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Abstract

The growing penetration of renewable energy sources, particularly wind power, into modern
energy systems has heightened the need for accurate and reliable forecasting techniques. Ef-
fective short-term wind power prediction is essential for ensuring grid stability, optimizing
dispatch strategies, and reducing operational costs. Over the past decade, researchers have
progressively moved from traditional statistical and machine learning methods to deep learn-
ing approaches capable of modeling nonlinear and temporal dependencies. Among these,
Transformer-based architectures have gained increasing attention for their ability to handle
long-range temporal correlations, previously unattainable with conventional recurrent mod-
els.

In this study, a Transformer-based model is proposed for short-term wind power fore-
casting using only historical generation data. The time series is segmented into overlapping
sequences of fixed lengths (12, 24, and 36 hours) using a sliding window approach. Different
Transformer configurations were evaluated across different input lengths, varying hyperpa-
rameters such as model dimension, number of attention heads, encoder layers, dropout rate,
and batch size. Model performance was assessed on both training and test sets using MSE,
MAE, and MAPE as error metrics. The methodology also included a hyperparameter opti-
mization process and normalization procedures to enhance training stability and generaliza-
tion.

The results indicate that the best performance was obtained using a 24-hour input win-
dow, achieving a test MAPE of 0.09%. This configuration outperformed models trained
with longer input sequences, suggesting that shorter historical contexts are sufficient for ac-
curate short-term forecasting in this dataset. Furthermore, when compared against traditional
approaches such as LSTM and GRU architectures under optimized settings, the best Trans-
former model showed superior predictive accuracy. However, this improvement came at the
cost of higher computational complexity. These findings support the effectiveness of Trans-
former models for wind power forecasting and highlight opportunities for future research
involving spatial modeling, transfer learning, and multistep prediction.

Keywords: wind power forecasting, Transformer Model, time series prediction, deep
learning, renewable energy
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Resumen

El aumento en la integración de fuentes de energía renovable, especialmente la energía eólica,
en los sistemas energéticos modernos ha intensificado la necesidad de técnicas de predicción
precisas y fiables. Una predicción efectiva de la energía eólica a corto plazo es esencial para
garantizar la estabilidad de la red, optimizar las estrategias y reducir los costes operativos.
En la última década, los investigadores han pasado progresivamente de métodos estadísticos
tradicionales y de aprendizaje automático a enfoques de deep learning, capaces de modelar
dependencias no lineales y temporales. Entre estos, las arquitecturas Transformer han ganado
atención por su capacidad para captar correlaciones temporales de largo alcance, antes inal-
canzables con modelos recurrentes.

En este estudio, se propone un modelo Transformer para la predicción de la energía eólica
a corto plazo utilizando únicamente datos históricos de generación. La serie temporal se seg-
menta en secuencias superpuestas de longitudes fijas (12h, 24h y 36h) mediante un enfoque
de ventana deslizante. Se evaluaron distintas configuraciones del modelo Transformer en
función de diferentes longitudes de entrada, variando hiperparámetros como la dimensión
del modelo, el número de cabezas de atención, capas del codificador, dropout y batch size.
El rendimiento del modelo se evaluó tanto en los conjuntos de entrenamiento como de prueba
utilizando el MSE, el MAE y el MAPE como métricas de error. La metodología incorporó
optimización de hiperparámetros y normalización para mejorar la estabilidad y la general-
ización del modelo.

Los resultados indican que el mejor rendimiento se obtuvo utilizando una ventana de
entrada de 24h, alcanzando un MAPE de prueba del 0,09%. Esta configuración superó a
los modelos entrenados con secuencias de entrada más largas, lo que sugiere que contextos
históricos más cortos son suficientes para una predicción precisa a corto plazo en este con-
junto de datos. Además, al compararse con enfoques tradicionales como las arquitecturas
LSTM y GRU en condiciones optimizadas, el mejor modelo Transformer mostró una mayor
precisión predictiva. Sin embargo, esta mejora implicó un mayor coste computacional. Es-
tos hallazgos respaldan la eficacia de los modelos Transformer para la predicción de energía
eólica y destacan oportunidades para futuras investigaciones en modelado espacial, apren-
dizaje por transferencia y predicción multietapa.

Palabras clave: energía eólica, modelo Transformer, series temporales, deep learning
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Chapter 1

Introduction

1.1 Motivation

Wind energy stands out as one of themost promising and rapidly expanding renewable energy
sources globally. According to the International Renewable Energy Agency, the installed
capacity of wind energy has grown exponentially in recent decades and is expected to remain
a central element in the global transition toward a more sustainable energy system (IRENA,
2023). This growth is driven by several key factors, including wind energy’s high efficiency,
cost-effectiveness and its ability to significantly reduce greenhouse gas emissions compared
to fossil fuel-based energy sources (Hanifi, Liu, Lin, & Lotfian, 2020).

In addition to reducing dependence on fossil fuels, wind energy offers several other sig-
nificant benefits. It is a clean, abundant power source that produces zero direct greenhouse
gas emissions, which add a big contribution to climate change. This positions wind energy
as a relevant solution for meeting global carbon reduction targets and minimizing environ-
mental impact. Furthermore, wind energy contributes to energy security by diversifying the
energy mix and reducing reliance on imported fuels. It also serves as a scalable solution
to meet the growing global energy demand (Hassan, Algburi, Sameen, Salman, & Jaszczur,
2023). As geopolitical uncertainties continue to affect global energy supplies, the ability of
wind energy to generate domestic power becomes increasingly valuable for countries striv-
ing for greater energy independence. Additionally, advancements in technology have made
wind energy more cost-competitive, with prices now comparable to or even lower than con-
ventional energy sources such as coal and natural gas. This economic viability, combined
with its environmental benefits, underscores the importance of wind energy and highlights
the need for continued investment, particularly in regions with slower adoption rates (Hassan
et al., 2023).

As illustrated in Figure 1.1, the cumulative installed wind energy capacity has increased
significantly across major regions. Asia has shown the most pronounced growth trajectory,
surpassing Europe and North America, which have also demonstrated steady increases over
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the years. In contrast, regions like South America, Oceania, Africa and the Middle East
have been slower to adopt wind energy, often due to differences in infrastructure, funding
and policy support. This gap between the rapid advances in some parts of the world and
the slower pace in others highlights the need for stronger global efforts to make renewable
energy more accessible everywhere.

Figure 1.1: Cumulative Installed Wind Energy Capacity by Region
Source: (Our World in Data, 2024). Self-Elaboration

Within the European context, wind energy plays a key role in achieving the European
Union’s (EU) ambitious regulatory framework for reducing carbon emissions and transition-
ing to a sustainable energy system. The EU’s Green Deal and Fit for 55 package set clear
targets with the aim of reducing net greenhouse gas emissions by at least 55% by 2030 (Com-
mission, 2020b, 2021). As one of the fastest-growing renewable sources, wind energy is re-
quired to enable Member States to meet their renewable energy goals, such as those outlined
in the Renewable Energy Directive (RED II). This EU directive mandates that at least 32% of
the EU’s energy consumption come from renewables by 2030 (Commission, 2020c). More-
over, the EU’s carbon pricing mechanisms, such as the Emissions Trading System, further
incentivize the shift away from fossil fuels by putting a price on carbon emissions, which
makes wind energy a more attractive option (Commission, 2020a). Expanding wind energy
capacity not only reduces Europe’s reliance on imported fossil fuels but also strengthens its
position as a global leader in the renewable energy transition, setting a benchmark for sus-
tainable development worldwide.

Spain, as shown in Figure 1.2, stands out as one of the leading countries in wind energy
generation. With a well-established infrastructure and a strong commitment to renewable
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energy, Spain has consistently ranked among the top wind energy producers in the European
region. The country has successfully integrated wind power into its energy mix, contribut-
ing significantly to EU renewable energy targets. By 2022, Spain’s cumulative wind energy
capacity had reached levels comparable to other global leaders such as Germany and India.
This sustained growth underscores Spain’s role in advancing the EU’s renewable energy ob-
jectives and highlights its potential as a model for other regions seeking to scale their wind
energy efforts.

Figure 1.2: Cumulative Installed Wind Energy Capacity by Country
Source: (Our World in Data, 2024). Self-Elaboration

While wind energy has many advantages, one of its biggest challenges is its unpredictable
nature. Wind power is inherently variable because of its dependence on meteorological and
geographic factors. This variability makes it harder to smoothly integrate wind energy into
the power grid. When forecasts are inaccurate, they can lead to grid instability, a greater re-
liance on fossil-fuel backup systems and higher operating costs. Moreover, unreliable fore-
casting also makes it more difficult to plan and manage energy use effectively, which reduces
the overall performance of wind systems. This is why accurate forecasting is so important.
It helps stabilize the grid, reduce operational inefficiencies and minimize the environmental
and financial costs associated with backup power systems (Hanifi et al., 2020).

The importance of wind energy forecasting varies depending on the time horizon con-
sidered. Short-term forecasting, typically ranging from minutes to a few hours ahead, is
particularly critical for grid operations and energy trading. Accurate short-term predictions
allow grid operators to balance supply and demand in real time, ensuring system reliabil-
ity and avoiding costly imbalances. Furthermore, in competitive electricity markets, precise
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short-term forecasts enable wind farm operators to optimize their bids, reducing penalties
associated with under or overestimation of generation (Ahmed, Muhammad, Abbas, Aziz, &
Mahmood, 2024). Medium and long-term forecasts, on the other hand, are important for ca-
pacity planning, infrastructure development, and policy-making, but their operational impact
is often less immediate (Shan, Niu, Chai, & Gu, 2024). Therefore, while all forecasting hori-
zons are important, short-term forecasting is required in the day-to-day integration of wind
energy into power grids, where small errors can have significant economic and operational
consequences.

