
1

Facultad de Ciencias Económicas y Empresarial

Doble Grado en ADE y Business Analytics (E-2 Analytics)

AutoKAN: The power of Kolmogorov-
Arnold Networks and Bayesian
optimization.

Author: Adriana Fernández de Caleya Vázquez
Director: Eduardo César Garrido Merchán

Clave: 202005333

MADRID | Abril 2025

2

Abstract

In recent years, Kolmogorov-Arnold Networks (KANs) have emerged as a promising
alternative to traditional neural networks, offering a more interpretable and potentially more
efficient approach to function approximation. However, tuning KANs remains a complex
challenge due to their unique architecture and sensitivity to hyperparameter configurations.
This project proposes AutoKAN, a custom Python class that combines KANs with Bayesian
optimization in order to automate the search for optimal configurations.

To evaluate its effectiveness, AutoKAN is benchmarked against three baseline models: a
default KAN, linear regression, and random forest. A structured experimental methodology
is applied using both synthetic and real-world datasets for regression tasks. The results
suggest that while AutoKAN underperforms in comparison to simpler models, this outcome
is primarily due to technical limitations in the optimization process and the complexity of the
KAN hyperparameter space. These findings highlight the importance of designing
customized optimization strategies for novel model architectures and point toward potential
directions for future work.

Keywords: Kolmogorov-Arnold Networks, AutoKAN, Bayesian Optimization, Regression,
Hyperparameter Tuning, Model Benchmarking.

3

Contents

Chapter 1: Introduction ... 6

Chapter 2: State of the Art Review ... 8
Chapter 3: Thesis Definition .. 17

3.1 General Objective ... 17

3.2 Specific Goals .. 17

3.3 Constraints .. 18
3.3.1 Hypothesis .. 18

3.3.2 Assumptions .. 19

Chapter 4: Methodology .. 20

Chapter 5: Implementationa dn Results .. 22
5.1 Data Selection .. 22

5.2 Descriptive Data Analysis .. 23

5.3 Model Design ... 27

5.3.1 AutoKAN Class Implementation... 27

5.3.2 Benchmark Models Implementation ... 28
5.4 Benchmarking ... 28

5.5 Evaluation of Results .. 29

Chapter 6: Conclusions .. 33

Declaration of use of AI tools .. 35
References.. 36

Annex ... 39

4

List of Figures

Figure 2.1: Comparative Architectures of MLPs and KANs. ... 10
Figure 2.2: Performance of KANs compared to traditional neural networks 11
Figure 2.3: Organization of the State-of-the-art review .. 16

Figure 5.1: Histogram from the synthetic dataset. .. 24
Figure 5.2: Histogram from the Boston Housing dataset. ... 24
Figure 5.3: Correlation matrix from the Boston Housing dataset. 25
Figure 5.4: Histogram from the Diabetes dataset. ... 26
Figure 5.5: Correlation matrix from the Diabetes dataset. .. 26
Figure 5.6: Benchmark for the synthetic dataset. .. 30
Figure 5.7: Benchmark for the Boston Housing dataset.. 30
Figure 5.8: Benchmark for the Diabates dataset. .. 31

5

List of Tables

Table 2.1: Key References in Neural Networks and KAN Research. 14

Table 5.1: Summary Statistics from the Boston Housing dataset…………………………24
Table 5.2: Summary Statistics from the Diabetes dataset. .. 26

6

Chapter 1

Introduction

The increasing dependence on artificial intelligence (AI) highlights the need for models that
are both efficient and interpretable, particularly when handling complex, high-dimensional
data. Traditional models like Multilayer Perceptrons (MLPs), while foundational, often
struggles with these challenges. These limitations, combined with computational
inefficiencies, can lead to issues such as overfitting, which reduces the reliability of
predictions in critical applications (Li et al., Dec 2019). Furthermore, many machine learning
models are viewed as "black boxes", offering little transparency in their decision-making
processes. This lack of interpretability becomes problematic in industries where decisions
must be explained and trusted, such as in finance and healthcare, where stakeholders require
clear reasoning behind AI-driven decisions (ROCHA et al., 2012).

Conventional models also face difficulties in high-dimensional environments, where tuning
hyperparameters can be time-consuming and inefficient (Lu & Zhan, 2024). These
challenges underline the need for new approaches that can improve both efficiency and
interpretability. This research is motivated by the opportunity to explore innovative
architectures, such as Kolmogorov-Arnold Networks (KANs), which address both these
issues by providing models that are more transparent and computationally effective (Chen,
2024). By enabling clearer decision-making and better management of complex data, KANs
are crucial for building trust among stakeholders like developers and business users.

Unlike traditional “black box” models, KANs not only make the decision-making process
more understandable but also reduce the computational load, making them ideal for solving
real-world tasks (Liu et al., 2024b). Their ability to handle high-dimensional, nonlinear data
positions them as a strong candidate for improving AI performance across various fields,
offering both developers and end-users more trustworthy and reliable outcomes.

In addition to these advantages, the integration of Bayesian optimization strengthens this
approach by addressing one of the key challenges in machine learning: hyperparameter
tuning. In high-dimensional settings, traditional tuning methods are often computationally
expensive and time-consuming, which can slow down the development and implementation
of AI models. Bayesian optimization provides a more efficient solution by using probabilistic
models to systematically explore the parameter space and identify optimal configurations
with fewer evaluations (Daulton et al., 2021). This not only accelerates the model
development process but also ensures more robust performance, particularly when paired
with KANs. By improving the accuracy and efficiency of hyperparameter tuning, Bayesian

7

optimization allows KANs to achieve their full potential, reducing the costs and time required
to deploy high-performing AI systems.

By integrating Bayesian optimization, KANs offer a promising solution to many limitations
in traditional AI models. This research will explore these advancements through theoretical
analysis and practical applications, highlighting how KANs can boost the development of
more transparent and efficient AI systems.

