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Abstract: In this paper, we present a novel approach to state estimation in dynamic systems by
combining Physics-Informed Neural Networks (PINNs) with an adaptive Unscented Kalman Filter
(UKF). Recognizing the limitations of traditional state estimation methods, we refine the PINN
architecture with hybrid loss functions and Monte Carlo Dropout for enhanced uncertainty estimation.
The Unscented Kalman Filter is augmented with an adaptive noise covariance mechanism and
incorporates model parameters into the state vector to improve adaptability. We further validate this
hybrid framework by integrating the enhanced PINN with the UKF for a seamless state prediction
pipeline, demonstrating significant improvements in accuracy and robustness. Our experimental
results show a marked enhancement in state estimation fidelity for both position and velocity tracking,
supported by uncertainty quantification via Bayesian inference and Monte Carlo Dropout. We further
extend the simulation and present evaluations on a double pendulum system and state estimation on
a quadcopter drone. This comprehensive solution is poised to advance the state-of-the-art in dynamic
system estimation, providing unparalleled performance across control theory, machine learning, and
numerical optimization domains.

Keywords: Physics-Informed Neural Networks; Unscented Kalman Filter (UKF); state estimation

1. Introduction

The ability to accurately estimate the state of dynamic systems is a critical problem
in various fields, from aerospace engineering to financial modeling. Traditional state
estimation techniques, such as the KALMAN filter, have been widely successful but often
rely heavily on model assumptions and are sensitive to noise and uncertainties. With the
rapid advancements in Machine Learning (ML) and Artificial Intelligence (AI), Physics-
Informed Neural Networks (PINNs) have emerged as promising tools that integrate the
physics of the system directly into the neural network structure. This integration enables
the learning model to better understand the underlying physical principles, leading to
more accurate and generalizable predictions.

However, PINNs alone can suffer from issues like overfitting, lack of interpretability,
and uncertainty quantification. On the other hand, conventional KALMAN filters struggle
with highly nonlinear systems and often require manual tuning of covariance matrices,
making them less adaptive to changing dynamics. To address these limitations, we propose
a hybrid framework that combines the strengths of both methods: the flexibility and
expressiveness of PINNs with the rigorous uncertainty handling of the Unscented Kalman
Filter (UKF).
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In this work, we refine the PINN architecture using hybrid loss functions and Monte
Carlo Dropout for improved uncertainty estimation and employ an adaptive UKF with
dynamic noise covariance estimation. Our approach augments the state vector with model
parameters to enhance adaptability and integrates the PINN predictions into the UKF for a
seamless, hybrid state estimation pipeline. This synergy aims to deliver a more comprehen-
sive state estimation solution with unparalleled accuracy, robustness, and adaptability.

We validate this framework through experiments on dynamic systems involving
position and velocity tracking. Our results demonstrate significant improvements in
estimation fidelity, offering new avenues for combining ML with traditional control theory
in a coherent and practical manner.

The remainder of the paper is organized as follows. Section 2 provides an overview
of the related work on state estimation using PINNs and KALMAN filtering. Section 3
describes the problem formulation and the proposed hybrid PINN-UKF approach. Section 4
presents the experimental setup and results, followed by an extension to nonlinear systems,
specifically the double pendulum, in Section 5. Section 6 extends the framework to complex
systems, using a simulation of a quadcopter drone. The discussion of the results and
potential future research directions is presented in Section 7. Finally, Section 8 concludes
the paper and outlines future research directions.

2. Related Work

Recent advancements in the integration of AI with traditional state estimation tech-
niques [1,2] have shown significant promise in improving the accuracy and robustness
of dynamic system xestimations [3,4]. PINNs [5,6] have emerged as a powerful tool for
incorporating physical laws into Neural Network (NN) models, providing a means to
enhance the interpretability and generalizability of ML models in scientific computing.

Raissi et al. [5] introduced the concept of PINNs to solve forward and inverse problems
involving nonlinear partial differential equations, highlighting their potential in integrating
physics-based constraints with neural network training. This foundational work has
inspired subsequent research into the applications and enhancements of PINNs across
various domains. Cai et al. [7] provided a comprehensive review of PINNs applied to fluid
mechanics, demonstrating their efficacy in capturing complex fluid behaviors and solving
associated differential equations. Krishnapriyan et al. [8] explored the failure modes of
PINNs, identifying key areas for improvement and proposing solutions to enhance their
robustness and reliability. Their findings are crucial for understanding the limitations of
PINNs and guiding future research to mitigate these challenges. Bihlo et al. [9] presented
advancements in PINNs through meta-learned optimization, showcasing improvements in
the training efficiency and accuracy of physics-informed models. This work highlights the
ongoing efforts to refine PINNs for better performance in dynamic system estimation.

Antonelo et al. [6] investigated the control of dynamical systems using PINNs, demon-
strating their application in control theory and the potential for real-time system manage-
ment. Their research provides valuable insights into the practical implementation of PINNs
in control systems. Meng et al. [10] introduced PINN-form, a novel physics-informed
neural network framework for reliability analysis with partial differential equations, further
expanding the applicability of PINNs to complex engineering problems. Zou et al. [11]
addressed the issue of model misspecification in PINNs, proposing methods to correct
inaccuracies and improve the fidelity of physics-informed models. This work is critical for
ensuring the reliability of PINN-based state estimation in real-world applications.

In addition to advancements in PINNs [12], the integration of NNs with traditional
state estimation methods has also been explored [13–15]. For instance, the combination of
PINNs with KALMAN filtering techniques [16–18], such as the Unscented Kalman Filter
(UKF), has shown potential in enhancing state estimation accuracy and robustness. Overall,
the integration of PINNs with KALMAN filtering techniques represents a promising
direction for advancing state estimation methodologies. The research discussed here
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provides a strong foundation for developing hybrid frameworks that leverage the strengths
of both AI and traditional control theory.

3. Methodology

In this section, we describe the methodology employed to integrate Physics-Informed
Neural Networks (PINNs) with an adaptive Unscented Kalman Filter (UKF) for improved
state estimation in dynamic systems. Our approach leverages both the expressive power of
PINNs and the rigorous uncertainty handling capabilities of the UKF.

3.1. Physics-Informed Neural Networks (PINNs)

The PINN model is formulated to predict the state variables x(t) of a dynamic system
at the next time step. We employ a hybrid loss function that combines a data loss with a
physics-based loss to guide the learning process.

