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Abstract—Automatic differentiation systems, widely
used in machine learning, provide efficient first-
order derivatives but lack a native mechanism
for higher-order derivatives beyond nested appli-
cations of first-order rules. This nesting incurs
large memory overhead, limited scalability, and
incompatibility with non-sequential graphs. In this
thesis, we present THOAD (Torch High-Order
Automatic Differentiation), a PyTorch-compatible
package implementing a tensor-algebraic ap-
proach to higher-order AD. The system reformu-
lates the multivariable chain rule as an iterative
symbolic contraction procedure, enabling propa-
gation of arbitrary-order derivatives across unbal-
anced computational graphs. Optimizations based
on batch unification and blockwise Schwarz sym-
metries reduce complexity significantly in batch
size and derivative order. Benchmarks demon-
strate substantial improvements in scalability over
PyTorch’s nested gradient evaluation. THOAD
provides researchers and practitioners with an
accessible, efficient, and extensible platform for
higher-order derivative computations in modern
deep learning.

1 Introduction

1.1 Context and motivation

Automatic differentiation (AD) augments a nu-
merical program with derivative logic so that
exact derivatives, to machine precision, are ob-
tained without symbolic manipulation or finite
differencing. The core idea is to represent the
computation as a directed acyclic graph: nodes
store intermediate values, and edges encode al-
gebraic dependencies. Traversing this graph in
the same order as evaluation (forward mode) or
in reverse (reverse mode, usually called back-
propagation) yields first-order directional deriva-
tives or full gradients with only a small constant
overhead relative to the primal run time.

In machine-learning workloads, reverse-mode
AD is indispensable because loss functions are
scalars while the parameters to be optimized are
high-dimensional tensors. More fundamentally,
typical gradient-based optimization consumes
only first-order gradients, not hessians or higher-
order derivatives. Reverse-mode aligns exactly
with this requirement by computing all parame-
ter gradients from a scalar loss in a single reverse
pass. As a result, the literature and engineering
effort around AD has focused primarily on the
efficient production of first-order derivatives.

Higher-order AD computation of Hessians, Jaco-
bians, or their vector products has received far
less attention. Mainstream libraries like(1)(2)(3)
expose such quantities only by nesting the first-
order AD process, what multiplies memory use
and complicates graph scheduling. No widely
adopted framework currently ships a purpose-
built higher-order engine that remains compat-
ible with arbitrary non-sequencial graphs.

Yet higher-order derivative information is not
without value. It finds application in neural
network sensitivity studies (4) (5) (6) and in-
terpretability (7) enables genuine second-order
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or natural-gradient optimization (8), and is es-
sential for physics-informed neural networks (9)
(10) (11) that enforce differential constraints of
order two or higher. A systematic study of na-
tive higher-order AD on nonlinear computational
graphs therefore promises practical benefits in
transparency, convergence speed, and physics-
consistent learning.

1.2 Project contributions

The main contributions of this work can be
summarized as follows:

• Iterative method to obtain closed-form
expressions for the derivatives of com-
positions of vector-valued functions: We
propose a contraction-based reformulation
of the multivariable chain rule, equivalent
to the Faà di Bruno formula (12), but
expressed directly in tensorial form. This
method enables the systematic construction
of higher-order derivatives through succes-
sive symbolic derivations, producing com-
pact closed-form expressions without resort-
ing to brute-force expansion.

• Procedure to propagate derivatives
through a vectorial computational graph
without requiring the graph to be
sequential: Within the literature on higher-
order automatic differentiation systems,
only functional proposals restricted to fully
sequential graphs have been considered.
Although any computational graph can
be re-expressed as sequential through
the introduction of fictitious variables,
operating directly on the original graph
provides a number of advantages.

• Strategy to optimize the size and struc-
ture of derivatives by eliminating batch
dimensions: Batch dimensions are fre-
quently present in the construction of mod-
ern artificial neural networks. Since they

are processed independently, they induce
specific properties in the internal structure
of the network derivatives that allow them
to be unified, thereby avoiding unnecessary
allocation of elements and significantly re-
ducing the computational cost of automatic
differentiation.

• Strategy to avoid redundant symmet-
ric computations within the proposed
backpropagation procedure: A higher-
order derivative of the composition of multi-
variable operators satisfying Schwarz’s the-
orem exhibits a growing number of internal
symmetries as the differentiation order in-
creases. These symmetries can be exploited
to avoid the explicit computation of redun-
dant elements.

2 Present Research Context

2.1 Mathematical theoretical framework

Existing academic publications treat multi-
variable higher-order composition relying on
the multivariable Faà di Bruno formula (12),
a closed-form alternative to the brute-force re-
peated derivation of the chain rule. For a scalar
output f : Rp → R composed with a vector-
valued mapping g : Rm → Rp, the n-th total
derivative can be written in partition notation as

∂n

∂x1 . . . xn
f
(
g(x)

)
=

=
∑
π∈Πn

f (|π|)(g(x)) ∏
B∈π

∂|B|g∏
j∈B ∂xj

(x) (2.1)

where Πn denotes the set of all partitions of
the index set {1, . . . , n} and B runs over the
blocks of each partition. While exact and el-
egant, this formulation does not allow one to
leverage the benefits of parallel computation.
Derivatives are expressed component-wise, and
the combinatorial explosion of partitions forces
any implementation to operate element by ele-
ment. Consequently, adopting Faà di Bruno in
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practical software usually sacrifices the algebraic
structure of vector spaces and forecloses the
tensor-level optimizations that underpin efficient
first-order systems.

2.2 Implementations

Mainstream frameworks equiped with auto-
matic differentiation tools such as PyTorch

(1) and TensorFlow (2) compute higher-
order gradients by nesting their first-order
engines. Forward-over-reverse or reverse-over-
reverse nesting is straightforward to code but
incurs multiplicative memory overhead, repeated
graph traversals, and lack robustness confronted
with non-differentiable control flow or state-
ful operators. Crucially, nested evaluation treats
each derivative order as an independent pass
rather than a unified algebraic object, preventing
fusion across derivative orders and degrading
parallel scalability.

Other existing alternative projects pursue
closed composition rules. Modules like
jax.experimental.jet (3) (13) implement
higher-order pushforwards and pullbacks that
mirror Faà di Bruno in code; however, they
assume a linear (or univariate) computational
graph in which all operations depend on
a single tensor variable. Branching graphs
violate those assumptions, limiting the approach
to a narrow class of models - single input
and fully sequential. Collectively, existing
systems therefore either incur prohibitive cost
through nesting or impose restrictive graph
topologies through specialized composition
logic-shortcomings that motivate the present
work’s search for a tensor-centric, order-agnostic
alternative.

2.3 Applications

Higher-order partial derivatives of computational
graphs have become indispensable in model in-

terpretability. The NeuralSense package (4), for
instance, leverages both Jacobian and Hessian
tensors to quantify input-output sensitivities, en-
abling the computation of statistical measures
such as local variation, curvature-based feature
importance, and interaction effects. In a com-
plementary direction, the study Understanding
Black-box Predictions via Influence Functions
(5) employs second-order derivative information
to estimate how infinitesimal perturbations of
individual training points affect model outputs,
thereby attributing predictions to specific ex-
amples and uncovering hidden biases. Building
on these ideas for structured data, Higher-Order
Explanations of Graph Neural Networks via Rel-
evant Walks (6) utilizes higher-order derivatives
along computational paths to identify the most
influential subgraphs and to generate walk-based
explanations that capture complex relational de-
pendencies in graph-structured domains.

Beyond interpretability, higher-order derivatives
also enable rigorous certification of network
properties. In (7), second-order information is
used to bound the Lipschitz constants of partial
derivatives and to certify partial monotonicity
of already-trained networks over regions of the
input space. This Lipschitz-based certification
provides verifiable ordering guarantees and sup-
ports ethical-AI objectives by allowing safety
conditions to be checked without imposing ar-
chitectural constraints.

In physics-informed neural networks (PINNs),
higher-order partial derivatives are central to em-
bedding differential equations into the training
objective. (9) incorporates residuals of governing
equations, often involving second-order spatial
or temporal derivatives-directly into the loss
functional. Subsequent surveys such as (10) (11)
further illustrate the necessity of accurately com-
puting Hessian and higher-order Jacobian-vector
products to enforce boundary conditions, sat-
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Escuela Técnica Superior de Ingenierı́a (ICAI)
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isfy variational integral constraints, and improve
convergence and stability in complex physical
systems.

Second-order derivative information likewise en-
hances optimization methods for deep models. In
(8), efficient Hessian-vector products computed
through automatic differentiation enable conju-
gate gradient updates without explicitly forming
or storing the full Hessian matrix. By lever-
aging directional second-order information, this
approach accelerates convergence, mitigates ill-
conditioning, and scales second-order techniques
to high-dimensional parameter spaces where
naive implementations would be intractable.