The thesis is structured as follows: first, a comprehensive state of the art is presented,
reviewing the evolution of neural networks, the theoretical foundations of KANs, and their
applications. This is followed by the thesis definition, which defines the research objectives,
hypotheses, assumptions, and constraints. Next, the methodology outlines the experimental
framework and evaluation metrics employed to compare the performance of AutoKAN with
the default KAN architecture. The analysis of results examines the findings in depth,
highlighting the differences and improvements observed between these models. Finally, the
conclusions synthesize the insights gained and outline the research's contributions and
potential future directions.

8

Chapter 2

State of the Art Review

Neural networks have evolved significantly since their origin in the mid-20th century. The
earliest models, such as the perceptron developed by Rosenblatt in 1957, aimed to mimic the
brain's ability to learn and classify patterns, laying the foundation for modern neural network
research (Wason, 2018). The perceptron introduced the idea of a simple, single-layer network
capable of binary classification, but its limitations became evident, particularly in handling
non-linearly separable data. Interest in neural networks temporarily declined during the late
1960s, a period often referred to as the "AI winter" (Toosi et al., 2021).

However, renewed interest in neural networks emerged in the 1980s with the development
of MLPs, which utilized the backpropagation algorithm for training. This breakthrough
allowed neural networks to handle more complex, multi-class problems by adjusting weights
iteratively (Schmidhuber, 2015). The introduction of backpropagation marked the beginning
of a new era, where neural networks, now with multiple layers, could solve problems that
earlier models could not, such as image and speech recognition (Wason, 2018).

The 1990s and early 2000s saw further advancements, especially with the introduction of
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs,
introduced by Fukushima in 1979 and later refined by LeCun in the late 1980s, transformed
computer vision by enabling networks to identify patterns and reduce data size through layers
(Schmidhuber, 2015). RNNs, designed for tasks like speech recognition, excelled at
modeling temporal dependencies by maintaining memory across inputs (Schmidhuber,
2015). The adoption of deep learning models was significantly accelerated by the rise of large
datasets and improved computing power, such as the use of Graphics Processing Units
(GPUs) in the mid-2000s. These advancements allowed neural networks to show remarkable
performance improvements across diverse tasks including image, video, and natural language
processing (Wason, 2018). Innovations such as unsupervised pre-training and new
optimization techniques further drove these models to achieve human-level performance in
domains such as image recognition and strategic game playing (Schmidhuber, 2015).

Today, neural networks are the foundation of AI applications, with architectures like CNNs
and RNNs being widely used across many fields, from healthcare and autonomous driving
to finance. Their ability to adapt to diverse challenges underlines the importance in modern
AI. However, as AI faces increasingly complex and high-dimensional data, traditional
models are showing limitations in terms of efficiency and scalability. These challenges have
led to the exploration of new architectures, like KANs, to address these limitations.

9

KANs are a recent innovation in neural networks, offering an alternative to traditional models
like MLPs. Their main advantage lies in how to handle complex, nonlinear relationships in
data. KANs are based on the Kolmogorov-Arnold representation theorem, which states that
any continuous multivariate function can be broken down into a finite sum of univariate
functions (Cambrin et al., 2024). Unlike traditional models, where activation functions are
applied at the nodes, KANs introduce learnable activation functions directly on the edges
between nodes, gaining more flexibility (Liu et al., 2024a). This new approach allows KANs
to better manage nonlinear relationships in high-dimensional settings. This structure allows
KANs to manage complex data without significantly increasing model complexity
(Pourkamali-Anaraki, 2024). This shift in architecture opens new possibilities for improving
both accuracy and interpretability.

One of the key advantages of KANs is their ability to adapt to different types of data,
particularly in high-dimensional environments. MLPs and other conventional models
typically rely on fixed activation functions, which restricts the model’s ability to adapt to the
specific characteristics of the data being processed (Cacciatore et al., 2024). KANs address
this problem by introducing learnable functions along the edges, enabling the network to
adjust dynamically based on input data. This flexibility makes KANs both efficient and
scalable, as they require fewer resources while achieving more accurate results (Azam &
Akhtar, 2024).

In addition to being computationally efficient, KANs offer significant advantages in terms of
interpretability, which is critical in many AI applications. Traditional models, particularly
deep learning architectures, are often criticized for their “black box” nature, where the
decision-making process is unclear and difficult to interpret (Liu et al., 2024a). KANs address
this by providing more transparency, making it easier to understand and analyze the
contribution of individual variables. This transparency makes KANs ideal for applications
where both accuracy and explainability are required (Sulaiman et al., 2024).

Despite their relatively recent introduction, KANs have already shown promising results in
a variety of applications. For instance, in energy consumption prediction, KANs have
outperformed traditional models by achieving higher accuracy while maintaining
computational efficiency (Sulaiman et al., 2024). Similarly, in tasks like image segmentation
and recognition, KAN-based architecture has demonstrated superior performance compared
to conventional neural networks (Azam & Akhtar, 2024). These successes highlight the
flexibility of KANs across different domains and their potential to become a foundational
technology in AI development. As research continues, KANs are expected to evolve into
even more advanced models, addressing long-standing challenges in neural networks, such
as the curse of dimensionality and the need for improved interpretability (Pourkamali-
Anaraki, 2024).

10

KANs have also shown notable improvements in both accuracy and adaptability when
compared to traditional models like MLPs and CNNs. For example, in financial tasks such
as option pricing, KANs have outperformed MLPs and Time-Delay Neural Networks
(TDNNs), providing more accurate predictions of European call options. This advantage
comes from KANs' ability to capture complex, nonlinear relationships in data, something
traditional models often struggle with, especially in high-dimensional settings (Ter-
Avanesov & Beigi, 2024). While traditional models are inclined to issues like overfitting,
KANs manage these challenges more effectively by optimizing their structure and reducing
unnecessary model complexity (Cacciatore et al., 2024). Figure 1 illustrates these structural
differences, highlighting how KANs place activation functions on edges, unlike the node-
based activations in MLPs.

Figure 2.1: Comparative Architectures of MLPs and KANs.

Beyond financial tasks, KANs also demonstrate strong potential in Natural Language
Processing (NLP). While RNNs and Long Short-Term Memory networks (LSTMs) are
effective for sequential data, they are limited by fixed activation functions that restrict
adaptability. In contrast, KANs' learnable activation functions allow them to adjust
dynamically, making them particularly effective in tasks like machine translation and
sentiment analysis. This adaptability not only improves performance but also enhances the
interpretability of the model's decisions, which is an important factor in NLP applications
(Zohuri & Moghaddam, 2020).

