation, with Box–
Pierce failing to reject that residuals are independently distributed. The partial autocorre-
lation function (PACF) and auto-correlation function (ACF) confirm the absence of a serial 
correlation (see Figure A2 in the Appendix). Note that results reported for the regression 
in differences under the Bai and Perron test [39] (see Table A6) show that we failed to reject 
the null hypothesis of no structural breaks. This confirms that the LTF model can be ap-
plied to the residuals. 

Table 4. Summary of estimated coefficients under final specification. 

Approximate Significance of Smooth Terms:  
Variable: Estimate Std Error Z Value p-Value  

ar 0.268 0.057 4.741 2.12×10-16 *** 
f(Fundamental) 0.51 0.110 4.654 <2×10-16   *** 

f(Financial) 1.125 0.106 10.622 <2.11×10-12   *** 
f(Volatility) 0.882 0.097 9.088 <7.5×10-12   *** 

f(Dollar) 0.510 0.137 3.710 <1.57×10-12   *** 
Signif. Codes: 0 �***’, 0.001, �**’ 0.01, �*’ 0.05, �.’ 0.1′’    

Box–Pierce test = 0.000040065, df = 1, p-value = 0.984 
Note: This table reports estimates of the final model specification with the coefficient of the regres-
sion calculated. Signif. Codes: 0 �***’ 

The final equation of the complete model is as follows: 𝑦௧ = 𝜔ଵ,଴𝑥ଵ,௧ᇱ + 𝜔ଶ,଴𝑥ଶ,௧ᇱ + 𝜔ଷ,଴𝑥ଷ,௧ᇱ + 𝜔ସ,଴𝑥ସ,௧ᇱ + 𝜀௧(1 − 𝜑𝐿)(1 − 𝐿) (9)

where 𝑥ଵ,௧ᇱ = 𝑓ଵ൫𝑥ଵ,௧൯ ; 𝑥ଶ,௧ᇱ = 𝑓ଶ൫𝑥ଶ,௧൯ ; 𝑥ଷ,௧ᇱ = 𝑓ଷ൫𝑥ଷ,௧൯ ; and 𝑥ସ,௧ᇱ = 𝑓ସ൫𝑥ସ,௧൯  are the variables 
transformed by the GAM model (see Figure 2) and εt is the white noise. 

Figure 3 depicts the one-month-ahead forecast of the Brent crude oil price under the 
proposed model versus the observed Brent price as well as the error defined as the differ-
ence between the estimated and observed values. A closer look at the figure shows that 
the goodness of fit is high but clearly deteriorates in times of increased uncertainty, such 
as during the 2008 crisis, the 2014 crude oil price collapse, or the 2020 COVID crisis. 
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Figure 3. Time series evolution of the Brent spot price level, the forecasted (one-step-ahead) Brent 
spot price level, and the model error: This figure illustrates the time series evolution of the observed 
price (Brent) price, the estimated Brent spot price (model), and the forecast error. The GAM model 
is estimated using the selected input values. 

4.2. Sensitivity Analysis 
The next step is to provide a sensitivity analysis, developed to show the future evo-

lution of the crude oil price, given a one standard deviation shock to some of the explan-
atory variables over a six-month horizon, keeping the remaining variables constant. The 
results are reported in Figure 4. 

 
Figure 4. Sensitivity analysis: This figure illustrates the effect of a one standard deviation shock in 
each explanatory variable on the Brent crude oil price over a 6-month horizon. The January 1995–



Energies 2024, 17, 2182 13 of 29 
 

 

December 2016 in-sample period is considered for this purpose. The sensitivity analysis is per-
formed for the first two quarters of 2017. 

We assume that variables were shocked in December 2016 and evaluated over the 
next six months. 

They show that the variable with the most significant influence on crude oil is the 
fundamental variable, which decreases the crude oil price by 20% for a given one standard 
deviation shock. The second most important variable in terms of price impact is the finan-
cial variable, which has a positive 10% effect on Brent prices for a given one standard-
deviation shock. The same shock applies to the dollar and volatility variables exert a neg-
ative impact of 5% and 2%, respectively. Our findings are consistent with the literature 
supporting supply and demand fundamentals as the main drivers of crude oil prices [7] 
[8,29,43]. The market fundamental variable is the most important factor explaining the 
time series evolution of crude oil prices, with shocks remaining important after six 
months. Speculators are informed investors and enter the market to exploit fundamental-
related trends [43]. Indeed, Table A4 in the Appendix shows that the fundamental and 
financial variables exhibit a significant negative correlation of −0.56, implying that they 
share common characteristics. When fundamentals are tight, the market has a more sig-
nificant inflow of speculative activity. 

4.3. Forecasting Results 
In what follows, we quantify the predictive performance of the proposed model spec-

ification. The analysis takes the 2017Q1 to 2023Q4 time frame for the out-of-sample test 
(21% of data). A forecast for different quarters within a window of 12 months (four quar-
ters) is made at the beginning of every quarter. Data for the last seven years of the sample 
have been used to compare model performance with four forecasting methods. This im-
plies that there are 25 quarterly forecasting periods. The average monthly forecast for each 
quarter is considered, and the mean absolute percentage error (MAPE) for each method 
considered is reported in Table 5. Note that this period represents the recovery from the 
2014–2016 price slump and the COVID-induced crude oil price collapse. As discussed in 
the introduction, crude oil prices have experienced many different price swings over the 
forecasting period. Therefore, we believe it is essential to provide an appropriate testing 
framework to account for the observed non-linearities in the data. 

We benchmark the proposed model against the no-change or spot reference price. 
This uses the last available monthly spot price observation. The no-change forecast is set 
as the spot price under the previous month of the forecast during the whole forecast pe-
riod. Next, we consider the forecasting performance of the Intercontinental Exchange 
(ICE) Brent futures prices. This price aggregates expectations for future price delivery 
across market participants. The benchmark built based on futures prices takes the average 
of the first-, second-, and third-month generic future contracts (Brent) for the first quarter 
forecast and the average of the fourth-, fifth-, and sixth-month contracts for the second 
quarter forecast. The same method is applied to forecast prices in the subsequent quarters. 
The benchmark is constructed the day before the forecast period begins, and as previously 
specified, the data source for the price of the futures prices is Bloomberg. 

As an alternative analysts’ forecast benchmark, we first use the monthly forecast of 
the Department of Energy of the U.S. (EIA or DoE) released under the Short-Term Energy 
Outlook every month. This report calculates monthly Brent price forecasts for maturities 
ranging between 1 and 12 or up to 24 months. We construct quarterly forecasts by calcu-
lating three-month averages using the last report before the start of the forecast period. 