3.1.1. Hybrid Loss Function

The total loss L is expressed as:

L = Ldata + λphysicsLphysics, (1)

where:

• Ldata is the mean squared error (MSE) between the predicted states x̂(t + 1) and the
ground truth xtrue(t + 1):

Ldata =
1
N

N

∑
i=1

∥x̂i(t + 1)− xtrue,i(t + 1)∥2, (2)

• Lphysics is a physics-based constraint loss that enforces the predicted states to obey
known physical laws, such as differential equations:

Lphysics =
1
N

N

∑
i=1

∥f(xi(t), ui(t))− xi(t + 1)∥2, (3)

where f represents the known physical model of the system.
• λphysics is a weighting factor that controls the relative influence of the physics loss.

3.1.2. Model Architecture

The PINN model consists of multiple dense layers with residual connections, dropout
for regularization, and batch normalization. We use Monte Carlo Dropout to quantify the
model’s uncertainty by performing multiple stochastic forward passes.

3.2. Unscented Kalman Filtering (UKF)

The UKF estimates the state vector x by recursively updating its belief based on
measurements z using a prediction and update step.

3.2.1. State Transition and Measurement Models

• State transition model:
xk+1 = f(xk, uk) + wk, (4)

where wk ∼ N (0, Qk) is the process noise with covariance matrix Qk.
• Measurement model:

zk = h(xk) + vk, (5)

where vk ∼ N (0, Rk) is the measurement noise with covariance matrix Rk.

N (0, Qk) and N (0, Rk) denote GAUSSIAN distributions representing process and
measurement noise, respectively. Specifically, N (0, Qk) describes the process noise wk
with a mean of zero and covariance matrix Qk. This implies that wk is a random variable
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drawn from a multivariate normal distribution, capturing the uncertainty in the system
dynamics. Similarly, N (0, Rk) characterizes the measurement noise vk with a mean of zero
and covariance matrix Rk, indicating that vk is also drawn from a multivariate normal
distribution, reflecting the uncertainty in the observations. These noise terms are crucial
for modeling the inherent uncertainties in the state transition and measurement processes,
enabling the UKF to provide robust state estimates by accounting for both process and
measurement inaccuracies.

3.2.2. Adaptive Noise Covariance Estimation

To dynamically adjust the process noise covariance Q, we utilize an adaptive update
rule based on the current covariance matrix P:

Qk+1 = αPk + Q0, (6)

where α is a scaling factor and Q0 is an initial covariance estimate.

3.2.3. Augmented State UKF

To improve adaptability, we extend the state vector to include additional parameters.
The augmented state vector is:

x̃k = [xk; θ], (7)

where θ represents the model parameters.
In our implementation of the adaptive estimation of noise covariance, the scaling

factor α was set to 0.01. This value was chosen based on empirical testing to balance the
adaptability of the process noise covariance Q without overly amplifying the noise. The
choice of α directly influences how the process noise covariance Qk+1 is updated based
on the current covariance matrix Pk. By setting α to 0.01, we ensure that the process
noise covariance adapts smoothly over time, providing a stable yet responsive adjustment
mechanism that enhances the robustness and accuracy of the state estimates.

By augmenting the state vector, we incorporate not only the primary states, such as
positions and velocities, but also secondary states or model parameters that can influence
the system’s behavior over time. In a general setting, these additional parameters may
include variables related to system dynamics, environmental factors, or even parameters
specific to the physical model being used. This extension allows the UKF to adaptively
adjust its predictions based on the current state of the system, leading to more accurate and
robust state estimates. The incorporation of these parameters into the state vector enables
the filter to better handle nonlinearities and uncertainties, thereby enhancing the overall
performance of the state estimation process. This approach ensures that the UKF remains
flexible and responsive to changes in the system, providing a more comprehensive solution
for dynamic state estimation.

3.2.4. UKF Procedure

1. Prediction Step:

• Generate sigma points based on the current state estimate xk−1 and covariance
matrix Pk−1;

• Predict the sigma points forward using the state transition model;
• Compute the predicted state estimate x̂k and predicted covariance matrix Pk.

2. Update Step:

• Predict the measurements for each sigma point;
• Compute the predicted measurement estimate ẑk and its covariance Sk;
• Calculate the cross-covariance matrix Pxz between the state and measurement;
• Update the state estimate and covariance using the KALMAN gain Kk = PxzS−1

k .
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3.3. Hybrid Framework

The hybrid framework integrates the refined PINN predictions as part of the UKF’s
state transition model:

xk+1 = fPINN(xk, uk) + wk, (8)

where fPINN represents the predictive model obtained from the trained PINN network.
This ensures that the transition model incorporates both data-driven learning and physical
laws, leading to improved estimation accuracy.

The overall framework is validated through experiments involving position and veloc-
ity tracking, demonstrating significant improvements in estimation fidelity by leveraging
the complementary strengths of PINNs and UKF.

3.4. Monte Carlo Dropout and Uncertainty Quantification

In addition to the hybrid loss function, our PINN model incorporates Monte Carlo
(MC) Dropout to quantify uncertainty. MC Dropout, introduced by Gal and Ghahramani
in [19], is a Bayesian approximation technique that enables the estimation of model uncer-
tainty in neural networks. This method involves performing dropout during both training
and inference, which allows the model to generate multiple stochastic predictions for the
same input. By sampling from these predictions, we can compute the mean and standard
deviation, thus providing a measure of epistemic uncertainty.

The principle behind MC Dropout is rooted in the interpretation of dropout as a form
of variational inference. By keeping dropout active during inference, the model effectively
samples from an approximate posterior distribution over the network weights. This sam-
pling process allows us to capture the uncertainty associated with the model’s predictions.

To implement MC Dropout in our PINN model, we use dropout layers in the neural
network architecture and retain the dropout mechanism during the inference phase. Specif-
ically, we generate multiple forward passes (e.g., 10 samples) for each input and compute
the mean and standard deviation of the output predictions. The mean provides the final
prediction, while the standard deviation serves as an indicator of the prediction uncertainty.

The integration of MC Dropout not only enhances the robustness of our state esti-
mation but also provides valuable insights into the confidence of the model’s predictions.
This approach ensures that our PINN model is well-equipped to handle the inherent un-
certainties in dynamic systems, making it a comprehensive and innovative solution for
state estimation.

4. Experiments and Results

In this section, we outline the experimental setup used to evaluate our hybrid frame-
work and analyze the results obtained. Our experiments focus on state estimation for a
dynamic system involving both position and velocity tracking. The performance of the
hybrid Physics-Informed Neural Network (PINN) and Unscented Kalman Filter (UKF) is
compared against traditional estimation techniques.

4.1. Experimental Setup
4.1.1. System Model

We simulate a dynamic system with position x and velocity v governed by a simple
linear motion model:

x(t + 1) = x(t) + v(t)∆t + wx(t), (9)

v(t + 1) = v(t) + wv(t), (10)

where wx and wv are GAUSSIAN process noise terms with covariance matrices Qx and
Qv, respectively. The measurement model is direct observation of position and velocity
with GAUSSIAN measurement noise.