Finally, higher-order partial derivatives inform
the design of advanced cost functions and reg-
ularization strategies. The classic Optimal Brain
Damage (14) method uses the diagonal of the
Hessian matrix as a sensitivity metric to prune
redundant parameters, producing compact mod-
els with minimal performance loss. Similarly,
Sobolev Training (15) extends the loss to in-
clude derivative-matching terms, penalizing mis-
matches not only in output values but also in
their gradients, thereby aligning the model’s dif-
ferential response with that of the target function
and improving generalization.

3 Vector Approach to Multivariable
Function Composition Derivative

3.1 Setting and notation

a) Vectorial set-up.

Let EX , EY be finite-dimensional real vector
spaces. We consider a smooth map

FY,X : EX −→ EY .

If EX
∼= RNX we denote components of vectors

as vX = (vX1 , . . . , vXNX
).

b) First-order derivative.

For each x ∈ EX , the pointwise (Fréchet)
derivative is a linear operator

D1FY,X(x) ∈ Lin(EX , EY ),

F (x+h) = F (x) +D1FY,X(x)[h] + o(∥h∥).

The symbolic first derivative is the smooth map
that assigns to every x ∈ EX its pointwise
derivative:

D1FY,X : EX −→ Lin(EX , EY ).

In finite dimensions Lin(EX , EY ) ∼= EY ⊗E∗
X ,

hence

D1FY,X ∈ C∞(EX , EY ⊗ E∗
X

)
.

That is, D1FY,X (symbolic) takes x ∈ EX and
returns D1FY,X(x) (pointwise), which is linear
in the increment h ∈ EX :

h 7−→ D1FY,X(x)[h] ∈ EY .

c) Order-m derivatives.

Likewise, for m ≥ 2 and each x ∈ EX ,

DmFY,X(x) ∈ Multm(EX ; EY ),

i.e., an m-linear map in the m increments
h1, . . . , hm ∈ EX :

(h1, . . . ,hm) 7−→ DmFY,X(x)[h1, . . . ,hm] ∈ EY .

Via the canonical identification
Multm(EX ; EY ) ∼= EY ⊗ (E∗

X)⊗m, we
obtain the global (symbolic) tensor form in
(3.5):

DmFY,X ∈ C∞(EX , EY ⊗ (E∗
X)⊗m

)
.

To simplify further development, we group all
derivatives up to order k as

⊕k
EX,Y :=

k⊕
m=1

C∞(EX , EY ⊗ (E∗
X)⊗m

)
,

(3.1)
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3.2 Algorithm Proposition

a) From the chain rule to higher order (component
view).

For components vCi of FA,C and vAj of EA, the
first- and second-order chain rules read (3.2).

∂vCi
∂vAj

=

NB∑
h=1

∂vCi
∂vBh

∂vBh
∂vAj

∂2vCi
∂vAj ∂vAk

=
∂

∂vAk

(
∂vCi
∂vAj

)
=

=

NB∑
h,t=1

∂2vCi
∂vBh ∂vBt

∂vBh
∂vAj

∂vBℓ
∂vAk

+

NB∑
h=1

∂vCi
∂vBh

∂2vBh
∂vAj ∂vAk

(3.2)

By induction one obtains the general (Faà di
Bruno–type) pattern. The tensorial method below
recasts this iteration directly at the level of
differentials, avoiding scalar expansion.

b) Vectorial composition notation.

Let EA, EB, EC be finite-dimensional real vec-
tor spaces. Consider smooth maps

FA,B : EA → EB,

FB,C : EB → EC ,

FA,C = FB,C ◦ FA,B : EA → EC .

When convenient, we write

vA ∈ EA,

vB = FA,B(v
A) ∈ EB,

vC = FB,C(v
B) ∈ EC .

c) Notation used by the algorithm (symbols and
types).

We fix an integer k ≥ 1 (maximal derivative
order). For each m ≥ 1:

DmFB,C ∈ C∞(EB, EC ⊗ (E∗
B)

⊗m
)
,

DmFA,B ∈ C∞(EA, EB ⊗ (E∗
A)

⊗m
)
.

Ordered tuples and degree. For m ≥ 1, an
ordered internal tuple is R = (r1, . . . , rm) with

rt ∈ N≥1. We write |R| :=
∑m

t=1 rt. The al-
gorithm preserves order in R (no permutations).
We use the shorthand (1, R) := (1, r1, . . . , rm)

and

R(t) := (r1, . . . , rt−1, rt + 1, rt+1, . . . , rm)

(1 ≤ t ≤ m).

Symbolic monomials. A monomial is the formal
tensor product

M(m;R) := DmFB,C ⊗Dr1FA,B ⊗· · ·⊗DrmFA,B.

At this stage M(m;R) is symbolic: it specifies
which differentials participate and in what order,
but no contraction has been applied yet.

Evaluation and contraction. Let a ∈ EA. First
we precompose the external differential with
FA,B , so that all factors depend on a:

DmFB,C ◦ FA,B ∈ C∞(EA, EC ⊗ (E∗
B)

⊗m
)
.

Then we apply the natural contraction of EB/E∗
B

dimensions with the ordered tuple of internal
differentials. We denote this by the evaluation
map

evFA,B
: M(m;R) 7−→

7−→ CB[m;R]
(
DmFB,C◦FA,B, . . . , D

rjFA,B, . . .
)

(1 ≤ j ≤ m) ,

which yields a tensor of type

evFA,B
(M(m;R)) ∈ C∞(EA, EC⊗(E∗

A)
⊗|R|).

Here CB[m;R] is the EB-contraction that re-
spects the order in R.

Symbolic polynomials and multiplicities. At
iteration s (1 ≤ s ≤ k) we maintain a finite
symbolic sum

Ts =
∑
(m,R)

c
(s)
m,R M(m;R), c

(s)
m,R ∈ N,

where c
(s)
m,R counts the multiplicity of the mono-

mial M(m;R) produced so far. Only at the end
we apply evaluation:

evFA,B
(Tk) = DkFA,C ∈ C∞(EA, EC⊗(E∗

A)
⊗k
)
.
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Grado en Ingenierı́a Matemática e Inteligencia Artificial

Elementary derivations. Let J := D1FA,B .
The total differential D acting on
evFA,B

(M(m;R)) (Leibniz) produces:

external derivation:

M(m;R) 7→ M
(
m+ 1; (1, R)

)
,

internal derivations:

M(m;R) 7→ M
(
m; R(t)

)
(1 ≤ t ≤ m).

These are exactly the two generators used in the
iteration.

Aggregation map. We will aggregate repeated
monomials by a map

count : {M(m;R)} −→ N,

key(M(m;R)) := (m,R),

so that the next symbolic state is

Ts+1 =
∑
(m,R)

counts+1(m,R)M(m;R).

d) algorithm description.

The algorithm we propose (1) employs an it-
erative process equivalent to that of (3.2), but
designed from a vector variable approach instead
of a component one.

It is important to note that, although the algo-
rithm is iterative, the iteration takes place at the
symbolic level and is therefore computationally
negligible in practice, especially when compared
to the subsequent evaluation of the resulting
expressions on actual numerical tensors.

e) resulting vector expressions

The vector expressions equivalent to those in
(3.2) resulting from the application of the pro-
cedure described in (1) would be the following:

Algorithm 1: Iterative construction of
Dk(FA,C) via ordered-tuples contraction (with
explicit aggregation)

Input:
k ≥ 1 (derivative order)
{DmFA,B}km=1 (external derivatives)
{DrFB,C}kr=1 (internal derivatives)
Output: Tk = Dk(FA,C) ∈

C∞(EC , EA ⊗ (E∗
C)

⊗k
)

Data model (terms as monomials).
J ← D1FB,C ;
m ∈ N;
R = (r1, . . . , rm) with rt ∈ N≥1;
M(m;R) :=
DmFA,B ⊗Dr1FB,C ⊗ · · · ⊗DrmFB,C ;
T =

∑
cm,R M(m;R).

Initialization (k = 1).
T1 ← M(1; (1)); (semantics:
evFB,C

(T1) = DFA,C)

Iterative step.
for s← 1 to k − 1 do

/* Generate raw terms via Leibniz rule on
monomials */

raw terms ← [ ]
for M(m;R) ∈ Ts with R = (r1, . . . , rm)

do
append M(m+ 1; (1, r1, . . . , rm)) to

raw terms
for t← 1 to m do

R(t) ← (r1, . . . , rt−1, rt +
1, rt+1, . . . , rm)

append M(m;R(t)) to raw terms

/* Aggregate identical monomials (multiset
counting) */

dict ← empty map (m,R) 7→ N
foreach M(m;R) ∈ raw terms do

dict[(m,R)] ← dict.get(m,R, 0) + 1

Ts+1 ← 0
foreach (m,R) in keys(dict) do

Ts+1 ← Ts+1+dict[(m,R)] ·M(m;R)

return evFB,C
(Tk)

7



Universidad Pontificia Comillas
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D1FA,C ∈ C∞(EA, EC ⊗ E∗
A

)
=
(
D1FB,C ◦ FA,B

)
⊗E ∗

B EB
D1FA,B

D2FA,C ∈ C∞(EA, EC ⊗ E∗
A ⊗ E∗

A

)
=
(
D2FB,C◦FA,B

) ⊗
E ∗

B , E ∗
B

⊗EB
D1F

(1)
A,B

⊗EB
D1F

(2)
A,B

+

+
(
D1FB,C ◦ FA,B

)
⊗E ∗

B EB
D2FA,B .