The second benchmark source of analysts’ forecasts is the prediction provided by the 
Bloomberg survey with crude oil analyst forecasts (BBG). This offers industry experts’ 
price forecasts for different maturities. The median forecast for each quarter reported in 
this survey is taken as forecasts the day before the forecast period starts. See [15] for a 
detailed Bloomberg analysts’ forecast survey description. 
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We report forecasts for the GAMLTF with forecasted EIA fundamental inputs as well 
as from the actual input data. To measure the contribution of the GAM framework, we 
report a forecast for the LTF with no GAM. We select the mean absolute percentage error 
(MAPE) as a metric for evaluating the performance of the forecasting methods, which is 
defined as follows: 

𝑀𝐴𝑃𝐸 =  1𝑛 ෍ ฬ𝑦௧ − 𝑦෤௧𝑦௧ ฬ௡
௧ୀଵ       (10)

The choice of the MAPE metric is motivated by the high oil price variability during 
the sample period considered. Oil prices range between USD 30 and USD 140, implying 
that absolute differences in high-price states will be difficult to compare with absolute 
differences in low-price states. However, the RMSE metric is also included in the main 
forecasting analysis as a means of robustness. 

The forecasting performance of a model with exogenous variables will depend on the 
forecast accuracy of the future values of the selected regressors. For that reason, we also 
test under two explanatory variables’ predictions. In the real data model, the observed 
values of the future selected explanatory variables are used for forecasting purposes. In 
the forecast data model, every explanatory variable is forecasted. In this sense, we use 
forecasts of the fundamental and U.S. dollar variables from the EIA, available in its Short-
term Energy Outlook, providing information for world production, world demand, and 
OECD inventories. Therefore, we incorporate forward-looking information (based on EIA 
predictions) into our forecast framework. ARMA models are estimated for the financial 
and volatility variables. 

Table 5. MAPE error measures for different forecasting methods. 

  2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1 
Constant 6.19% 10.09% 24.62% 20.06% 10.14% 7.30% 10.47% 20.80% 9.96% 
Futures 9.84% 10.29% 20.53% 19.21% 9.45% 5.91% 11.75% 23.31% 14.37% 

BBG Analysts Median 6.50% 8.77% 12.08% 20.77% 19.48% 8.73% 3.96% 13.30% 9.48% 
Department of Energy EIA 5.72% 9.81% 20.50% 22.63% 16.15% 12.05% 4.66% 16.99% 5.68% 

GAMLTF Forecasted Inputs 5.78% 9.75% 18.72% 15.58% 14.05% 7.10% 8.49% 21.33% 6.41% 
GAMLTF Actual Inputs 16.11% 6.15% 8.86% 4.80% 5.78% 11.45% 3.86% 11.30% 7.72% 

LTF Actual Inputs No GAM 17.65% 6.32% 8.13% 9.07% 9.27% 22.79% 3.65% 4.13% 7.09% 
  2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 

Constant 9.83% 29.17% 34.49% 54.64% 24.77% 22.29% 30.57% 28.53% 15.94% 
Futures 10.87% 29.24% 29.81% 48.13% 20.86% 19.84% 26.89% 27.36% 22.64% 

BBG Analysts Median 16.04% 39.54% 35.67% 42.36% 10.02% 25.24% 26.14% 33.24% 23.26% 
Department of Energy EIA 7.38% 37.00% 32.62% 43.62% 32.28% 16.61% 25.21% 24.85% 20.14% 

GAMLTF Forecasted Inputs 10.39% 30.62% 42.76% 42.15% 29.97% 23.36% 10.80% 7.59% 13.10% 
GAMLTF Actual Inputs 5.86% 9.83% 16.25% 12.47% 19.46% 17.67% 12.96% 5.95% 3.79% 

LTF Actual Inputs No GAM 14.35% 63.13% 93.00% 94.80% 27.15% 27.26% 17.22% 8.85% 13.11% 
  2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1 TOTAL   

Constant 16.66% 21.17% 22.66% 20.27% 36.84% 8.48% 3.10% 19.96%   
Futures 19.15% 21.30% 23.45% 6.74% 13.33% 5.29% 4.55% 18.16%   

BBG Analysts Median 23.92% 26.33% 22.15% 5.12% 16.60% 14.79% 10.73% 18.97%   
Department of Energy EIA 19.95% 20.19% 23.10% 10.64% 13.21% 12.29% 3.86% 18.29%   

GAMLTF Forecasted Inputs 11.98% 9.50% 13.59% 32.05% 32.49% 8.98% 5.86% 17.30%   
GAMLTF Actual Inputs 11.72% 14.91% 21.22% 26.12% 20.87% 9.29% 4.12% 11.54%   

LTF Actual Inputs No GAM 8.31% 8.27% 9.96% 43.39% 42.51% 11.08% 5.30% 23.03%   
Note: This table reports the forecasting performance in terms of the MAPE measure of the proposed framework 
for forecasted and actual input data as well as alternative benchmarks, including the LTF framework with no 
GAM. The in-sample period is 1995–2016, and the out-of-sample or forecasting period is 2017–2023. Forecasting 
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is performed for the next four quarters. The following forecasting methods are considered: No-change: forecasts 
are the average price of the previous month for the whole forecast period. Futures: forecasts are the average of 
Brent first-, second-, and third-month contracts for the first quarter, fourth-, fifth-, and sixth-month contracts for 
the second quarter for the day before beginning the period of forecast. BBG: Bloomberg quarterly surveys are 
taken as forecasts the day before beginning the period of forecast. EIA: average monthly forecasts to create quar-
terly forecasts are taken from the last EIA report before beginning the period of forecast. GAMLFT with fore-
casted inputs: proposed new model fed by forecasted inputs. GAMLFT with actual inputs: proposed new model 
fed by actual inputs. LFT with actual inputs: linear function transfer model fed by forecasted inputs. 

The results reported in Table 5 show that the performance of each model varies over 
time. The average MAPE errors indicate that the best model is GAM-LTF with actual in-
puts followed by the GAM-LTF. However, a close look at the table shows that the no-
change and the futures forecasts outperform in periods of high volatility, such as 2020Q3 
and 2022Q2. Bloomberg analysts’ forecasts perform worse on average than futures prices, 
consistent with previous results reported in the literature [17]. However, it outperforms 
all the benchmarks considered during 2017Q3 and 2020Q1. Given that the best results at 
the average level are achieved when we know the variable data (GAMLTF actual inputs), 
we propose using the model for scenario analysis as the reported results suggest that it 
accurately captures the relationships between variables. This analysis is performed in Sec-
tion 5. 

Table A7 in the Appendix provides the same forecasting results under the MRSE 
measure. The reported figures are qualitatively similar to those reported in Table 5, sug-
gesting that the relative forecasting ability is not dependent on the forecast performance 
measure selected for the analysis. 