In this context, various forecasting strategies have been proposed to address the chal-
lenges posed by the variability of wind energy generation. Traditional statistical models,
such as AutoRegressive Integrated Moving Average (ARIMA), have been widely used for
time series forecasting due to their simplicity and interpretability. However, these models of-
ten struggle to capture the non-linear and complex patterns inherent in wind power generation
data. As the field has evolved, more advanced Machine Learning (ML) approaches, such as
recurrent neural networks (RNNs) and Long Short-Term Memory (LSTM) networks, have
gained prominence. These methods are better suited for sequential data and have demon-
strated improved performance in capturing temporal dependencies. Despite their advantages,
RNNs and LSTMs face limitations, including the vanishing gradient problem and high com-
putational costs, particularly when dealing with long sequences or large datasets.

To overcome these limitations, Transformer-based models have emerged as a powerful
alternative in time series forecasting. Originally developed for natural language process-
ing tasks, Transformers leverage self-attention mechanisms to model relationships across
all positions in a sequence simultaneously. This capability allows Transformers to capture
long-range dependencies more effectively than traditional RNN-based architectures, which
process sequences sequentially. Additionally, Transformers enable parallelized computa-
tions, resulting in faster training times and scalability to large datasets. These advantages
make Transformer-based models particularly well-suited for addressing the challenges asso-
ciated with wind energy forecasting, especially in short-term horizons where high accuracy
and computational efficiency are crucial (Brownlee, 2020).

This study builds upon the growing body of research exploring the application of Trans-
formers in time series forecasting, with a specific focus on enhancing the precision of short-
term wind energy predictions. Short-term forecasting, which typically spans from minutes
to several hours ahead, is important in real-time grid operations, energy market optimization
and system reliability. Given the increasing importance of wind energy, improving fore-
casting accuracy is required for mitigating its inherent variability and ensuring its seamless
integration into modern power systems. By leveraging the strengths of Transformer archi-
tectures, this study not only contributes to more reliable short-term wind energy predictions
but also holds potential for broader applications, such as optimizing wind energy utilization
and encouraging its adoption in regions where its development lags behind.

Wind Power Generation Forecasting Using Transformer-based Time Series Models 4



1.2 Objectives

1.2.1 General Objective

The general objective of this research is to develop and evaluate a Transformer-based model
for forecasting wind power generation using historical time series data. The model will be
applied to a case study using wind power generation data from Spain. Its performance will
be compared against other forecasting techniques to assess its accuracy and effectiveness.

1.2.2 Specific Objectives

The general objective is broken down into specific objectives, which will allow for the anal-
ysis and extraction of the necessary conclusions during the development of this work.

• To contextualize the importance of wind energy forecasting by analyzing its role in
addressing the variability of wind power generation and its integration into modern
power systems. This will involve a detailed discussion on the relevance of accurate
forecasting for grid stability, operational efficiency and energy market optimization.

• To identify and analyze the techniques used for short-term wind energy forecasting
in recent years through a comprehensive review of the literature. This review will
focus on traditional statistical methods, ML approaches and advancements in Deep
Learning (DL) techniques, highlighting their advantages and limitations.

• To implement a Transformer-based architecture for short-term wind energy fore-
casting, leveraging its self-attention mechanism to address the challenges associated
with capturing temporal dependencies and variability in wind power generation. The
model will be designed to handle historical time series data and optimize forecasting
accuracy.

• To apply the Transformer-based model to a case study using historical wind power
generation data from Spain and compare its performance against other forecast-
ing techniques, such as LSTM and Gated Recurrent Unit (GRU). This comparison
will assess the model’s accuracy and effectiveness in a real-world context, providing
insights into its practical applicability.

1.3 Structure of the Document

The present document is structured into five main chapters. The first chapter provides an
introduction to the study, outlining the motivation behind the research, its relevance in the
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context of wind energy forecasting and the primary objectives. Chapter 2 reviews the evo-
lution of wind energy forecasting methods over the years, with a focus on traditional statis-
tical approaches, advanced ML techniques and their respective applications and limitations.
Chapter 3 provides an explanation of Transformermodels, emphasizing their architecture and
suitability for time series forecasting. This chapter also describes themethodology adopted in
this research, including the processes for data selection, preprocessing, descriptive analysis
and the implementation of the Transformer-based model for short-term wind energy predic-
tion. Chapter 4 presents the results of the study, offering a detailed analysis of the model’s
performance. A comparison is also made between the proposed Transformer-based approach
and other forecasting techniques, to evaluate their accuracy and effectiveness. Finally, Chap-
ter 5 concludes the study, summarizing the key findings, discussing their implications and
proposing potential directions for future research.

Wind Power Generation Forecasting Using Transformer-based Time Series Models 6



Chapter 2

From Traditional Methods to
Transformer-based Time Series Models
in Wind Power Forecasting: State of the
Art

The increasing integration of wind energy into power grids has heightened the need for ac-
curate short-term forecasting, as the inherent variability of wind power generation poses sig-
nificant challenges for grid stability and operational planning (Hanifi et al., 2020; Wang et
al., 2011). Short-term wind energy forecasts, typically ranging fromminutes to several hours
ahead, is required to balance supply and demand, optimizing energy dispatch and reducing the
reliance on backup power sources (Hanifi et al., 2020; Liu & Zhang, 2024;Wang et al., 2011).
In electricity markets, accurate short-term predictions allow wind farm operators to partic-
ipate more effectively, minimizing financial penalties due to forecast errors. Moreover, as
renewable energy penetration continues to grow, improving the precision of short-term wind
power forecasting (WPF) has become relevant for ensuring the reliability and efficiency of
modern power systems.

To enhance the accuracy of WPF, predictive techniques have evolved significantly in re-
cent years, incorporating more sophisticated methodologies to capture the complex temporal
and spatial patterns in wind generation data. Initially, traditional approaches were developed
to providewind power forecasts based on historical data andmeteorological variables, relying
on relatively simplemodeling techniques. These earlymodels primarily consisted of physical
and statistical methods, which, despite their computational efficiency, struggled to account
for the complexity and variability of wind behavior. According to (Hanifi et al., 2020), WPF
methods can be categorized into three main approaches: physical models, statistical models
and hybrid approaches that integrate ML. The first WPF models were developed using phys-
ical and statistical approaches independently, along with simple regression models. These
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methods generated forecasts based on historical wind data, physical conditions or statistical
relationships, offering basic yet useful predictions. Although computationally inexpensive
and effective for very short-term forecasting (minutes to hours ahead), these models were
inherently limited in accuracy, as they failed to capture complex wind dynamics and rapid
meteorological changes.

Among these approaches, the physical model has been widely used to improve the ac-
curacy of wind power forecasts by incorporating meteorological and physical principles. As
detailed by (Lange & Focken, 2006), physical models emphasize the role of meteorology,
fluid dynamics and energy economics in understanding fluctuations in wind power genera-
tion. These models integrate atmospheric flows, boundary-layer meteorology

and thermal stratification to provide a more comprehensive representation of the factors
affecting wind power output. By incorporating a better understanding of terrain effects, ther-
mal gradients and large-scale meteorological patterns, physical models aim to refine the accu-
racy of wind power predictions. However, despite these advancements, physical models still
face limitations in achieving high precision. Errors often arise due to imperfect modeling of
atmospheric conditions and sudden, unpredictableweather changes. Evenminor inaccuracies
in numerical weather predictions can lead to significant discrepancies in WPF. Furthermore,
the relationship between wind speed and power output is nonlinear, making it difficult for
physical models to generalize across different meteorological conditions. Forecasting errors
tend to vary depending on wind regimes, atmospheric stability and terrain characteristics,
requiring continuous improvements and validation to enhance prediction accuracy. These
challenges have driven the exploration of alternative approaches, including statistical and
ML-based models, which offer greater adaptability in handling complex wind behavior and
improving short-term forecast reliability.

To address the limitations of physical models, time series-based statistical approaches
gained prominence as an alternative for WPF. Among these, the ARIMA model has been
widely adopted due to its effectiveness in capturing short-term linear dependencies and pat-
terns in historical data. ARIMA models analyze past observations to identify autoregressive
(AR) and moving average (MA) components while adjusting for trends and seasonal fluc-
tuations, enabling improved forecasting accuracy compared to simpler approaches such as
persistencemodels. Unlike persistencemodels, which assume that future wind power genera-
tionwill resemble themost recent observations, ARIMAaccounts for temporal dependencies,
making it more suitable for short- and medium-term predictions. For instance, (Kavasseri &
Seetharaman, 2009) demonstrated the advantages of ARIMA in predicting wind power gen-
eration trends and seasonal variations, showing that it consistently outperformed persistence
models in medium-term forecasting.

Despite these advantages, ARIMA models face inherent limitations when dealing with
long-range dependencies and complex temporal structures in wind power generation data.
Traditional ARIMA assumes integer differencing, which can be restrictive when modeling
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time series with long memory effects. This limitation prevents ARIMA from fully capturing
the gradual decay of past influences on future values, which is particularly relevant for wind
power generation, where long-term dependencies often emerge due to seasonal and climatic
cycles (Chen, Pedersen, Bak-Jensen, & Chen, 2009). To handle these constraints, fractional-
ARIMA (f-ARIMA) models were introduced as an extension of the standard ARIMA frame-
work. By allowing the differencing parameter to assume fractional values, f-ARIMA ef-
fectively models long-range correlations in time-series data, offering greater flexibility in
capturing persistent dependencies. Studies have shown that f-ARIMA can significantly en-
hance forecasting accuracy, with one study reporting a 42% improvement in Mean Squared
Error (MSE) for hourly wind speed predictions compared to traditional ARIMA (Kavasseri
& Seetharaman, 2009). This enhanced capability makes f-ARIMA particularly useful for
applications requiring a more nuanced understanding of long-term patterns, improving the
reliability of wind power forecasts over extended time horizons.

Although f-ARIMA enhances forecasting accuracy by capturing long-range dependen-
cies, certain challenges remain that limit its effectiveness in WPF. The assumption of sta-
tionarity restricts its applicability in scenarios where non-linear or chaotic dynamics domi-
nate, such as abrupt wind speed fluctuations caused by atmospheric turbulence. Additionally,
parameter selection, determining the optimal AR, differencing (I), and MA terms, requires
significant manual intervention, reducing its scalability for real-time applications. While
f-ARIMA improves trend and seasonality modeling, its performance weakens when con-
fronted with sudden changes in wind speed or complex meteorological interactions, which
are common in short-term forecasting (Kavasseri & Seetharaman, 2009).