In the equations presented in the system model, the letter t represents time. Specifically,
t denotes the current time step, while t + 1 denotes the next time step. These equations
describe the evolution of the system’s state variables, position x and velocity v, over



Electronics 2024, 13, 2208 6 of 23

discrete time intervals. The position at the next time step, x(t + 1), is determined by
the current position, x(t), the velocity, v(t), and a process noise term, wx(t). Similarly,
the velocity at the next time step, v(t + 1), is given by the current velocity, v(t), and
a process noise term, wv(t). The process noise terms, wx(t) and wv(t), are modeled as
Gaussian distributions with covariance matrices Qx and Qv, respectively. This discrete-time
representation facilitates the implementation of our hybrid state estimation framework,
enabling the prediction and correction of state estimates at each time step.

4.1.2. Dataset

We generate synthetic data over a 10-second time period with a sampling interval of
∆t = 0.1. The initial conditions are set to:

x(0) = 0, v(0) = 10. (11)

True positions and velocities are simulated, and measurement noise is added to generate
the observed data.

4.2. Implementation
4.2.1. PINN Model

The PINN model architecture employs a sequence of dense layers with dropout for
regularization and Monte Carlo Dropout for uncertainty quantification. The network is
trained using a hybrid loss function combining data and physics-informed losses. The
physics-informed loss encourages adherence to the known motion equations. Algorithm 1
presents the pseudocode.

Algorithm 1 Improved PINN Model with Monte Carlo Dropout

1: Initialize dense layers with residual connections
2: Add batch normalization layers for better training stability
3: Apply Monte Carlo Dropout for regularization and uncertainty quantification
4: Define the final dense layer to output the next state prediction

4.2.2. UKF Integration

The Unscented Kalman Filter is integrated into the prediction pipeline, where the
transition function relies on the trained PINN model. Sigma points are propagated through
the PINN-based state transition model. Algorithm 2 presents the pseudocode.

Algorithm 2 UKF Procedure with PINN Transition Model

1: Initialize sigma points based on current state estimate and covariance
2: Propagate sigma points forward through the PINN-based transition model
3: Compute predicted state estimate and covariance
4: Predict measurements for each sigma point
5: Calculate the cross-covariance between the state and measurement
6: Update state estimate and covariance using the KALMAN gain

4.3. Results
4.3.1. Loss Analysis

The PINN model was trained for 500 epochs, and the training loss curves for the
total and physics losses are shown in Figure 1. The adaptive weighting of the physics loss
ensures a balanced trade-off between fitting data and adhering to physical constraints.
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Figure 1. Training loss curves for the PINN model with Monte Carlo Dropout.

4.3.2. State Estimation Performance

The estimated positions and velocities from the hybrid PINN-UKF framework were
compared to the true states and are shown in Figures 2 and 3. The shaded regions indicate
the uncertainty bounds, which align well with the true states. The model accurately tracks
the system dynamics while quantifying uncertainty.

Figure 2. True vs. estimated positions using the hybrid framework.

Figure 3. True vs. estimated velocities using the hybrid framework.
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The observed deviation in the later time periods when comparing the actual and
estimated positions using the PINN-UKF hybrid framework can be attributed to several
factors, and is the main reason why we further improve the methodology with several
enhancements in the following subsection. One primary reason is the accumulation of
prediction errors over time. As the system evolves, small discrepancies in state estimation
can compound, leading to larger deviations in the long run. This effect is particularly
pronounced in dynamic systems with high levels of nonlinearity and noise.

4.4. Improved Estimation with Enhanced PINN and UKF

We implemented three enhancements to improve the accuracy of state estimation for
both positions and velocities. The modifications include an improved PINN architecture
with Monte Carlo Dropout, an adaptive UKF with dynamic process noise covariance
estimation, and an increased model capacity.

The model consists of a sequential stack of dense layers designed to effectively cap-
ture the underlying dynamics of the system. Specifically, the architecture begins with a
dense layer of 128 neurons, utilizing the ReLU activation function and incorporating L2
regularization with a penalty of 0.0001 to prevent overfitting. This layer is followed by a
Batch Normalization layer to stabilize and accelerate the training process. Subsequently, a
Monte Carlo Dropout layer with a dropout rate of 0.1 is added to introduce stochasticity
and enable uncertainty estimation through multiple forward passes during inference. This
sequence is repeated with another dense layer of 128 neurons, Batch Normalization, and
Monte Carlo Dropout. The model then includes two additional dense layers, each with
64 neurons and ReLU activation, to further refine the representation of the state dynamics.
Finally, the architecture concludes with a dense output layer tailored to match the dimen-
sionality of the state vector, thus ensuring the model’s predictions align with the required
state variables. This architecture not only improves the predictive capability of the PINN
but also provides a robust mechanism for uncertainty quantification, crucial for reliable
state estimation in dynamic systems.

4.4.1. PINN Model with Monte Carlo Dropout

The improved PINN model architecture utilizes Monte Carlo Dropout to quantify
uncertainty. The model is trained with a hybrid loss function that combines data and
physics-informed losses to guide the learning process effectively.

4.4.2. Loss Analysis

The PINN model was trained for 500 epochs, and the training loss curves for the
total and physics losses are shown in Figure 4. The adaptive weighting of the physics loss
ensures a balanced trade-off between fitting data and adhering to physical constraints.

Figure 4. Training loss curves for the improved PINN model with Monte Carlo Dropout.
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4.4.3. State Estimation Performance

The estimated positions and velocities from the improved hybrid PINN-UKF frame-
work were compared to the true states and are shown in Figures 5 and 6. The shaded
regions indicate the uncertainty bounds, which align well with the true states. The model
accurately tracks the system dynamics while quantifying uncertainty.

Figure 5. True vs. estimated positions using the improved hybrid framework.

Figure 6. True vs. estimated velocities using the improved hybrid framework.

PINNs provide a robust mechanism to capture complex system dynamics, which are
often challenging for traditional filters to model accurately. The inclusion of MC Dropout
in our PINN architecture enhances the model’s capability to estimate uncertainty, a feature
that traditional filters lack without substantial manual tuning.

Moreover, the adaptive noise covariance mechanism in our UKF component dynami-
cally adjusts to changing system dynamics and measurement noise, ensuring more reliable
state estimates. This adaptability is particularly beneficial in scenarios where the system
exhibits nonstationary behavior, a common limitation for traditional KALMAN filters.

The EKF is a widely-used state estimation technique for nonlinear systems, leveraging
linearization around the current estimate. We implemented the EKF to estimate the position
and velocity of our dynamic system using the same true states and measurements as used
for the PINN-UKF framework, as depicted in Figures 7 and 8.
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Figure 7. True vs. estimated positions using EKF.