In order to provide a deeper analysis of the results we report, Table 6 provides fore-
cast accuracy in terms of the MAPE metrics for four maturities of the different models 
analyzed. The average forecast for each quarter is reported. For instance, if the forecast 
maturity is one quarter, in Q1 of 2016, the forecast for Q2 2016 is performed for each of 
the models considered and is used to calculate the average forecast for the Q2 forecast 
period. Similarly, in Q2 of 2016, the forecast for Q3 2016 is performed for each of the mod-
els considered for the reported average for the Q3 forecast. The same procedure is fol-
lowed to calculate the forecast for longer horizons. 

Table 6. MAPE for different forecasting methods and horizons. 

  
No-

Change Futures BBG 
Department 

of  
Energy EIA 

GAMLTF 
with  

Forecasted  
Inputs 

GAMLTF 
with  

Actual  
Inputs 

LTF with  
Actual  

Inputs no 
GAM 

1Q Forecast 8.1% 11.6% 10.2% 9.5% 7.7% 6.0% 8.2% 
2Q Forecast 19.8% 21.3% 18.2% 19.5% 17.7% 11.0% 23.1% 
3Q Forecast 24.8% 25.0% 22.6% 22.2% 21.1% 12.0% 31.3% 
4Q Forecast 30.4% 28.8% 26.9% 27.2% 25.1% 12.5% 39.4% 

Note: this table illustrates the model accuracy in terms of the MAPE measure with different fore-
casting horizons ranging from Q1 to Q4. 

Our main findings can be summarized as follows: (i) In line with the previous litera-
ture [17], forecast accuracy decreases with maturity. (ii) The best forecasting performance 
for all horizons considered is reported for the proposed model with actual values of input 
variables. Furthermore, the second best performance is observed for the proposed model 
with forecasted input. This confirms that the proposed model can be used as an optimal 
tool for scenario analysis purposes (details will be provided in Section 5). (iii) The intro-
duction of the GAM specification in the model, considering the non-linearities in the in-
put/output relationships between the explanatory variables and the oil price, is important 
for improving forecasting results, as can be seen by comparing the last column with col-
umns 5 and 6. The forecast provided by the LTF approach with no GAM is less accurate 
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than that provided under the GAMLTF with actual and forecasted inputs. (iv) The model 
with forecasted variables (forecast data model) improves the forecasting performance 
when compared to other benchmarks for all quarters considered. 

Table 7 reports the forecasting performance of the different models in terms of the 
MAPE metric in relation to the no-change forecast. The prediction horizon ranges from 
1Q in the first panel to Q4 in the fourth. In this case, a moving window of six quarters is 
used to calculate the MAPE metric. The purpose is to quantify the evolution of predictive 
ability and robustness for the different models considered. Note that this requires chang-
ing the in-sample and out-of-sample period for every calculation. For instance, the forecast 
estimates corresponding to 2019Q4 include 2019Q4, 2020Q1, 2020Q2, 2020Q3, 2020Q4, 
and 2021Q1. Therefore, the in-sample period covers the Jan 1995 to December 2019Q3 
range. However, the forecast estimate corresponding to 2020Q1 calculates the average pre-
diction for 2020Q1, 2020Q2, 2020Q3, 2020Q4, 2021Q1, and 2021Q2 and uses the 1995Q1-
2019Q4 as an in-sample period. As opposed to the results reported in Table 5, we provide 
forecasting results for every period of the out-of-sample window under each different 
quarter to analyze the persistence of the relative performance of the different methodolo-
gies considered. This is relevant given the high performance of regime-changing events 
seen during the 2017–2023 window, including the COVID crisis, the war in Ukraine, and 
the higher-than-expected recovery with high inflation and interest rate rises. Under this 
reporting format, the ratio takes a value of 1 if a given model performs equally as well as 
the naïve (no-change model). A close look at Table 5 shows that, as suggested in Figure 1, 
the forecasting performance of every model varies across time. The calculated results con-
firm the findings reported in Table 4. The proposed model with actual inputs performs 
best for almost all subsamples considered. The only exceptions are documented in 2018, a 
period dominated by the Fed tightening monetary policy. The results also demonstrate 
that the model with forecasted inputs is, on average, the second best when the horizon 
ranges from one quarter to two quarters. The model with forecasted inputs does not ex-
hibit a clear outperformance for higher horizons. Since this specification is run based on 
predicted data, performance depends on the forecast accuracy of the different (EIA fore-
casted) inputs. We see that the longer the forecast horizon, the lower the forecast accuracy. 
The reported results confirm the view that the proposed model can be used to consider 
different (twelve-month maturity) scenarios underlying the selected explanatory varia-
bles. 

The forecasting ability of futures prices and the Bloomberg analyst survey can be 
compared with the results reported by [17], which demonstrate that futures prices outper-
form (at the aggregate level) analyst forecasts when considering forecasts performed on a 
yearly basis. The current analysis makes it unclear whether future prices will beat Bloom-
berg analysts’ forecasts. This may be explained by the different periods and prediction 
horizons considered in the forecasting exercise. While [17] considers the average forecast 
for a given year with Chicago Mercantile Exchange (CME) WTI futures prices for a sample 
ending in December 2019, the analysis in this paper uses ICE Brent futures prices and a 
six-quarter rolling window and includes forecasts ending the last quarter of 2023. 

Table 7. Performance evolution versus no-change forecast (a six-quarter window ahead). 

1st                                         

6 2017Q 2017Q 2017Q 2017Q 2018Q 2018Q 2018Q 2018Q 2019Q 2019Q 2019Q 2019Q 2020Q 2020Q 2020Q 2020Q 2021Q 2021Q 2021Q 2021Q

to 2018Q 2018Q 2018Q 2019Q 2019Q 2019Q 2019Q 2020Q 2020Q 2020Q 2020Q 2021Q 2021Q 2021Q 2021Q 2022Q 2022Q 2022Q 2022Q 2023Q

Fu- 1.28 1.167 1.317 1.447 1.35 1.447 1.568 1.595 1.712 1.589 1.629 1.434 1.135 1.272 0.927 0.937 1.115 0.930 0.892 0.943 
BBG 1.511 1.62 1.204 1.283 1.158 1.17 1.029 0.749 0.89 1.152 1.181 1.150 1.346 2.095 1.914 1.371 1.818 1.507 1.550 1.571 

DoE 1.281 1.295 1.231 1.316 1.196 1.191 1.145 0.836 1.309 1.386 1.448 1.123 1.134 1.605 0.655 0.645 0.682 0.609 0.630 0.643 

GAM 1.024 1.011 0.999 1.013 0.993 0.893 0.774 0.736 0.854 1.138 1.061 0.956 1.224 1.810 1.256 0.848 1.198 1.386 1.127 1.018 

GAM 0.878 0.746 0.651 0.661 0.77 0.745 0.796 0.567 0.649 0.726 0.709 0.707 0.595 0.821 0.658 0.665 0.799 0.763 0.787 0.838 