Given these constraints, ARIMA-based models remain useful for short- and medium-
term forecasting, particularly when capturing periodic patterns in historical data. However,
to overcome their limited ability to model non-linear dependencies, recent studies have ex-
plored hybrid approaches that integrate ARIMA with advanced predictive techniques. These
methods combine ARIMA’s statistical strengths with ML or DL architectures, enhancing
forecasting accuracy by incorporating data-driven pattern recognition. The adoption of hy-
brid models reflects an effort to develop forecasting techniques that balance interpretability,
adaptability, and computational efficiency, addressing the increasing complexity of wind
power prediction (Kavasseri & Seetharaman, 2009)

Building upon these advancements, ML has emerged as a transformative tool in WPF,
offering a powerful means to model the nonlinear and highly dynamic nature of wind energy
generation. Unlike traditional statistical models, ML techniques can automatically learn pat-
terns from large datasets, capturing intricate relationships between meteorological variables
and wind power output. Among the most widely applied ML methods in this domain are
Random Forests and Gradient Boosting, which have demonstrated strong predictive capa-
bilities in WPF (Hanifi et al., 2020). These approaches often benefit from advanced data
preprocessing techniques, such as feature engineering and dimensionality reduction, which
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enhance model robustness and generalization. Additionally, ML-based methods can adapt
to changes in data distribution more effectively than traditional approaches, making them
particularly valuable for short-term forecasting where wind variability is more pronounced.

Beyond standalone ML models, hybrid approaches that integrate ML algorithms with
statistical decomposition methods have demonstrated superior predictive accuracy. These
models decompose the original time series into different frequency components, enabling
the ML algorithms to capture distinct temporal patterns more effectively. For instance, the
combination of ML techniques with decomposition methods such as Ensemble Empirical
Mode Decomposition (EEMD) has proven highly effective in handling the chaotic and non-
stationary nature of wind power data. By isolating different signal components, these hybrid
models improve prediction accuracy for both short-term and long-term variations, addressing
key challenges in WPF. Empirical studies have shown that ML-based hybrid models consis-
tently outperform traditional approaches by leveraging both statistical rigor and the flexibility
of data-driven learning (Wu, Meng, Fan, Zhang, & Liu, 2022).

Despite their strengths, ML models also present notable challenges that can impact their
applicability in WPF. One of the primary concerns is their reliance on large amounts of high-
quality data, as inadequate or biased datasets can significantly degrade model performance.
Additionally, training complex ML models requires substantial computational power, par-
ticularly when dealing with high-dimensional feature spaces and real-time forecasting ap-
plications. The optimization process, including hyperparameter tuning, is another critical
limitation, as selecting the appropriate configuration for a model often demands extensive
experimentation and domain expertise. Moreover, interpretability remains an ongoing is-
sue in ML-based forecasting. Many of these models operate as “black boxes”, making it
difficult to understand the rationale behind their predictions. This lack of transparency can
hinder trust in the model’s outputs, especially in energy markets and grid operations where
decision-making requires explainable and reliable forecasts (Hanifi et al., 2020).

To address some of these challenges and further improve predictive accuracy, DL, a sub-
set of ML, has emerged as a powerful alternative. Unlike traditional statistical approaches,
DL methods automatically learn complex patterns from large datasets, capturing intricate re-
lationships between meteorological variables and wind power generation. Various artificial
neural network architectures have been applied in this field, includingMultilayer Perceptrons
(MLPs), Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs),
each contributing unique advantages depending on the forecasting objectives and data char-
acteristics.

MLPs, widely recognized for their simplicity and adaptability, have been employed to
map input features such as wind speed, wind direction, and atmospheric pressure to power
output predictions. While their lack of temporal structure limits their standalone applica-
tion in time-series forecasting, they remain useful as components in hybrid models, where
they complement other architectures by learning non-linear feature mappings (Wang et al.,
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2011). Beyond fully connected networks, CNNs, originally developed for image processing,
have been adapted for WPF, particularly in hybrid frameworks. By leveraging convolutional
layers, these models effectively extract spatial correlations from multivariate meteorolog-
ical data, enhancing forecasting accuracy. CNNs have demonstrated strong performance
when combined with RNN-based architectures, as they preprocess spatial dependencies be-
fore sequential modeling. For instance, hybrid CNN-LSTM models have been successfully
employed to simultaneously capture spatial and temporal patterns, leading to improvedmulti-
step forecasting performance. Studies have shown that these models outperform standalone
LSTMs in scenarios where meteorological features exhibit strong spatial dependencies, such
as offshore wind farms (Hanifi et al., 2020; Wang et al., 2011).

Despite these advancements, traditional DL architectures still face limitations in han-
dling long-range dependencies efficiently, often requiring extensive computational resources
for training and hyperparameter tuning. Additionally, their reliance on sequential process-
ing constrains scalability, particularly for large-scale wind power datasets. To address these
challenges, recent research has explored the application of Transformer-based models, which
leverage self-attention mechanisms to improve forecasting performance. Transformer mod-
els have demonstrated remarkable accuracy, particularly inmulti-step forecasting tasks, where
capturing complex dependencies over extended horizons is critical. By integrating advanced
signal processing techniques such as EEMD, transformers effectively reduce noise and ex-
tract meaningful patterns from wind speed data, leading to more reliable predictions. Empir-
ical studies have shown that transformer-based models significantly outperform traditional
RNN and CNN architectures in terms of key evaluation metrics, such as Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE). Their scalability and ability to process
variable-length input and output sequences make them particularly well-suited for real-world
WPF applications (Wu et al., 2022).

Furthermore, the transformer-based encoder-decoder framework, when combined with
EEMD, has achieved state-of-the-art accuracy in multi-step wind speed forecasting. The
self-attention mechanism enables these models to selectively focus on different temporal
patterns within the input sequence, enhancing their ability to capture intricate dependencies
with greater precision. This capability is particularly valuable inWPF, where fluctuations are
influenced by a multitude of interdependent factors, such as meteorological conditions and
terrain variations. These advancements underscore the potential of ML to continue evolving
and overcoming current forecasting limitations through the integration of novel methodolo-
gies, setting new benchmarks in predictive accuracy and operational reliability (Wu et al.,
2022).

Table 2.1 provides a comparative summary of the most relevant WPF techniques that
have been employed in the recent literature. The table reveals a methodological evolu-
tion from traditional statistical models, to more advanced ML and DL frameworks, ANNs,
and Transformer-based architectures. The literature suggests a trend toward increasingly
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data-driven, hybrid and deep architectures that not only capture complex temporal dynamics
but also enhance generalization across different sites and conditions. These methods have
demonstrated measurable improvements in forecasting accuracy, often outperforming tradi-
tional models.
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Table 2.1: Summary of Wind Power Forecasting Methods: From Traditional Approaches to Transformer-based Time Series Models.

Source Objective Input variables Temporary Stage Used techniques Main results
(Kavasseri &
Seetharaman,
2009)

Improve day-ahead and two-day-
ahead wind speed forecasts using
fractional time series models

Hourly average wind speed (2 s
samples averaged to 10 min, then
hourly)

4 weeks per site across four differ-
ent wind monitoring sites in North
Dakota (May, Dec, Mar, Oct);
Forecast Horizon: Day-ahead (24
hours) and in some cases up to
two-day-ahead (48 hours)

ARIMA, f-ARIMA (36 models
tested, selected via AIC, parameters
estimated using Exact Maximum
Likelihood via Ox-ARFIMA)

f-ARIMA outperformed ARIMA and
persistence: 42% average FMSE im-
provement; 95.3% avg. correlation
with actual; better robustness in volatile
regimes; wind power forecasts derived
using turbine power curve

(Lin & Liu, 2020) Forecast wind power using deci-
sion trees combined with DL.

SCADA (Supervisory Control
and Data Acquisition) features
such as wind speed and ambient
temperature from a turbine in
Scotland

12 months, 1-second sampling DL + Isolation Forest (IF) IF provides a more robust preprocessing
step for forecasting, especially when the
input data deviate from a normal distri-
bution, unlike traditional methods such as
Elliptic Envelope

(Lima, Guetter,
Freitas, Panetta,
& de Mattos,
2017)

Apply a boosting strategy by com-
bining numerical weather predic-
tion with statistical filtering to im-
prove the accuracy of regression-
based wind power forecasts

Atmospheric global-scale fore-
casts from Brazil

7 and 12 months, sampling rate
of 10 minutes; Forecast Horizon:
72h

Mix of physical and statistical
model: Kalman filter and regres-
sion

RMSE down to 100.51 using cubic re-
gression; Kalman filter reduced bias and
error

(Pelletier, Mas-
son, & Tahan,
2016)

Improve site-specific wind tur-
bine power curve modeling using
Artificial Neural Network (ANN)

Wind speed, air density, turbu-
lence intensity, etc. from 140
Nordic turbines

12months, 10-min avg (from 1Hz
data)

Multi-stage MLP (2-layer ANN
with 6 inputs)

MAE 15.3–15.9; outperforming IEC,
parametric and non-parametric models;
scalable to more inputs

(Zhang, Yan, In-
field, Liu, &Lien,
2019)

Use LSTM network for wind
power production prediction com-
pared to other models such as
Radial Basis Function and Back
Propagation.

Wind speed from a northern chi-
nese wind farm

3 months, sampling rate of 15
min; Forecast horizon:48h

LTSM andGaussianMixtureModel RMSE: 6.37%, best accuracy; LSTM
outperformed all benchmarks; Gaussian
Mixture Model gave most reliable confi-
dence intervals

(Wu et al., 2022) To develop a multistep short-term
wind speed forecasting model us-
ing a Transformer architecture

Wind speed at various heights,
temperature, pressure, humidity,
wind direction, turbulence, etc.
(from NWTC-M2 tower dataset).