(3.3)

Notation. On the left of ⊗ stands the external
derivative DmFB,C ◦ FA,B , a field on EA with
values in

EC ⊗ E∗
B ⊗ · · · ⊗ E∗

B︸ ︷︷ ︸
m copies

.

On the right, written vertically, appear the inter-
nal derivatives DrFA,B , each taking values in

EB ⊗ E∗
A ⊗ · · · ⊗ E∗

A︸ ︷︷ ︸
r copies

.

The labeled ⊗ indicates that the tensor dimen-
sions E∗

B on the left are paired with the cor-
responding tensor dimensions EB on the right,
in the displayed order (top–bottom on the right
matches left–right on the left). The superscripts
(1), (2) on D1FA,B only label the first and
second internal derivatives used in these pairings.
After pairing, the remaining factors are

EC ⊗ (E∗
A)

⊗k,

which is the type of DkFA,C .

Why compose. Since FA,C = FB,C ◦ FA,B :

EA → EC , we need a tensor field over EA. For
a ∈ EA, set b = FA,B(a) ∈ EB and evaluate(

DmFB,C ◦ FA,B

)
(a) = DmFB,C

(
FA,B(a)

)
∈ EC ⊗ (E∗

B)
⊗m.

This places the external object over EA so that
its E∗

B factors can be paired with the EB factors

coming from DrFA,B(a), yielding the desired
tensor in EC ⊗ (E∗

A)
⊗k.

3.3 Proof of Correctness

a) Setting and notation.

Let

FA,B : EA → EB

FB,C : EB → EC

FA,C = FB,C ◦ FA,B : EA → EC

(3.4)

For each m ≥ 1, the m-th differential of FY,X

is a smooth map

DmFY,X ∈ C∞(EX , EY ⊗ (E∗
X)⊗m

)
. (3.5)

We group all derivatives up to order k as

⊕k
E C,B :=

k⊕
m=1

C∞(EB, EC ⊗ (E∗
B)

⊗m
)
,

⊕k
E B,A :=

k⊕
m=1

C∞(EA, EB ⊗ (E∗
A)

⊗m
)
.

(3.6)
The k-th differential of the composition is a k-

linear functional over EA:

Dk(FB,C ◦ FA,B) = DkFA,C ,

DkFA,C ∈ C∞(EA, EC ⊗ (E∗
A)

⊗k
)
. (3.7)

b) Contraction operator and evaluation.

Define the composition (chain-rule) operator

C(k)B :
⊕k
E C,B ×

⊕k
E B,A −→

−→ C∞(EA, EC ⊗ (E∗
A)

⊗k
)
, (3.8)

which, for each order m, pairs an external
derivative DmFB,C with an ordered tuple of
internal derivatives (Dr1FA,B, . . . , D

rmFA,B),
contracting the E∗

B factors of the external part
with the EB factors of the internal parts, in the
written order.
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c) Elementary monomials and evaluation map.

For m ≥ 0 and an ordered tuple R =

(r1, . . . , rm) with rt ≥ 1, set the symbolic
monomial

M(m;R) := DmFB,C ⊗

⊗ Dr1FA,B ⊗ · · · ⊗ DrmFA,B. (3.9)

At this level M(m;R) is formal (no contrations
aplicadas). Its evaluation at a ∈ EA is defined
by first composing the external term with FA,B

and then contracting E∗
B with EB:

evFA,B

(
M(m;R)

)
(a) :=

CB
(
DmFB,C ◦ FA,B(a), . . . , D

rjFA,B(a), . . .
)

∈ EC ⊗ (E∗
A)

⊗|R| (1 ≤ j ≤ m) .

Thus evFA,B
(M(m;R)) ∈ C∞(EA, EC ⊗

(E∗
A)

⊗|R|).

d) Symbolic differentiation rule (Leibniz on evalua-
tion).

Let J := D1FA,B . For a ∈ EA, the derivative
of the evaluated monomial satisfies

Da evFA,B

(
M(m;R)

)
=

= evFA,B

(
M(m+ 1; (1, R))

)
+

m∑
t=1

evFA,B

(
M(m; R(t))

)
, (3.10)

where (1, R) = (1, r1, . . . , rm) and R(t) =

(r1, . . . , rt−1, rt+1, rt+1, . . . , rm). The first term
corresponds to differentiating the external factor
(which introduces a new ordered copy of J),
and the sum corresponds to differentiating one
internal factor (raising exactly one entry of R

by 1). This is the Leibniz rule applied to the
evaluation (a multilinear contraction).

e) Iterative procedure.

Let Tk denote the evaluated output after k steps.
Initialization and recursion are

T1 = C(1)B

(
D1FB,C , D

1FA,B

)
= D1FA,C ,

(3.11)

Tk+1 = Da Tk, k ≥ 1, (3.12)

where Da acts termwise on evFA,B
(M) and

expands according to (3.10) without permuting
the ordered tuple R.

f) Proof of correctness.

We claim that for every k ≥ 1,

Tk = C(k)B

(⊕
m≤k

DmFB,C ,
⊕
r≤k

DrFA,B

)
= DkFA,C ∈ C∞(EA, EC ⊗ (E∗

A)
⊗k
)
.

(3.13)

Proof. The case k = 1 follows from (3.11) and
the chain rule: DFA,C = DFB,C◦DFA,B , which
matches (3.7) for k = 1. Assume (3.13) holds for
some k ≥ 1. Then, by (3.12),

Tk+1 = Da Tk = Da

(
DkFA,C

)
= Dk+1FA,C .

Expanding Da Tk termwise and applying (3.10)
shows that Tk+1 is obtained from Tk by:

1) one external derivation that raises m 7→
m+ 1 and introduces a new ordered copy
of D1FA,B;

2) all internal derivations that raise exactly
one entry of each ordered tuple R by 1.

This is precisely the action encoded by C(k+1)
B in

(3.8). Hence (3.13) holds for k+1. By induction,
the statement follows.

4 Graph Backward Propagation of
Derivatives

4.1 Reinterpretation of the computa-
tional graph

A computational graph is an unbalanced directed
acyclic graph (DAG) representing a composition
of computational operators applied to a set of
variables. By unbalanced we mean that parallel
branches do not necessarily contain the same
number of nodes, as illustrated in 4.1 (A).

9
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In the literature on computational graphs, there
exist two different approaches regarding the
identification of computational elements (vari-
ables and operators) with graph elements (nodes
and edges). For example, PyTorch designates
operators as nodes and variables as edges. In
contrast, we adopt the opposite convention, iden-
tifying variables as nodes and operators as edges,
since this perspective is more natural for our
purposes.

As shown in figure 4.1 (B), the graph representa-
tion can be simplified to that of a balanced DAG
by introducing identity operators and fictitious
intermediate variables. This new representation
is equivalent to a composition of successive
multivariable functions defined over a sequence
of variable collections. And by extension, it is
also equivalent to a composition of multivariable
operators defined over a sequence of vector
spaces.

𝑣𝑛0
0

⋮
𝑣0
0

𝑣𝑛1
1

⋮
𝑣0
1

𝑣𝑛2
2

⋮
𝑣0
2

𝑣0
3

𝑓1𝑓2𝑓3
𝐸3 𝐸2 𝐸1 𝐸0

𝐹1𝐹2𝐹3

(A) (B)

(C) (D)

𝑓1
2

𝑓0
1

𝑓0
2

𝑓0
3

𝑓1
3

𝑓0
1

𝑓0
2

𝑓1
1

𝑓1
2

𝑓0
3

𝑓0
3

Fig. 4.1: Equivalent computational graph interpreta-
tions

4.2 Dependency from propagated nodes
derivatives

In the backward pass, executed after the for-
ward pass, the computational graph has already
been evaluated: every node carries a realized
primal value. Hence all derivatives used below
are pointwise (Fréchet) derivatives evaluated at
those values. We write

aj ∈ Ej ,

aj+1 = Fj,j+1(aj) ∈ Ej+1,

aN = Fj+1,N (aj+1) ∈ EN .

Definition 4.1 (External derivative (pointwise)).
For m ≥ 1, the m-th derivative of the map
Fj+1,N : Ej+1→EN , evaluated at the forward
value aj+1, is the tensor

DmFj+1,N (aj+1) ∈ EN ⊗ (E∗
j+1)

⊗m.

This is the pointwise counterpart obtained by
applying (3.6) to Fj+1,N and then evaluating at
aj+1.

Definition 4.2 (Internal derivative (pointwise)).
For m ≥ 1, the m-th derivative of the map
Fj,j+1 : Ej → Ej+1, evaluated at the forward
value aj , is the tensor

DmFj,j+1(aj) ∈ Ej+1 ⊗ (E∗
j )

⊗m.