LTF 1.423 1.187 0.899 0.931 0.897 0.765 0.474 0.72 0.993 1.139 1.104 1.048 1.255 1.637 1.388 0.919 1.518 1.916 1.951 1.857 
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2nd                                         

6 2017Q 2017Q 2017Q 2017Q 2018Q 2018Q 2018Q 2018Q 2019Q 2019Q 2019Q 2019Q 2020Q 2020Q 2020Q 2020Q 2021Q 2021Q 2021Q 2021Q
to 2018Q 2018Q 2018Q 2019Q 2019Q 2019Q 2019Q 2020Q 2020Q 2020Q 2020Q 2021Q 2021Q 2021Q 2021Q 2022Q 2022Q 2022Q 2022Q 2023Q

Fu- 1.155 1.178 1.143 1.204 1.276 1.316 1.457 1.072 1.03 0.995 0.963 0.968 0.935 0.964 1.011 1.027 0.930 0.769 0.654 0.645 
BBG 1.093 0.951 0.816 0.832 0.905 0.89 0.891 0.918 0.864 0.955 0.899 0.889 0.909 1.050 1.243 1.165 1.083 0.864 0.884 0.906 

DoE 1.216 1.173 1.051 1.064 1.063 1.048 0.908 0.898 1.005 0.996 0.961 0.914 0.948 1.071 0.917 0.964 0.914 0.762 0.755 0.760 

GAM 0.873 0.935 0.939 0.931 1.006 0.966 1.104 0.992 1.016 1.11 0.997 0.883 0.889 0.826 0.649 0.562 0.749 0.915 0.802 0.843 

GAM 0.795 0.583 0.512 0.57 0.616 0.693 0.714 0.449 0.446 0.475 0.521 0.456 0.388 0.535 0.538 0.555 0.649 0.740 0.792 0.869 

LTF 1.078 0.876 0.663 0.696 0.572 0.631 0.921 1.522 1.629 1.77 1.625 1.413 1.298 0.777 0.617 0.469 0.684 1.030 1.026 1.038 

3rd                                         

6 2017Q 2017Q 2017Q 2017Q 2018Q 2018Q 2018Q 2018Q 2019Q 2019Q 2019Q 2019Q 2020Q 2020Q 2020Q 2020Q 2021Q 2021Q 2021Q 2021Q
to 2018Q 2018Q 2018Q 2019Q 2019Q 2019Q 2019Q 2020Q 2020Q 2020Q 2020Q 2021Q 2021Q 2021Q 2021Q 2022Q 2022Q 2022Q 2022Q 2023Q

Fu- 1.089 1.026 1.047 1.152 1.214 1.425 1.097 1.05 0.983 0.956 0.943 0.877 0.906 0.958 1.024 1.051 0.949 0.790 0.646 0.578 
BBG 0.878 0.757 0.784 0.996 1.118 1.075 1.05 1.044 0.963 0.947 0.9 0.888 0.867 0.962 1.109 1.115 0.980 0.800 0.787 0.742 

DoE 1.075 0.995 0.973 0.943 0.824 0.879 0.828 0.861 0.904 0.904 0.898 0.868 0.906 0.972 0.985 1.038 1.002 0.844 0.819 0.750 

GAM 0.861 0.876 0.904 0.922 1.012 0.978 1.094 1.009 1.043 1.049 0.928 0.817 0.662 0.620 0.521 0.443 0.645 0.780 0.831 0.909 

GAM 0.616 0.402 0.445 0.597 0.806 0.763 0.503 0.394 0.449 0.494 0.454 0.406 0.376 0.479 0.474 0.462 0.625 0.703 0.828 0.835 

LTF 0.715 0.435 0.445 0.63 0.858 1.27 1.815 2.027 2.053 1.965 1.73 1.540 1.065 0.672 0.548 0.410 0.654 0.824 0.796 0.958 

4th                                         

6 2017Q 2017Q 2017Q 2017Q 2018Q 2018Q 2018Q 2018Q 2019Q 2019Q 2019Q 2019Q 2020Q 2020Q 2020Q 2020Q 2021Q 2021Q 2021Q 2021Q
to 2018Q 2018Q 2018Q 2019Q 2019Q 2019Q 2019Q 2020Q 2020Q 2020Q 2020Q 2021Q 2021Q 2021Q 2021Q 2022Q 2022Q 2022Q 2022Q 2023Q

Fu- 0.871 0.885 0.901 0.95 1.197 1.095 1.065 1.012 0.976 0.957 0.875 0.863 0.912 0.970 1.028 1.068 0.954 0.786 0.750 0.665 
BBG 0.781 0.728 0.745 0.876 1.034 1.051 1.063 1.051 0.981 0.95 0.889 0.805 0.818 0.881 1.028 1.083 0.925 0.779 0.710 0.641 

DoE 0.998 0.889 0.859 0.76 0.687 0.89 0.924 0.955 0.938 0.93 0.92 0.853 0.852 0.894 0.972 1.058 1.003 0.848 0.832 0.749 

GAM 0.925 0.832 0.858 0.873 0.954 0.975 1.042 0.985 0.979 0.937 0.835 0.675 0.503 0.514 0.413 0.371 0.576 0.700 0.851 0.929 

GAM 0.578 0.434 0.449 0.488 0.568 0.395 0.312 0.321 0.385 0.394 0.367 0.367 0.418 0.484 0.458 0.503 0.682 0.762 0.861 0.882 

LTF 0.849 0.714 0.59 0.674 1.236 1.76 1.944 1.963 1.985 1.864 1.679 1.253 0.825 0.615 0.506 0.426 0.610 0.708 0.824 0.916 
Note: This table reports the forecasting performance in terms of the ratio of MAPE of the selected 
method and the no-change method. (Forecasting horizon is a six-quarter average window ahead). 
The performance for the proposed GAMLTF framework for forecasted and actual input (in bold) 
data as well as alternative benchmarks, including the LTF framework with no GAM. The in-sample 
period 1995–2016, out-of-sample or forecasting period 2017–2023. Colour legend: Dark green best 
performer, dark redworst performer 

5. Oil Price Scenario Generation 
We have seen in the previous section that the proposed model can explain and fore-

cast very accurately when the observed (and not forecasted) values of the explanatory 
variables are used in the forecasting process. This tool can help understand the interaction 
of factors that determine the past oil price evolution and the future paths under different 
scenarios, quantifying the risk associated with a particular scenario compared to an alter-
native baseline forecast (selected as the EIA forecast). The proposed model identifies key 
variables driving upside and downside risks in the oil price forecast. For expository pur-
poses, three scenarios involving hypothetical future oil market conditions are explored, 
starting in the first quarter of 2024. These main variables and estimated parameters corre-
spond to world production, world demand, OECD stocks, non-commercial long and short 
positions, open interest, historical volatility, and the U.S. dollar. Figure 5 illustrates the 
twelve-month forecasts for the four variables in the three scenarios defined from 2024Q1. 
The illustrative scenarios are focused on the implications of shocks arising from the sup-
ply relative to the demand conditions. 
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Figure 5. Forecasts of input variables under different scenarios: This figure illustrates the evolution 
of the input variables used in the different scenarios. The main scenario: Scenario A uses EIA forecast 
input data. Scenario B analyzes the possibility of physical tightening. Scenario C addresses the case 
of low OPEC. 