19 years (2002–2020), 10-min in-
tervals; 2020 (1 year) used for
testing; Forecast horizon: 3h, 6h,
12h and 24h

EEMD + Transformer (encoder–
decoder structure)

MAE: 0.243–0.453, RMSE: 0.326–0.651
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Chapter 3

Methodological Framework and
Transformer Model Implementation

This chapter presents the methodological framework adopted to conduct the quantitative
analysis developed in this Bachelor’s thesis. The methodology is structured into a series
of stages, each designed to ensure the appropriate preparation, modeling, and evaluation of
historical wind power generation data using Transformer-based techniques. These stages are
supported by Python libraries such as Pandas, NumPy, Matplotlib, Scikit-learn and Tensor-
Flow, which enable efficient data handling, visualization, model implementation and perfor-
mance evaluation. The methodological process is summarized in Figure 3.1 and consists of
the following key stages:

1. Data preparation: the first stage involves collecting and integrating historical data on
wind power generation from multiple sources covering the period 2020-2024. After
integration, the data undergoes a cleaning process to handle missing values and cor-
rect inconsistencies. A key aspect of this stage involves restructuring the dataset into
overlapping subsequences, a necessary transformation when working with time series
forecasting models. This process, known as sliding window creation, segments the
continuous time series into fixed-length windows, where each window serves as an
input sequence used to predict the immediate next time step.

2. Exploratory data analysis: This stage focuses on examining the structure and charac-
teristics of the data using visual and statistical techniques. The goal is to identify trends
and patterns, providing initial insights into the temporal behavior of wind power gen-
eration.

3. Modeling: The modeling phase centers on implementing a transformer-based archi-
tecture for short-term forecasting of wind power. The model is trained on the pre-
pared dataset to capture both short-term fluctuations and longer-term dependencies,
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with hyperparameter selection and model tuning conducted to optimize predictive per-
formance. In this part, the Train-Test split will be carried out in order to assess the
generalization capacity of the forecasting model. Given the sequential nature of the
data, this division will be performed chronologically to ensure that training data pre-
cede the test set, simulating the real-world conditions under which the model will be
applied.

4. Evaluation: The final stage evaluates the model’s performance using established error
metrics, including MAE, MSE and Mean Absolute Percentage Error (MAPE). The
results are compared with alternative forecasting approaches, such as LSTM and GRU
models, to assess the relative accuracy and suitability of the Transformer model for
short-term wind power prediction.

Figure 3.1: Methodological framework of the study.
Source: Self-Elaboration

3.1 Data Preparation

The first stage of the analysis consists of data preparation, beginning with the integration
of historical wind power generation data obtained from the European Network of Transmis-
sion System Operators for Electricity (ENTSO-e), covering the period from 2020 to 2024
(ENTSO-E, 2025). These hourly records for Spain are merged into a single, chronologi-
cally ordered dataset to ensure temporal continuity and facilitate further analysis. During
this process, inconsistencies in data formatting are identified and corrected to ensure unifor-
mity across the five-year dataset.

It was observed that, starting on May 24, 2022, the recording frequency of the data
source changed from hourly to 15-minute intervals. To maintain consistency with the rest of
the dataset and ensure compatibility with the Transformer-based modeling approach, these
quarter-hourly values are aggregated into hourly observations by calculating the averagewind
power generation within each hour. This resampling step guarantees the homogeneity of the
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time series, which is important for both exploratory analysis andmodel training. This integra-
tion process ensures consistency and completeness across different time periods by merging
data sources while preserving the chronological order of observations. During this stage,
column names, data formats and variable types are standardized to prevent inconsistencies
and potential errors in downstream processes, particularly during model training.

Once the data integration is complete, the next step involves addressing missing values
within the dataset. Initially, a thorough check is performed to identify the number of missing
values in each column. Upon detecting the missing values, the specific timestamps where
data was absent are listed. It was identified that the missing values coincided with daylight
saving time adjustments, which caused certain hours to be skipped entirely. This observation
confirmed that the missing values did not result from data collection errors but rather from
time shifts that led to non-existent timestamps. To address these gaps, linear interpolationwas
applied. This method estimates the missing values using a weighted average of the nearest
available data points, specifically the observations immediately before and after the missing
entry. Linear interpolation was chosen because it maintains a smooth transition between
known values, making it easier to preserve the dataset’s temporal consistency. This approach
is particularly suitable when the missing intervals are short and when maintaining continuity
in the time series is relevant for accurate modeling, which is especially necessary when using
a Transformer Model.

Additionally, outlier detection and treatment is performed using the Interquartile Range
(IQR) method to identify anomalous values that could distort the modeling process. Out-
liers in wind power generation data may result from sensor errors, system failures or atypi-
cal meteorological events. Methodologically, outliers cannot be automatically removed, as
some extreme values may reflect genuine variability in wind conditions. Instead, outliers
are flagged and reviewed within the context of meteorological conditions at the time. If a
clear justification exists (e.g., erroneous sensor readings), the outlier is replaced using local
interpolation techniques. Whereas if the extreme value reflects actual wind variability, it is
retained to preserve the true distribution of the data.

3.2 Exploratory data analysis

After completing the data preparation process, the next stage involves conducting Exploratory
Data Analysis (EDA). This phase aims to gain a comprehensive understanding of the dataset,
examining statistical properties, visual patterns and temporal structureswithin thewind power
generation data.

The first step in the EDA process involves examining the shape of the dataset, focusing on
the number of observations and the dimensional structure of the wind power generation data.
Understanding the dataset’s size and temporal resolution helps determine whether the data
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is sufficient for developing a reliable forecasting model. Since time series models require a
consistent and adequately large sample to capture both short-term fluctuations and long-term
patterns, this assessment ensures that the datameets these requirements. Following this initial
examination, a statistical analysis is performed to explore the main characteristics of the wind
power generation variable. Descriptive statistics, including the mean, median, variance and
standard deviation, are calculated to summarize the central tendency and variability of the
data. These metrics facilitate the identification of the distribution and dispersion of wind
power values, allowing for a better understanding of variations in generation levels over
time.

In addition to computing numerical statistics, it is useful to visualize the distribution of
wind power generation to detect irregularities or patterns that may not be apparent through
numerical summaries alone. A histogram can illustrate the frequency of different power
generation levels, revealing potential asymmetry or unusual distributions. To further examine
variability and detect potential outliers, boxplots are constructed for each year, allowing for a
comparative analysis of power generation across different periods. Identifying outliers at this
stage helps determine whether specific years exhibit abnormal patterns, guiding the decision
on whether transformations or adjustments are required.

The EDA also includes a time series decomposition to break down the wind power gener-
ation data into its primary components: trend, seasonality and residual. The trend component
highlights long-term changes in power generation, while the seasonal component captures
repeating patterns associated with daily, weekly or annual cycles. The residual component
represents irregular variations that do not follow the trend or seasonal patterns. Decompos-
ing the time series helps identify consistent patterns and fluctuations, which is important for
selecting features that enhance the model’s predictive performance.

3.3 Modeling

The modeling phase in this analysis focuses on implementing a Transformer-based architec-
ture for short-term WPF. The objective is to leverage the Transformer’s ability to capture
both short-term fluctuations and long-term dependencies in sequential data, enabling accu-
rate predictions of wind power generation. Unlike traditional recurrent models, Transformers
are well-suited for handling long-range temporal dependencies without relying on sequential
processing. This characteristic makes them particularly effective for time series forecasting,
where capturing patterns at different temporal scales is fundamental.

3.3.1 Fundamentals of Transformers

Transformers are a type of DL model originally introduced for natural language processing
tasks but have since demonstrated remarkable performance in time series forecasting. The
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core innovation of the Transformer model lies in its self-attention mechanism, which allows
the model to weigh the relevance of different parts of the input sequence independently of
their position (Vaswani et al., 2017). This approach overcomes the limitations of traditional
recurrent architectures, such as RNNs and LSTM networks, which process sequences in a
step-by-step manner, leading to challenges when capturing long-range dependencies.

The Transformer architecture consists of two main components: the encoder and the
decoder, each composed of multiple layers that stack self-attention and feed-forward neu-
ral networks. The encoder processes the input sequence and generates a set of contextual
embeddings, which capture the relationships between different parts of the sequence. The
decoder then uses these embeddings to produce the output sequence. Although the origi-
nal architecture was designed for sequence-to-sequence tasks, the encoder component alone
is often used for time series forecasting, as it efficiently captures temporal patterns without
the need for autoregressive decoding (Li & Law, 2024). The traditional block diagram of a
Transformer model in Figure 3.2 illustrates its key components. The input embeddings are
the first stage, where each element of the input sequence is transformed into a continuous
representation. These embeddings are combined with positional encodings to retain infor-
mation about the order of the sequence, as Transformers do not inherently encode positional
information. This integration of positional encodings is essential to ensure that the model
can distinguish between elements based on their positions within the sequence, preserving
the temporal context.

Next, the model processes the embedded inputs through multi-head self-attention layers.
In these layers, the model learns to identify which parts of the input sequence are most rel-
evant to each prediction, regardless of their position within the sequence. The self-attention
mechanism dynamically adjusts the focus of the model, allowing it to weigh different parts
of the input based on their relevance to the task. This enables the model to capture both
local and long-range dependencies within the data, facilitating the recognition of complex
temporal patterns. The multi-head approach further enhances this capability by enabling the
model to simultaneously attend to multiple aspects of the input, improving its ability to learn
diverse patterns from the data (Bu & Cho, 2020). This parallel attention mechanism allows
the model to process information more efficiently and effectively, particularly when dealing
with intricate or long-term temporal relationships.

Following the self-attention layer, a feed-forward network is applied to each position in-
dependently. This network consists of two fully connected layers with a non-linear activation
function in between, which allows the model to transform the attended representations into
more complex features. Residual connections and layer normalization are incorporated af-
ter both the self-attention and feed-forward layers, ensuring stable training and preventing
gradient vanishing. The use of residual connections helps maintain the flow of gradients
through deeper networks, while layer normalization standardizes the output, contributing to
more robust and faster convergence. The encoder stack can be repeated multiple times to
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increase the model’s capacity to learn complex representations. The output of the final en-
coder layer is then used as the input to the subsequent processing stages, either directly in the
case of forecasting or passed to a decoder if a sequence-to-sequence approach is required.
This modular structure not only facilitates capturing long-term dependencies but also makes
the model highly parallelizable, significantly reducing training time compared to recurrent
models (Vaswani et al., 2017).