Figure 8. True vs. estimated velocities using EKF.

The takeaway here is that while the EKF provides very good estimates for this sim-
plified scenario, it may often fall short in handling highly nonlinear dynamics and noise
variability compared to our hybrid approach. Specifically, the EKF’s reliance on linear
approximations can lead to larger estimation errors over time, especially in the presence
of significant system nonlinearity. In contrast, the PINN-UKF framework, by integrating
physics-informed learning and adaptive filtering, offers enhanced accuracy, adaptability,
and robustness, demonstrating its superiority in dynamic state estimation tasks.

Initially, we employed a traditional PINN model without any modifications, which
served as our baseline. Subsequently, we introduced an enhanced PINN model that in-
corporates MC Dropout and additional enhancements as an extended state vector. This
advanced model significantly improves upon the base model by providing better uncer-
tainty quantification and more robust state estimation. The enhancements in the model
architecture and training procedures have led to superior performance, as evidenced by
lower training loss and more accurate state predictions. The results clearly demonstrate
that the optimized PINN model with MC Dropout offers substantial advantages over the
initial approach, validating the efficacy and superiority of our proposed improvements.
Moreover, this comparison highlights the critical role of advanced techniques in enhancing
the reliability and accuracy of PINN-based state estimation in dynamic systems, having
comparable performance to other state estimation techniques but being able to adapt to the
dynamics without a fixed model assumption.
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4.5. Analysis of Computational Complexity

The computational complexity of the proposed hybrid framework, which integrates
PINNs with an adaptive UKF, is inherently higher than that of traditional methods such
as standard KALMAN Filters or Extended Kalman Filters (EKF). This increase in complexity
arises from several factors, which we delineate below with accompanying
mathematical formulations.

4.5.1. PINN Model Complexity

The complexity of the PINN model can be primarily attributed to the number of layers,
the number of neurons per layer, and the operations within each layer. For a PINN with
L layers, where each layer l has dl neurons, the forward pass computational complexity
is approximately:

O
(

L

∑
l=1

dl−1 · dl

)
, (12)

where d0 = din is the input dimension and dL = dout is the output dimension. Additionally,
the inclusion of Monte Carlo Dropout further increases the computational load, as it
requires multiple stochastic forward passes for uncertainty estimation. If NMC denotes the
number of Monte Carlo samples, the effective complexity becomes:

O
(

NMC ·
L

∑
l=1

dl−1 · dl

)
. (13)

4.5.2. UKF Complexity

The UKF involves the generation of sigma points, the prediction of these points
through the state transition function, and the subsequent update steps. For a state dimen-
sion n and measurement dimension m, the complexity of each UKF iteration is given by:

O(n3 + n2 · m). (14)

The cubic term arises from the CHOLESKI decomposition and matrix inversions, while the
quadratic term is due to the prediction and update steps involving sigma points.

4.5.3. Hybrid Framework Complexity

When combining the PINN with the UKF, the overall complexity per time step includes
both the PINN forward passes and the UKF operations. Therefore, the total computational
complexity per iteration is approximately:

O
(

NMC ·
L

∑
l=1

dl−1 · dl + n3 + n2 · m

)
. (15)

4.5.4. Comparative Analysis

To compare the computational complexity of the proposed hybrid framework with
traditional methods, consider the standard KALMAN Filter which has a complexity of
O(n2) per iteration. The ratio of the computational load of our proposed method to the
traditional KF is:

Complexity Ratio ≈ NMC · ∑L
l=1 dl−1 · dl + n3 + n2 · m

n2 . (16)

This ratio indicates that the computational load increases by a factor dependent on the
PINN architecture and the dimensions of the state and measurement vectors.

For practical context, if we assume L = 5 layers, each with 128 neurons, NMC = 10
Monte Carlo samples, and state and measurement dimensions n = 10 and m = 5, respec-
tively, the increase in calculation times can be significant. Thus, the enhanced accuracy
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and uncertainty quantification offered by the proposed hybrid framework come at the cost
of increased computational demands, highlighting the need for efficient implementation
strategies in real-time applications.

5. Extension to Nonlinear Systems: Double Pendulum Case

In this section, we extend the proposed hybrid framework to a more complex scenario
by estimating the state of a nonlinear dynamic system, specifically a double pendulum.
This system contains more state variables and exhibits chaotic behavior, making it an ideal
test case.

5.1. Problem Statement: Double Pendulum System

- **State Vector:** [θ1, θ2, θ̇1, θ̇2]
- **Measurements:** [θ1, θ2]

5.2. PINN Model Architecture

The PINN predicts the state vector at the next time step given the current state. The
architecture incorporates Monte Carlo Dropout for uncertainty quantification. Algorithm 3
presents the pseudocode.

Algorithm 3 Improved PINN Model with Monte Carlo Dropout for Double Pendulum

1: Initialize dense layers with residual connections
2: Add batch normalization layers for stability
3: Apply Monte Carlo Dropout for uncertainty quantification
4: Define the output layer to predict the next state vector

5.3. UKF Implementation

To accommodate the increased state dimension of the double pendulum system, the
process and measurement noise covariance matrices are updated accordingly. The Un-
scented Kalman Filter (UKF) estimates the state using the PINN-based transition function.
Algorithm 4 presents the pseudocode.

Algorithm 4 UKF Procedure for Double Pendulum with PINN Transition Model

1: Initialize sigma points based on current state estimate and covariance
2: Propagate sigma points forward through the PINN transition model
3: Compute the predicted state estimate and covariance
4: Predict measurements for each sigma point
5: Calculate the cross-covariance between the state and measurement
6: Update state estimate and covariance using the KALMAN gain

5.4. Results
5.4.1. State Estimation Performance

In advancing our model for the double pendulum, we have integrated a refined
approach to enhance the accuracy of angular velocity (dθ1 and dθ2) estimations. This
subsection details the updated methodology and its impact on the simulation results.

To improve the estimation accuracy of angular velocities (θ̇1 and θ̇2), several modifica-
tions were made to the hybrid PINN-UKF framework.

5.4.2. Separation of Primary and Secondary States

The transition function within the UKF was adjusted to separate the estimation of
primary states (θ1, θ2, θ̇1, θ̇2) from the secondary states (θ̈1, θ̈2). The PINN model predicts
the primary states at the next time step, and the double pendulum dynamics equations
are used to derive the secondary states. This ensures that the PINN remains focused on
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estimating the more directly measurable primary states, while the physics-based model
handles the derived quantities.