Scenario A: Main benchmark scenario with EIA forecast 
The main scenario uses the U.S. Department of Energy forecast of the fundamental 

variable for the next 12 months, performed in December 2023. This includes the concern 
expressed by the DoE regarding the weakening global economic situation, which leads to 
lower expectations for global oil demand growth. An increase in demand of 1.3 mb/d is 
thus considered under this scenario. These views about the economy can potentially offset 
the upward pressure on prices stemming from lower short-term oil supply due to the 
OPEC’s and Russia’s supply cuts in crude oil production. Oil production cuts were first 
announced in October 2022 for a cut of 2 mb/d and were enhanced in April 2023 to 3.5 
mb/d. 

Furthermore, in June 2023, the OPEC and Russia decided to extend cuts to December 
2024. In July, Saudi Arabia additionally announced voluntary cuts (details can be found 
at https://www.reuters.com/business/energy/saudi-arabia-expected-extend-voluntary-
oil-cut-september-analysts-say-2023-07-28/ accessed on 15 August 2023). Full compliance 
(−3.5 mb/d from the level registered in August 2022) is not expected, but the agency fore-
casted, in December 2023, that production will increase by 0.6 mb/d, representing a slow-
down when compared to growth levels reported of 1.6 mb/d in 2023. The fundamental 
variable is predicted to stay near last year’s lows. With the tightening of the physical mar-
ket, investors will increase their positions. The U.S. dollar stabilizes around 102 as mone-
tary policies are becoming more aligned in the U.S. and Europe. Crude oil price volatility 
returns to normal conditions, considering the Ukrainian crisis causes no other uncer-
tainty-related spikes. 

Scenario B: Physical Market tightening 



Energies 2024, 17, 2182 19 of 29 
 

 

This represents the case of full compliance with the OPEC’s quota supported by in-
creased tensions in the Middle East (particularly in the Red Sea) and a robust economy 
that sustains oil consumption with a rebound in consumption driven by the airline sector, 
as forecasted by data from S&P Global. In this case, the fundamental variable will fall to 
the lowest value registered over our sample period. Under this scenario, investors will be 
attracted to exploit the upward price trend. The U.S. dollar will be weaker than in the main 
scenario, and volatility will rebound mildly because of increasing geopolitical pressures. 
Note that the OPEC plus group has announced an extension of 3 months to their voluntary 
cuts, making this scenario less likely. See the Financial Times article “Opec+ members ex-
tend production cuts to boost oil price”, 4 March 2024. 

Scenario C: Low OPEC compliance and delay on the end of monetary tightening 
OPEC compliance is less stringent than the main scenario, implying that production 

stands at 1 mb/d during 2023Q3–2024Q4. Oil demand growth moderates because of the 
delay in the monetary tightening. Under this scenario, investors will reduce their oil ex-
posure in their portfolios, volatility will pick up, and the dollar will appreciate slightly. 

Our model also allows us to do reverse engineering. This feature implies that we can 
calculate the values of the underlying variables implied by futures prices. In order to 
match quoted futures prices observed in December 2023, our framework shows that there 
should be low compliance with the announced the OPEC cuts in the first half of 2024. The 
prices are similar to Scenario C. 

Forecasts under the different scenarios, including the main and EIA forecasts, are 
illustrated in Figure 6. First, our main benchmark scenario for the next 12 months is 
slightly more bullish than that reported by the EIA. Under the supply-stressed scenario 
(B), oil prices are expected to be higher than USD 100, given the context of deteriorated 
levels in the physical balance. The increase in geopolitical risk, partly driven by the recent 
moves by Saudi Arabia and Russia to extend their voluntary supply cuts, drives fears of 
future inflation and new periods of prolonged periods of low investment in new capaci-
ties. This fact is fundamental under the currently announced OPEC’s production cuts. 
While OPEC compliance has always been hesitant, the possibility of future supply cuts 
remains a primary concern for Western governments already struggling to contain infla-
tion. We could see prices stabilizing around the USD 72/bbl level in the case of low OPEC 
compliance. The term structure of futures prices is in December 2023 in mild backwarda-
tion, with the December 2024 futures price trading at USD 75/bbl. This implies improved 
fundamentals compared to the term structure seen in November 2023. 
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Figure 6. Oil price forecast in different scenarios: The figure illustrates forecasting prices under the 
different scenarios considered, including the main (using EIA forecast), the EIA forecast (labeled 
DoE), the forecast implied by futures (labeled Futures), scenario B (tight fundamentals), and sce-
nario C (low OPEC compliance). 

Note that the set of scenarios envisaged for the explanatory variables allows the sim-
ulation of different geopolitical situations. Given that increased geopolitical tensions in-
fluence the price of oil, the proposed tool can be used to consider changes in the explana-
tory variables (and the corresponding crude oil price forecast) affected by increased geo-
political uncertainty. For instance, we expect that there will be supply disruptions under 
the surge of an armed conflict. These disruptions will reduce the value of the fundamental 
variable and therefore lead to a scenario similar to that described in scenario B. 

6. Conclusions 
Recent developments in energy markets have shown that the crude oil market is ex-

posed to time-changing uncertainty. As a result, crude oil prices have been subject to sig-
nificant fluctuations over the past two decades. This makes oil price prediction a very 
challenging task. While the forecasting frameworks developed in the literature are wide 
and varied, there is no consensus about the appropriate methodological framework to 
apply. This paper combines the classical regression model with machine learning ap-
proaches in a hybrid framework, selecting the GAM method across the feature engineer-
ing literature jointly with a transfer function with the ARIMA noise approach. Machine 
learning methods help to incorporate flexible non-linear capability in the modeling pro-
cess. 

Compared to competing machine learning approaches, the advantage of the pro-
posed method is that it captures non-linearities under the analysis of partial effects. This 
allows input variable interpretation through estimated regression coefficients. The 
method identifies two main drivers explaining oil prices. The first and most important 
variable is the fundamental variable, which measures the physical market balance. The 
second is the financial variable quantifying and capturing crude oil investors’ speculative 
interest. The volatility and the dollar variables contribute to a lower impact on oil price 
movements. The results show that the non-linear effects are remarkably significant in the 
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dollar and volatility variables. The impact of the dollar index is significant only under 
weak dollar conditions, while volatility is essential for forecasting purposes under high-
volatility states. 