Figure 3.2: The Transformer Model Architecture
(Vaswani et al., 2017)

3.3.2 Implementation Details

Once the fundamental elements of the Transformer model have been established, the next
step involves describing the methodological process for its implementation. The first task is
to restructure the time series data into subsequences using the sliding window technique. This
approach segments the continuous time series into overlapping windows of a fixed length,
where each window represents a set of past observations used to predict the subsequent value.
The length of the window is initially chosen based on domain knowledge and exploratory
analysis, but it will later be fine-tuned as a hyperparameter to optimize model performance.

After generating the subsequences, the dataset is divided into training and testing sets
to evaluate the model’s generalization ability. To preserve the temporal integrity of the time
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series data, the first 70% of the sequences are allocated to the training set, while the remaining
30% constitute the test set. This division reflects the sequential nature of the data, where older
observations are used to train the model and more recent data is reserved for validation. This
method of splitting ensures that the model does not have access to future information during
training, therefore it maintains the realistic forecasting scenario where past data is used to
predict future values.

After restructuring the time series data, the next step is to normalize the wind power
generation values. Normalization is applied to ensure that all input features are on a com-
parable scale, which facilitates model convergence and enhances numerical stability during
training. In time series forecasting, unnormalized data can lead to large gradient updates,
making the training process unstable and slowing down convergence. Therefore, z-score
scaling is employed to help the Transformer model learn more efficiently by reducing the
impact of disparate value ranges. Once the data has been normalized, the implementation
of the Transformer model begins. To achieve optimal model performance, various combi-
nations of hyperparameters are tested. This process involves systematically adjusting key
model parameters, training the model with each combination and evaluating its performance
using error metrics that will be discussed in a subsequent section. The objective is to mini-
mize both training and testing errors, thereby ensuring that the model generalizes well to new
data.

To optimize the Transformer’s performance, several hyperparameters are defined and
fine-tuned:

• Sequence length (seq_length): This parameter determines the number of time steps
considered in a single input sequence. The choice of sequence length directly influ-
ences the model’s ability to capture historical patterns and forecast future values. To
adapt the sequential nature of wind power data to the Transformer model, the sliding
window technique segments the time series into fixed-length windows. Each win-
dow serves as an input sequence used to predict subsequent values. Choosing the
window size requires balancing the need to capture sufficient historical context while
maintaining computational efficiency. In this study, sequence lengths of 12, 24 and
36 are tested, corresponding to half-daily (12 hours), daily (24 hours) and one-and-
a-half-daily (36 hours) observations. These values are chosen to explore the model’s
performance across different temporal resolutions.

• Batch size: This parameter specifies the number of sequences processed simultane-
ously during training. A smaller batch size generally results in more stable training
but at the cost of longer training time. Conversely, a larger batch size accelerates
training but may impair generalization, as the model might overfit by memorizing pat-
terns rather than learning them. In this study, the batch size will be adjusted by testing
values such as 16, 32 and 64.
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• Model dimension (model_dim): This parameter defines the size of the learned repre-
sentation for each input token (time step). A smaller dimension reduces computational
cost but may limit the model’s ability to capture complex dependencies. In contrast,
a larger model dimension enhances representation capacity but increases the risk of
overfitting, particularly when the dataset size is limited. This hyperparameter is tested
with model dimensions of 16 and 32, which are expected to provide sufficient capacity
to capture meaningful patterns within the time series data.

• Number of heads (num_heads): This parameter indicates the number of attention
heads used within the multi-head attention mechanism. A low number of heads results
in a simpler model but may struggle to capture diverse relationships within the data.
Increasing the number of heads allows the model to learn different attention patterns,
improving its ability to process complex temporal relationships. In this study, 2, 4 and
8 heads are tested, ensuring that the model dimension (model_dim) is divisible by the
number of heads (num_heads).

• Number of layers (num_layers): This parameter defines the number of stacked Trans-
former encoder layers. Increasing the number of layers enhances the model’s capacity
to learn complex hierarchical representations. However, an excessive number of layers
may lead to overfitting or significantly increase computational time. Given the nature
of the task and the relatively limited size of the dataset, it is generally sufficient to
employ 2 to 3 layers to achieve an appropriate balance between model capacity and
generalization performance.

• Dropout rate: This regularization parameter randomly disables a proportion of neu-
rons during training to mitigate overfitting. A moderate dropout rate prevents the
model from becoming overly dependent on specific neurons. However, an excessively
high dropout rate may result in underfitting, as the model may fail to capture essential
patterns. In this study, dropout rates of 0.1, 0.2 and 0.3 are tested to evaluate their
impact on model performance.

Moreover, other hyperparameters have been set based on values reported in the literature
to ensure consistency with proven practices in time series forecasting. This approach lever-
ages prior knowledge from previous studies, providing a foundation for model configuration.
In the training process, the standard Adam optimizer is chosen for its adaptive learning rate
mechanism and well-established effectiveness in training DLmodels across a variety of tasks
(Wu et al., 2022). Adam adjusts learning rates individually for each parameter, making it par-
ticularly suitable for complex architectures and moderate-sized datasets. In this study, the
default learning rate of 0.001 was used, as it offers a practical balance between convergence
speed and stability. During model training, the number of epochs of training epochs is dy-
namically controlled by an early stopping function, which monitors validation loss and halts
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training if no improvement is observed over a defined patience period. This prevents unnec-
essary computation in cases of early convergence, while still allowing for additional training
iterations if the model has not fully converged.

3.4 Evaluation

Once the optimal Transformer model configuration has been selected, its performance will
be compared with that of traditional DL strategies commonly used for time series forecast-
ing, such as LSTM and GRU. These models have been widely employed in the field of wind
power prediction due to their ability to capture temporal dependencies and model non-linear
patterns within sequential data (Liu&Zhang, 2024). However, despite their proven effective-
ness, LSTM and GRU networks often face challenges related to long-range dependencies,
especially in cases where the input sequence length is substantial. These models process
data sequentially, which can lead to inefficiencies when modeling long-term patterns (Liu &
Zhang, 2024).

In contrast, the Transformer model addresses these challenges by utilizing self-attention
mechanisms. This architectural advantage positions Transformers as a potentially superior
alternative for time series forecasting, particularly when the data exhibits complex temporal
relationships. However, given that LSTM and GRU models remain state-of-the-art in fore-
casting applications, it is important to conduct a comparative analysis to objectively assess
whether the Transformer model offers a significant improvement . In this way, the compara-
tive analysis will employ several error metrics that are widely used in time series forecasting.
These metrics are chosen to assess not only the accuracy of the predictions but also the gen-
eralization ability of each model. The selected metrics will include MAE, MSE and MAPE,
as they provide complementary perspectives on prediction accuracy.

Among the selected evaluation metrics, the MAE is particularly useful for measuring the
average magnitude of errors between predicted and actual values, regardless of their direction
(Wu et al., 2022). MAE quantifies the average absolute difference between the predicted
values (ŷt) and the actual observed values (yt) over a given period. This metric provides an
intuitive interpretation of the model’s accuracy, as it directly represents the average error in
the same units as the data. The MAE is mathematically expressed in Equation 3.1.

MAE =
1

n

n∑
t=1

|ŷt − yt| (3.1)

In this equation, n denotes the total number of observations, while ŷt and yt represent the pre-
dicted and actual values at time t, respectively. The absolute value operator, denoted by |·|,
ensures that negative differences do not offset positive ones, thus reflecting the magnitude
of the prediction errors without considering their direction. MAE is particularly advanta-
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geous when the objective is to understand the average prediction error without being overly
sensitive to outliers.

Another key evaluationmetric is theMSE, expressed in Equation 3.2, which computes the
average of the squared differences between the actual values and the predicted values. This
metric is especially effective when the objective is to penalize larger errors more severely, as
the squaring process increases the impact of greater deviation (Wu et al., 2022).

MSE =
1

n

n∑
t=1

(ŷt − yt)
2 (3.2)

In this equation, n represents the total number of observations, ŷt and yt are the predicted
and actual values at time t, respectively. The squaring ensures all error terms are positive
and magnifies larger errors. While MSE offers a powerful measure of overall accuracy, it is
also highly sensitive to outliers. This means that a few large errors can disproportionately
influence the final value, which requires careful tuning of the prediction model to avoid
overfitting or misinterpretation of model performance.

The MAPE is a widely used metric that expresses prediction errors as a percentage of the
actual values, offering a scale-independent view of model accuracy (Wu et al., 2022). It is
defined as follows in Equation 3.3:

MAPE =
100%
n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ (3.3)

Here, yt is the actual observed value, ŷt is the predicted value, and n is the total number
of observations. The result is scaled by 100 to express the error as a percentage. MAPE
is particularly useful for comparing model performance across datasets with different units
or magnitudes, as it standardizes the error. However, it can become unreliable when actual
values are close to zero, since small denominators can produce extremely large or undefined
percentage errors. Therefore, while MAPE offers clear interpretability, it should be used
cautiously in datasets with values near zero.
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Chapter 4

Experimental Results

This chapter presents the results obtained from the implementation and evaluation of the
Transformer-based model for short-termWPF. The analysis focuses on assessing the model’s
predictive performance, comparing it with more traditional forecasting techniques: LSTM
and GRU models. The evaluation metrics used include MAE, MSE and MAPE, providing
a comprehensive assessment of the model’s performance. To ensure transparency and re-
producibility, all code developed throughout this Bachelor’s thesis has been made publicly
available on GitHub (Oriol, 2025). The repository contains the complete set of scripts and
notebooks used for data preprocessing, model training, hyperparameter tuning and result
evaluation.