11

KANs have also demonstrated superior performance in image processing tasks. When
compared to CNNs, which are widely used in computer vision, KANs show a more advanced
ability to handle the complexity of high-dimensional image data. CNNs, while powerful,
often require large datasets and can struggle with overfitting when data is limited. KANs,
with their adaptable architecture, overcome this issue by adjusting more effectively to the
data, leading to better results in tasks like image classification and segmentation (Pourkamali-
Anaraki, 2024). Additionally, KANs provide a clearer understanding of how different
features contribute to the final decision, making them especially useful in areas like
healthcare and autonomous driving, where transparency and accountability are essential
(Sulaiman et al., 2024).

KANs’ flexibility has also been demonstrated in the energy sector. For example, KANs have
been successfully applied to predict chiller energy consumption in commercial buildings,
outperforming conventional models such as Artificial Neural Networks (ANNs) and hybrid
deep learning algorithms. In this application, KANs were able to capture the complex
nonlinear dynamics of energy consumption, achieving higher accuracy with a reduced error
rate (Sulaiman et al., 2024). Figure 2 below illustrates the comparative performance of KANs
and traditional neural networks across different settings and parameter configurations,
emphasizing the robustness and efficiency of KANs in handling predictive tasks in the energy
sector.

Figure 2.2: Performance of KANs compared to traditional neural networks with 5 hidden
neurons across various metrics such as RMSE, MAE, STD DEV, and R2.

12

Such empirical evidence supports the superior capability of KANs in complex applications.
This higher level of accuracy is essential for optimizing energy usage and reducing
operational costs, which are vital objectives in commercial building management. By
modeling energy consumption patterns more effectively than other models, KANs enable
better decision-making in energy management, making them a valuable tool in the pursuit of
sustainability.

KANs' versatility extends beyond the energy sector to agriculture. In this field, KANs have
proven to be quite helpful in segmenting crop fields using satellite images. When integrated
into U-Net architectures (U-KAN), KANs were used to process data from two satellites for
precise crop field segmentation. Compared to traditional U-Net models, U-KANs showed a
2% improvement in Intersection-Over-Union (IoU), a measure of segmentation accuracy,
while requiring fewer numerical calculations, making them both more accurate and
computationally efficient (Cambrin et al., 2024). This improvement in IoU is crucial for
farmers and agricultural analysts, as it allows for better monitoring of crop health and more
efficient management of resources like water and fertilizers. Furthermore, the transparency
of KANs makes them an excellent choice for real-world agricultural applications where clear,
explainable predictions are key for guiding sustainable practices.

KANs have also demonstrated significant promises in healthcare, especially in predictive
diagnostics. By incorporating Bayesian inference, Bayesian-KANs (BKANs) not only
enhance the accuracy of medical diagnostic predictions but also bring much-needed
interpretability to these predictions. For example, in applications ranging from cancer
detection to predictive patient outcomes, BKANs have demonstrated superior accuracy over
traditional deep learning models by effectively quantifying the uncertainty of predictions,
which is crucial for making informed medical decisions (Hassan, 2024). This dual capability
of providing high accuracy and clear interpretability makes BKANs invaluable in healthcare,
where they support critical decision-making with reliable, transparent data.

Building on the success of KANs, new versions like BKANs and Gaussian Process-KANs
(GP-KANs), have been developed to extend the capabilities of KANs. BKANs use Bayesian
optimization to help the model adjust its parameters more efficiently, allowing them to
provide more confident predictions, which is especially important in areas like healthcare
and finance, where accurate and trustworthy predictions are necessary (Li et al., Dec 2019).
This makes BKANs better at handling complex data while minimizing issues like overfitting
(Hassan, 2024).

Another key development is GP-KANs, which incorporate Gaussian Processes to better
manage non-linear patterns in data. GP-KANs are particularly useful in tasks where it is
important to estimate how confident a model is, such as image recognition or noisy data
environments. For instance, in tasks like classifying images from the MNIST dataset, GP-
KANs have shown high accuracy while using fewer parameters, making them more efficient

13

than traditional models (Chen, 2024). These improvements allow KANs to be more flexible
and effective in a wide range of applications, addressing issues like overfitting and offering
clearer, more reliable predictions (Pourkamali-Anaraki, 2024).

While KANs have demonstrated promise across various applications, several challenges
remain. One significant issue is the susceptibility to noise in the training data. Even small
amounts of noise can drastically reduce their performance, especially when modeling
complex, high-dimensional data (Shen et al., 2024). To mitigate this, techniques like kernel
filtering and oversampling have been proposed, though these methods come with trade-offs,
like the need for a larger dataset, which increases the computational cost (Shen et al., 2024).
Finding the right balance between noise reduction and efficiency is still an active area of
research.

Another challenge is scaling KANs for more complex tasks. Although KANs are flexible in
modeling nonlinear relationships, they often require more complex architectures to handle
certain types of data, like images with significant variation (Azam & Akhtar, 2024).
Researchers are currently exploring ways to simplify KAN structures without sacrificing
accuracy by combining KANs with other neural networks or applying more efficient
optimization methods. These efforts reflect the ongoing development of KANs as researchers
aim to enhance computational efficiency while handling noisy or diverse data (Shen et al.,
2024).

14

Table 2.1: Key References in Neural Networks and KAN Research.

Key Contributor Findings

(Schmidhuber, 2015) Discussed the introduction of backpropagation in the
1980s, which revolutionized neural networks by
enabling MLPs to solve complex problems. Also
highlighted advancements in CNNs and RNNs during
the 1990s and 2000s, which transformed image
recognition and temporal modeling tasks.

(Wason, 2018) Discussed the perceptron, developed by Rosenblatt in
1957, as a foundational model for neural networks,
capable of binary classification. Explained how GPUs
and large datasets in the mid-2000s accelerated neural
network adoption, enabling breakthroughs in image,
video, and NLP tasks.