We show that the algorithm may be applied using U.S. EIA forecasts of the funda-
mental and the input variables. The forecasting ability of the proposed framework out-
performs benchmark techniques, including the futures prices and analysts’ crude oil price 
predictions provided by Bloomberg and the EIA. 

A sensitivity analysis is performed in the second stage, confirming that the variable 
with the most significant influence on crude oil prices is the fundamental variable. One 
standard deviation increase in this variable results in an oil price reduction of 20%. The 
financial variable is the second most important, exerting an impact of 10% for a one stand-
ard deviation increase. The impact of the one standard deviation change in the dollar and 
volatility variables are 5% and 2% price change, respectively. 

The proposed model is also highly suitable for scenario analysis. The algorithm 
demonstrates the ability to quantify the risk associated with a benchmark forecast based 
on an extensive analysis of how this forecast changes under alternative hypothetical sce-
narios about future oil demand and oil supply conditions. The main scenario (December 
2023) predicts a rebound in oil prices towards USD 88/bbl, delivering higher prices than 
the EIA. Two additional situations are proposed for 2024, with the market balance variable 
acting as the main driving force. Under market tightening conditions arising from com-
pliance with the OPEC’s and Russia’s production cuts, prices are pushed to new highs 
(above USD 100/bbl). Under a lower OPEC compliance scenario and lower consumption 
due to higher-than-expected interest rates, we could see a moderation in prices towards 
USD 72/bbl. 

Our results show the relevance of supply and demand fundamentals in the price de-
termination process and confirm that events that disrupt global oil supply are expected to 
increase oil prices, while events that suppress oil consumption growth will generally de-
crease oil spot prices (Baumeister and Kilian, 2015) [8]. The proposed hybrid model can 
be applied to risk management systems of energy corporations and institutions. It can also 
provide a quantitative assessment of the impact of a range of hypothetical events on the 
crude oil price. This is crucial in times of multiple sources of uncertainty arising from 
factors such as geopolitical tensions, interest rate risk, and energy transition-related 
shocks. 
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Appendix A 

Table A1. Raw data description. 

Raw Variable Frequency History Source Model Variable 
Brent Monthly (average daily 

data) 
 from January 

1995 Bloomberg 
Fundamental Varia-

ble Log(Brent) 
Total World Production 

Monthly  from  
January 1995 

U.S. Energy  
Information Ad-

ministration 

Fundamental Varia-
ble 

OPEC Production 
Spare OPEC Production 
Total World Consumption 
OECD Consumption 
China Consumption 
OECD Commercial Inventory 
OECD Total Inventory 
Stocks Consumption Ratio 
Long non-commercial Futures 

Monthly (average 
weekly data) 

 from  
January 1995 Commodity Fu-

tures  
Trading  

Commission 

Financial Variable  

Short non-commercial Futures 
Net non-commercial Futures 
Open Interest Futures 
Long non-commercial F&O 

 from March 
1995 

Short non-commercial F&O 
Net non-commercial F&O 
Open Interest F&O 
DXY Monthly (average daily 

data) 
 from Jan 1995 Bloomberg Dollar 

USD/EUR 
Implied Volatility Monthly (average daily 

data)  from Jan 1995 
Bloomberg 

Volatility 
Realized Volatility Price 

Note: This table describes the data used in the initial stage of algorithm implementation. The second 
to fourth columns provide variable frequency, data history, and data source. The label “Model var-
iable” in the last column describes the category of the given data series within the fundamental, 
financial, dollar, and volatility variables, according to dimensions for model input variables. 
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Table A2. Description of selected input variables. 

Model Variable 

(Equation) 
Raw Variable Frequency History Source 

Fundamental Varia-

ble (7) 

Total Crude Oil Supply (World)  

Monthly 

 From 

January 

1995 

U.S. Energy  

Information  

Administration 

Total Crude Oil Demand (World) 

Total Commercial OECD Stocks 

Financial Variable 

(8) 

Non-Commercial Long Futures WTI 
Monthly (average 

weekly data) 

 From 

January 

1995 

Commodity  

Futures Trading Com-

mission 

Non-Commercial Short Futures WTI 

Open Interest Futures WTI 

Volatility  

Realized 
Price First Brent Contract 

Monthly (average 

daily data) 

 From 

January 

1995 

Price 

Dollar DXY Index 
Monthly (average 

daily data) 

From 

January 

1995 

Bloomberg 

Note: This table describes the selected input data used for GAM model implementation. The third 
to fifth columns provide variable frequency, data history, and data source. The label “Model varia-
ble” in the first column describes the category of the given data series within the fundamental, fi-
nancial, dollar, and volatility variables according to dimensions for model input variables. The fun-
damental and financial variable definitions are linked to definitions specified in Equations (7) and 
(8), respectively. 

Table A3. Correlation matrix of primary variables used in the analysis. 
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Brent 1.00 0.96 0.63 0.66 
-

0.15 
0.66 

-

0.15 
0.60 0.00 0.36 

-

0.79 

-

0.81 
0.51 0.53 0.41 0.61 0.53 0.46 0.48 0.73 0.44 0.36 

-

0.57 
0.55 

-

0.23 

-

0.24 

Log(Brent) 0.96 1.00 0.74 0.74 
-

0.16 
0.77 

-

0.10 
0.70 0.11 0.49 

-

0.86 

-

0.89 
0.60 0.64 0.49 0.71 0.62 0.56 0.56 0.81 0.51 0.45 

-

0.52 
0.49 

-

0.18 

-

0.21 

Total World Production 0.63 0.74 1.00 0.80 
-

0.17 
0.98 

-

0.22 
0.96 0.58 0.79 

-

0.79 

-

0.80 
0.90 0.73 0.81 0.92 0.90 0.70 0.85 0.87 0.80 0.78 

-

0.11 
0.08 0.00 0.02 

OPEC Production 0.66 0.74 0.80 1.00 
-

0.56 
0.78 0.03 0.65 0.35 0.63 

-

0.71 

-

0.72 
0.64 0.76 0.49 0.70 0.66 0.73 0.56 0.77 0.53 0.48 

-

0.38 
0.35 

-

0.08 

-

0.06 

Spare OPEC Produc-

tion 

-

0.15 

-

0.16 

-

0.17 

-

0.56 
1.00 

-

0.12 

-

0.41 
0.05 0.20 0.07 0.26 0.29 0.05 

-

0.13 
0.11 0.02 0.04 

-

0.16 
0.09 

-

0.01 
0.08 0.09 0.18 

-

0.16 
0.08 

-

0.01 

Total World Consump-

tion 
0.66 0.77 0.98 0.78 

-

0.12 
1.00 

-

0.13 
0.95 0.55 0.77 

-

0.84 

-

0.80 
0.89 0.74 0.79 0.92 0.89 0.70 0.84 0.87 0.78 0.77 

-

0.14 
0.10 

-

0.06 

-

0.06 

OECD Consumption 
-

0.15 

-

0.10 

-

0.22 
0.03 

-

0.41 

-

0.13 
1.00 

-

0.38 

-

0.45 

-

0.36 

-

0.16 

-

0.01 

-

0.43 

-

0.14 

-

0.47 

-

0.36 

-

0.42 

-

0.18 

-

0.45 

-

0.29 

-

0.50 

-

0.46 
0.06 

-

0.07 

-

0.06 

-

0.13 
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China Consumption 0.60 0.70 0.96 0.65 0.05 0.95 
-