4.1 Preprocessed Data and Descriptive Insights

Following the data preparation and descriptive analysis methodology outlined in Chapter 3,
the dataset was read and processed to ensure consistency. The dataset consists of 43,848
observations, covering the period from 2020 to 2024. The key variables include “Fecha y
Hora”, representing the timestamp of the recorded data, as well as the separate variables
“Fecha” and “Hora” for more granular temporal analysis. The main variable of interest is
“Generation”, which measures wind power generation in megawatts (MW). During the data
cleaning process, a total of 6 missing values were identified within the “Generation” variable.
According to the proposed methodology, linear interpolation was applied to fill these gaps, as
it provides a smooth transition between known values, preserving the temporal consistency
of the dataset. This approach was particularly suitable given the relatively short nature of the
missing intervals. The resulting time series after the interpolation process can be visualized
in Figure 4.1.
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Figure 4.1: Evolution of Wind Power Generation in Spain from 2020 to 2025
Self-Elaboration

The descriptive statistics of the “Generation” variable, as shown in Table 4.1, reveal char-
acteristics of wind power generation from 2020 to 2024. The mean value of approximately
6,661.10 MW indicates the average wind power output during the observed period, while
the standard deviation of 3,867.57 MW highlights significant variability, which is typical in
wind energy data due to fluctuating meteorological conditions. The minimum recorded gen-
eration value of 196MW and a maximum of 20,321MWdemonstrate the wide range of wind
power outputs observed. Additionally, the median value of 5,943 MW suggests that half of
the observations fall below this point, indicating a slight right skew in the data distribution.
The IQR, between the first quartile (3,587.44MW) and the third quartile (9,119MW), further
confirms the presence of variability, with a substantial proportion of values concentrated in
the mid-range.

Statistics Generation
Count 43,848
Mean 6,661.10

Standard Deviation 3,867.57
Minimum value 196

25% 3,587.44
50% 5,943
75% 9,119

Maximum Value 20,321

Table 4.1: Statistics of Dataset Variables

To gain a deeper understanding of the distribution and variability of wind power genera-
tion over the study period, a histogram of the generation values was constructed. Figure 4.2
shows that the distribution of wind power generation is right-skewed, with most observa-
tions concentrated between 2,500 MW and 7,500 MW. The presented distribution suggests
that moderate levels of power generation are more common, while higher values are progres-
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sively less frequent. The tail on the right side of the histogram reflects sporadic high-output
events, which are less frequent but significantly impact the overall distribution. To further in-
vestigate the variation in wind power generation over the years, a boxplot was constructed to
represent the distribution for each year from 2020 to 2024 (Figure 4.3). The boxplot displays
the median generation level for each year, along with the IQR and any potential outliers. The
median values remain relatively stable across the years, which shows consistency in typi-
cal wind power output. However, the presence of some outliers above the upper whisker is
notable. This might suggest that high wind power events occur, maybe during certain sea-
sons. These outliers, although visually prominent, do not drastically affect the median or the
central distribution of the data.

Figure 4.2: Distribution of wind power generation in Spain from 2020 to 2025.
Self-Elaboration

Figure 4.3: Boxplot of the distribution of wind power generation in Spain from 2020 to 2025
Self-Elaboration
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To complement the previous exploratory analysis, an outlier detection procedure was car-
ried out to characterize atypical high-generation events in the dataset. The IQR method was
applied, usingQ1−1.5×IQR andQ3+1.5×IQR as thresholds to identify extreme values.
A total of 257 outliers were detected across the 2020–2024 period, as illustrated in Figure 4.4.
The year 2022 stands out with the highest number of outliers (86), likely reflecting excep-
tional meteorological conditions that led to significant deviations from standard generation
patterns. In contrast, 2023 shows the lowest count (8), indicating greater output stability.
The remaining years exhibit intermediate figures, with 2020 and 2024 recording 69 and 61
outliers respectively and 2021 a total of 30. These year-to-year differences underscore the
natural variability of wind power generation and its dependence on atmospheric dynamics.
According to the methodology described in Section 3.1, no modifications were applied to
these extreme values in the modeling phase. Given that the outliers aligned with plausible
meteorological phenomena and showed no indication of data recording errors, their retention
was deemed appropriate. Preserving these observations ensured that the dataset reflected the
full variability of real-world wind power generation, which is essential for building models
capable of generalizing under diverse conditions.

Figure 4.4: Outlier Count - Wind Power Generation in Spain from 2020 to 2025
Self-Elaboration

To analyze the temporal structure of wind power generation, a time series decomposi-
tion was performed to isolate its key components: trend, seasonality and noise. Figure 4.5
displays the decomposition of the original wind power generation series from 2020 to 2024.
The trend component, shown in the second plot, indicates a gradual increase in average wind
power generation over the years, with notable fluctuations around specific periods. This up-
ward trend may reflect advancements in wind energy infrastructure or improved generation
efficiency. The seasonal component exhibits repeating cycles, likely due to daily and yearly
wind variations. Strong periodic fluctuations suggest predictable wind patterns that can be
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leveraged for forecasting. The noise component, shown in the fourth plot, captures the resid-
ual variations not explained by the trend or seasonal patterns. These irregular fluctuations
indicate the presence of unpredictable changes in wind power generation, likely influenced
by short-term meteorological events or operational inconsistencies.

Figure 4.5: Decomposition of Wind Power Time Series
Self-Elaboration

4.2 Transformer Model Performance Evaluation

As described in the methodological framework in Chapter 3, a Transformer-based architec-
ture was implemented for short-term WPF using historical generation data. The continuous
time series was segmented into fixed-length overlapping windows using the sliding window
technique, with the goal of capturing relevant temporal dependencies. For each configura-
tion, a normalization process was applied to stabilize the learning dynamics, followed by
model training using an optimized set of hyperparameters. The performance was evaluated
on both training and test sets using three error metrics: MSE, MAE and MAPE.

To explore the model’s sensitivity to the temporal resolution of input data, three different
sequence lengths were considered: 12, 24, and 36 hours. This section begins by reporting
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the results corresponding to the 12-hour sequence, which allows the model to use half-daily
information to predict subsequent values. A total of twenty Transformer models were trained
under this configuration, each combining different values of dimensionality, number of at-
tention heads, encoder layers, dropout rate and batch size. The results are summarized in
Table 4.2. As highlighted in the table, Model_1 yields the best predictive performance, with
an MSE of 147.09, MAE of 8.06, and MAPE of 0.25% on the test set. This model was con-
figured with a dimensionality of 32, 4 attention heads, 3 encoder layers, a dropout rate of
0.1 and a batch size of 16. Also, it displayed a low train-test performance gap, which con-
firms its generalization capacity. On the other hand, models such as Model_9 and Model_18
underperformed significantly, with MSE values exceeding 4000 and 10000 on the test set,
respectively. These outcomes suggest that certain combinations of hyperparameters, partic-
ularly involving larger batch sizes and higher dropout rates, may degrade the model’s ability
to learn the underlying dynamics effectively.

Model Set Dim Heads Layers Dropout Batch MSE MAE MAPE
Model_1 Train 32 4 3 0.1 16 137.97 7.50 0.24%

Test 32 4 3 0.1 16 147.09 8.06 0.25%
Model_2 Train 16 2 3 0.2 64 1593.55 29.58 0.89%

Test 16 2 3 0.2 64 1751.18 30.94 0.91%
Model_3 Train 16 2 2 0.2 16 698.27 21.11 0.46%

Test 16 2 2 0.2 16 740.01 21.59 0.47%
Model_4 Train 32 8 2 0.2 32 1320.39 28.62 0.74%

Test 32 8 2 0.2 32 1389.44 29.51 0.75%
Model_5 Train 16 4 3 0.3 64 1395.83 32.49 0.96%

Test 16 4 3 0.3 64 1463.32 33.22 0.98%
Model_6 Train 16 4 3 0.2 32 472.19 13.17 0.38%

Test 16 4 3 0.2 32 455.34 13.77 0.39%
Model_7 Train 16 4 3 0.1 32 2689.30 31.28 0.59%

Test 16 4 3 0.1 32 3231.18 34.75 0.62%
Model_8 Train 16 2 3 0.3 64 2270.38 27.83 0.60%

Test 16 2 3 0.3 64 2697.18 30.70 0.62%
Model_9 Train 16 2 3 0.2 32 3858.70 48.24 1.31%

Test 16 2 3 0.2 32 4202.52 50.30 1.34%
Model_10 Train 32 4 3 0.2 64 1205.48 22.97 0.92%

Test 32 4 3 0.2 64 1291.69 24.45 0.94%
Model_11 Train 32 2 3 0.3 16 783.88 26.40 0.73%

Test 32 2 3 0.3 16 771.03 26.04 0.72%
Model_12 Train 16 2 3 0.1 64 1311.40 25.37 0.46%

Test 16 2 3 0.1 64 1319.10 25.40 0.46%
Model_13 Train 32 4 2 0.2 16 763.29 16.58 0.22%

Test 32 4 2 0.2 16 863.80 17.98 0.23%
Model_14 Train 32 2 2 0.1 16 334.28 11.65 0.41%

Test 32 2 2 0.1 16 366.71 12.03 0.41%
Model_15 Train 16 2 2 0.2 32 489.42 16.09 0.51%
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Model Set Dim Heads Layers Dropout Batch MSE MAE MAPE
Test 16 2 2 0.2 32 549.21 16.78 0.52%

Model_16 Train 16 4 3 0.1 16 301.78 15.47 0.46%
Test 16 4 3 0.1 16 300.16 15.40 0.46%

Model_17 Train 16 4 3 0.1 64 2662.94 38.90 0.76%
Test 16 4 3 0.1 64 2816.11 40.18 0.76%

Model_18 Train 32 2 3 0.1 32 9069.65 60.36 0.93%
Test 32 2 3 0.1 32 10917.67 66.23 0.96%

Model_19 Train 32 4 2 0.2 64 2903.67 46.27 1.02%
Test 32 4 2 0.2 64 3081.01 46.93 1.02%

Model_20 Train 32 2 3 0.3 64 764.87 16.05 0.41%
Test 32 2 3 0.3 64 920.97 17.96 0.44%

Table 4.2: Train and Test performance for Transformer models for 12h sequence input

Following the evaluation of the 12-hour sequence length, this section presents the perfor-
mance results of Transformer models trained with a 24-hour input window. This configura-
tion allows the model to leverage an entire day’s worth of historical wind power generation
data to predict the following value, potentially capturing daily periodicities and broader tem-
poral patterns that may not be evident in shorter sequences. Table 4.3 summarizes the per-
formance of twenty Transformer configurations under the 24-hour input setting. Each model
varies in its architectural parameters, including dimensionality, number of attention heads,
encoder layers, dropout rate and batch size. As shown in the table, Model_3 achieved the
best overall results, with a test MSE of 40.76, MAE of 4.24, and MAPE of only 0.09%. This
model utilized a relatively simple architecture: a dimensionality of 16, 2 attention heads,
2 encoder layers, a dropout rate of 0.2 and a batch size of 16. The compact design of this
model appears to strike a favorable balance between learning capacity and generalization,
particularly for daily input sequences.