Again, this is (3.6) applied to Fj,j+1 and evalu-
ated at aj .

Grouping the pointwise derivatives up to order
k gives the pointwise analogues of (3.6):

⊕k
E j+1,N (aj+1) :=

k⊕
m=1

(
EN ⊗ (E∗

j+1)
⊗m
)
,

⊕k
E j,j+1(aj) :=

k⊕
m=1

(
Ej+1 ⊗ (E∗

j )
⊗m
)
.

(4.1)

The k-th derivative of the composition at aj is

Dk
(
Fj+1,N ◦ Fj,j+1

)
(aj) = DkFj,N (aj)

∈ EN ⊗ (E∗
j )

⊗k. (4.2)

We use the (pointwise) tensorial chain-rule con-
traction to combine the evaluated external and

10
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internal tensors:

C(k)j (aj) :
⊕k
E j+1,N (aj+1)×

⊕k
E j,j+1(aj)

−→ EN ⊗ (E∗
j )

⊗k,

C(k)j (aj)
( k⊕

m=1

DmFj+1,N (aj+1) ,

k⊕
m=1

DmFj,j+1(aj)
)
=

= DkFj,N (aj).

In words: at the concrete primal values
(aj , aj+1) coming from the forward pass, the
k-th composite derivative is obtained by con-
tracting the Ej+1/E∗

j+1 factors between the
pointwise external tensors DmFj+1,N (aj+1) and
the ordered tuple of pointwise internal tensors
DrFj,j+1(aj) whose total order sums to k.

4.3 Block-divided tensor derivatives

Modern Deep Learning frameworks can operate
with sequences of one-vector layers, but they
are not constraint to that. Neural Networks fre-
quently branches of parallel vector pipelines. In
other words, subsets of scalar variables, are not
grouped into single vectors, but into multiple
ones. This grouping also affects the structure
of the output derivatives with respect to each
layer, which can be partitioned into independent
blocks, as shown in figure 4.2. However, this
deviation from the presented graph reformulation
does not constitute a problem, in as much it can
be reached with a simple concatenation of the
layer vectors.

When the maximum differentiation order is
one, cross-block terms appear. Consequently, the
computation of the derivative of a block with re-
spect to a vector in the composition depends only
on the external derivative blocks whose vectors
are functions of that specific vector. Grouping all
scalar variables belonging to the same vector into
a node, the derivative with respect to each node

𝜕𝒗𝑗
𝑁

𝜕𝒗0
𝑖 𝜕𝒗0

𝑖

𝜕𝒗𝑗
𝑁

𝜕𝒗0
𝑖 𝜕𝒗1

𝑖

𝜕𝒗𝑗
𝑁

𝜕𝒗1
𝑖 𝜕𝒗1

𝑖

𝜕𝒗𝑗
𝑁

𝜕𝒗1
𝑖 𝜕𝒗0

𝑖

𝜕𝒗𝑗
𝑁

𝜕𝒗0
𝑖

𝜕𝒗𝑗
𝑁

𝜕𝒗1
𝑖

𝒗𝑜
𝑖

𝒗1
𝑖

𝑗 𝑗

𝐷2𝐹𝑖+1,𝑖𝐷1𝐹𝑖+1,𝑖𝐸𝑖

Fig. 4.2: Equivalent computational graph interpreta-
tions

depends only on the derivatives with respect
to the nodes directly connected to it. Internal
derivative blocks from any unconnected node
are zero, and no cross-blocks exist. Thus, for
first-order derivatives, backpropagation can be
carried out node by node without expanding the
entire layer and without introducing fictitious
nodes. The PyTorch autograd system, for in-
stance, performs a dependency-driven, priority-
queued traversal of the backward graph: a node
is expanded exactly when all its required gradi-
ent contributions have arrived, and among ready
nodes, the one with the highest priority (largest
forward sequence number) is selected from a
per-device queue.

4.4 Propagation procedure

The technique used by PyTorch cannot be ex-
tended to derivatives of order greater than one.
Addressing this case requires to use the composi-
tion procedure presented in section 3. However,
there exist two different alternatives regarding
the method used to manage derivative blocks:

1) Concatenate vectors of each layer and per-
form backpropagation on the resulting se-
ries graph.

2) Avoid vector concatenation and meticu-
lously manage block combinatorics while
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computing iterated tensor products of vec-
tor spaces.

In our implementation, we opt for the second
approach for several reasons.

1) Derivative tensors, when subdivided into
blocks, are asymptotically smaller with re-
spect to the number of blocks.

2) The subdivision enables us to exploit spe-
cific properties of external and internal
derivatives to avoid repeated allocation of
batch dimensions.

3) The subdivision allows us to exploit sym-
metries among partial derivatives to pre-
vent recomputation of equivalent blocks.

The main drawback of this approach is that it
does not provide the possibility to exploit scalar-
level symmetries. In any case, doing so would
require specialized kernels and would preclude
the use of highly optimized tensor contraction
operators such as matmul or batched-matmul.

Propagation through the graph proceeds by se-
quentially expanding layers of nodes, with each
node representing a vector block. Frontier ex-
pansion must occur at every step (described
at algorithm (2)) across all traversed branches.
This requirement causes join nodes to act as
blocking gates, passable only after every parent
node has connected. Fictitious balancing nodes
can be created by preprocessing the graph, how-
ever, this requires to go over the graph twice.
A better approach is to materialize the nodes
on demand simply by completing with iden-
tity transformations every node present among
composed derivatives and not targeted by any
internal fns.

The expression describing the tensorial deriva-
tive of the composition, as established by (1),
consists of a summed series of tensor con-
tractions. When derivative-block division is in-
cluded, computing the full derivative requires

Algorithm 2: Node selection and expansion
along the graph

Input:
expanded nodes (set)
expanded edges (set)
Output:
expanded nodes (updated)
expanded edges (updated)

Initialization:
active← ∅
candidates← ∅
frontier ← ∅
Update active nodes:
deps← ∅
foreach u ∈ expanded nodes do

if u.edge ̸= ∅ and
u.edge /∈ expanded edges then

active← active ∪ {u}
deps← deps∪(dependencies(u)\{u})

active← active \ deps
Collect expansion candidates (edges):
edges← {u.edge : u ∈ active }
foreach e ∈ edges do

if ∀s ∈ e.sources : s ∈ active then
candidates← candidates ∪ {e}

Expand candidates in batch (contractive
update):

if |candidates| > 0 then
internal fns← ∅
foreach e ∈ candidates do

internal fns[e.fn]←
(e.sources, e.targets)

frontier ← frontier ∪ { t : t ∈
e.targets }

composed derivatives.update(internal fns)
expanded nodes←
expanded nodes ∪ frontier
expanded edges←
expanded edges ∪ candidates
candidates← ∅

return expanded nodes, expanded edges

12
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iterating not only over the summation and con-
traction terms, but also over the external and
the internal blocks. Algorithm (3) presents our
pseudo-code for the process.

5 Expression of Tensor Contractions

5.1 Requirement of permutations

Algorithm (1) shows how to compute the deriva-
tive of the composition of vector-valued func-
tions. However, modern Deep Learning frame-
works, which represent the main application
of such derivatives, do not operate directly on
vector variables, but more generally on tensor
variables. At the same time, these frameworks
provide operators that treat each tensor dimen-
sion differently. Although every derivative with
respect to a tensor variable can be reformulated
as a derivative with respect to a vector variable,
due to the mentioned heterogeneous dimension
treatment, this reformulation is not always com-
putationally convenient.

Batch dimensions, in particular, are treated in-
dependently throughout both the evaluation of
the graph and the backpropagation of derivatives.
For the structure of derivatives, this implies that
all cross-elements between repetitions of the
same batch dimension across different differenti-
ations are null. This property can be formalized
as follows.

Definition 5.1 (Batch independence). Let V,W
be finite-dimensional vector spaces, and let B ∼=
Rn denote the batch space with canonical basis
{eb}b∈B and dual basis {e∗b}b∈B. For m ≥ 1,
define the diagonal batch tensor of order m by

∆B
m =

∑
b∈B

eb ⊗ (e∗b)
⊗m ∈ B ⊗ (B∗)⊗m.