0.38 
1.00 0.64 0.80 

-

0.72 

-

0.71 
0.93 0.68 0.87 0.95 0.93 0.65 0.91 0.86 0.85 0.85 

-

0.09 
0.07 

-

0.01 
0.00 

OECD Commercial In-

ventory 
0.00 0.11 0.58 0.35 0.20 0.55 

-

0.45 
0.64 1.00 0.88 

-

0.02 

-

0.05 
0.71 0.57 0.65 0.65 0.70 0.61 0.64 0.54 0.65 0.66 0.16 

-

0.17 
0.15 0.14 

OECD Total Inventory 0.36 0.49 0.79 0.63 0.07 0.77 
-

0.36 
0.80 0.88 1.00 

-

0.38 

-

0.41 
0.85 0.81 0.73 0.85 0.85 0.81 0.76 0.81 0.75 0.74 

-

0.16 
0.13 0.07 0.05 

Stocks Consumption 

Ratio 

-

0.79 

-

0.86 

-

0.79 

-

0.71 
0.26 

-

0.84 

-

0.16 

-

0.72 

-

0.02 

-

0.38 
1.00 0.93 

-

0.60 

-

0.56 

-

0.51 

-

0.68 

-

0.61 

-

0.47 

-

0.58 

-

0.71 

-

0.51 

-

0.49 
0.27 

-

0.24 
0.13 0.14 

Fundamental Variable 
-

0.81 

-

0.89 

-

0.80 

-

0.72 
0.29 

-

0.80 

-

0.01 

-

0.71 

-

0.05 

-

0.41 
0.93 1.00 

-

0.59 

-

0.56 

-

0.50 

-

0.67 

-

0.60 

-

0.48 

-

0.56 

-

0.73 

-

0.50 

-

0.46 
0.28 

-

0.26 
0.02 0.04 

Long non-commercial 

Futures 
0.51 0.60 0.90 0.64 0.05 0.89 

-

0.43 
0.93 0.71 0.85 

-

0.60 

-

0.59 
1.00 0.67 0.96 0.97 1.00 0.66 0.98 0.85 0.94 0.93 

-

0.13 
0.10 

-

0.10 

-

0.05 

Short non-commercial 

Futures 
0.53 0.64 0.73 0.76 

-

0.13 
0.74 

-

0.14 
0.68 0.57 0.81 

-

0.56 

-

0.56 
0.67 1.00 0.44 0.73 0.68 0.96 0.52 0.83 0.49 0.47 

-

0.35 
0.32 0.14 0.10 

Net non-commercial 

Futures 
0.41 0.49 0.81 0.49 0.11 0.79 

-

0.47 
0.87 0.65 0.73 

-

0.51 

-

0.50 
0.96 0.44 1.00 0.90 0.95 0.44 0.99 0.72 0.95 0.95 

-

0.03 
0.00 

-

0.18 

-

0.10 

Open Interest Futures 0.61 0.71 0.92 0.70 0.02 0.92 
-

0.36 
0.95 0.65 0.85 

-

0.68 

-

0.67 
0.97 0.73 0.90 1.00 0.97 0.70 0.94 0.93 0.86 0.84 

-

0.21 
0.19 

-

0.09 

-

0.05 

Long non-commercial 

F&O 
0.53 0.62 0.90 0.66 0.04 0.89 

-

0.42 
0.93 0.70 0.85 

-

0.61 

-

0.60 
1.00 0.68 0.95 0.97 1.00 0.67 0.98 0.86 0.94 0.92 

-

0.15 
0.12 

-

0.11 

-

0.06 

Short non-commercial 

F&O 
0.46 0.56 0.70 0.73 

-

0.16 
0.70 

-

0.18 
0.65 0.61 0.81 

-

0.47 

-

0.48 
0.66 0.96 0.44 0.70 0.67 1.00 0.49 0.77 0.51 0.47 

-

0.30 
0.27 0.10 0.09 

Net non-commercial 

F&O 
0.48 0.56 0.85 0.56 0.09 0.84 

-

0.45 
0.91 0.64 0.76 

-

0.58 

-

0.56 
0.98 0.52 0.99 0.94 0.98 0.49 1.00 0.79 0.95 0.95 

-

0.08 
0.06 

-

0.16 

-

0.10 

Open Interest F&O 0.73 0.81 0.87 0.77 
-

0.01 
0.87 

-

0.29 
0.86 0.54 0.81 

-

0.71 

-

0.73 
0.85 0.83 0.72 0.93 0.86 0.77 0.79 1.00 0.70 0.65 

-

0.40 
0.38 0.03 0.03 

Financial Variable Fu-

tures 
0.44 0.51 0.80 0.53 0.08 0.78 

-

0.50 
0.85 0.65 0.75 

-

0.51 

-

0.50 
0.94 0.49 0.95 0.86 0.94 0.51 0.95 0.70 1.00 0.97 

-

0.10 
0.06 

-

0.18 

-

0.11 

Financial Variable F&O 0.36 0.45 0.78 0.48 0.09 0.77 
-

0.46 
0.85 0.66 0.74 

-

0.49 

-

0.46 
0.93 0.47 0.95 0.84 0.92 0.47 0.95 0.65 0.97 1.00 

-

0.03 
0.00 

-

0.18 

-

0.12 

DXY 
-

0.57 

-

0.52 

-

0.11 

-

0.38 
0.18 

-

0.14 
0.06 

-

0.09 
0.16 

-

0.16 
0.27 0.28 

-

0.13 

-

0.35 

-

0.03 

-

0.21 

-

0.15 

-

0.30 

-

0.08 

-

0.40 

-

0.10 

-

0.03 
1.00 

-

0.98 
0.26 0.26 

USD/EUR 0.55 0.49 0.08 0.35 
-

0.16 
0.10 

-

0.07 
0.07 

-

0.17 
0.13 

-

0.24 

-

0.26 
0.10 0.32 0.00 0.19 0.12 0.27 0.06 0.38 0.06 0.00 

-

0.98 
1.00 

-

0.23 

-

0.23 

Implied Volatility 
-

0.23 

-

0.18 
0.00 

-

0.08 
0.08 

-

0.06 

-

0.06 

-

0.01 
0.15 0.07 0.13 0.02 

-

0.10 
0.14 

-

0.18 

-

0.09 

-

0.11 
0.10 

-

0.16 
0.03 

-

0.18 

-

0.18 
0.26 

-

0.23 
1.00 0.84 

Realized Volatility 
-

0.24 

-

0.21 
0.02 

-

0.06 

-

0.01 

-

0.06 

-

0.13 
0.00 0.14 0.05 0.14 0.04 

-

0.05 
0.10 

-

0.10 

-

0.05 

-

0.06 
0.09 

-

0.10 
0.03 

-

0.11 

-

0.12 
0.26 

-

0.23 
0.84 1.00 

Note: This table shows the correlation matrix for every time series initially considered for building 
the final input (predictive) variables. 
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Table A4. Correlation matrix of selected predictive variables and the target variable. 
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Log(Brent) - -0.89 0.51 -0.52 -0.21 
Fundamental Variable -0.89 - -0.50 0.28 0.04 