By contrast, models with more complex configurations, such as Model_2 and Model_-
8, showed poor performance on the test set, with MSE values exceeding 9,000 and 17,000
respectively, and MAPEs above 1.3%. These results suggest that certain combinations of
high dropout rates, large batch sizes or excessive attention heads may hinder learning ef-
ficiency and increase forecasting error. Notably, Model_3 stood out not only as the best
within the 24-hour group but also across all tested configurations, outperforming even the
top-performing 12-hour model in every metric. Its exceptionally low MAPE of 0.09% high-
lights the model’s capacity to exploit daily patterns effectively when architectural choices
remain appropriately constrained. Furthermore, additional models within this group, such
as Model_14 and Model_15, also demonstrated solid performance, with test MSE values
of 81.01 and 136.32, and MAPEs of 0.17%, suggesting that the 24-hour input length, when
well-optimized, is particularly suited to capturing the temporal dynamics of wind power gen-
eration.
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Model Set Dim Heads Layers Dropout Batch MSE MAE MAPE
Model_1 Train 32 4 3 0.1 16 849.35 21.95 0.71%

Test 32 4 3 0.1 16 896.18 22.64 0.73%
Model_2 Train 16 2 3 0.2 64 7806.57 43.59 1.28%

Test 16 2 3 0.2 64 9302.29 48.93 1.34%
Model_3 Train 16 2 2 0.2 16 35.43 3.94 0.08%

Test 16 2 2 0.2 16 40.76 4.24 0.09%
Model_4 Train 32 8 2 0.2 32 576.75 18.15 0.35%

Test 32 8 2 0.2 32 629.87 18.87 0.38%
Model_5 Train 16 4 3 0.3 64 4414.55 45.53 1.16%

Test 16 4 3 0.3 64 4875.95 46.88 1.16%
Model_6 Train 16 4 3 0.2 32 210.50 9.21 0.30%

Test 16 4 3 0.2 32 169.09 9.60 0.32%
Model_7 Train 16 4 3 0.1 32 597.42 17.66 0.66%

Test 16 4 3 0.1 32 608.63 18.25 0.67%
Model_8 Train 16 2 3 0.3 64 16023.74 97.47 2.83%

Test 16 2 3 0.3 64 17986.81 103.38 2.92%
Model_9 Train 16 2 3 0.2 32 3212.99 26.60 0.72%

Test 16 2 3 0.2 32 3533.37 27.78 0.73%
Model_10 Train 32 4 3 0.2 64 4625.24 61.52 1.50%

Test 32 4 3 0.2 64 4536.86 60.83 1.49%
Model_11 Train 32 2 3 0.3 16 767.07 15.67 0.40%

Test 32 2 3 0.3 16 945.64 17.04 0.41%
Model_12 Train 16 2 3 0.1 64 3454.56 46.00 1.09%

Test 16 2 3 0.1 64 3758.52 48.12 1.13%
Model_13 Train 32 4 2 0.2 16 420.53 15.87 0.44%

Test 32 4 2 0.2 16 463.14 16.72 0.46%
Model_14 Train 32 2 2 0.1 16 75.01 7.60 0.16%

Test 32 2 2 0.1 16 81.01 7.77 0.17%
Model_15 Train 16 2 2 0.2 32 115.05 7.66 0.16%

Test 16 2 2 0.2 32 136.32 8.13 0.17%
Model_16 Train 16 4 3 0.1 16 310.17 12.94 0.38%

Test 16 4 3 0.1 16 354.73 13.52 0.39%
Model_17 Train 16 4 3 0.1 64 719.70 13.37 0.38%

Test 16 4 3 0.1 64 840.52 14.42 0.39%
Model_18 Train 32 2 3 0.1 32 2760.29 44.77 0.85%

Test 32 2 3 0.1 32 2875.77 45.45 0.86%
Model_19 Train 32 4 2 0.2 64 776.46 25.03 0.48%

Test 32 4 2 0.2 64 784.31 25.13 0.49%
Model_20 Train 32 2 3 0.3 64 1446.21 19.62 0.27%

Test 32 2 3 0.3 64 1799.35 21.48 0.29%

Table 4.3: Train and Test performance for Transformer models for 24h sequence input
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Finally, the evaluation of Transformer models trained with a 36-hour input sequence is
presented in Table 4.4. This configuration provides the model with an extended temporal
context. However, increasing the sequence length also introduces additional complexity and
may result in diminishing returns if the added temporal information is not relevant for the
target prediction. Due to the significantly longer training time associated with this config-
uration, only fifteen models were trained instead twenty, as was done for the other other
setups.

The results show that Model_9 delivered the best performance for the 36-hour configura-
tion, achieving a test MSE of 123.38, MAE of 8.78 and a remarkably low MAPE of 0.17%.
This model was configured with a dimensionality of 32, 4 attention heads, 2 encoder layers,
a dropout rate of 0.2 and a batch size of 16.

In contrast, several models with high model dimensions, large batch sizes or excessive at-
tention heads suffered from poor generalization. For instance, Model_2 andModel_6 yielded
extremely high error values, with test MSEs exceeding 400,000 and 200,000 respectively and
MAPEs well above 5%. These outcomes indicate that increasing model complexity beyond
a certain point, particularly in combination with long input sequences, can significantly de-
grade forecasting performance. When comparing across the three input configurations, it
shows that the 36-hour window does not lead to a systematic improvement over shorter se-
quences. Although the best-performing models in this group achieved strong results, they
did not outperform the top configurations from the 24-hour setup.

In fact, the 24-hour sequence, led by Model_3, consistently achieved the lowest error
metrics among all models tested. This outcome suggests that, for the present wind power
dataset, shorter historical windows are sufficient to capture the relevant temporal patterns
required for accurate forecasting in this specific case.

Model Set Dim Heads Layers Dropout Batch MSE MAE MAPE
Model_1 Train 16 4 2 0.3 32 426.78 18.22 0.37%

Test 16 4 2 0.3 32 439.82 18.49 0.37%
Model_2 Train 32 8 2 0.1 32 411671.68 493.15 11.36%

Test 32 8 2 0.1 32 478868.84 529.65 11.73%
Model_3 Train 32 4 3 0.1 64 19296.40 113.18 2.45%

Test 32 4 3 0.1 64 21004.06 117.92 2.50%
Model_4 Train 32 4 3 0.3 64 1164.76 31.19 0.77%

Test 32 4 3 0.3 64 1199.37 31.42 0.79%
Model_5 Train 32 2 3 0.3 16 451.19 17.64 0.45%

Test 32 2 3 0.3 16 442.77 17.43 0.45%
Model_6 Train 16 8 3 0.3 64 175468.64 284.88 4.98%

Test 16 8 3 0.3 64 217620.47 312.00 5.18%
Model_7 Train 16 4 3 0.1 32 1122.83 26.56 0.52%

Test 16 4 3 0.1 32 1147.60 26.89 0.52%
Model_8 Train 32 2 2 0.2 16 125.83 9.39 0.29%

Test 32 2 2 0.2 16 128.81 9.40 0.29%
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Model Set Dim Heads Layers Dropout Batch MSE MAE MAPE
Model_9 Train 32 4 2 0.2 16 117.60 8.55 0.17%

Test 32 4 2 0.2 16 123.38 8.78 0.17%
Model_10 Train 16 4 3 0.3 64 18771.26 131.25 2.72%

Test 16 4 3 0.3 64 19756.16 133.07 2.70%
Model_11 Train 32 8 3 0.2 32 6038.78 66.00 1.62%

Test 32 8 3 0.2 32 6637.64 68.56 1.63%
Model_12 Train 16 2 2 0.1 16 132.47 6.87 0.18%

Test 16 2 2 0.1 16 145.50 7.35 0.20%
Model_13 Train 32 8 2 0.3 32 686.52 24.17 0.49%

Test 32 8 2 0.3 32 687.50 23.98 0.49%
Model_14 Train 16 4 2 0.1 64 9894.99 85.12 2.35%

Test 16 4 2 0.1 64 10328.33 87.74 2.39%
Model_15 Train 32 2 2 0.1 16 445.74 19.98 0.54%

Test 32 2 2 0.1 16 443.69 19.75 0.55%

Table 4.4: Train and Test performance for Transformer models for 36h sequence input

Based on the comprehensive evaluation of Transformer architectures using different in-
put sequence lengths and the comparison between the best model for the architectures, it can
be appreciated in Table 4.5 that the 24-hour configuration, particularly Model_3, demon-
strated the most favorable balance between predictive accuracy and model efficiency. Its
superior performance across all key metrics underscores the suitability of this configuration
for short-term WPF. To further validate its effectiveness, Model_3 (24-hour input) will now
be benchmarked against traditional RNNmodels, specifically GRU and LSTM architectures.
This comparative analysis aims to determine the most effective DL approach for capturing
the temporal dynamics of wind power generation in short-term forecasting scenarios.

Sequence Length - Model Set Dim Heads Layers Dropout Batch MSE MAE MAPE
12h - Model_1 Train 32 4 3 0.1 16 137.97 7.50 0.24%

Test 32 4 3 0.1 16 147.09 8.06 0.25%
24h - Model_3 Train 16 2 2 0.2 16 35.43 3.94 0.08%

Test 16 2 2 0.2 16 40.76 4.24 0.09%
36h - Model_9 Train 32 4 2 0.2 16 117.60 8.55 0.17%

Test 32 4 2 0.2 16 123.38 8.78 0.17%

Table 4.5: Train and Test performance for the best Transformer model for each time sequence
input
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4.3 ComparativeAnalysis withRecurrentNeural Networks
(GRU and LSTM)

For the evaluation, the LSTM and GRU models were implemented following a comparable
structure. Each model consisted of recurrent layers (LSTM or GRU, respectively), followed
by a dense output layer to generate the forecast. Hyperparameters such as the number of
model dimension (16 or 32), hidden units (1 or 2), number of layers (2 or 3), dropout rate
(0.1 or 0.2), batch size (16 or 32) and sequence length (12, 24 or 36) were optimized through
a grid search procedure. Multiple combinations were tested to identify the most suitable
configuration for each architecture. Additionally, early stopping was applied during training
to prevent overfitting and ensure generalization on unseen data.