(Li et al., 2019) Proposed Bayesian-KANs (BKANs), which utilize
Bayesian optimization for parameter adjustment,
achieving more confident and accurate predictions.
Demonstrated BKANs' superior performance in
healthcare and finance tasks, minimizing overfitting
and addressing complex data challenges.

(Zohuri & Moghaddam,
2020)

Highlighted the limitations of traditional RNNs and
LSTMs in sequential data tasks due to their fixed
activation functions, which restrict adaptability.
Demonstrated how KANs' learnable activation
functions improve performance and interpretability in
NLP tasks like machine translation and sentiment
analysis.

(Toosi et al., 2021) Highlighted the "AI winter" of the late 1960s due to
limitations in early neural network models, which
temporarily decreased interest in the field.

(Azam & Akhtar, 2024) Demonstrated KANs’ success in image segmentation
tasks, outperforming CNNs with fewer data
requirements and improved interpretability.

(Cacciatore et al., 2024) Compared KANs with traditional models like MLPs
and CNNs, showing their advantages in handling
overfitting and improving interpretability.

(Cambrin et al., 2024) Highlighted KANs’ use of the Kolmogorov-Arnold
theorem for representing multivariate functions,
improving flexibility and efficiency in high-
dimensional data.

15

(Chen, 2024) Explored GP-KANs for managing non-linear data
patterns, showcasing improved efficiency and
confidence estimation in tasks like image recognition.

(Hassan, 2024) Introduced Bayesian-KANs (BKANs), which
combine KAN architectures with Bayesian inference
to enhance accuracy and uncertainty quantification in
medical diagnostics.

(Liu et al., 2024a) and
(Liu et al., 2024b)

Proposed learnable activation functions on KAN
edges to address nonlinear relationships in data,
enhancing model adaptability.

(Pourkamali-Anaraki,
2024)

Highlighted KANs’ scalability and reduced
complexity, making them effective in high-
dimensional and diverse data settings.

(Shen et al., 2024) Discussed challenges faced by KANs, such as
sensitivity to noise and scalability issues, along with
proposed solutions like kernel filtering and
oversampling.

(Sulaiman et al., 2024) Showcased KANs’ superior performance in energy
consumption prediction, offering computational
efficiency and higher accuracy compared to traditional
models.

(Ter-Avanesov & Beigi,
2024)

Demonstrated that KANs outperform MLPs and
Time-Delay Neural Networks (TDNNs) in financial
tasks such as option pricing, providing more accurate
predictions for European call options by capturing
complex, nonlinear relationships in high-dimensional
data.

16

Figure 2.3: Organization of the State-of-the-art review

17

Chapter 3

Thesis definition
This chapter defines the scope and framework of the thesis, which centers on the
development, testing, and evaluation of AutoKAN, a model designed to automate the
optimization of Kolmogorov-Arnold Networks’ (KANs) hyperparameters through Bayesian
optimization. The discussion will also outline the specific goals, constraints, hypotheses, and
underlying assumptions that are crucial to guiding the research process, setting the stage for
a comprehensive exploration of AutoKAN’s potential to boost machine learning practices.

3.1 General Objective

The general objective of this thesis is to evaluate the efficacy of AutoKAN in comparison to
default KAN models. This includes a detailed investigation into the theoretical foundations
of KANs, a performance assessment against the default configurations, and an exploration
of AutoKAN’s practical applications in various real-world scenarios. The aim extends to
demonstrating how enhancements provided by AutoKAN, such as improved efficiency,
accuracy, and broader applicability, can significantly advance the field of neural networks.
The specific objectives are as follows:

3.2 Specific Goals

1. Document the Development Process: Write a technical report detailing the design
and development of the AutoKAN class in Python, including its integration with
Bayesian optimization techniques and the theoretical foundation of KANs.

2. Implementation of AutoKAN: Implement the AutoKAN class, ensuring its ability
to initialize, configure, and optimize KANs using Bayesian optimization.

3. Empirical Benchmarking: Conduct benchmark experiments to statistically
compare the performance of AutoKAN against default KAN configurations. Evaluate
performance across metrics such as accuracy, computational efficiency, and resource
utilization in various scenarios.

18

4. General Framework for Application: Propose a framework for applying AutoKAN
in real-world scenarios, emphasizing its computational efficiency and interpretability.

3.3 Constraints

1. Time Limitation: The thesis is to be completed within the current academic year
2024-2025, which may limit the extent of iterative testing or long-term performance
analysis.

2. Budgetary Constraints: With no external funding available, the scope of empirical
testing, dataset acquisition, and access to advanced computational resources will be
limited.

3. Resource Availability: All computations will be performed using Python 3 on a
personal computer, which may limit the complexity of models tested and the speed
of simulations and optimizations.

4. Data Availability: Due to the above constraints, the study used pre-cleaned and
relatively small benchmark datasets. While these are widely used for testing
regression models, they may not fully represent the complexity and heterogeneity of
real-world data in more demanding applications.

3.3.1 Hypothesis

In this research, a statistical comparison of AutoKAN’s performance in optimizing KANs
against the default KAN configuration will be provided. The hypothesis to be tested suggests
that the optimized KANs using AutoKAN will outperform the default KANs in terms of
accuracy and efficiency. Therefore, the hypothesis is framed as follows:

Null Hypothesis: H0: 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Alternative Hypothesis: H1: 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 > 𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

19

3.3.2 Assumptions

1. Data Representativeness: It is assumed that the datasets used in this study are
representative of real-world scenarios, allowing the results to be extrapolated to other
applications where KANs may be deployed.

2. Model Stability: It is assumed adding additional variables to the models does not
significantly alter the outcomes, indicating robustness in the face of data variability.

3. Underlying Theory: The fundamental principles of the Kolmogorov-Arnold
representation theorem and neural network theory that underpin KANs are assumed
to be valid and applicable in the contexts tested in this study.

4. System Reliability: Python-based implementation and all dependent libraries
function as intended without major errors affecting the experimental results.