(5.1)

Algorithm 3: Block-wise computation of the
composite derivative

Input:
block counts = (Bext, Bint)
composite block indices (tuple int)
expression
external differentials

∈
⊕k

E N,j+1 divided by external blocks
internal differentials

∈
⊕k

E j+1,j divided by internal blocks
Output:
result ∈ E(≤k)

N,j divided by internal blocks

Initialization:
result← 0

foreach
contraction ∈ expression.contractions do

order ← contraction.external.order
E block indices←
set(range(block counts[0]))order

foreach position ∈ E positions do
E ← external differentials.get(
E block indices)

if E is None then
continue

Is block indices←
contraction.internals

pairs←
zip(E block indices, Is block indices)

Is← [ ]
block disarrangement← [ ]
missing ← false
foreach
(E block index, I block indices) ∈
pairs do

key ←
(E block index, I block indices)
I ←
internal differentials.get(key)

if I is None then
missing ← true; break

append I to Is
extend block disarrangement
with I block indices

if missing then
continue

block permutation←
reverse(block disarrangement)

term←
contract(E, Is, block permutation)

result← result+ term

return result
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Grado en Ingenierı́a Matemática e Inteligencia Artificial

Consider a batched map

F : B ⊗ V −→ B ⊗W, F = IdB ⊗F̂ ,

u =
∑
b∈B

eb ⊗ vb ∈ B ⊗ V, (5.2)

and take derivatives with respect to the
V –components only (batch coordinates are held
fixed). Then, for m ≥ 1, the m-th pointwise
derivative at u factorizes as

Dm
V F (u) =

∑
b∈B

eb ⊗ (e∗b)
⊗m ⊗ DmF̂ (vb)

∈ B ⊗ (B∗)⊗m ⊗W ⊗ (V ∗)⊗m. (5.3)

In components,(
Dm

V F (u)
)
b,α; b1,β1;...; bm,βm

=

=
( m∏

j=1

δ
bj
b

) (
DmF̂ (vb)

)
α;β1,...,βm

.

In particular, all cross-components with distinct
batch indices vanish, reflecting batch indepen-
dence.

The computation of higher-order derivatives over
tensors with batch dimensions naturally leads
to expressions combining dimension permuta-
tions, element-wise multiplications, and tensor
contractions. Although definition (5.1) shows
one single batch dimension at first place, these
dimensions may appear in arbitrary number
and positions within both external and internal
derivatives. Consequently, tensors must first be
reorganized by suitable permutations that align
the batch dimensions before efficient contrac-
tions can be applied.

Once dimensions are aligned, interactions among
those that share batch positions can be repre-
sented as element-wise multiplications, while the
remaining interactions between distinct dimen-
sions are expressed as tensor contractions. This
decomposition is essential, as it shows that any
derivative propagation in the presence of batch
reduces to a sequence of dimension permutations

and standard contractions, without the need to
introduce additional operators.

5.2 Esinstein sum and notation

The Einstein notation is a well known notation
designed to describe multi-linear operators. It
identifies element-wise multiplication with in-
dices repeated an arbitrary number of times
including output. And it identifies contraction
with indices repeated twice omitting output.
This notation provides a natural language to
describe the previously described operations. By
suppressing summation symbols over contracted
indices and identifying each index through its
repetition, the notation encodes the minimal in-
formation required to specify unambiguously a
permutation, element-to-element multiplication
and contraction. This way, a single formula
in Einstein notation can represent what would
otherwise require a greater number of steps.

Any combination of permutations, element-wise
multiplications, and tensor contractions can con-
veniently be rewritten as a sequence of permu-
tations and batch matrix multiplications, which
belong to the optimized core of nearly all Deep
Learning backends. The main challenge, in prac-
tice, lies in scheduling the optimal sequence of
permutations and matrix multiplications. Deter-
mining the order that minimizes the number of
operations or the memory cost is, in general,
NP-hard (16) (17), as the search space grows ex-
ponentially with the number of indices, making
exact solutions intractable for large contractions.

The einsum operator in PyTorch provides the
ideal interface to express contractions declara-
tively using Einstein notation. Moreover it can
be integrated with external planners such as
opt einsum (18) which implement heuristic and
limited exact algorithms to approximate the op-
timal contraction sequence. To guarantee maxi-
mum efficiency in the computation of derivative
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expressions for compositions, our implementa-
tion performs all tensor product contractions
using exclusively this operator.

5.3 Einstein notation for tensorial com-
position derivative

The structure of the contractions resulting from
the iterative procedure in (1) is always that
of an external derivative contracted against an
arbitrary number of internal derivatives. Within
this structure, the specific way in which the
dimensions of each of these internal deriva-
tives behave depends on the operators associated
with them. Each internal derivative has its own
three-part Einstein notation indicating how its
dimensions are contracted with the dimensions
of the corresponding differentiation (group of
dimensions) of the external derivative. This set
of Einstein notations is unified into a single
one that describes the multiple contraction to
be performed, allowing the ‘einsum‘ operator
to internally decompose it in whatever way it
considers most efficient.

The use of Einstein notation in the composition
involves a series of difficulties related to the
ordering of the differentiations of the resulting
external derivative. Simply contracting each in-
ternal derivative with its corresponding differen-
tiation of the incoming external derivative does
not guarantee that the ordering of the resulting
differentiations (arising from the internal deriva-
tives) will be correct. The differentiations of
the external derivatives resulting from multiple
contractions generally require a final permuta-
tion to reach their expected ordering. Naturally,
this final permutation of differentiations is also
incorporated into the single ‘einsum‘ operation.

To carry out this final permutation, the dimen-
sions of the internal Einstein notations are sep-
arated into their own internal differentiations. In

this way, the internal Einstein notations consist
of:

1) A first group of indices referencing the
dimensions of the external differentiation
to be contracted.

2) A second group of indices referencing the
dimensions of the internal derivative.

3) A third tuple of groups of indices referenc-
ing the dimensions of each of the internal
differentiations.

Having this packaging of the resulting dimen-
sions by differentiation makes it possible to
easily perform the necessary final permutations.

𝐯𝟎
𝟎 𝐯𝟏

𝟎

𝐯𝟎
𝟏 𝐯𝟏

𝟏

𝐯𝟎
𝟐

𝑚𝑎𝑡𝑚𝑢𝑙

𝑒2𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

𝐯𝟏

𝐯𝟎

𝐯𝟐

F2,1

F1,0

Fig. 5.1: Example of tree-shaped vector computa-
tional graph

Take, for example, the graph illustrated in figure
5.1 with the contraction (5.4) of the derivative of
the composition F2,1 ◦ F1,0 . The unification of
the internal einsums into a single notation would
be carried out as shown in (5.5).

(
D2FE1

[0,1],E
2
[0]
◦FE0

[0,1],E
1
[0,1]

)
(v0)

⊗
E1 ∗

0 , E1 ∗
1

⊗E1
0

⊗E1
1

⊗
E1 ∗

0 , E1 ∗
1

⊗E1
0
D2FE0

[0,0],E
1
[0]
(v0)

⊗E1
1
D1FE0

[1],E
1
[1]
(v0)

(5.4)
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Explanation. This displays one contraction term
of the second-order composition along the chain
E0→ E1→ E2, evaluated pointwise at v0∈ E0.
The external factor uses the order-2 derivative of
F1,2 with respect to the two blocks E1

[0] and E1
[1],

mapping into block E2
[0], and is precomposed

with F0,1 to live over E0. On the right, the ver-
tically listed internal factors are the derivatives
of F0,1 taken at v0 and contracted, respectively,
in the E1

[0] and E1
[1] dimensions. Brackets [ · ]

indicate the block index inside each layer vector.

external indices:

[ [0, 1]︸︷︷︸
diff v1

0

, [ 2 ]︸︷︷︸
diff v1

1

]

internal einsums:

matmul: [0, 1], [3, 4] →
[
[3, 1], [0, 4]

]
e2e: [ 2 ], [ 2 ] →

[
[ 2 ]

]
unified einsum:

[[0, 1], [2]] , [3, 4], [2] →

→ [[3, 1]︸︷︷︸
diff v2

0

, [ 2 ]︸︷︷︸
diff v2

1

, [0, 4]︸︷︷︸
diff v2

0

] (5.5)

6 Batch Management and Optimiza-
tions

6.1 Batch unification

Batch dimensions, as established in the defi-
nition of batch independence (5.1), introduce
redundant elements into derivative tensors. Since
batch dimensions are pairwise diagonal, they can
be unified into a single one by means of an
appropriate operator (6.1), thereby reducing the
size of the derivatives significantly. As shown
in (6.4), this unification decreases the derivative
size asymptotically with respect to the batch size.

6.2 Batch unification

Definition 6.1 (Batch unification operator (point-
wise form)). Let Ej

∼= B ⊗ Vj with batch space

B ∼= Rn, canonical basis {eb}b∈B and dual
{e∗b}b∈B. For m ≥ 1, set

∆B
m :=

∑
b∈B

eb ⊗ (e∗b)
⊗m ∈ B ⊗ (B∗)⊗m,

UB
m(x) :=

〈
∆B

m, x
〉
(B∗)⊗m , (6.1)

so UB
m : B⊗ (B∗)⊗m → B contracts the m dual

batch dimensions against ∆B
m. Suppose Fj,j+1 =

IdB ⊗ F̂j,j+1 and Fj+1,N = IdB ⊗ F̂j+1,N are
batch–wise (element–wise in B). Then, differen-
tiating only with respect to feature variables, for
vj ∈ Vj and vj+1 ∈ Vj+1 one has the pointwise
factorizations

DmFj,j+1(v
j) = ∆B

m ⊗ DmF̂j,j+1(v
j)

∈ B ⊗ Vj+1 ⊗ (V ∗
j )

⊗m,

DmFj+1,N (vj+1) = ∆B
m ⊗DmF̂j+1,N (vj+1)

∈ B ⊗ VN ⊗ (V ∗
j+1)

⊗m. (6.2)

In components,(
DmF (v)

)
b,α; b1,β1;...;bm,βm

=

=
( m∏

t=1

δ bt
b

) (
DmF̂ (v)

)
α;β1,...,βm

,

so all cross–batch components with distinct in-
dices bt vanish.