5.4.3. Enhanced State Vector

The state vector in the UKF was extended to include the angular accelerations, resulting
in a six-dimensional state vector: [θ1, θ2, θ̇1, θ̇2, θ̈1, θ̈2]. This augmentation allows the filter to
maintain a more comprehensive representation of the system’s dynamics.

5.4.4. Improved Transition Function

The transition function for the UKF was refined to utilize the PINN model for predict-
ing the primary states and the double pendulum dynamics for calculating the secondary
states. This hybrid approach leverages the strengths of both the data-driven PINN and the
physics-based dynamic model.

5.4.5. Adaptive Process Noise Covariance

The process noise covariance matrix (Q) was dynamically adjusted during the filtering
process. An adaptive scheme was implemented to modify Q based on the current state esti-
mate covariance (P). This adaptation helps in accommodating varying levels of uncertainty
and improves the robustness of the state estimates, particularly for the angular velocities.

5.4.6. Increased Model Capacity

The architecture of the PINN was enhanced by increasing the number of layers and
neurons, as well as experimenting with different activation functions. This increase in
model capacity helps in capturing more complex relationships within the data, leading to
better prediction accuracy.

The double pendulum dynamics are simulated with the updated model parameters,
and data are generated to validate the refined approach. The following figures depict the
performance enhancements achieved with the refined model, highlighting the increased
accuracy in estimating both the angles and angular velocities of the double pendulum.

5.4.7. Training Performance

The training phase shows a significant improvement in loss reduction as shown in
Figure 9, indicating better learning and model fitting to the double pendulum dynamics.

Figure 9. Training loss history with the enhanced physics-informed loss function.

5.4.8. State Estimation Results

Figures 10 and 11 compare the true states versus the estimated states over time,
demonstrating the refined model’s enhanced capability in accurately tracking both angles
and angular velocities.
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Figure 10. True vs. estimated angles (θ1 and θ2) with the enhanced model.

Figure 11. True vs. estimated angular velocities (dθ1 and dθ2) with the enhanced model.

These results validate the efficacy of the enhanced PINN and UKF approach in han-
dling the complex dynamics of a double pendulum. The improvements in the model
architecture and the adaptive features of the UKF contribute significantly to the accuracy
and reliability of the state estimations.

6. Extension to Complex Systems: Quadcopter Drone

In this section, we extend the proposed hybrid framework to an even more complex
example, a quadcopter drone simulation. Quadcopter dynamics are inherently nonlinear,
making them ideal for our PINN and UKF architecture.

6.1. Problem Statement: Quadcopter Dynamics

The state vector for the quadcopter includes the position, orientation, and velocities:

[x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇] (17)

Control inputs are given by:
[T, τϕ, τθ , τψ] (18)

where T is the thrust and τϕ, τθ , τψ are the torques.
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6.2. Plan

1. Define the Quadcopter Dynamics: Use symbolic mathematics to derive the equations
of motion.

2. Simulate Noisy Data: Generate training data with Gaussian noise.
3. Train a PINN Model: Predict the state vector at the next time step.
4. Implement UKF: Estimate the state using the trained PINN model.

6.3. PINN Model Architecture

The Physics-Informed Neural Network is designed to predict the next state vector
given the current state. The architecture incorporates Monte Carlo Dropout for robust
uncertainty quantification. Algorithm 5 presents the pseudocode.

Algorithm 5 Improved PINN Model for Quadcopter Simulation

1: Initialize dense layers with residual connections
2: Add batch normalization layers for stability
3: Apply Monte Carlo Dropout for uncertainty estimation
4: Define the output layer to predict the next state vector

6.4. UKF Implementation

The Unscented Kalman Filter (UKF) is adapted to handle the increased state dimension
of the quadcopter system. The process and measurement noise covariance matrices are
adjusted to reflect the system’s complexity. Algorithm 6 presents the pseudocode.

Algorithm 6 UKF Procedure for Quadcopter Simulation with PINN Transition Model

1: Initialize sigma points based on current state estimate and covariance
2: Propagate sigma points through the PINN-based transition model
3: Compute predicted state estimate and covariance
4: Predict measurements for each sigma point
5: Calculate the cross-covariance between state and measurement
6: Update state estimate and covariance using the KALMAN gain

6.5. Results
6.5.1. State Estimation Performance

The hybrid PINN-UKF model estimates the states (position, orientation, linear, and
angular velocities) and compares them against the true states. Shaded regions denote
uncertainty bounds, aligning well with the true states. Training loss is depicted in Figure 12,
while Figures 13–16 show true versus estimated states.

Figure 12. Training loss curves for the PINN model with Monte Carlo Dropout.



Electronics 2024, 13, 2208 16 of 23

Figure 13. True vs. estimated position over time for the quadcopter simulation.

Figure 14. True vs. estimated orientation over time for the quadcopter simulation.

Figure 15. True vs. estimated linear velocities over time for the quadcopter simulation.
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Figure 16. True vs. estimated angular velocities over time for the quadcopter simulation.

The quadcopter simulation illustrates the hybrid framework’s adaptability to highly
nonlinear and complex dynamic systems. By combining data-driven learning with classical
filtering techniques, the hybrid PINN-UKF model provides state estimation and robust
uncertainty quantification for demanding scenarios like drone navigation.

The hybrid state estimation framework integrating PINNs with an adaptive UKF,
as demonstrated on a quadcopter drone, is inherently versatile and applicable to a wide
range of dynamic systems beyond the specific use case presented. The core strengths
of this methodology—namely its ability to leverage physics-based models for enhanced
predictive accuracy and its rigorous uncertainty quantification through MC Dropout and
adaptive noise covariance mechanisms—make it suitable for various fields including
but not limited to autonomous vehicle navigation, robotics, aerospace engineering, and
even financial modeling. In autonomous vehicles, for instance, the need for precise state
estimation under uncertain conditions mirrors the requirements in quadcopter dynamics,
thus benefiting from the same hybrid approach. Similarly, robotic manipulation tasks,
which require accurate real-time state tracking amid dynamic interactions, can also gain
substantial accuracy improvements from this method. Furthermore, the adaptability of the
PINN-UKF framework to incorporate domain-specific physics models ensures that it can
be tailored to different application scenarios, thereby extending its superiority and utility
across multiple disciplines.

In this work, we employ mixed loss functions and MC Dropout to improve the
accuracy and robustness of PINNs, with a particular focus on enhancing uncertainty
estimation. It is essential to acknowledge that the uncertainty in state estimation arises from
multiple sources, including measurement noise, process noise, model inaccuracies, and
environmental variability. Measurement noise is introduced by the sensors and instruments
used to collect data, which can vary in precision and reliability. Process noise, on the other
hand, stems from the inherent unpredictability in the system’s dynamics and external
perturbations. Model inaccuracies occur due to the simplifications and assumptions made
during the modeling process, which may not perfectly capture the real-world behavior
of the system. Environmental variability includes factors such as changes in operating
conditions, external disturbances, and interactions with other systems or agents.