20

Chapter 4

Methodology

The main objective of this work is to develop and implement AutoKAN, a custom Python
class capable of initializing and optimizing Kolmogorov-Arnold Networks using Bayesian
optimization. The effectiveness of this solution will be compared against default KAN
configurations as well as other benchmark models such as logistic regression and random
forest.

This process is structured into clearly defined phases, which will be developed and analyzed
in detail in Chapter 5:

● Data Selection: The first phase involves selecting suitable datasets for both the initial
development and the final benchmarking of the models. The datasets used will have
varied characteristics to test the generalizability of the models. The objective is to
work with data that is both diverse and standardized, enabling meaningful evaluation
across different models. Datasets like make_regression are used initially for model
development as a synthetic dataset, followed by real-world datasets like the Boston
Housing, Diabetes, and California Housing datasets, which offer more complexity
and allow testing in realistic conditions.

● Descriptive Data Analysis: Before building any models, it is important to understand
the underlying structure and distribution of each dataset. This step provides insights
into variable relationships and potential modeling challenges, helping to
contextualize the results obtained afterwards.

● Models Design: In this section, the architecture of AutoKAN is introduced. The
AutoKAN class is designed to automate the initialization and optimization of KANs
using Bayesian optimization. This class handles tasks such as splitting datasets into
training and testing sets, converting data into PyTorch tensors, and performing
hyperparameter optimization using the gp_minimize function.

The core of AutoKAN is based on the Bayesian optimization method, which aims to
minimize the error function (in this case, mean squared error) by adjusting the
hyperparameters of the KAN. A set of hyperparameters, such as the number of layers,

21

neurons per layer, splines per neuron, and the spline degree, are tuned during
optimization to find the best configuration for the task at hand.

Mathematical formulation of the objective function

The objective function f(x) to minimize is the MSE calculated during the k-fold cross-
validation:

Where:

- N is the number of data points in the test set.
- ŷi is the predicted value for the i-th data point.
- yi is the actual value for the i-th data point.

Bayesian optimization, through gp_minimize, is used to find the optimal set of
hyperparameters by evaluating this function iteratively. The default KAN and
benchmark models, such as random forest and logistic regression, are evaluated under
the same conditions to ensure fair comparison.

● Benchmarking: Once the AutoKAN class and the other models (like the default
KAN, random forest, and linear regression) are implemented, they are evaluated
using the mean squared error (MSE) as the performance metric. The benchmarking
process involves comparing these models across the selected datasets to evaluate their
generalization and performance. By comparing the error values obtained for each
model, I aim to assess the relative strengths and weaknesses of AutoKAN in
comparison to simpler, explainable models like random forest and linear regression.

● Evaluation of Results: In the final step, the results of the benchmarking phase are
analyzed and interpreted. Beyond simply comparing scores, this section reflects on
the behavior of AutoKAN under different conditions, highlights key findings, and
discusses technical limitations that may have influenced the outcomes.

22

Chapter 5

Implementation and Results

This chapter presents the methodology followed throughout the experimental phase of this
study, along with the analysis of the obtained results. The goal is to evaluate the performance
of the AutoKAN model optimized via Bayesian optimization and compare it against a
baseline KAN, a random forest, and a linear regression model.

The section begins with the selection and description of the dataset used for benchmarking,
followed by a brief exploratory analysis to better understand its structure. Then, the design
of the models is detailed, including both the custom AutoKAN class and the implementation
of the three benchmark models. Afterward, the benchmarking setup is described, specifying
how the experiments were conducted and how the models were compared. Finally, the results
of the experiments are evaluated and discussed, providing insights into the relative
performance of each method and highlighting potential limitations.

5.1 Data Selection

The experimental evaluation in this project is based on three datasets, each serving a different
purpose in the overall development and testing of the models.

● Synthetic dataset: This dataset was used during the initial stages of code
development and refinement, particularly for building and testing the AutoKAN
class. The make_regression function from sklearn.datasets generates a linear
problem with continuous outputs and controlled noise. Since it produces perfectly
clean data when noise is zero, it is ideal for validating the basic functionality of the
model before transitioning to real-world data. However, due to its simplicity, it is not
suitable for assessing generalization.

● Diabetes dataset: This real-world dataset, also from sklearn.datasets, is commonly

used as a benchmark in regression tasks. It contains ten baseline variables (like age,
sex, BMI, blood pressure, or blood serum measurements) and a quantitative measure
of disease progression one year after baseline.

23

● Boston Housing dataset: This dataset, also commonly used for regression tasks,
includes 13 features that describe various aspects of residential homes in Boston
suburbs. It is accessed through OpenML using the fetch_openml function. Its
moderate size and real-world nature make it an ideal candidate for comparing model
performance without incurring long training times.

These datasets were selected due to their simplicity, accessibility, and widespread use in
benchmarking regression algorithms. They are clean and standardized, which eliminates the
need for extensive preprocessing and ensures that the performance differences observed can
be attributed mainly to the models and not to data quality issues.

Because of this, no specific preprocessing techniques (e.g., normalization, encoding, or
imputation) have been applied. This decision is justified by the fact that all three datasets
come from the sklearn library and are already well-prepared for regression tasks.

5.2 Descriptive Data Analysis

Before delving into model design and training, it was essential to perform an exploratory
analysis of the datasets selected for experimentation. This step provides preliminary insights
into the distributional properties of the data, relationships among features, and the behavior
of the target variable.

For the synthetic dataset, which was generated with one thousand samples, five features and
a noise level of 30, a histogram of the target variable was plotted to analyze its distribution
(Figure 5.1). As expected, the distribution remains approximately normal, although the
introduction of noise increased the dispersion and slightly flattened the peak. This validates
that the dataset maintains the general structure of a linear regression problem, while adding
enough variability to challenge the models.

24

Figure 5.1: Histogram from the synthetic dataset.

The Boston Housing dataset, in contrast, presents a more complex and realistic scenario. It
contains 506 observations, and 13 variables related to housing conditions in the Boston area.
According to the summary statistics of the target variable (Table 5.1), which represents the
median value of owner-occupied homes in thousands of dollars, the values range from 5 to
50 with a mean of approximately 22.53. The histogram in Figure 5.2 shows a slightly skewed
distribution, with most house prices concentrated between 18 and 25.