C(k)j

( k⊕
m=1

UB
m

(
DmFj+1,N (vj+1)

)
,

k⊕
m=1

UB
m

(
DmFj,j+1(v

j)
))

=

= UB
k

(
DkFj,N (vj)

)
, (6.3)

Brief justification. Since both Fj,j+1 and Fj+1,N

act element–wise on B, the chain rule and
the multilinear contraction C(k)j decompose
batch–wise: for each b ∈ B, the b–th slice
of the left–hand side equals the (feature–space)
composition at batch b. The tensor ∆B

m enforces
equality of the batch indices along the external
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and internal derivatives, hence applying UB
m to

each factor and UB
k to the result preserves the

composition and removes redundant batch duals,
yielding (6.3).

Proposition 6.1 (Computational cost reduction
via batch unification). Let CX(m) denote the
cost of contracting the feature–space part (in-
dependent of |B|), and assume batch dimensions
operate element–wise. Then the m–th order com-
position term has

T
(
C(m)
j

)
= Θ

(
|B| 1+2mCX(m)

)
,

T
(
UB ◦ C(m)

j

)
= Θ

(
|B|CX(m)

)
, (6.4)

so the asymptotic reduction factor is

T
(
C(m)
j

)
T
(
UB ◦ C(m)

j

) = Θ
(
|B| 2m

)
. (6.5)

Sketch. Without unification, the external fac-
tor contributes one batch dimension and each
of the m internal derivatives contributes one
dual batch slot; element–wise evaluation over
B yields the |B|1+2m factor. After unification,
all batch duals are collapsed once, leaving a
single batch traversal (|B|); the feature–space
contraction cost CX(m) is unchanged.

6.3 Overview of batch annotation

Unifying batch dimensions in internal derivatives
has a drawback. Some operators have primal
dimensions in internal derivatives that do not
contract with all dual dimensions of the external
derivatives. In such cases, batch dimensions from
internal derivatives may interact element-wise
with external dual dimensions. And if thodse do
not satisfy batch independence, the operation re-
quires undoing unification by applying inv(UB

m).

Implementing batch unification during automatic
differentiation requires maintaining annotations
on the batch-independence condition of all di-
mensions in each node (assuming nodes repre-
sent tensor variables). Our implementation ini-
tially assumes that all output tensor dimensions

are batch-independent. During backpropagation,
annotations are updated dynamically according
to the way each operator treats its dimensions.
When a dimension transitions from indepen-
dent to non-independent, the inverse unification
operator is applied to all occurrences of that
dimension across the external derivatives.

This strategy, however, has a practical limita-
tion. Neural network computational graphs typ-
ically terminate in a 0-dimensional tensor (a
scalar) representing the loss. Since no output
dimension is marked as batch-independent, batch
unification cannot be applied, even though the
network may have treated some dimension as
batch and only reduced it in the final operator.
To address this limitation, we adopt a strategy
that allows annotating some newly introduced
dimensions during backpropagation as batch-
independent under specific circumstances.

The key lies in the independent dual dimensions
introduced by internal derivatives. If a new di-
mension is independent of all others within the
internal derivatives, then within the composition
it satisfies the conditions of a batch-independent
dimension. Independence of a new dimension
can always be ensured when the maximum
nonzero external derivative order is 1 and the
dimension is independent of all others introduced
by the same internal derivative, since in this case
that derivative is the only one involved in the
contraction.

Definition 6.2 (Independent dual dimension).
Let V be a finite-dimensional vector space with
canonical basis {ei}i∈I and dual {e∗i }i∈I . A dual
slot of type V ∗ is an independent dual dimension
if, for every operator F and every order m ≥ 1,
the derivative tensor (6.6).

DmF ∈ C∞(V, W ⊗ (V ∗)⊗m
)

(6.6)
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contains this slot only as repeated factors of the
same basis element e∗i , i.e. (6.7)(

DmF
)
α; i1,...,im

= 0

whenever not all i1 = · · · = im = i (6.7)

for some fixed i ∈ I . Equivalently, such a dimen-
sion never produces cross-components with any
other dimension across derivatives of any order.
Hence, an independent dual dimension always
appears as a single factor in V ∗, replicated
m times in DmF , with no coupling to other
dimensions.

Considering this annotation-based methodology,
along with the correction to incorporate dynam-
ically new batch-independent dimensions, the
algorithm for batch management during back-
propagation can be implemented as in (4).

7 Block-Symmetries and Optimiza-
tion

7.1 Schwarz condition symmetries and
potential optimization

The Schwarz theorem states that, under suitable
regularity assumptions on the operators (in par-
ticular, continuity of higher-order derivatives),
the order in which partial derivatives are applied
does not affect the result. Formally, for any
sufficiently smooth function F : Rn → R and
for every pair of indices i, j, satisfies equation
(7.1).

∂2F

∂xi∂xj
=

∂2F

∂xj∂xi
(7.1)

and more generally, derivatives of order m are
symmetric with respect to permutations of their
indices

DmF (x)[vσ(1), . . . ,vσ(m)] =

= DmF (x)[v1, . . . ,vm], ∀σ ∈ Sm (7.2)

Algorithm 4: Backpropagation with batch-
unification awareness

Input:
output node (graph output node)
k (differentiation order)
graph (computational graph)

Output:
external derivatives (w.r.t. graph inputs)

Initialization:
foreach dim ∈ output node.dims do

dim.batch independent← true

external derivatives← [Id, 02, . . . , 0k]

Iterative step:
foreach layer ∈ graph do

E ← layer.external nodes
I ← layer.internal nodes

foreach EN ∈ E do
foreach IN ∈ I do

op← edge(EN, IN)
foreach dim ∈ IN.dims do

if
( dim /∈ EN.dims ) ∨ ( dim /∈
op.batch dims ) then

if k = 1 then
dim.batch independent←
( dim ∈
op.independent duals )

else
dim.batch independent←
false

external derivatives←
desunify batch(external derivatives, I)
internal derivatives←
compute internal derivatives(E, I)
external derivatives←
compute composite derivatives(
external derivatives, internal derivatives
)

return external derivatives
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7.2 Block-wise symmetry optimization

where Sm denotes the symmetric group of order
m. This property implies that, to compute the
full derivative tensor of order m, it is sufficient
to evaluate only a fraction of its independent
components, as the rest can be obtained by
symmetry. The number of independent compo-
nents is reduced approximately by a factor of
(1/2)m−1 with respect to the total number of
components.

In our framework, derivatives are represented
with respect to an explicit vector basis. The oper-
ators employed in the implementation (matrices,
convolutions, batched matrix multiplications) act
in parallel over all tensor elements, without the
capability to adapt element-wise computations to
exploit symmetries. Consequently, the combina-
torial reduction of components derived from the
Schwarz theorem cannot be directly applied at
the scalar variable level.

Nevertheless, when working with a block parti-
tioning, symmetry can be exploited effectively.
Each block corresponds to a vectorial subset of
variables jointly processed by a multivariable
operator. The Schwarz symmetry ensures that the
computation of cross-derivatives between two
different blocks is redundant: each ordered pair
of blocks needs to be computed only once,
with the result reused by symmetry. Thus, in-
stead of reducing the number of scalar elements
computed, the method reduces the number of
derivative blocks evaluated. The reduction factor
remains (1/2)m−1, but applied to the number of
blocks involved in derivatives of order m.

In theory, the computational cost of evaluating
derivatives of maximum order is reduced exactly
by this factor. In practice, however, the benefit
is partially offset by two considerations: first,
the overhead associated with the implementation
of block-symmetry deduplication; and second,

the fact that for lower-order derivatives the pro-
portion of reduction is smaller, such that the
overall weighted saving in the full computation
is lower than the theoretical ideal. Despite these
limitations, the application of the Schwarz sym-
metry at the block level provides a significant
optimization for the evaluation of higher-order
derivatives, while preserving compatibility with
standard vectorized operators and without re-
quiring specialized kernels to exploit scalar-level
symmetries.

8 Results: THOAD Package

8.1 Presentation of the package

Throughout this project we have developed a
package implementing an automatic differentia-
tion system of arbitrary order over a vectorial (or
more precisely, tensorial) computational graph,
using the techniques discussed throughout this
paper. The package is named THOAD (Torch
High Order Automatic Differentiation), since it
delegates to PyTorch both the implementation
of tensor operators and the construction of the
computational graph. It is fully written in Python
3.12 and relies exclusively on PyTorch 2.2+ as
its only dependency. At present, it is available
for download via GitHub (19) or PyPI.