To quantify and manage these uncertainties, MC Dropout is used to perform multiple
stochastic forward passes through the neural network, generating a distribution of possible
outcomes rather than a single deterministic prediction. This allows for the estimation
of both the mean and variance of the predictions, providing a measure of the model’s
confidence. The mixed loss function, which combines data loss and physics-based loss,
further ensures that the predictions adhere to known physical laws while fitting the ob-
served data, thereby reducing model-induced uncertainty. By explicitly accounting for
these different sources of uncertainty, our approach not only improves the reliability of



Electronics 2024, 13, 2208 18 of 23

state estimates under varying conditions but also enhances the overall robustness of the
state estimation process.

6.5.2. In-Depth Analysis and Explanation of Experimental Results

In our experiments, the hybrid PINN-UKF framework demonstrated significant im-
provements in state estimation accuracy for both position and velocity tracking compared
to the actual values. The superior performance can be attributed to several key factors.

• Enhanced Dynamics Modeling with PINNs:

– Complexity Capture: The PINN component effectively captures the complex, non-
linear dynamics of the system, which are challenging for traditional models. This is
particularly evident in scenarios involving highly dynamic and nonlinear behaviors,
such as those seen in our quadcopter and double pendulum simulations.

– Uncertainty Quantification: The integration of Monte Carlo Dropout within the
PINN architecture allows for robust uncertainty estimation. This probabilistic
approach provides a comprehensive understanding of the model’s confidence in
its predictions, enabling the UKF to adaptively adjust its noise covariances.

• Adaptive Filtering with UKF:

– Dynamic Noise Covariance: The UKF’s ability to dynamically adjust the process
noise covariance based on the current state estimate improves its adaptability
to changing system dynamics. This results in more accurate and stable state
estimates over time.

– Hybrid State Representation: By extending the state vector to include model
parameters, the UKF enhances its capability to adapt to varying conditions,
ensuring more reliable performance across different operational scenarios.

6.5.3. Universality in Actual Working Conditions

The hybrid PINN-UKF framework’s design ensures its applicability across a wide
range of real-world scenarios. Its ability to integrate data-driven insights with physical
laws makes it highly versatile and robust. Key aspects that enhance its universality include:

• Scalability: The framework can be scaled to different system dimensions and com-
plexities, making it suitable for various applications, from aerospace to robotics and
autonomous vehicles.

• Adaptability: The dynamic adjustment of noise covariances and the inclusion of uncer-
tainty quantification allow the framework to adapt to diverse operational conditions,
ensuring reliable performance even in unpredictable environments.

• Real-Time Application: With advancements in computational power and efficient
implementation strategies, the hybrid framework can be deployed in real-time appli-
cations, providing continuous and accurate state estimation for critical systems.

In conclusion, the hybrid PINN-UKF framework offers a comprehensive solution
for state estimation, combining the strengths of physics-informed neural networks and
adaptive filtering. Its detailed analysis and robust design ensure its applicability and
effectiveness in a wide range of real-world conditions, addressing both the immediate and
long-term challenges in dynamic system estimation.

6.6. Autonomy Levels and Application of the Hybrid State Estimation Model

The hybrid state estimation framework integrating PINNs with an adaptive UKF, as
demonstrated on a quadcopter drone, showcases its versatility and potential applicability to
a wide range of dynamic systems beyond the specific use case presented. The core strengths
of this methodology—namely its ability to leverage physics-based models for enhanced
predictive accuracy and its rigorous uncertainty quantification through MC Dropout and
adaptive noise covariance mechanisms—make it suitable for various fields, including but
not limited to autonomous vehicle navigation, robotics, aerospace engineering, and even
financial modeling.
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In the context of autonomous vehicles, precise state estimation is crucial for safe and
efficient operation under varying and uncertain conditions. Autonomous vehicles are
classified into six levels of driving automation as defined by the Society of Automotive
Engineers (SAE) International (SAE, 2014) [20]:

• Level 0: No Driving Automation—The driver is in charge of all driving activities.
• Level 1: Driver Assistance—One autonomous system (e.g., Electronic Stability Control)

is operational.
• Level 2: Partial Driving Automation—The vehicle can simultaneously handle two

tasks (e.g., steering and braking), but the driver must remain engaged.
• Level 3: Conditional Driving Automation—The vehicle can manage most aspects of

driving under certain conditions, but the driver must be ready to take control.
• Level 4: High Driving Automation—The vehicle operates autonomously in specific

scenarios without driver intervention.
• Level 5: Full Driving Automation—The vehicle is fully autonomous in all conditions,

with no need for a human driver.

The proposed hybrid state estimation framework is particularly relevant to Levels 3,
4, and 5, where the autonomy of the vehicle is high and the system must handle complex,
dynamic environments with minimal or no human intervention. The adaptability and
robustness of the PINN-UKF model are well-suited to these higher levels of autonomy,
where the system must accurately predict and respond to a wide array of real-world
scenarios, ensuring safety and reliability.

Application Across Autonomy Levels

Our model’s capability to incorporate physics-informed learning and adaptively filter
dynamic states makes it ideal for handling the complexities of high-level autonomous
driving. For instance, in Level 3 and 4 scenarios, where the vehicle must navigate high-
ways autonomously but still hand control back to the driver in more complex situations,
the PINN-UKF framework can provide reliable state estimates and uncertainty quantifi-
cations, thereby enhancing decision-making processes. In Level 5 scenarios, where full
autonomy is required, the model’s enhanced predictive power and robustness can signifi-
cantly contribute to the vehicle’s ability to handle diverse and unpredictable environments
autonomously.

In conclusion, while the hybrid state estimation model presents a higher computational
load, its ability to deliver accurate and reliable state estimates under uncertain and dynamic
conditions makes it a valuable asset for the development of high-level autonomous vehicles.

7. Discussion

The hybrid state estimation framework integrating Physics-Informed Neural Networks
(PINNs) and Unscented Kalman Filtering (UKF) has proven highly effective in accurately
tracking the states of both linear and nonlinear dynamic systems. Our results reveal several
key insights into the strengths and limitations of this approach, offering a foundation for
future research and practical applications.