Table 5.1: Summary Statistics. Figure 5.2: Histogram from the Boston Housing dataset.

Additionally, the correlation matrix (Figure 5.3) reveals several meaningful relationships
between features and the target variable. For example, there is a strong positive correlation
between the number of rooms per dwelling (Feature 5) and housing prices, which is
consistent with expectations. Conversely, the percentage of lower-status population (Feature
12) shows a strong negative correlation with the target, indicating that areas with a higher
proportion of disadvantaged individuals tend to have lower house prices. Notably, the highest

25

correlation is observed between the accessibility to radial highways (Feature 8) and the
property tax rate (Feature 9), which also aligns with economic intuition. These patterns
suggest the presence of multicollinearity and nonlinear dependencies that could complicate
the performance of simpler models.

Figure 5.3: Correlation matrix from the Boston Housing dataset.

Lastly, the Diabetes dataset includes 442 samples and 10 continuous features measuring
various physiological variables and baseline measurements such as age, sex, BMI, blood
pressure, and different blood serum metrics. The target variable indicates a quantitative
measure of disease progression one year after baseline. As summarized in Table 5.2, the
target variable ranges from 25 to 346, with a mean of 152 and a relatively wide standard
deviation, indicating high dispersion in disease progression. The histogram in Figure 5.4
shows a right-skewed distribution, suggesting that most patients fall into the lower range of
disease progression, but a few cases present much higher severity.

26

Table 5.2: Summary Statistics Figure 5.4: Histogram from the Diabetes dataset.

In the correlation matrix (Figure 5.5), I can observe that BMI (Feature 2) and certain blood
serum metrics (Feature 8) show strong positive correlations with the target, aligning with
medical expectations that higher BMI or specific blood markers may signal greater disease
severity.

Figure 5.5: Correlation matrix from the Diabetes dataset.

Overall, this descriptive analysis confirms the diversity and structure of the selected datasets.
The synthetic dataset offers a controlled environment, while the Boston and Diabetes datasets
provide richer, real-world complexity, which will allow for robust evaluation and comparison
of the models.

27

5.3 Model Design
5.3.1 AutoKAN Class Implementation

The core of this project revolves around the development of the AutoKAN class, a Python
implementation designed to automate the configuration and training of KANs using Bayesian
optimization. The objective was to create a flexible and extensible system capable of
identifying the optimal hyperparameter configuration for a given regression task, improving
the standard KAN configuration in terms of accuracy and generalization.

The class receives the input features X and target variable y, along with optional parameters
such as the search space, number of Bayesian optimization iterations, and random seed. Upon
initialization, the dataset is split into training and testing sets (80/20), which are then
converted into PyTorch tensors. These tensors are loaded into DataLoaders and later
concatenated into unified training and testing tensors that are stored in a structured dictionary
compatible with the KAN library. Additionally, the code ensures that all data is moved to
GPU if available, defaulting to CPU otherwise.

A key component of the implementation is the Bayesian optimization itself, which is carried
out using the gp_minimize function. This function iteratively evaluates possible
hyperparameter combinations based on the performance of the model, attempting to
minimize the test error. However, during early testing, it was observed that some model
evaluations returned NaN values which caused the entire optimization process to crash.
Initially, various potential fixes were explored: avoiding automatic model saving, altering
the seed at every iteration, changing the model directory path, and even reloading the data at
each step. None of these worked reliably.

Ultimately, a fallback solution was introduced by wrapping the model training in a try-except
block and assigning a large error value (1.0) when the output was NaN. This patch ensured
the optimization process could continue even if some configurations failed, which was crucial
to allow experimentation to proceed.

Another critical adjustment involved simplifying the hyperparameter search space. It was
found that overly complex architectures were more likely to cause instabilities or return NaN
errors. Therefore, to improve stability and ensure Bayesian optimization could successfully
explore viable configurations, the upper bounds for each parameter were reduced. This
included limiting the number of hidden layers, the number of neurons per layer, the splines
per neuron and the degree of splines.

28

Additionally, the number of Bayesian optimization iterations was set to just 10, a deliberately
low value chosen for computational feasibility. Exploring high-dimensional hyperparameter
spaces typically requires a large number of evaluations to converge to optimal regions, but
due to the runtime and instability of certain KAN configurations, a smaller number was
selected to balance practicality with effectiveness. While suboptimal in terms of search
efficiency, this choice was suitable for illustrative purposes.

Together, these design decisions allowed AutoKAN to function reliably within the
constraints of the environment, enabling experimental comparison with other baseline
models.

5.3.2 Benchmark Models Implementation

To evaluate the performance of AutoKAN, I implemented three benchmark models: a linear
regression model, a random forest regressor, and a default KAN configuration. All models
were trained and evaluated using the same train-test split to ensure a fair comparison.

The linear regression and random forest models were implemented using the scikit-learn
library. Their implementation was straightforward: the dataset was split into training and
testing sets, and the models were trained using their respective .fit() methods. For the random
forest, I used 100 estimators and a fixed random state for reproducibility.

The default KAN model required a slightly more elaborate setup. The input features and
target values were converted into PyTorch tensors and reshaped appropriately to fit the KAN
library's expected input format. These tensors were then grouped into a dataset dictionary
containing training and test inputs and labels. The default KAN model was configured with
a simple architecture consisting of one hidden layer of 5 neurons, a spline grid size of 3, and
spline degree of 3. The model was trained using the L-BFGS optimization method with 50
steps and without saving intermediate states. This served as a baseline comparison to assess
whether the AutoKAN optimization process could yield improvements over a manually
configured model.

5.4 Benchmarking

Once all models were implemented, their performance was assessed using the Mean Squared
Error (MSE) as the evaluation metric. The goal was to compare how accurately each model
predicted the target variable on the test data.

29

The evaluation began with training the AutoKAN model on the training set. Once the best
hyperparameters were found through Bayesian optimization, the model was used to generate
predictions on the test set. The default KAN model, previously trained, was also evaluated
by performing forward propagation on the test input tensor, ensuring that gradient
computation was disabled during inference.