A main design priority of the package is to
provide a user interface that enables seamless
integration with PyTorch. Figure 8.2 illustrates
how to define a computational graph and run
the higher-order automatic differentiation pro-
cess with PyTorch. Figure 8.1, shows how to do
the same with THOAD.

8.2 Package tests

THOAD is compatible with 70 different
PyTorch-operator backward functions (internal
classes used to compute an operator’s internal
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Grado en Ingenierı́a Matemática e Inteligencia Artificial

1 import t o r c h
2
3 # Model s e t u p
4 X = t o r c h . r and (
5 s i z e = ( 6 4 , 1 0 ) ,
6 r e q u i r e s g r a d = F a l s e
7
8 )
9 W1 = t o r c h . r and (

10 s i z e = ( 1 0 , 1 0 ) ,
11 r e q u i r e s g r a d =True
12 )
13 W2 = t o r c h . r and (
14 s i z e = ( 1 0 , 1 0 ) ,
15 r e q u i r e s g r a d =True ,
16 )
17
18 T = t o r c h . r e l u (
19 input =(X @ W1) ,
20 )
21 T = t o r c h . so f tmax (
22 input =(T @ W2) ,
23 dim =1 ,
24 )
25
26 # F i r s t −o r d e r g r a d i e n t
27 T . sum ( ) . backward ( )

Fig. 8.1: First order back-propagation with PyTorch

derivatives). In practice, this means that it is
compatible with many more than 70 PyTorch
operators, since most complex PyTorch opera-
tors implement their backward process through
the composition of simpler backward functions.
All implemented backward functions have been
tested against PyTorch’s first- and second-order
derivatives across all their inputs. The structure
of the tests performed can be found in the
appendix figure 1.

8.3 Impact of optimizations

As mentioned earlier in the report, the two
strategies proposed to improve the performance
of the automatic differentiation process represent
a significant part of the contributions of this
work. Consequently, as part of the performance
analysis of the package, we have conducted
comparisons between the execution of derivative
propagation with these strategies enabled and
disabled. As shown in figure 8.3, both the batch
optimization and the Schwarz optimization yield
asymptotical reductions in computational cost

1 import t o r c h
2 import t h o a d
3
4 # same model s e t u p as above
5
6 # − O. sum ( ) . backward ( )
7 o r d e r = 1 # d e f i n e a r b i t r a r y

d i f f e r e n t i a t i o n o r d e r
8 t h o a d . backward (
9 t e n s o r =T , # a c c e p t s non−s c a l a r

t e n s o r s
10 o r d e r = o r d e r ,
11 )

Fig. 8.2: Back-propagation with thoad

with respect to batch size and derivative order,
respectively.
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Fig. 8.3: Scalability benchmarks: ratio of non-
optimized THOAD runtime to optimized THOAD
runtime as a function of batch size (top) and number
of terminal nodes (bottom). Benchmark implemen-
tations can be found in appendix figures 6 and 7
respectively.

8.4 Benchmarks vs PyTorch autograd

Furthermore, Figure 8.4 presents benchmark re-
sults that compare the computational scalability
of Hessian computation in THOAD with Py-
Torch, which performs this operation differently
using nested automatic differentiations. As can
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Fig. 8.4: Scalability benchmarks: ratio of PyTorch
runtime to THOAD runtime as a function of batch
dimension size (top), dual dimension size (bottom).
Benchmark implementations can be found in ap-
pendix figures 3 and 4 respectively.

be observed, thanks to the optimization tech-
niques discussed, THOAD scales asymptotically
better in computational cost with respect to in-
creases in batch dimension size. By contrast, it
scales worse w.r.t. parameter dimension size,

9 Conclusion and Future Work

To conclude this report, we present below several
ideas that we consider particularly relevant for a
potential extension or complement to this work.

• Exploring the exploitation of derivative
symmetries at the element level: As dis-
cussed in Section 7 of this report, taking
computational advantage of symmetries at
the element level when working with vecto-
rial or tensorial variables is challenging, and
may in fact be impossible with the tools pro-
vided by high-level vector calculus libraries.
Nevertheless, this is a direction to which we
have not devoted any research effort, and on
which, consequently, we cannot make any
categorical statements.

• Incorporating efficient support for con-
volutions into the package: The entire
mathematical framework presented in this
report relies on the assumption that inter-
nal derivatives possess a tensor structure
with primal, dual, and batch dimensions.
The internal derivative of a convolution can
indeed be expressed in this way, but do-
ing so requires combining in that derivative
one dimension corresponding to the output
feature space with one or more dimensions
corresponding to the input feature space,
i.e. (CHW )out ⊗ (CHW ∗)⊗m

in . As a re-
sult, the resulting tensors become extremely
large and highly sparse. Should convolution
support be incorporated into the package,
it would be advisable to do so in a more
optimized manner.

• Complementing the package with an API
for developing and applying optimizers
that leverage higher-order derivatives:
Modifying the values of the leaf tensors of
the graph according to the values of their
gradients is a key process in computational
optimization, forming the cornerstone of
Deep Learning. In certain subdomains of
Deep Learning research, such as Physics-
Informed Neural Networks (PINNs), it may
be useful to involve derivatives of order
higher than one in the optimization pro-
cess. Providing the package with an API
for designing and applying optimizers of
arbitrary order would substantially enhance
its usability.
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1 # Fi r s t d e r i v a t i v e
2 X shapes = [ ( 4 , 6) , (1 , 6) , (4 , 1) , (4 , 6) , (4 , 6) , ( 6 , ) , (4 , 6) ]
3 Y shapes = [ ( 4 , 6) , (4 , 6) , (4 , 6) , (1 , 6) , (4 , 1) , (4 , 6) , ( 6 , ) ]
4 for reqx , reqy in [ ( True , True ) , (True , Fa l se ) , ( False , True ) ] :
5 for xs , ys in zip ( X shapes , Y shapes ) :
6 for alpha in [ 1 . 0 , 0 . 5 ] :
7 X = torch . rand ( s i z e =(3 , 4) , r e qu i r e s g r ad=reqx , dev i c e=dev i ce

)
8 Y = torch . rand ( s i z e =(3 , 4) , r e qu i r e s g r ad=reqy , dev i c e=dev i ce

)
9 O = torch . add ( input=X, other=Y)

10 O = O.sum( ) ∗∗ 2
11 backward ( t enso r=O, order=2)
12 O. backward ( )
13 i f reqx :
14 a s s e r t torch . a l l c l o s e (
15 X. hgrad [ 0 ] . f l a t t e n ( ) , X. grad . f l a t t e n ( ) , a t o l=1e−4
16 )
17 i f reqy :
18 a s s e r t torch . a l l c l o s e (
19 Y. hgrad [ 0 ] . f l a t t e n ( ) , Y. grad . f l a t t e n ( ) , a t o l=1e−4
20 )
21
22 # Second d e r i v a t i v e
23 X = torch . rand ( s i z e =(4 , 6) , r e qu i r e s g r ad=True , dev i c e=dev i ce )
24 Y = torch . rand ( s i z e =(4 , 6) , r e qu i r e s g r ad=True , dev i c e=dev i ce )
25 O = torch . add ( input=X, other=Y)
26 O = O.sum( ) ∗∗2
27 c t r l = backward ( t enso r=O, order=2, c r o s s i n g s=True )
28 def f ( a r e f : Tensor , b r e f : Tensor ) :
29 return ( a r e f + b r e f ) .sum( ) ∗∗2
30 f u l l h e s s i a n = torch . autograd . f un c t i o n a l . h e s s i an ( f , (X, Y) )
31 H00 , = c t r l . f e t ch hgrad ( [X, X] , keep batch=False )
32 H01 , = c t r l . f e t ch hgrad ( [X, Y] , keep batch=False )
33 H10 , = c t r l . f e t ch hgrad ( [Y, X] , keep batch=False )
34 H11 , = c t r l . f e t ch hgrad ( [Y, Y] , keep batch=False )
35 a s s e r t torch . a l l c l o s e (H00 . f l a t t e n ( ) , f u l l h e s s i a n [ 0 ] [ 0 ] . f l a t t e n ( ) , a t o l=1

e−4)
36 a s s e r t torch . a l l c l o s e (H01 . f l a t t e n ( ) , f u l l h e s s i a n [ 0 ] [ 1 ] . f l a t t e n ( ) , a t o l=1

e−4)
37 a s s e r t torch . a l l c l o s e (H10 . f l a t t e n ( ) , f u l l h e s s i a n [ 1 ] [ 0 ] . f l a t t e n ( ) , a t o l=1

e−4)
38 a s s e r t torch . a l l c l o s e (H11 . f l a t t e n ( ) , f u l l h e s s i a n [ 1 ] [ 1 ] . f l a t t e n ( ) , a t o l=1

e−4)

Figure 1: Example of THOAD autodifferentiation test for torch.add operator
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Grado en Ingenieŕıa Matemática e Inteligencia Artificial