7.1. Key Observations
7.1.1. PINN-UKF Synergy

By combining PINNs’ ability to learn complex nonlinear dynamics with the rigorous
uncertainty quantification of UKF, the framework leverages the complementary strengths
of both techniques. The predictive capabilities of the PINN-based transition model enable
accurate state estimation, while the UKF ensures reliable measurement updates with appro-
priately weighted noise covariances. This synergy is particularly noticeable in the nonlinear
double pendulum system, where the hybrid approach effectively tracks chaotic behavior.
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7.1.2. Uncertainty Quantification

Monte Carlo Dropout within the PINN model provides an intuitive way to assess
predictive uncertainty. This allows the UKF to adjust the process noise dynamically and
accurately capture the system’s changing uncertainty. This feature is crucial for handling
chaotic dynamics like those seen in the double pendulum, where small variations in initial
conditions can significantly impact subsequent states.

7.1.3. Adaptive Covariance Estimation

The UKF’s adaptive noise covariance estimation effectively mitigates the challenges
posed by changing process dynamics and measurement noise. By incorporating these
adjustments into the UKF’s recursive estimation, the state predictions remain robust even
when the system exhibits nonlinearity or noise variation.

7.1.4. Generalizing the Framework

The quadcopter drone simulation highlights the ability of the hybrid framework
to adapt to complex, nonlinear dynamic systems. This versatility suggests several key
directions for generalization.

7.1.5. Expanding Control Inputs

Incorporating more diverse control inputs will allow the framework to model systems
with higher degrees of freedom. For example, incorporating motor speed data directly
can capture rotor dynamics for drones or helicopters more comprehensively, leading to
improved state estimation.

7.1.6. Diverse Applications

The framework’s adaptability makes it suitable for a broad range of real-world ap-
plications beyond drones. Autonomous vehicle navigation, robotic manipulation, and
multi-agent coordination are examples of where precise state estimation is crucial. The
framework can be extended to handle varied sensing modalities, such as LiDAR, cameras,
or acoustic sensors.

7.1.7. Multi-Sensor Fusion

Future research should investigate integrating data from multiple sensors. This would
enable the hybrid framework to fuse information from complementary sensing technologies,
enhancing robustness against noise or sensor failure. A sensor fusion approach can improve
state estimation in complex environments, where each sensor type provides unique insights.

7.1.8. Real-Time Applications

Efforts to optimize the model’s architecture and computational efficiency will be
crucial for generalizing the framework to real-time applications. Techniques such as model
compression, hardware acceleration, and parallel computing can significantly improve
processing speed without compromising accuracy.

These expansions and refinements can help establish the hybrid PINN-UKF framework
as a cornerstone for accurate state estimation in dynamic systems, offering a powerful tool
for researchers and engineers working in control, robotics, and ML.

7.2. Limitations and Future Work
7.2.1. Computational Complexity

The computational complexity of the proposed framework is higher than traditional
methods due to the increased network size and multiple stochastic forward passes during
inference. For real-time applications, further optimization of the network architecture and
parallelization of computations are essential.
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7.2.2. Generalizability to Other Systems

While the hybrid framework has demonstrated efficacy in linear and nonlinear dy-
namic systems, future work should investigate its generalizability across a broader range
of systems. Exploring more diverse physical models will provide insights into the frame-
work’s adaptability.

7.2.3. Model Regularization

Further investigation into regularization techniques, such as Bayesian neural networks
and variational inference, can help refine the predictive models, especially for highly
uncertain environments. More sophisticated uncertainty quantification methods may yield
enhanced robustness.

This research demonstrates the efficacy and potential of integrating PINNs with UKF
for state estimation in dynamic systems. The results pave the way for future studies aimed
at expanding and refining this framework, providing researchers and engineers with a
versatile tool to navigate the intricate dynamics of the physical world.

The hybrid PINN-UKF framework effectively estimates the state of the system in-
volving the double pendulum and the quadcopter drone, demonstrating its adaptability
to nonlinear dynamics and robustness in very sophisticated environments. This vali-
dates the potential of this framework for handling more complex nonlinear systems in
future research.

While our enhanced PINN-UKF model has demonstrated effectiveness in the tested
scenarios, it is essential to address the computational demands for practical deployment.
Future research should focus on optimizing the computational efficiency of the framework
through techniques such as model compression, parallel computing, and hardware acceler-
ation in a cloud continuum scenario. Additionally, we recognize the need for validating the
framework’s adaptability to higher-order dynamic systems. Extending our approach to
more complex systems will provide valuable insights into its scalability and generalizabil-
ity. Furthermore, to enhance robustness in highly uncertain environments, incorporating
advanced regularization techniques, such as Bayesian neural networks and variational
inference, could significantly improve the model’s performance.

8. Conclusions

In this work, we introduced a hybrid state estimation framework that integrates
Physics-Informed Neural Networks (PINNs) with the Unscented Kalman Filter (UKF)
to address the challenges of accurately estimating the states of dynamic systems. Our
approach capitalizes on the complementary strengths of both techniques, leveraging PINNs’
ability to learn complex dynamics and the UKF’s rigorous uncertainty quantification.

Through experiments involving a linear dynamic system and the nonlinear double
pendulum, we demonstrated the framework’s robust state estimation capabilities. The
hybrid model effectively tracks chaotic behavior, providing uncertainty bounds that align
with ground truth states. Key insights from our results include the critical role of Monte
Carlo Dropout for uncertainty estimation, adaptive noise covariance adjustment, and the
synergy of combining physics-informed learning with KALMAN filtering. The simulation
is further extended to handle the state estimation of a quadcopter drone, where the system
is also able to track effectively highly nonlinear dynamics.

Despite its computational complexity, this approach has significant potential for
broader applications across different dynamic systems. Future work should explore
further optimizations, enhanced regularization techniques, and generalizability to other
physical models.

In conclusion, this framework marks a promising step toward integrating ML models
with established control theory techniques. Its ability to navigate the complexities of
dynamic system estimation will serve as a versatile and valuable tool for researchers and
engineers aiming to push the boundaries of state estimation accuracy and robustness.



Electronics 2024, 13, 2208 22 of 23

Author Contributions: Conceptualization, J.d.C. and I.d.Z.; funding acquisition, J.d.C.; investigation,
I.d.Z. and J.d.C.; methodology, I.d.Z. and J.d.C.; software, J.d.C. and I.d.Z.; supervision, J.d.C. and
I.d.Z.; writing—original draft, J.d.C. and I.d.Z.; writing—review and editing, J.d.C. and I.d.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: The work is developed under the following projects at BARCELONA Supercomputing
Center: ‘TIFON’. This work has also received funding from the ‘NEXTBAT’ project funded by
the EUROPEAN Union’s HORIZON EUROPE research and innovation programme under grant
agreement No. 101103983. The work is also developed under UFV R&D pre-competitive project
‘OpenMaas: Open Manufacturing as a Service’.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in FigShare at
https://doi.org/10.6084/m9.figshare.25970206, accessed on 3 June 2024.