Financial Variable  0.51 -0.50 - -0.10 -0.11 
Dollar -0.52 0.28 -0.10 - 0.26 

Realized Volatility -0.21 0.04 -0.11 0.26 - 
Note: This table reports correlation coefficients across the variables that have been selected as final 
input variables. Correlations with the output variable defined as the log of the Brent spot price are 
also reported. 

Table A5. Bai and Perron structural breaks test results for log(Brent) 

Sequential F-Statistic Determined Breaks: 5   

Break Test F-Statistics 
Scaled F-Sta-

tistic 
Critical 
Value ** Break Dates: Dates: 

0 vs. 1 * 1080.393 1080.393 8.58 1 September 99 
1 vs. 2 * 75.975 75.975 10.13 2 October 04 
2 vs. 3 * 55.274 55.274 11.14 3 August 10 
3 vs. 4 * 112.946 112.946 11.83 4 November 14 
4 vs. 5 * 23.992 23.992 12.25 5 April 19 

Note: This table provides the results for structural breaks test. The test report results for the null 
hypothesis H0 of no structural break. The alternative hypothesis H1 test for k structural breaks. There 
are five structural breaks. * Significant at the 0.05 level, ** Bai–Perron critical values [38] are used. 

Table A6. Bai and Perron structural breaks test for equation in differences. 

Sequential F-Statistic Determined Breaks: 0 
Break Test F-Statistics Scaled F-Statistic Critical Value ** 

0 vs. 1  2.321 11.605 18.23 
Note: This table provides the results for structural breaks test for an equation that estimates changes 
in log of Brent as a function of the differences in the fundamental, financial, volatility, and dollar 
variables. The test report results for the null hypothesis H0 of no structural break. The alternative 
hypothesis H 1 tests for k structural breaks. There are no structural breaks. * Significant at the 0.05 
level, ** Bai–Perron critical values [38] are used. 
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Table A7. RMSE error measures for different forecasting methods. 

  2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1 
Constant 4.144 8.880 18.581 15.593 8.447 6.380 8.179 13.759 6.934 
Futures 5.636 7.773 15.878 15.226 8.143 5.323 8.619 15.330 9.668 

BBG Analysts Median 3.579 5.715 9.903 15.761 14.872 7.939 3.620 8.961 6.447 
Department of Energy EIA 4.122 7.213 16.305 17.359 12.688 9.786 3.722 11.440 5.120 
GAMLTF Forecasted In-

puts 
5.233 7.560 14.174 12.368 10.994 6.288 6.422 14.046 4.808 

GAMLTF Actual Inputs 9.409 4.215 6.703 3.854 4.197 8.550 3.273 7.585 5.452 
LTF Actual Inputs No 

GAM 10.088 5.606 6.505 7.905 6.736 16.029 2.616 2.757 4.840 

  2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 
Constant 7.253 16.155 16.047 22.900 16.258 17.497 23.071 22.156 16.696 
Futures 7.938 15.825 13.880 20.262 12.529 15.967 20.520 21.594 21.916 

BBG Analysts Median 11.110 19.716 16.965 17.981 6.908 16.904 19.816 24.502 21.498 
Department of Energy EIA 6.009 18.994 15.179 18.653 15.237 12.696 18.851 20.654 20.239 
GAMLTF Forecasted In-

puts 7.748 17.138 20.165 17.989 16.629 14.133 8.360 6.372 11.279 

GAMLTF Actual Inputs 4.120 5.043 7.977 5.408 12.576 11.860 9.243 4.998 5.232 
LTF Actual Inputs No 

GAM 
12.689 35.927 44.212 40.622 16.969 18.266 13.300 7.160 10.398 

  2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1 TOTAL   
Constant 22.182 23.929 24.366 20.987 31.913 7.979 3.004 17.040   
Futures 25.044 24.891 24.864 7.277 11.495 5.855 3.954 15.323   

BBG Analysts Median 27.313 28.984 23.360 10.227 14.378 13.291 9.052 16.031   
Department of Energy EIA 26.232 25.283 24.485 10.465 11.659 10.816 3.961 15.400   
GAMLTF Forecasted In-

puts 15.823 12.759 15.853 30.541 27.898 8.644 5.754 14.341   

GAMLTF Actual Inputs 16.721 17.960 22.357 25.347 18.111 8.847 3.981 11.123   
LTF Actual Inputs No 

GAM 
10.190 9.670 11.454 40.561 37.043 9.519 6.019 20.065   

Note: This table reports the forecasting performance in terms of the RMSE measure of the proposed framework 
for forecasted and actual input data as well as alternative benchmarks, including the LTF framework with no 
GAM. The in-sample period is 1995–2016, and the out-of-sample or forecasting period is 2017–2023. Forecasts 
are performed for the next four quarters. The following forecasting methods are considered: No-change: fore-
casts are the average price of the previous month for the whole forecast period. Futures: forecasts are the average 
of Brent first-, second-, and third-month contracts for the first quarter, fourth-, fifth-, and sixth-month contracts 
for the second quarter for the day before beginning the period of forecast. BBG: Bloomberg quarterly surveys 
are taken as forecasts the day before beginning the period of forecast. EIA: average monthly forecasts to create 
quarterly forecasts are taken from the last EIA report before beginning the period of forecast. GAMLFT with 
Forecasted Inputs: proposed new model fed by forecasted inputs. Highlighted in bold. GAMLFT with actual 
inputs: proposed new model fed by actual inputs. Highlighted in bold. LFT with actual inputs: linear function 
transfer model fed by forecasted inputs. 
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Figure A1. PACF and ACF structure of the error term under a GAM model: This figure shows the 
PACF and ACF for the initial GAM model error. A clear autocorrelation can be observed in the 
regression errors since some lags exceed confidence limits. 

 
Figure A2. PACF and ACF structures of the error term under GAM with LTF specification: This 
figure shows the PACF and ACF for the proposed model error. No problem of autocorrelation can 
be appreciated. 
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