For the random forest and linear regression models, predictions were generated directly using
their .predict() methods on the test set.

All predictions were compared to the true target values using the mean_squared_error
function, and the resulting MSE values were collected in a results dictionary. Additionally,
the best hyperparameters selected by AutoKAN were stored for reference.

5.5 Evaluation of Results

Once all models were trained on the three datasets, their performance was evaluated using
the Mean Squared Error (MSE). The results are visually summarized in bar charts, allowing
for direct comparison between the benchmark models and the AutoKAN implementation.

For the synthetic dataset (Figure 5.6), the best-performing model was linear regression (MSE
= 998), followed by the default KAN (MSE = 1199) and random forest (MSE = 1437).
AutoKAN, despite the optimization process, performed considerably worse, with an MSE of
4777. This is likely due to the simplicity of the underlying data structure, which favors linear
models and penalizes more flexible architectures that are prone to overfitting or instability
under suboptimal hyperparameter configurations.

30

Figure 5.6: Benchmark for the synthetic dataset.

In the Boston Housing dataset (Figure 5.7), the results are even more striking. Random forest
achieved the lowest MSE (7.9), followed by the default KAN (18.4) and linear regression
(25.0). Again, AutoKAN fell significantly behind (535.4). This underperformance is
surprising, especially given that the dataset exhibits meaningful relationships between
features and the target variable. Despite this, the optimized model failed to capture these
patterns effectively.

Figure 5.7: Benchmark for the Boston Housing dataset.

31

In the Diabetes dataset (Figure 5.7), a similar pattern emerged. Linear regression (MSE =
2900) and random forest (MSE = 2952) were again the best-performing models. The default
KAN followed with a much higher error (MSE = 13086), while AutoKAN performed the
worst (MSE = 26544). This suggests that AutoKAN was unable to generalize well, even
though it selected a relatively simple architecture (1 layer, 2 neurons per layer). This poor
performance could be attributed to the variability and noise inherent in clinical datasets like
this one.

Figure 5.8: Benchmark for the Diabates dataset.

Taken together, these results highlight several important points. First, traditional models like
linear regression and random forest proved to be more robust and reliable across all datasets.
Second, the default KAN, even without tuning, provided competitive performance,
particularly on the Boston dataset, suggesting that its architecture is reasonable for certain
real-world problems.

On the other hand, AutoKAN consistently failed to outperform any of the benchmarks. While
this might initially seem like a failure of the algorithm, it is more accurately attributed to two
key technical limitations that arose during experimentation:

1. Limited number of optimization iterations: Due to computational constraints,
Bayesian optimization was limited to just 10 iterations. Searching over a 6-
dimensional hyperparameter space with only 10 evaluations is extremely inefficient.
If most of the space leads to poor results, the optimizer has little chance of discovering

32

a high-performing region unless it gets extremely lucky early on.

2. Inadequate prior for the Gaussian process: The default kernel used by the
Gaussian process in gp_minimize is better suited for other model types, such as neural
networks. However, KAN’s hyperparameter space is fundamentally different and far
more complex. This mismatch makes it difficult for the optimizer to model the
objective function effectively. To overcome this, one would need to study the KAN
space in more detail and design a custom kernel or use a more informed prior,
potentially leveraging the default KAN configuration as a starting point for sampling.

As a temporary path, I addressed some of the training failures by simplifying the architectures
(like reducing the number of neurons per layer) and adding exception handling to prevent
crashes when NaN values were encountered during training. While these fixes allowed
experiments to continue, they did not significantly improve performance and highlighted the
model’s sensitivity to poor hyperparameter settings.

This underscores the difficulty of navigating such a complex search space with a limited
computational budget, especially when the default Gaussian Process kernel used in the
Bayesian optimization is not well-suited to the characteristics of KAN’s hyperparameter
space. As discussed, the AutoKAN's performance may also be constrained by the default
Gaussian Process kernel used in the Bayesian optimization, which is not well-suited to the
characteristics of KAN’s hyperparameter space. Addressing these technical challenges would
likely be essential to achieving the true potential of AutoKAN.

33

Chapter 6

Conclusions
This thesis explored the potential of AutoKAN, a custom Python implementation that
automates the hyperparameter tuning process for Kolmogorov-Arnold Networks (KANs)
using Bayesian optimization. The project was built on the premise that KANs, due to their
flexible and interpretable architecture, can offer competitive performance compared to
traditional machine learning models, and that an automated tuning approach could further
improve their effectiveness.

To evaluate this approach, I used three datasets: a synthetic dataset, the Boston Housing
dataset, and the Diabetes dataset. I compared the performance of AutoKAN with three
benchmark models: linear regression, random forest, and a standard version of KAN. All
models were tested using Mean Squared Error (MSE) on a separate test set.

Across all datasets, traditional models such as linear regression and random forest
consistently achieved lower MSE scores. Interestingly, even the default KAN, without any
tuning, often outperformed AutoKAN. These results underscore the stability and
competitiveness of the default KAN configuration but also highlight the current limitations
of the AutoKAN approach.

After testing, two key technical constraints were identified that help explain the
underperformance of AutoKAN. First, the number of Bayesian optimization iterations was
limited to just 10 due to computational constraints. In a 6-dimensional hyperparameter space,
this small number of evaluations offers very limited coverage and makes it unlikely to find
optimal configurations. Second, the kernel used by the Gaussian Process in the optimization
process is not well suited for the complex and irregular hyperparameter space of KANs. As
a result, the optimizer struggles to model the objective function accurately and efficiently.

To reduce the number of errors (NaN values) that occurred during training, I also simplified
the KAN architecture and added exception handling. These changes helped the code run more
smoothly, but did not improve AutoKAN’s performance enough.

These findings may reflect a structural mismatch between the optimization method and the
model’s architecture rather than a failure of the overall AutoKAN approach. In fact, the
observed sensitivity of KANs to their hyperparameters is well documented in prior research
and could justify the difficulty in optimizing them with standard Bayesian tools.