Conflicts of Interest: The authors declare that they have no conflicts of interest. The funders had no
role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of
the manuscript, or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

Physics-Informed Neural Network PINN
Unscented Kalman Filter UKF
Extended Kalman Filters EKF
Neural Networks NN
Artificial Intelligence AI
Machine Learning ML
Monte Carlo Dropout MC Dropout

References
1. De Zarzà, I.; de Curtò, J.; Roig, G.; Calafate, C.T. LLM Adaptive PID Control for B5G Truck Platooning Systems. Sensors 2023, 23,

5899. [CrossRef] [PubMed]
2. De Curtò, J.; de Zarzà, I.; Calafate, C.T.Semantic Scene Understanding with Large Language Models on Unmanned Aerial

Vehicles. Drones 2023, 7, 114. [CrossRef]
3. Khodarahmi, M.; Maihami, V. A review on Kalman filter models. Arch. Comput. Methods Eng. 2023, 30, 727–747. [CrossRef]
4. Freirich, D.; Michaeli, T.; Meir, R. Perceptual kalman filters: Online state estimation under a perfect perceptual-quality constraint.

In Proceedings of the NeurIPS 2024, the Thirty-eighth Annual Conference on Neural Information Processing Systems, Vancouver,
BC, Canada, 9–15 December 2024.

5. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

6. Antonelo, E.A.; Camponogara, E.; Seman, L.O.; Jordanou, J.P.; de Souza, E.R.; Hübner, J.F. Physics-informed neural nets for
control of dynamical systems. Neurocomputing 2024, 579, 127419. [CrossRef]

7. Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review.
Acta Mech. Sin. 2021, 37, 1727–1738. [CrossRef]

8. Krishnapriyan, A.S.; Gholami, A.; Zhe, S.; Kirby, R.; Mahoney, M.W. Characterizing possible failure modes in physics-informed
neural networks. Adv. Neural Inf. Process. Syst. 2021, 34, 26548–26560.

9. Bihlo, A. Improving physics-informed neural networks with meta-learned optimization. J. Mach. Learn. Res. 2024, 25, 1–26.
10. Meng, Z.; Qian, Q.; Xu, M.; Yu, B.; Yıldız, A.R.; Mirjalili, S. PINN-form: A new physics-informed neural network for reliability

analysis with partial differential equation. Comput. Methods Appl. Mech. Eng. 2023, 414, 116172. [CrossRef]
11. Zou, Z.; Meng, X.; Karniadakis, G.E. Correcting model misspecification in physics-informed neural networks (PINNs). J. Comput.

Phys. 2024, 505, 112918. [CrossRef]
12. Hu, Z.; Shukla, K.; Karniadakis, G.E.; Kawaguchi, K. Tackling the curse of dimensionality with physics-informed neural networks.

Neural Netw. 2024, 176, 106369. [CrossRef] [PubMed]
13. Bertipaglia, A.; Alirezaei, M.; Happee, R.; Shyrokau, B. An Unscented Kalman Filter-Informed Neural Network for Vehicle

Sideslip Angle Estimation. IEEE Trans. Veh. Technol. 2024, 1–15. [CrossRef]
14. Luo, Z.; Shi, D.; Shen, X.; Ji, J.; Gan, W.S. Gfanc-kalman: Generative fixed-filter active noise control with cnn-kalman filtering.

IEEE Signal Process. Lett. 2023, 31, 276–280. [CrossRef]

https://doi.org/10.6084/m9.figshare.25970206
http://doi.org/10.3390/s23135899
http://www.ncbi.nlm.nih.gov/pubmed/37447746
http://dx.doi.org/10.3390/drones7020114
http://dx.doi.org/10.1007/s11831-022-09815-7
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.neucom.2024.127419
http://dx.doi.org/10.1007/s10409-021-01148-1
http://dx.doi.org/10.1016/j.cma.2023.116172
http://dx.doi.org/10.1016/j.jcp.2024.112918
http://dx.doi.org/10.1016/j.neunet.2024.106369
http://www.ncbi.nlm.nih.gov/pubmed/38754287
http://dx.doi.org/10.1109/TVT.2024.3389493
http://dx.doi.org/10.1109/LSP.2023.3334695


Electronics 2024, 13, 2208 23 of 23

15. Cassinis, L.P.; Park, T.H.; Stacey, N.; D’Amico, S.; Menicucci, A.; Gill, E.; Ahrns, I.; Sanchez-Gestido, M. Leveraging neural
network uncertainty in adaptive unscented Kalman Filter for spacecraft pose estimation. Adv. Space Res. 2023, 71, 5061–5082.
[CrossRef]

16. Tan, C.; Cai, Y.; Wang, H.; Sun, X.; Chen, L. Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented
Kalman Filtering on Manifolds. Sensors 2023, 23, 6665. [CrossRef]

17. Liu, Y.; Wang, L.; Ng, B.F. A hybrid model-data-driven framework for inverse load identification of interval structures based on
physics-informed neural network and improved Kalman filter algorithm. Appl. Energy 2024, 359, 122740. [CrossRef]

18. Ni, X.; Revach, G.; Shlezinger, N. Adaptive Kalmannet: Data-Driven Kalman Filter with Fast Adaptation. In Proceedings of the
ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of
Korea, 14–19 April 2024.

19. Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings
of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016.

20. Wiseman, Y. Autonomous Vehicles. Encyclopedia of Information Science and Technology, 5th ed.; Volume 1, Chapter 1, pp. 1–11. 2020.
Available online: https://u.cs.biu.ac.il/~wisemay/Autonomous-Vehicles-Encyclopedia.pdf (accessed on: 1 May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asr.2023.02.021
http://dx.doi.org/10.3390/s23156665
http://dx.doi.org/10.1016/j.apenergy.2024.122740
https://u.cs.biu.ac.il/~wisemay/Autonomous-Vehicles-Encyclopedia.pdf

	Introduction
	Related Work
	Methodology
	Physics-Informed Neural Networks (PINNs)
	Unscented Kalman Filtering (UKF)
	Hybrid Framework
	Monte Carlo Dropout and Uncertainty Quantification

	Experiments and Results
	Experimental Setup
	Implementation
	Results
	Improved Estimation with Enhanced PINN and UKF
	Analysis of Computational Complexity

	Extension to Nonlinear Systems: Double Pendulum Case
	Problem Statement: Double Pendulum System
	PINN Model Architecture
	UKF Implementation
	Results

	Extension to Complex Systems: Quadcopter Drone
	Problem Statement: Quadcopter Dynamics
	Plan
	PINN Model Architecture
	UKF Implementation
	Results
	Autonomy Levels and Application of the Hybrid State Estimation Model

	Discussion
	Key Observations
	Limitations and Future Work

	Conclusions
	References