1 import t ime i t
2 import torch
3 import thoad
4 from torch import Tensor
5
6 def foward pass (X: Tensor , ∗params ) −> Tensor :
7 T: Tensor = X
8 for i , P in enumerate( params ) :
9 l a s t s t e p : bool = i == ( len ( params ) − 1)

10 T = T @ P
11 T = torch . softmax (T, dim=1) i f l a s t s t e p else torch . r e l u (T)
12 return T.sum( )
13
14 def t ime autog rad he s s i an ( param grad : bool , r eps : int , X: Tensor , ∗params

) −> f loat :
15 def f i x e d f o rwa rd pa s s (X) −> Tensor :
16 return foward pass (X, ∗params )
17 def foward and backward ( ) −> None :
18 i f param grad :
19 torch . autograd . f un c t i o na l . h e s s i an ( func=foward pass , inputs=(X

, ∗params ) )
20 else :
21 torch . autograd . f un c t i o na l . h e s s i an ( func= f i x ed f o rwa rd pa s s ,

inputs=X)
22 return None
23 time : f loat = t ime i t (
24 lambda : foward and backward ( ) ,
25 number=reps ,
26 )
27 return time
28
29 def t ime thoad hes s i an ( param grad : bool , r eps : int , X: Tensor , ∗params )

−> f loat :
30 X. r e qu i r e s g r a d (True )
31 params : l i s t [ Tensor ] = [P. r e qu i r e s g r a d ( param grad ) for P in params ]
32 def foward and backward ( ) −> None :
33 T: Tensor = foward pass (X, ∗params )
34 c t r l : thoad . Con t r o l l e r = thoad . backward ( t enso r=T, order=2,

c r o s s i n g s=param grad , keep batch=True )
35 c t r l . c l e a r ( )
36 return None
37 time : f loat = t ime i t (
38 lambda : foward and backward ( ) ,
39 number=reps ,
40 )
41 return time

Figure 2: Helper functions for PyTorch vs THOAD benchmarks
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1 to r ch t imes : l i s t [ f loat ] = [ ]
2 thoad t imes : l i s t [ f loat ] = [ ]
3 for ba t ch s i z e in [ 1 0 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 1 0 0 ] :
4 param size : int = 10
5 x shape : Tuple [ int , int ] = ( ba t ch s i z e , param size )
6 p shape : Tuple [ int , int ] = ( param size , param size )
7
8 X: Tensor = torch . rand ( s i z e=x shape , dev i c e=dev )
9 params : l i s t [ Tensor ] = [ torch . rand ( s i z e=p shape , dev i c e=dev ) for in

range (3 ) ]
10
11 reps : int = 1000 // ba t ch s i z e
12 autograd t ime : f loat = t ime autograd jacob ian ( False , reps , X, ∗params

)
13 thoad time : f loat = t ime thoad jacob ian ( False , reps , X, ∗params )
14
15 to r ch t imes . append ( autograd t ime )
16 thoad t imes . append ( thoad time )

Figure 3: PyTorch vs THOAD benchmark scaling batch size (using helper functions presented in (2))

1 to r ch t imes : l i s t [ f loat ] = [ ]
2 thoad t imes : l i s t [ f loat ] = [ ]
3 for param size in [ 1 0 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 1 0 0 ] :
4 b a t ch s i z e : int = 10
5 x shape : Tuple [ int , int ] = ( ba t ch s i z e , param size )
6 p shape : Tuple [ int , int ] = ( param size , param size )
7
8 X: Tensor = torch . rand ( s i z e=x shape , dev i c e=dev )
9 params : l i s t [ Tensor ] = [ torch . rand ( s i z e=p shape , dev i c e=dev ) for in

range (3 ) ]
10
11 reps : int = 1000 // param size
12 autograd t ime : f loat = t ime autograd jacob ian ( False , reps , X, ∗params

)
13 thoad time : f loat = t ime thoad jacob ian ( False , reps , X, ∗params )
14
15 to r ch t imes . append ( autograd t ime )
16 thoad t imes . append ( thoad time )

Figure 4: PyTorch vs THOAD benchmark scaling dual size (using helper functions presented in (2))
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1 import t ime i t
2 import torch
3 import thoad
4 from torch import Tensor
5
6 def foward pass (X: Tensor , ∗params ) −> Tensor :
7 T: Tensor = X
8 for i , P in enumerate( params ) :
9 l a s t s t e p : bool = i == ( len ( params ) − 1)

10 T = T @ P
11 T = torch . softmax (T, dim=1) i f l a s t s t e p else torch . r e l u (T)
12 return T.sum( )
13
14 def t im e d i f f e r e n t i a t i o n (
15 reps : int ,
16 param grad : bool ,
17 keep batch : bool ,
18 keep schwarz : bool ,
19 order : int ,
20 X: Tensor ,
21 ∗params ,
22 ) −> f loat :
23 X. r e qu i r e s g r a d (True )
24 params : l i s t [ Tensor ] = [P. r e qu i r e s g r a d ( param grad ) for P in params ]
25 def foward and backward ( ) −> None :
26 T: Tensor = foward pass (X, ∗params )
27 c t r l : thoad . Con t r o l l e r = thoad . backward (
28 tenso r=T,
29 order=order ,
30 c r o s s i n g s=param grad ,
31 keep batch=keep batch ,
32 keep schwarz=keep schwarz ,
33 )
34 c t r l . c l e a r ( )
35 return None
36 time : f loat = t ime i t (
37 lambda : foward and backward ( ) ,
38 number=reps ,
39 )
40 return time

Figure 5: Helper functions for optimization benchmarks
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1 ba s e l i n e t ime s : l i s t [ f loat ] = [ ]
2 opt imized t imes : l i s t [ f loat ] = [ ]
3 for o in [ 1 , 2 , 3 ] :
4 b a s e l i n e t ime s . append ( [ ] )
5 opt imized t imes . append ( [ ] )
6 for ba t ch s i z e in [ 1 0 , 20 , 30 , 40 , 50 , 60 , 70 , 8 0 ] :
7 param size : int = int (10 ∗ (1 / o ) ∗ TENSOR SCALE)
8 x shape : Tuple [ int , int ] = ( ba t ch s i z e , param size )
9 p shape : Tuple [ int , int ] = ( param size , param size )

10
11 X: Tensor = torch . rand ( s i z e=x shape , dev i c e=dev )
12 params : l i s t [ Tensor ] = [ torch . rand ( s i z e=p shape , dev i c e=dev ) for

in range (3 ) ]
13
14 c on f i g .SCHWARZ OPTIMIZATION = False
15 reps : int = int (1000 ∗ (1/ ba t ch s i z e ) ∗ (1/ order )
16
17 c on f i g .BATCH OPTIMIZATION = False
18 r e gu l a r t ime : f loat = t im e d i f f e r e n t i a t i o n (
19 reps , True , True , False , o , X, ∗params
20 )
21 c on f i g .BATCH OPTIMIZATION = True
22 opt imized t ime : f loat = t im e d i f f e r e n t i a t i o n (
23 reps , True , True , False , o , X, ∗params
24 )
25
26 ba s e l i n e t ime s [ −1 ] . append ( ba s e l i n e t ime )
27 opt imized t imes [ −1 ] . append ( opt imized t ime )

Figure 6: benchmark for optimizations scaling batch size (using helper functions presented in (5))

1 ba s e l i n e t ime s : l i s t [ f loat ] = [ ]
2 opt imized t imes : l i s t [ f loat ] = [ ]
3 for o in [ 1 , 2 , 3 ] :
4 b a s e l i n e t ime s . append ( [ ] )
5 opt imized t imes . append ( [ ] )
6 for depth in range (2 , 7) :
7 b a t ch s i z e : int = 10
8 param size : int = int (10 ∗ (1 / o ) ∗ TENSOR SCALE)
9 x shape : Tuple [ int , int ] = ( ba t ch s i z e , param size )

10 p shape : Tuple [ int , int ] = ( param size , param size )
11
12 X: Tensor = torch . rand ( s i z e=x shape , dev i c e=dev )
13 params : l i s t [ Tensor ] = [ torch . rand ( s i z e=p shape , dev i c e=dev ) for

in range ( depth ) ]
14
15 c on f i g .BATCH OPTIMIZATION = False
16 reps : int = int (500 ∗ (1/ depth ) ∗ (1/ order )
17
18 c on f i g .SCHWARZ OPTIMIZATION = False
19 ba s e l i n e t ime : f loat = t im e d i f f e r e n t i a t i o n (
20 reps , True , False , True , o , X, ∗params
21 )
22 c on f i g .SCHWARZ OPTIMIZATION = True
23 opt imized t ime : f loat = t im e d i f f e r e n t i a t i o n (
24 reps , True , False , True , o , X, ∗params
25 )
26
27 ba s e l i n e t ime s [ −1 ] . append ( ba s e l i n e t ime )
28 opt imized t imes [ −1 ] . append ( opt imized t ime )

Figure 7: benchmark for optimizations scaling batch size (using helper functions presented in (5))
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