For both models, the data was normalized and split into training and testing sets (70%
and 30%, respectively) and sequences of 12h, 24h or 36h, same sequence lengths that were
tested the Transformer models. Also, both models used the same evaluation metrics as the
Transformer: MSE, MAE and MAPE.

In the table below, Table 4.6, are the results for the best combination of hyperparameter
for each type of model. It can be observed that the Transformer model outperformed both
LSTM and GRU models in all evaluated metrics. Overall, the Transformer consistently pro-
vided the most accurate and generalizable predictions for short-term wind power generation,
highlighting its superior performance over the other models.

Model Set Seq Length Dim Head/Hidden Layers Dropout Batch MSE MAE MAPE
Trans Train 24 16 2 2 0.2 16 35.43 3.94 0.08%
former Test 24 16 2 2 0.2 16 40.76 4.24 0.09%
LSTM Train 36 32 2 2 0.1 16 116,529.32 247.48 4.76%

Test 36 32 2 2 0.1 16 143,538.88 267.08 4.88%
GRU Train 36 32 1 3 0.1 16 118,938.93 254.02 5.17%

Test 36 32 1 3 0.1 16 144,631.42 272.47 5.28%

Table 4.6: Train and Test performance for Transformer Model, LSTM and GRU

To complement the tabular results and provide a more intuitive understanding of model
performance, Figure 4.6, Figure 4.7 and Figure 4.8 compare the actual wind power genera-
tion, which was the test set, with the predictions made by the best-performing configurations
of each model: Transformer, LSTM and GRU. These visualizations offer valuable insight
into how closely each model follows the real data over time.

The visual analysis of model predictions reveals clear differences in performance across
the GRU, LSTM and Transformer architectures. The GRU model tends to underpredict
certain peaks and exhibits a noticeable lag when adjusting to abrupt increases or drops in
wind generation. Although it successfully captures general trends, its forecasts appear overly
smoothed, likely due to its simplified gating mechanism, which limits its responsiveness to
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sharp variations. In contrast, the LSTM model shows greater reactivity to sudden spikes
in generation, particularly in the mid-range values where it demonstrates strong accuracy.
However, it occasionally overshoots during periods of high volatility, indicating a certain
sensitivity to fluctuations in the input sequence. The Transformer model offers the most ac-
curate visual alignment with actual generation values, closely tracking both gradual shifts and
abrupt changes. This consistency highlights its superior capacity to model long-range tempo-
ral dependencies and complex dynamics, supporting the low test MAPE (0.09%) previously
reported and reinforcing its status as the best-performing architecture in this study.

Figure 4.6: Wind Power Generation Forecast for Transformer Model 3, 24h sequence length
Self-Elaboration

Figure 4.7: Wind Power Generation Forecast for LSTM Best Model, 36h sequence length
Self-Elaboration

Figure 4.8: Wind Power Generation Forecast for GRU Best Model, 36h sequence length
Self-Elaboration
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In conclusion, the visual inspection of predicted vs. actual generation curves confirms the
superiority of the Transformer model in accurately tracking wind power dynamics. Although
LSTM and GRU exhibit very decent forecasting capabilities, their relative performance lags
behind, particularly during abrupt changes. These findings support the quantitative metrics
and highlight the importance of model selection based on both predictive performance and
operational constraints.
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Chapter 5

Conclusions

Accurate forecasting of wind power generation constitutes a fundamental component in the
effective integration of renewable energy sources into modern power systems. As the share
of wind energy increases globally, so does the complexity of managing its inherent variability
and unpredictability. In particular, short-term wind forecasting is essential for maintaining
grid stability, optimizing energy dispatch strategies, reducing operating costs and enabling
more efficient participation in electricity markets. Within this context, the present Bachelor’s
thesis provides a meaningful contribution by demonstrating the applicability and effective-
ness of Transformer-based architectures for short-termwind power prediction using historical
generation data.

The work is situated within a broader methodological evolution observed in the literature,
where traditional forecasting techniques such as ARIMA and persistence models have been
progressively replaced by more advanced ML and DL models. Among these, Transformer
architectures have gained increasing attention due to their ability to model long-range tempo-
ral dependencies through self-attention mechanisms. Unlike RNNs or LSTMs, which rely on
sequential processing, Transformers leverage parallel computation and a self-attention mech-
anism to dynamically weight the relevance of different time steps. These capabilities make
them particularly effective for time series forecasting tasks with complex temporal dynamics,
such as wind power generation.

To contribute to this evolving research landscape, the study follows a rigorous and struc-
tured methodology that spans data acquisition, preprocessing, model design, training and
evaluation. The dataset used comprises wind power generation data for Spain from 2020 to
2024. This time period captures a representative sample of operational conditions and vari-
ability in wind production, providing a strong empirical foundation for model development.

A key pillar of the project was the ensurance of data quality through preprocessing, which
is crucial for time series forecasting models to function correctly and reliably. The dataset un-
derwent a detailed cleaning process, beginningwith the detection and interpolation ofmissing
values, which were primarily caused by daylight saving time shifts. These were addressed
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using linear interpolation to maintain continuity in the series without introducing artificial
fluctuations. In parallel, outliers were identified using the IQR method, but were retained to
preserve the dataset’s variability and realism. Furthermore, normalization and sliding win-
dow segmentation were applied to prepare the time series for input into Transformer models,
ensuring both temporal consistency and efficient learning dynamics.

One of the most relevant contributions of this work is the decision to implement and
compare multiple Transformer configurations, rather than relying on a single model instance.
This strategy was driven by the recognition that Transformer performance can vary signifi-
cantly depending on hyperparameter choices, particularly in terms of model dimension, at-
tention head count, number of encoder layers, sequence length, dropout rate and batch size.
Consequently, a comprehensive grid search was performed across these parameters, train-
ing around fifty Transformer models with varied configurations. This exhaustive approach
allowed for a robust evaluation of how model complexity, regularization and sequence gran-
ularity affect forecasting accuracy and generalization capability.

The results showed that the best performance was achieved using a 24-hour input win-
dow, which struck an optimal balance between information richness and noise. Specifically,
Model_3, trained with a dimensionality of 16, 2 attention heads, 2 encoder layers, dropout
of 0.2 and batch size of 16, achieved the lowest error rates across all metrics (MSE = 40.76,
MAE = 3.94, MAPE = 0.09%), outperforming the configurations trained with the other se-
quence lengths (12h and 36h).

To further contextualize the performance of Transformer models, a comparative anal-
ysis was conducted using LSTM and GRU architectures, both of which have traditionally
been used for time series prediction tasks. These models were carefully implemented with
equivalent input formats and underwent their own hyperparameter optimization through grid
search. The same evaluation metrics (MSE, MAE and MAPE) were used for all models,
ensuring a consistent and fair comparison. Despite these efforts, the best LSTM and GRU
configurations were unable to outperform the top Transformer model. Their forecasts exhib-
ited slightly higher error values. These findings support the previously mentioned hypothesis
that the self-attention mechanism in Transformer models offers a structural advantage in cap-
turing relevant temporal features.

Nonetheless, it is important to acknowledge the computational demands associated with
Transformer architectures, which represent a trade-off for their superior performance. Train-
ing the models required significant processing time and memory, particularly when larger
dimensions or deeper encoder stacks were tested. This limitation suggests that future appli-
cations in operational environments should consider performance-cost trade-offs carefully
and explore avenues to improve model efficiency without compromising accuracy.

Building upon the findings of this study, several future lines of research can be pro-
posed to enhance forecasting robustness and broaden the applicability of Transformer-based
models. First, longer input sequences (e.g., 48, 72 or 96 hours) could be evaluated to deter-
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mine whether additional historical context further improves performance, though such mod-
els would require higher computational resources. Second, deeper architectures with more
attention heads and encoder layers could be tested using more powerful GPUs or cloud-based
solutions to assess the limits of model capacity for time series tasks. Third, spatio-temporal
modeling could be incorporated by extending the dataset to include wind farms in other re-
gions or countries. This would allow the model to learn geographic correlations and improve
its generalization across diverse meteorological contexts.

In conclusion, this Bachelor’s thesis provides compelling empirical evidence for the su-
periority of Transformer-based models in short-term wind power forecasting. Through a
detailed methodology that prioritizes data quality, and hyperparameter exploration, the study
validates the model’s ability to outperform traditional DL alternatives. At the same time,
it opens up multiple research avenues that could further advance forecasting capabilities in
renewable energy systems. As energy systems become increasingly data-driven, models like
the Transformer will play a key role in enabling more reliable, sustainable and intelligent
grid operations.
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4. Interpretador de código: Para realizar análisis de datos preliminares.

5. Constructor de plantillas: Para diseñar formatos específicos para secciones del trabajo.

6. Corrector de estilo literario y de lenguaje: Para mejorar la calidad lingüística y estilís-
tica del texto.
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9. Generador de datos sintéticos de prueba: Para la creación de conjuntos de datos ficti-
cios.

10. Revisor: Para recibir sugerencias sobre cómo mejorar y perfeccionar el trabajo con
diferentes niveles de exigencia.

11. Traductor: Para traducir textos de un lenguaje a otro.

Afirmo que toda la información y contenido presentados en este trabajo son producto de
mi investigación y esfuerzo individual, excepto donde se ha indicado lo contrario y se han
dado los créditos correspondientes (he incluido las referencias adecuadas en el TFG y he ex-
plicitado para que se ha usado ChatGPT u otras herramientas similares). Soy consciente de
las implicaciones académicas y éticas de presentar un trabajo no original y acepto las conse-
cuencias de cualquier violación a esta declaración.

Fecha: 17 de junio de 2025

Firma:

Teresa Oriol Guerra
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