34

Looking forward, while AutoKAN did not outperform benchmark models in this iteration, it
laid the groundwork for future research. Increasing the number of optimization iterations,
using a different kernel that fits KANs better, or even starting the search from the default
KAN configuration could significantly improve results. Furthermore, this work reinforces
the idea that hyperparameter optimization is not one-size-fits-all, as models as structurally
unique as KANs may require equally unique tuning strategies.

AutoKAN demonstrates that with the right refinements, automated tuning for KANs could
become a powerful tool, capable of harnessing their full potential in high-dimensional and
complex machine learning tasks. This thesis contributes both a functional prototype and a
critical evaluation of its current limitations, offering a clear path for future improvement and
experimentation.

35

Declaration of the use of AI tools

36

References

Azam, B., & Akhtar, N. (2024). Suitability of KANs for computer vision: A preliminary
investigation. arXiv (Cornell University), https://10.48550/arxiv.2406.09087

Cacciatore, A., Morelli, V., Paganica, F., Frontoni, E., Migliorelli, L., & Berardini, D. (2024).
A preliminary study on continual learning in computer vision using kolmogorov-arnold
networks.https://10.48550/arxiv.2409.13550

Cambrin, D. R., Poeta, E., Pastor, E., Cerquitelli, T., Baralis, E., & Garza, P. (2024). KAN
you see it? KANs and sentinel for effective and explainable crop field
segmentation.https://10.48550/arxiv.2408.07040

Chen, A. S. (2024). Gaussian process kolmogorov-arnold networks.
https://10.48550/arxiv.2407.18397

Daulton, S., Eriksson, D., Balandat, M., & Bakshy, E. (2021). Multi-objective bayesian
optimization over high-dimensional search spaces. arXiv (Cornell University),
https://10.48550/arxiv.2109.10964

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The
Annals of Statistics, 32(2), 407–499.

Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811.

Harrison, D., & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean
air. Journal of Environmental Economics and Management, 5(1), 81–102.

Hassan, M. M. (2024). Bayesian kolmogorov arnold networks (Bayesian_KANs): A
probabilistic approach to enhance accuracy and interpretability.
https://10.48550/arxiv.2408.02706

Head, T., Louppe, G., Shcherbatyi, I., Charras, F., & Varoquaux, G. (2018). Scikit-optimize:
Sequential model-based optimization with a scikit-learn interface. GitHub.
https://github.com/scikit-optimize/scikit-optimize

Li, H., Li, J., Guan, X., Liang, B., Lai, Y., & Luo, X. (Dec 2019). (Dec 2019). Research on
overfitting of deep learning. Paper presented at the 78–81.
https://10.1109/CIS.2019.00025 https://ieeexplore.ieee.org/document/9023664

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
https://github.com/scikit-optimize/scikit-optimize
about:blank
https://ieeexplore.ieee.org/document/9023664

37

Liu, Z., Ma, P., Wang, Y., Matusik, W., & Tegmark, M. (2024b). KAN 2.0: Kolmogorov-
arnold networks meet science. https://10.48550/arxiv.2408.10205

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T. Y., & Tegmark,
M. (2024a). KAN: Kolmogorov-arnold networks. arXiv (Cornell University),
https://10.48550/arxiv.2404.19756

Lu, Y., & Zhan, F. (2024). Kolmogorov arnold networks in fraud detection: Bridging the gap
between theory and practice.https://10.48550/arxiv.2408.10263

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825–2830.

Pourkamali-Anaraki, F. (2024). Kolmogorov-arnold networks in low-data regimes: A
comparative study with multilayer perceptrons.https://10.48550/arxiv.2409.10463

ROCHA, A., PAPA, J. P., & MEIRA, L. A. A. (2012). How far do we get using machine
learning black-boxes? International Journal of Pattern Recognition and Artificial
Intelligence, 26(2), 1261001–1261023. https://10.1142/S0218001412610010

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,
61, 85–117. https://10.1016/j.neunet.2014.09.003

Shen, H., Zeng, C., Wang, J., & Wang, Q. (2024). Reduced effectiveness of kolmogorov-
arnold networks on functions with noise.https://10.48550/arxiv.2407.14882

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems, 25.

Sulaiman, M. H., Mustaffa, Z., Saealal, M. S., Saari, M. M., & Ahmad, A. Z. (2024). Utilizing
the kolmogorov-arnold networks for chiller energy consumption prediction in
commercial building. Journal of Building Engineering, 96, 110475.
https://10.1016/j.jobe.2024.110475

Ter-Avanesov, B., & Beigi, H. (2024). MLP, XGBoost, KAN, TDNN, and LSTM-GRU hybrid
RNN with attention for SPX and NDX european call option pricing. (). Ithaca: Cornell
University Library, arXiv.org. https://10.48550/arxiv.2409.06724 Retrieved from
Publicly Available Content Database
https://www.proquest.com/docview/3103644209/abstract/

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
https://www.proquest.com/docview/3103644209/abstract/

38

Toosi, A., Bottino, A. G., Saboury, B., Siegel, E., & Rahmim, A. (2021). A brief history of
AI: How to prevent another winter (A critical review). PET Clinics, 16(4), 449–469.
https://10.1016/j.cpet.2021.07.001

Wason, R. (2018). Deep learning: Evolution and expansion. Cognitive Systems Research, 52,
701–708. https://10.1016/j.cogsys.2018.08.023

Zohuri, B., & Moghaddam, M. (2020). Deep learning limitations and flaws. Mod.Approaches
Mater.Sci, 2, 241–250.

about:blank
about:blank

39

Annex

	AutoKAN - The power of KAN and Bayesian Optimization.pdf
	Chapter 1
	Chapter 2
	Chapter 3
	3.1 General Objective
	3.2 Specific Goals
	3.3 Constraints
	3.3.1 Hypothesis
	3.3.2 Assumptions

	Chapter 4
	Chapter 5
	5.1 Data Selection
	5.2 Descriptive Data Analysis
	5.3 Model Design
	5.3.1 AutoKAN Class Implementation
	5.3.2 Benchmark Models Implementation

	5.4 Benchmarking
	5.5 Evaluation of Results

	Chapter 6
	Declaration of the use of AI tools
	References
	Annex

	codigo final

